08:15:40 am Ngày 27 Tháng Tư, 2025 *
Diễn đàn đã ngưng hoạt động và vào chế độ lưu trữ.
Mời tham gia và trao đổi trên nhóm Facebook >> TẠI ĐÂY <<
  Trang chủ Diễn đàn  

Để phân biệt sóng ngang với sóng dọc, người ta dựa vào
Một vật chuyển động tròn đều với tốc độ góc là π rad/s. Hình chiếu của vật trên một đường kính dao động điều hòa với tần số góc, chu kì và tần số bằng bao nhiêu ?
Cho mạch R, L, C mắc nối tiếp, cuộn dây thuần cảm có thể thay đổi được. Hiệu điện thế 2 đầu mạch có biểu thức u = 2002cos100 πt (V). Biết điện trở thuần của mạch là 100Ω. Khi thay đổi hệ số tự cảm của cuộn dây thì cường độ dòng điện hiệu dụng có giá trị cực đại là
Một con lắc đơn dài 25 cm, hòn bi có khối lượng 10 g ,ang điện tích q=10-4C. Lấy g=10m/s2. Treo con lắc đơn giữa hai bản kim loại song song thẳng đứng cách nhau 20 cm. Đặt hai bản dưới hiệu điện thế một chiều 80V. Chu kì dao động của con lắc đơn với biên độ góc nhỏ là:
Trong phản ứng hạt nhân, đại lượng nào sau đây không được bảo toàn


Trả lời

MỘT BÀI SÓNG CƠ

Trang: 1   Xuống
  In  
Tác giả Chủ đề: MỘT BÀI SÓNG CƠ  (Đọc 6908 lần)
0 Thành viên và 0 Khách đang xem chủ đề.
KPS
Thành viên tích cực
***

Nhận xét: +3/-5
Cảm ơn
-Đã cảm ơn: 221
-Được cảm ơn: 30

Offline Offline

Giới tính: Nam
Bài viết: 149



Email
« vào lúc: 05:06:58 pm Ngày 26 Tháng Năm, 2012 »

1) Trên bề mặt chất lỏng cho hai nguồn dao động với phương trình tương ứng là:[tex]u_A=3cos10\pi t(cm), u_B=5cos(10\pi t + \pi/3) (cm)[/tex]  . Tốc độ truyền sóng trên mặt thoáng chất lỏng là 50cm/s, cho điểm C trên đoạn AB và cách A, B tương ứng là 28cm, 22cm. Vẽ đường tròn tâm C bán kính 20cm, số điểm cực đại dao động trên đường tròn là:

A. 6      B. 2         C. 8         D. 4
 
Nhờ thầy và các bạn giúp e với ạ. Em cảm ơn nhiều


Logged


Quang Dương
Giáo Viên
Administrator
Lão làng
*****

Nhận xét: +135/-10
Cảm ơn
-Đã cảm ơn: 22
-Được cảm ơn: 2948

Offline Offline

Giới tính: Nam
Bài viết: 2163

ĐHTHTpHCM 1978


Email
« Trả lời #1 vào lúc: 05:38:40 pm Ngày 26 Tháng Năm, 2012 »

1) Trên bề mặt chất lỏng cho hai nguồn dao động với phương trình tương ứng là:[tex]u_A=3cos10\pi t(cm), u_B=5cos(10\pi t + \pi/3) (cm)[/tex]  . Tốc độ truyền sóng trên mặt thoáng chất lỏng là 50cm/s, cho điểm C trên đoạn AB và cách A, B tương ứng là 28cm, 22cm. Vẽ đường tròn tâm C bán kính 20cm, số điểm cực đại dao động trên đường tròn là:

A. 6      B. 2         C. 8         D. 4
 
Nhờ thầy và các bạn giúp e với ạ. Em cảm ơn nhiều
Hướng dẫn loại bài này :

Gọi : [tex]\varphi_{1}[/tex] ; [tex]\varphi_{2}[/tex] lần lượt là pha ban đầu của nguồn 1 và nguồn 2

Những điểm cực đại thỏa điều kiện : [tex]d_{2} - d_{1} = \left(k + \frac{\varphi_{1} - \varphi_{2}}{2\pi} \right)\lambda[/tex]

[tex]\Rightarrow k = \frac{d_{2} - d_{1}}{\lambda } - \frac{\varphi_{1} - \varphi_{2}}{2\pi}[/tex]

Ví dụ trong bài này : [tex]k = \frac{d_{2} - d_{1}}{10 } - \frac{1}{6}[/tex]

I và J là giao điểm vủa đường tròn với đoạn thẳng nối hai nguồn . Số điểm cực đại trên đoạn IJ chính là số giá trị của k thỏa :

[tex]\frac{BJ - AJ}{\lambda}- \frac{\varphi_{1} - \varphi_{2}}{2\pi} \leq k \leq \frac{BI - AI}{\lambda}- \frac{\varphi_{1} - \varphi_{2}}{2\pi}[/tex]

Ví dụ trong bài này : BI = 42 cm ; AI = 8cm ; BJ = 2cm ; AJ = 48 cm[tex]\frac{2 - 48}{10}- \frac{1}{6} \leq k \leq \frac{42 - 8}{10}- \frac{1}{6}[/tex]

Có 8 giá trị của k nên có 16 điểm cần tìm trên đường tròn

( Số điểm cần tìm = hai lần số giá trị của k trừ bớt số dấu đẳng thức nếu xảy ra ở hai đầu )
« Sửa lần cuối: 05:55:23 pm Ngày 26 Tháng Năm, 2012 gửi bởi Quang Dương »

Logged

"Nếu thỏa mãn vật chất là hạnh phúc thì ta có thể xem con bò là hạnh phúc..."
KPS
Thành viên tích cực
***

Nhận xét: +3/-5
Cảm ơn
-Đã cảm ơn: 221
-Được cảm ơn: 30

Offline Offline

Giới tính: Nam
Bài viết: 149



Email
« Trả lời #2 vào lúc: 06:04:52 pm Ngày 26 Tháng Năm, 2012 »

hihi thầy giải dễ hiểu lắm ạ..e cảm ơn thầy nhiều


Logged
whitesnow
Thành viên triển vọng
**

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 55
-Được cảm ơn: 9

Offline Offline

Bài viết: 56


Email
« Trả lời #3 vào lúc: 06:12:26 pm Ngày 26 Tháng Năm, 2012 »

1) Trên bề mặt chất lỏng cho hai nguồn dao động với phương trình tương ứng là:[tex]u_A=3cos10\pi t(cm), u_B=5cos(10\pi t + \pi/3) (cm)[/tex]  . Tốc độ truyền sóng trên mặt thoáng chất lỏng là 50cm/s, cho điểm C trên đoạn AB và cách A, B tương ứng là 28cm, 22cm. Vẽ đường tròn tâm C bán kính 20cm, số điểm cực đại dao động trên đường tròn là:

A. 6      B. 2         C. 8         D. 4
 
Nhờ thầy và các bạn giúp e với ạ. Em cảm ơn nhiều
Hướng dẫn loại bài này :

Gọi : [tex]\varphi_{1}[/tex] ; [tex]\varphi_{2}[/tex] lần lượt là pha ban đầu của nguồn 1 và nguồn 2

Những điểm cực đại thỏa điều kiện : [tex]d_{2} - d_{1} = \left(k + \frac{\varphi_{1} - \varphi_{2}}{2\pi} \right)\lambda[/tex]

[tex]\Rightarrow k = \frac{d_{2} - d_{1}}{\lambda } - \frac{\varphi_{1} - \varphi_{2}}{2\pi}[/tex]

Ví dụ trong bài này : [tex]k = \frac{d_{2} - d_{1}}{10 } - \frac{1}{6}[/tex]

I và J là giao điểm vủa đường tròn với đoạn thẳng nối hai nguồn . Số điểm cực đại trên đoạn IJ chính là số giá trị của k thỏa :

[tex]\frac{BJ - AJ}{\lambda}- \frac{\varphi_{1} - \varphi_{2}}{2\pi} \leq k \leq \frac{BI - AI}{\lambda}- \frac{\varphi_{1} - \varphi_{2}}{2\pi}[/tex]

Ví dụ trong bài này : BI = 42 cm ; AI = 8cm ; BJ = 2cm ; AJ = 48 cm[tex]\frac{2 - 48}{10}- \frac{1}{6} \leq k \leq \frac{42 - 8}{10}- \frac{1}{6}[/tex]

Có 8 giá trị của k nên có 16 điểm cần tìm trên đường tròn

( Số điểm cần tìm = hai lần số giá trị của k trừ bớt số dấu đẳng thức nếu xảy ra ở hai đầu )
Thầy ơi! Cho em hỏi, điều kiện cực tiểu là gì ạ?


Logged
KPS
Thành viên tích cực
***

Nhận xét: +3/-5
Cảm ơn
-Đã cảm ơn: 221
-Được cảm ơn: 30

Offline Offline

Giới tính: Nam
Bài viết: 149



Email
« Trả lời #4 vào lúc: 06:17:17 pm Ngày 26 Tháng Năm, 2012 »

Những điểm cực tiểu thỏa điều kiện : [tex]d_{2} - d_{1} = \left(k +1/2 + \frac{\varphi_{1} - \varphi_{2}}{2\pi} \right)\lambda[/tex]


Logged
Con Mèo
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 1
-Được cảm ơn: 0

Offline Offline

Bài viết: 3


Email
« Trả lời #5 vào lúc: 10:24:00 am Ngày 22 Tháng Ba, 2015 »

1) Trên bề mặt chất lỏng cho hai nguồn dao động với phương trình tương ứng là:[tex]u_A=3cos10\pi t(cm), u_B=5cos(10\pi t + \pi/3) (cm)[/tex]  . Tốc độ truyền sóng trên mặt thoáng chất lỏng là 50cm/s, cho điểm C trên đoạn AB và cách A, B tương ứng là 28cm, 22cm. Vẽ đường tròn tâm C bán kính 20cm, số điểm cực đại dao động trên đường tròn là:

A. 6      B. 2         C. 8         D. 4
 
Nhờ thầy và các bạn giúp e với ạ. Em cảm ơn nhiều
Hướng dẫn loại bài này :

Gọi : [tex]\varphi_{1}[/tex] ; [tex]\varphi_{2}[/tex] lần lượt là pha ban đầu của nguồn 1 và nguồn 2

Những điểm cực đại thỏa điều kiện : [tex]d_{2} - d_{1} = \left(k + \frac{\varphi_{1} - \varphi_{2}}{2\pi} \right)\lambda[/tex]

[tex]\Rightarrow k = \frac{d_{2} - d_{1}}{\lambda } - \frac{\varphi_{1} - \varphi_{2}}{2\pi}[/tex]

Ví dụ trong bài này : [tex]k = \frac{d_{2} - d_{1}}{10 } - \frac{1}{6}[/tex]

I và J là giao điểm vủa đường tròn với đoạn thẳng nối hai nguồn . Số điểm cực đại trên đoạn IJ chính là số giá trị của k thỏa :

[tex]\frac{BJ - AJ}{\lambda}- \frac{\varphi_{1} - \varphi_{2}}{2\pi} \leq k \leq \frac{BI - AI}{\lambda}- \frac{\varphi_{1} - \varphi_{2}}{2\pi}[/tex]

Ví dụ trong bài này : BI = 42 cm ; AI = 8cm ; BJ = 2cm ; AJ = 48 cm[tex]\frac{2 - 48}{10}- \frac{1}{6} \leq k \leq \frac{42 - 8}{10}- \frac{1}{6}[/tex]

Có 8 giá trị của k nên có 16 điểm cần tìm trên đường tròn

( Số điểm cần tìm = hai lần số giá trị của k trừ bớt số dấu đẳng thức nếu xảy ra ở hai đầu )
thầy ơi cho em hỏi cách tính BI, AI, Bj,Aj thế nào vậy ạ???  Undecided


Logged
Tags:
Trang: 1   Lên
  In  


 
Chuyển tới:  

© 2006 Thư Viện Vật Lý.