🗣️ Phạm Nhật Nhân hỏi: Cho mình hỏi một câu Trắc nghiệm ôn thi THPT trong sách bài tập
Đoạn mạch \[AB\] không phân nhánh gồm điện trở thuần R. cuộn thuần cảm có độ tự cảm L và tụ điện có điện dung C. Khi đặt vào hai dầu đoạn mạch AB điện áp \[{\user2{u}_\user2{1}}\user2{ = U}\sqrt 2 \;\user2{cos(50\pi t)(V)}\] thì công suất tiêu thụ của đoạn mạch là \[{P_1}\] vả hệ số công suất là \[{k_1}\]. Khi đặt vào hai đầu đoạn mạch \[AB\] điện áp \[{\user2{u}_2}\user2{ = 2U}\sqrt 2 \;\user2{cos(100\pi t)(V)}\] thì công suất tiêu thụ của đoạn mạch là \[{P_2} = 4{P_1}\] . Khi đặt vào hai đầu đoạn mạch \[AB\] điện áp \[{\user2{u}_3}\user2{ = 3U}\sqrt 2 \,\user2{cos(150\pi t)(V)}\] thì công suất tiêu thụ cùa đoạn mạch là \[{P_3} = \frac{{81}}{{13}}{P_1},\]và hệ số công suất là \[{k_3}\]. Giá trị\[{k_1}\];\[{k_3}\]gần bằng
(A) 0,95;0,89 .
(B) 0,95; 0,79 .
(C) 0.60; 0,95.
(D) 0.5; 0,79 .
👩 Đánh giá của giáo viên: Câu này dễ, mức độ biết.
🔑 Chủ đề: ,2023, de thi thu vat li thpt tran cao van co dap an.
🕵 Bạn Lê Hải Phát trả lời:
Chọn câu (B): 0,95; 0,79 .
Hướng dẫn: Dùng chuẩn hóa. Khi: ω = 50π rad/s: \[{P_1} = \frac{{{U^2}.R}}{{{R^2} + {{({Z_{L1}} - {Z_{C1}})}^2}}} = \frac{{{U^2}.R}}{{{R^2} + {{(1 - x)}^2}}}\] ; Khi: ω =10 0π rad/s: \[{P_2} = \frac{{{{(2U)}^2}.R}}{{{R^2} + {{({Z_{L2}} - {Z_{C2}})}^2}}} = \frac{{{{(2U)}^2}.R}}{{{R^2} + {{(2 - \frac{x}{2})}^2}}} = 4{P_1} = 4\frac{{{U^2}.R}}{{{R^2} + {{(1 - x)}^2}}}.\] => \[\begin{array}{l}{(1 - x)^2} = {(2 - \frac{x}{2})^2} \Leftrightarrow 1 - 2{\rm{x}} + {x^2} = 4 - 2{\rm{x + }}\frac{{{x^2}}}{4} = > \frac{{3{x^2}}}{4} = 3 = > x = 2.\\\end{array}\] Khi: ω =150π rad/s: \[{P_3} = \frac{{{{(3U)}^2}.R}}{{{R^2} + {{({Z_{L3}} - {Z_{C3}})}^2}}} = \frac{{{{(3U)}^2}.R}}{{{R^2} + {{(3 - \frac{x}{3})}^2}}} = \frac{{81}}{{13}}{P_1} = \frac{{81}}{{13}}.\frac{{{U^2}.R}}{{{R^2} + {{(1 - x)}^2}}}.\] \[\begin{array}{l}13{R^2} + 13{(1 - x)^2} = 9({R^2} + {(3 - \frac{x}{3})^2}) \Rightarrow 4{R^2} + 13 - 26{\rm{x}} + 13{x^2} = 81 - 18{\rm{x + }}{x^2}\\ \Leftrightarrow 4{R^2} = - 12{x^2} + 8x + 68 = > {R^2} = - 3{x^2} + 2x + 17\\x = 2 = > R = 3\end{array}\] \[{\user2{k}_\user2{1}}\user2{ = cos}{\user2{\varphi }_1}\user2{ = }\frac{\user2{R}}{{\sqrt {{\user2{R}^\user2{2}}\user2{ + (1 - x}{\user2{)}^2}} }}\user2{ = }\frac{3}{{\sqrt {{3^\user2{2}}\user2{ + (1 - 2}{\user2{)}^\user2{2}}} }}\user2{ = }\frac{3}{{\sqrt {10} }}\user2{ = 0,94886}\user2{.}\] \[{\user2{k}_3}\user2{ = cos}{\user2{\varphi }_3}\user2{ = }\frac{\user2{R}}{{\sqrt {{\user2{R}^\user2{2}}\user2{ + (3 - x/3}{\user2{)}^2}} }}\user2{ = }\frac{3}{{\sqrt {{3^\user2{2}}\user2{ + (3 - 2/3}{\user2{)}^\user2{2}}} }}\user2{ = 0,78935}\user2{.}\] .
ω (rad/s) | ZL (chuẩn hóa) | ZC | Công suất: \[P = \frac{{{U^2}.R}}{{{R^2} + {{({Z_L} - {Z_C})}^2}}}\] | Hệ số công suất: \[\user2{cos\varphi = }\frac{\user2{R}}{{\sqrt {{\user2{R}^\user2{2}}\user2{ + (}{\user2{Z}_L}\user2{ - Z}_C^{}{\user2{)}^2}} }}\] |
50π | 1 | x | \[{P_1} = \frac{{{U^2}.R}}{{{R^2} + {{(1 - x)}^2}}}.\] | \[\user2{cos}{\user2{\varphi }_1}\user2{ = }\frac{\user2{R}}{{\sqrt {{\user2{R}^\user2{2}}\user2{ + (1 - x}{\user2{)}^2}} }}\] |
100π | 2 | x/2 | \[{P_2} = \frac{{{{(2U)}^2}.R}}{{{R^2} + {{(2 - \frac{x}{2})}^2}}}.\] | \[\user2{cos}{\user2{\varphi }_2}\user2{ = }\frac{\user2{R}}{{\sqrt {{\user2{R}^\user2{2}}\user2{ + (2 - x/2}{\user2{)}^2}} }}\] |
150π | 3 | x/3 | \[{P_3} = \frac{{{{(3U)}^2}.R}}{{{R^2} + {{(3 - \frac{x}{3})}^2}}}.\] | \[\user2{cos}{\user2{\varphi }_3}\user2{ = }\frac{\user2{R}}{{\sqrt {{\user2{R}^\user2{2}}\user2{ + (3 - x/3}{\user2{)}^2}} }}\] |
👤 Trần Thị Kiên viết:
Chọn C, 0.60; 0,95.
👤 Nguyễn Thị Phước viết:
Chọn D, 0.5; 0,79 .
👤 Nguyễn Thị Danh viết:
Chọn B, 0,95; 0,79 .
➥ 🗣️ Phạm Nhật Nhân trả lời: Cảm ơn bạn, câu này hình như có trong file doc này (2023) Đề thi thử Vật Lí THPT Trần Cao Vân có đáp án
👤 Trần Thị Trường viết:
Chọn A, 0,95;0,89 .
👤 Lê Thị Phong viết:
Chọn B: 0,95; 0,79 .
Gửi bạn các file hữu ích đi kèm câu hỏi: