🗣️ Trần Thị Vũ hỏi: Cho mình hỏi một câu Trắc nghiệm ôn thi THPT trong sách bài tập
Dùng thông tin sau cho Câu 39 và Câu 40: Hạt nhân \(_{84}^{210}\) Po phân rã thành hạt nhân \(_{82}^{206}\;{\rm{Pb}}\) bền với chu kì bán rã là 138 ngày. Một mẫu \(_{84}^{210}{\rm{Po}}\) không nguyên chất khi nhập về phòng thí nghiệm đã lẫn chì \(_{82}^{206}\;{\rm{Pb}}\) với tỉ lệ cứ \(6\;{\rm{g}}_{84}^{210}{\rm{Po}}\) thì có \(1\;{\rm{g}}{82^{206}}\;{\rm{Pb}}.\)
Xác định tỉ lệ khối lượng của \(_{84}^{210}{\rm{Po}}\) và \(_{82}^{206}\;{\rm{Pb}}\) có trong mẫu sau đó 15,0 ngày. (Kết quả lấy hai chữ số sau dấu phẩy thập phân).
👩 Đánh giá của giáo viên: Câu này dễ, mức độ biết.
🔑 Chủ đề: ,2025 moi, de on thi tot nghiep thpt vat li ,de so 8,.
🕵 Bạn Nguyễn Khanh Đăng trả lời:
Đáp án: 3,90. Gọi \({m_0}\) là khối lượng \(_{84}^{210}{\rm{Po}}\) ban đầu trong mẫu. Tại \(t = 0,{m_{0Pb}} = \frac{1}{6}{m_0}.\) Tại \(t = 15,0\) ngày, ti lệ khối lượng giữa \(_{84}^{210}{\rm{Po}}\) và \(_{82}^{206}\;{\rm{Pb}}\) được tạo thành là \(\frac{{{m_{{\rm{Po}}}}}}{{{m_{{\rm{Pb}}}}}} = \frac{{\frac{{{N_{{\rm{Po}}}}}}{{{N_{\rm{A}}}}} \cdot 210}}{{\frac{{{N_{{\rm{Pb}}}}}}{{{N_{\rm{A}}}}} \cdot 206}} = \frac{{210{N_{{\rm{Po}}}}}}{{206{N_{{\rm{Pb}}}}}} = \frac{{210 \cdot {N_0}{2^{ - \frac{t}{T}}}}}{{206 \cdot {N_0}\left( {1 - {2^{ - \frac{t}{T}}}} \right)}} = \frac{{{{210.2}^{ - \frac{t}{T}}}}}{{206\left( {1 - {2^{ - \frac{t}{T}}}} \right)}}\) \( \Rightarrow {m_{{\rm{Pb}}}} = \frac{{{m_{{\rm{Po}}}} \cdot 206\left( {1 - {2^{ - \frac{t}{T}}}} \right)}}{{{{210.2}^{ - \frac{t}{T}}}}} = \frac{{{m_0} \cdot {2^{ - \frac{t}{T}}} \cdot 206\left( {1 - {2^{ - \frac{t}{T}}}} \right)}}{{{{210.2}^{ - \frac{t}{T}}}}} = \frac{{{m_0} \cdot 206\left( {1 - {2^{ - \frac{t}{T}}}} \right)}}{{210}}\) Vậy tỉ lệ khối lượng \(_{84}^{210}{\rm{Po}}\) và \(_{82}^{206}\;{\rm{Pb}}\) có trong mẫu là \(\frac{{{m_{{\rm{Po}}}}}}{{{m_{{\rm{Pb}}}} + {m_{0\;{\rm{Pb}}}}}} = \frac{{{m_0} \cdot {2^{ - \frac{t}{T}}}}}{{\frac{{{m_0} \cdot 206\left( {1 - {2^{ - \frac{t}{T}}}} \right)}}{{210}} + \frac{1}{6}{m_0}}} = \frac{{{2^{ - \frac{t}{T}}}}}{{\frac{{206\left( {1 - {2^{ - \frac{t}{T}}}} \right)}}{{210}} + \frac{1}{6}}} = 3,90.\)
Gửi bạn các file hữu ích đi kèm câu hỏi: