09:59:04 pm Ngày 23 Tháng Mười, 2024 *
Diễn đàn đã ngưng hoạt động và vào chế độ lưu trữ.
Mời tham gia và trao đổi trên nhóm Facebook >> TẠI ĐÂY <<
  Trang chủ Diễn đàn  

Một chất điểm dao động điều hoà trên trục \(Ox\) . Khi đi từ vị trí biên về vị trí cân bằng thì
Cho cơ hệ gồm các vật được bố trí như hình vẽ. Vật m có khối lượng 200g được đặt trên tấm ván M dài có khối lượng 200g. Ván nằm trên mặt phẳng nằm ngang nhẵn và được nối với giá bằng một lò xo có độ cứng  k=20N/m.  Hệ số ma sát giữa m và M là μ = 0,4. Ban đầu hệ đang đứng yên, lò xo không biến dạng. Kéo m chạy đều với tốc độ   u=203cm/s.  Tốc độ trung bình của M kể từ thời điểm ban đầu cho  đến khi dừng lại lần đầu gần nhất giá trị nào sau đây? 
Dao động cưỡng bức có
Một máy phát điện xoay chiều một pha mà từ thông qua một vòng dây dẫn trong phần ứng có giá trị cực đại là 0,02 Wb và chu kì 0,1 s. Biết phần ứng gồm 200 vòng dây mắc nối tiếp. Suất điện động hiệu dụng do máy phát ra xấp xỉ bằng 
Trong thí nghiệm Iâng về giao thoa ánh sáng, trong khoảng rộng 2,5 mm trên màn có 3 vân tối biết một đầu là vân tối còn một đầu là vân sáng. Biết bề rộng trường giao thoa 8,1 mm. Tổng số vân sáng và vân tối có trong miền giao thoa là


Trả lời

Chứng minh đẳng thức nabla

Trang: 1   Xuống
  In  
Tác giả Chủ đề: chứng minh đẳng thức nabla  (Đọc 30648 lần)
0 Thành viên và 0 Khách đang xem chủ đề.
tranhoaganh.3789
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 9
-Được cảm ơn: 2

Offline Offline

Bài viết: 9


Email
« vào lúc: 11:03:18 am Ngày 12 Tháng Hai, 2012 »

huhu. mọi người cứu mình với. có ai giúp mình chứng minh các hằng đẳng thức nabla ko?
[tex]grad(\Psi .\phi )=\Psi grad\phi +\phi grad \Psi[/tex]
[tex]\inline \large div(\Psi .\vec{A})=\vec{A}grad\Psi +\Psi div\vec{A}[/tex]
[tex]\inline \large div(\vec{A}\Join \vec{B}=\vec{B}rot\vec{A}-\vec{A}rot\vec{B}[/tex]
[tex]\inline \large rot rot\vec{A}=grad div\vec{A}-(nabla)^{2}.\vec{A}[/tex]
cảm ơn mọi người!



Logged


Điền Quang
Administrator
Lão làng
*****

Nhận xét: +125/-8
Cảm ơn
-Đã cảm ơn: 185
-Được cảm ơn: 2994

Offline Offline

Giới tính: Nam
Bài viết: 2742


Giáo viên Vật Lý


Email
« Trả lời #1 vào lúc: 12:23:08 pm Ngày 12 Tháng Hai, 2012 »


huhu. mọi người cứu mình với. có ai giúp mình chứng minh các hằng đẳng thức nabla ko?
[tex]grad(\Psi .\phi )=\Psi grad\phi +\phi grad \Psi[/tex]


Ta có:

[tex]grad(\Psi .\phi )= \frac{\partial (\Psi .\phi )}{\partial x}\vec{i} + \frac{\partial (\Psi .\phi )}{\partial y}\vec{j} + \frac{\partial (\Psi .\phi )}{\partial z}\vec{k}[/tex]

Mà:

[tex]\frac{\partial (\Psi .\phi )}{\partial x}\vec{i} = \phi \frac{\partial (\Psi )}{\partial x}\vec{i} + \Psi \frac{\partial (\phi )}{\partial x}\vec{i}[/tex] (1)

[tex]\frac{\partial (\Psi .\phi )}{\partial y}\vec{j} = \phi \frac{\partial (\Psi )}{\partial y}\vec{j} + \Psi \frac{\partial (\phi )}{\partial y}\vec{j}[/tex] (2)

[tex]\frac{\partial (\Psi .\phi )}{\partial z}\vec{k} = \phi \frac{\partial (\Psi )}{\partial z}\vec{k} + \Psi \frac{\partial (\phi )}{\partial z}\vec{k}[/tex] (3)

 ~O) Cộng (1), (2) và (3) lại ta có:

[tex]grad(\Psi .\phi )= \left[ \phi \frac{\partial (\Psi )}{\partial x}\vec{i} + \phi \frac{\partial (\Psi )}{\partial y}\vec{j}+ \phi \frac{\partial (\Psi )}{\partial z}\vec{k}\right] + \left[ \Psi \frac{\partial (\phi )}{\partial x}\vec{i} + \Psi \frac{\partial (\phi )}{\partial y}\vec{j} + \Psi \frac{\partial (\phi )}{\partial z}\vec{k}\right][/tex]

[tex]\Leftrightarrow grad(\Psi .\phi )= \phi . grad \Psi+ \Psi. grad \phi[/tex]


Logged

Giang đầu vị thị phong ba ác,
Biệt hữu nhân gian hành lộ nan.
Điền Quang
Administrator
Lão làng
*****

Nhận xét: +125/-8
Cảm ơn
-Đã cảm ơn: 185
-Được cảm ơn: 2994

Offline Offline

Giới tính: Nam
Bài viết: 2742


Giáo viên Vật Lý


Email
« Trả lời #2 vào lúc: 12:36:13 pm Ngày 12 Tháng Hai, 2012 »


[tex]\inline \large div(\Psi .\vec{A})=\vec{A}grad\Psi +\Psi div\vec{A}[/tex]


Ta có:

[tex]\inline \large div(\Psi .\vec{A})= \bigtriangledown (\Psi .\vec{A})=\bigtriangledown (\Psi_{c} .\vec{A})+ \bigtriangledown (\Psi .\vec{A}_{c})[/tex]

 ~O) Lưu ý: chữ "c" ở dưới mỗi phần chỉ có nghĩa là ta tạm thời xem phần tử đó không đổi để lấy đạo hàm.

Mà:

 ~O) [tex]\bigtriangledown (\Psi_{c} .\vec{A})= \Psi_{c} .\bigtriangledown \vec{A}= \Psi .\bigtriangledown \vec{A}[/tex] (1)

Ta thay [tex]\Psi_{c}[/tex] bằng [tex]\Psi[/tex] vì nó đứng trước toán tử nên không chịu tác dụng của toán tử.

 ~O) [tex]\bigtriangledown (\Psi .\vec{A}_{c})= \bigtriangledown (\Psi) .\vec{A}_{c}= \vec{A}_{c}.\bigtriangledown \Psi= \vec{A}.\bigtriangledown \Psi[/tex] (2)

Ta có điều này vì toán tử chỉ tác dụng lên đại lượng vô hướng, nên có thể đưa vector ra ngoài. \

 ~O) Từ (1) và (2) ta có:

[tex]\bigtriangledown (\Psi .\vec{A})=\Psi .\bigtriangledown \vec{A}+ \vec{A}.\bigtriangledown \Psi[/tex]

[tex]\Leftrightarrow div (\Psi .\vec{A})=\Psi .div \vec{A}+ \vec{A}.grad \Psi[/tex]


Logged

Giang đầu vị thị phong ba ác,
Biệt hữu nhân gian hành lộ nan.
Điền Quang
Administrator
Lão làng
*****

Nhận xét: +125/-8
Cảm ơn
-Đã cảm ơn: 185
-Được cảm ơn: 2994

Offline Offline

Giới tính: Nam
Bài viết: 2742


Giáo viên Vật Lý


Email
« Trả lời #3 vào lúc: 12:50:25 pm Ngày 12 Tháng Hai, 2012 »


[tex]\inline \large div(\vec{A}\Join \vec{B}=\vec{B}rot\vec{A}-\vec{A}rot\vec{B}[/tex]


Ta có: [tex]div \left(\vec{a}\times \vec{b} \right)=\bigtriangledown \left(\vec{a}\times \vec{b} \right)[/tex]

[tex]\Leftrightarrow \bigtriangledown \left(\vec{a}\times \vec{b} \right)= \bigtriangledown \left(\vec{a}_{c}\times \vec{b} \right)+ \bigtriangledown \left(\vec{a}\times \vec{b}_{c} \right)[/tex]

[tex]\Leftrightarrow \bigtriangledown \left(\vec{a}\times \vec{b} \right)= -\bigtriangledown \left(\vec{b}\times \vec{a}_{c}\right)+ \left(\bigtriangledown \times \vec{a} \right). \vec{b}_{c}[/tex]

[tex]\Leftrightarrow \bigtriangledown \left(\vec{a}\times \vec{b} \right)= - \left(\bigtriangledown \times \vec{b}\right).\vec{a}_{c}+ \left(\bigtriangledown \times \vec{a} \right). \vec{b}_{c}[/tex]

[tex]\Leftrightarrow \bigtriangledown \left(\vec{a}\times \vec{b} \right)= - \vec{a}_{c}. \left(\bigtriangledown \times \vec{b}\right)+ \vec{b}_{c}.\left(\bigtriangledown \times \vec{a} \right)[/tex]

[tex]\Leftrightarrow \bigtriangledown \left(\vec{a}\times \vec{b} \right)= - \vec{a}. \left(\bigtriangledown \times \vec{b}\right)+ \vec{b}.\left(\bigtriangledown \times \vec{a} \right)[/tex]

[tex]\Leftrightarrow div \left(\vec{a}\times \vec{b} \right)= - \vec{a}.rot \vec{b}+ \vec{b}. rot\vec{a}[/tex]


Logged

Giang đầu vị thị phong ba ác,
Biệt hữu nhân gian hành lộ nan.
Trần Triệu Phú
Giáo Viên
Administrator
Lão làng
*****

Nhận xét: +32/-11
Cảm ơn
-Đã cảm ơn: 108
-Được cảm ơn: 180

Offline Offline

Giới tính: Nam
Bài viết: 792

Loving and Dying for my God

trieuphu05
WWW Email
« Trả lời #4 vào lúc: 12:56:47 pm Ngày 12 Tháng Hai, 2012 »

thầy Điền Quang còn nhớ mấy cái này hay quá
nãy đọc tinh lật sách Lê Đình Hùng ra coi lại!


Logged

Điền Quang
Administrator
Lão làng
*****

Nhận xét: +125/-8
Cảm ơn
-Đã cảm ơn: 185
-Được cảm ơn: 2994

Offline Offline

Giới tính: Nam
Bài viết: 2742


Giáo viên Vật Lý


Email
« Trả lời #5 vào lúc: 01:01:52 pm Ngày 12 Tháng Hai, 2012 »


[tex]\inline \large rot rot\vec{A}=grad div\vec{A}-(nabla)^{2}.\vec{A}[/tex]


Ta có:

[tex]rot rot\vec{A}= \bigtriangledown \times \left( \bigtriangledown \times \vec{A}\right)= \bigtriangledown\left(\bigtriangledown. \vec{A} \right)-\left( \bigtriangledown.\bigtriangledown\right).\vec{A}= \bigtriangledown\left(\bigtriangledown. \vec{A} \right)-\bigtriangledown^{2}.\vec{A}[/tex]

[tex]\Leftrightarrow rot rot\vec{A}= graddiv\vec{A}-\Delta\vec{A}[/tex]


Logged

Giang đầu vị thị phong ba ác,
Biệt hữu nhân gian hành lộ nan.
Điền Quang
Administrator
Lão làng
*****

Nhận xét: +125/-8
Cảm ơn
-Đã cảm ơn: 185
-Được cảm ơn: 2994

Offline Offline

Giới tính: Nam
Bài viết: 2742


Giáo viên Vật Lý


Email
« Trả lời #6 vào lúc: 01:10:59 pm Ngày 12 Tháng Hai, 2012 »

thầy Điền Quang còn nhớ mấy cái này hay quá
nãy đọc tinh lật sách Lê Đình Hùng ra coi lại!

Gửi Thầy Phú: Cũng phải mở sách ra xem lại đó chứ, chứ sao nhớ nổi hết.  8-x  Cheesy  8-x


Logged

Giang đầu vị thị phong ba ác,
Biệt hữu nhân gian hành lộ nan.
tranhoaganh.3789
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 9
-Được cảm ơn: 2

Offline Offline

Bài viết: 9


Email
« Trả lời #7 vào lúc: 08:14:45 am Ngày 16 Tháng Hai, 2012 »

Cảm ơn thấy rất nhiều. thầy ơi còn 3 câu nữa giúp dùm em luôn nha. mới học nên không hiểu lắm.thanks!
[tex]rot(\Psi \vec{A})=\Psi rot\vec{A}+[grad\Psi \Join \vec{A} ][/tex]
[tex]rot grad\Psi =0[/tex]
[tex]divrot\vec{A}=0[/tex]


Logged
Điền Quang
Administrator
Lão làng
*****

Nhận xét: +125/-8
Cảm ơn
-Đã cảm ơn: 185
-Được cảm ơn: 2994

Offline Offline

Giới tính: Nam
Bài viết: 2742


Giáo viên Vật Lý


Email
« Trả lời #8 vào lúc: 08:32:30 am Ngày 16 Tháng Hai, 2012 »

Cảm ơn thấy rất nhiều. thầy ơi còn 3 câu nữa giúp dùm em luôn nha. mới học nên không hiểu lắm.thanks!
[tex]rot(\Psi \vec{A})=\Psi rot\vec{A}+[grad\Psi \Join \vec{A} ][/tex]


Ta có: [tex]rot\left(\varphi \vec{A} \right)= \bigtriangledown \times \left(\varphi \vec{A} \right)[/tex]

[tex]\Leftrightarrow \bigtriangledown \times \left(\varphi \vec{A} \right)= \bigtriangledown \times \left(\varphi_{c} \vec{A} \right) + \bigtriangledown \times \left(\varphi \vec{A}_{c} \right)[/tex]

 ~O) Chữ "c" ở dưới mỗi đại lượng cho biết tạm xem đại lượng đó không đổi để lấy đạo hàm.

[tex]\Leftrightarrow \bigtriangledown \times \left(\varphi \vec{A} \right)= \varphi_{c} \bigtriangledown \times \vec{A} + \bigtriangledown \varphi \times\vec{A}_{c}[/tex]

[tex]\Leftrightarrow \bigtriangledown \times \left(\varphi \vec{A} \right)= \varphi.rot\vec{A} - \vec{A}\times \bigtriangledown \varphi[/tex]

[tex]\Leftrightarrow \bigtriangledown \times \left(\varphi \vec{A} \right)= \varphi.rot\vec{A} - \vec{A}\times grad\varphi[/tex]

[tex]\Leftrightarrow \bigtriangledown \times \left(\varphi \vec{A} \right)= \varphi.rot\vec{A} + grad\varphi \times \vec{A}[/tex]


Logged

Giang đầu vị thị phong ba ác,
Biệt hữu nhân gian hành lộ nan.
Điền Quang
Administrator
Lão làng
*****

Nhận xét: +125/-8
Cảm ơn
-Đã cảm ơn: 185
-Được cảm ơn: 2994

Offline Offline

Giới tính: Nam
Bài viết: 2742


Giáo viên Vật Lý


Email
« Trả lời #9 vào lúc: 08:47:22 am Ngày 16 Tháng Hai, 2012 »


[tex]rot grad\Psi =0[/tex]
[tex]divrot\vec{A}= 0[/tex]


Hai câu này giống nhau, kết quả bằng không đều là do tính chất của tích vector.

[tex]rot grad\Psi = \bigtriangledown \times \bigtriangledown \Psi = \left(\bigtriangledown \times \bigtriangledown \right)\Psi = 0[/tex]

 ~O) Tích hữu hướng hai vector giống nhau thì bằng không.

[tex]divrot\vec{A}=\bigtriangledown .\left(\bigtriangledown \times \vec{A} \right) = 0[/tex]

 ~O) Kết quả ra như vậy là do ở trên là tích hỗn hợp ba vector, trong đó có hai vector giống nhau nên kết quả cũng bằng không.
« Sửa lần cuối: 08:49:22 am Ngày 16 Tháng Hai, 2012 gửi bởi Điền Quang »

Logged

Giang đầu vị thị phong ba ác,
Biệt hữu nhân gian hành lộ nan.
smallwonder_1992
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 7
-Được cảm ơn: 2

Offline Offline

Bài viết: 9


Email
« Trả lời #10 vào lúc: 07:13:07 pm Ngày 09 Tháng Chín, 2012 »

thầy cô và các bạn giúp em mấy bài này với ạ. em làm không ra. hiện tịa em khôg quen dùng cách chèn công thức toán học trong web mình nên em tạm viết trong mathtype rồi chuyển qua paint và chèn hình ảnh vào đây. hi vọng các thầy cô và các bạn thông cảm.


Logged
smallwonder_1992
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 7
-Được cảm ơn: 2

Offline Offline

Bài viết: 9


Email
« Trả lời #11 vào lúc: 03:59:30 pm Ngày 10 Tháng Chín, 2012 »

em mới tìm được mấy công thức nhân hữu hướng 3vector nên hôm nay mới làm lại được mấy bài tập này. Nhưng vì kiến thức chưa vững nên em không chắc là em làm đúng. vậy nên em đăng bài làm lên mong các thầy xem giùm em có đúng ko(em mới làm được 4 câu 1,2,4,5 còn câu 3 thì biến đổi mãi không ra, tiện các thầy giúp em câu 3 với ạ).
 Chú thích: .chỉ có dấu x là nhân hữu hướng
                .các vector được đánh dấu ắ là vector chịu tác dụng của toán tử
« Sửa lần cuối: 04:02:13 pm Ngày 10 Tháng Chín, 2012 gửi bởi smallwonder_1992 »

Logged
Hồng Nhung
Thành viên tích cực
***

Nhận xét: +43/-4
Cảm ơn
-Đã cảm ơn: 27
-Được cảm ơn: 66

Offline Offline

Giới tính: Nữ
Bài viết: 186


nguyenthamhn
Email
« Trả lời #12 vào lúc: 05:31:17 pm Ngày 10 Tháng Chín, 2012 »

câu 3 thì biến đổi mãi không ra, tiện các thầy giúp em câu 3 với





Logged

Cám ơn đời mỗi sáng mai thức dậy
Ta có thêm ngày nữa để yêu thương
bibobobi
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 4
-Được cảm ơn: 1

Offline Offline

Bài viết: 1


Email
« Trả lời #13 vào lúc: 10:17:32 am Ngày 02 Tháng Ba, 2013 »

thầy ơi cho em hỏi có tài liệu nào nói kỹ về phần toán tử nabla va laplace ko thầy...nếu có thầy cho em xin lick tải về dc ko?
em cam on :x


Logged
nhokiudoi
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 9
-Được cảm ơn: 0

Offline Offline

Bài viết: 14


Email
« Trả lời #14 vào lúc: 11:58:42 am Ngày 01 Tháng Chín, 2013 »


[tex]\inline \large div(\Psi .\vec{A})=\vec{A}grad\Psi +\Psi div\vec{A}[/tex]


Ta có:

[tex]\inline \large div(\Psi .\vec{A})= \bigtriangledown (\Psi .\vec{A})=\bigtriangledown (\Psi_{c} .\vec{A})+ \bigtriangledown (\Psi .\vec{A}_{c})[/tex]

 ~O) Lưu ý: chữ "c" ở dưới mỗi phần chỉ có nghĩa là ta tạm thời xem phần tử đó không đổi để lấy đạo hàm.

Mà:

 ~O) [tex]\bigtriangledown (\Psi_{c} .\vec{A})= \Psi_{c} .\bigtriangledown \vec{A}= \Psi .\bigtriangledown \vec{A}[/tex] (1)

Ta thay [tex]\Psi_{c}[/tex] bằng [tex]\Psi[/tex] vì nó đứng trước toán tử nên không chịu tác dụng của toán tử.

 ~O) [tex]\bigtriangledown (\Psi .\vec{A}_{c})= \bigtriangledown (\Psi) .\vec{A}_{c}= \vec{A}_{c}.\bigtriangledown \Psi= \vec{A}.\bigtriangledown \Psi[/tex] (2)

Ta có điều này vì toán tử chỉ tác dụng lên đại lượng vô hướng, nên có thể đưa vector ra ngoài. \

 ~O) Từ (1) và (2) ta có:

[tex]\bigtriangledown (\Psi .\vec{A})=\Psi .\bigtriangledown \vec{A}+ \vec{A}.\bigtriangledown \Psi[/tex]

[tex]\Leftrightarrow div (\Psi .\vec{A})=\Psi .div \vec{A}+ \vec{A}.grad \Psi[/tex]
Thưa thầy em có chỗ muốn hỏi là nếu cái nào chịu tác dụng của đạo hàm thì phải ở phía bên phải [tex]\Delta[/tex] nhưng em thấy thầy lại đưa sang bên trái Huh


Logged
nhokiudoi
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 9
-Được cảm ơn: 0

Offline Offline

Bài viết: 14


Email
« Trả lời #15 vào lúc: 01:34:37 pm Ngày 01 Tháng Chín, 2013 »


[tex]\inline \large div(\vec{A}\Join \vec{B}=\vec{B}rot\vec{A}-\vec{A}rot\vec{B}[/tex]


Ta có: [tex]div \left(\vec{a}\times \vec{b} \right)=\bigtriangledown \left(\vec{a}\times \vec{b} \right)[/tex]

[tex]\Leftrightarrow \bigtriangledown \left(\vec{a}\times \vec{b} \right)= \bigtriangledown \left(\vec{a}_{c}\times \vec{b} \right)+ \bigtriangledown \left(\vec{a}\times \vec{b}_{c} \right)[/tex]
Thầy ơi, tại sao lại có dấu trừ (-) đằng trước vậy ạ Huh
[tex]\Leftrightarrow \bigtriangledown \left(\vec{a}\times \vec{b} \right)= -\bigtriangledown \left(\vec{b}\times \vec{a}_{c}\right)+ \left(\bigtriangledown \times \vec{a} \right). \vec{b}_{c}[/tex]

[tex]\Leftrightarrow \bigtriangledown \left(\vec{a}\times \vec{b} \right)= - \left(\bigtriangledown \times \vec{b}\right).\vec{a}_{c}+ \left(\bigtriangledown \times \vec{a} \right). \vec{b}_{c}[/tex]

[tex]\Leftrightarrow \bigtriangledown \left(\vec{a}\times \vec{b} \right)= - \vec{a}_{c}. \left(\bigtriangledown \times \vec{b}\right)+ \vec{b}_{c}.\left(\bigtriangledown \times \vec{a} \right)[/tex]

[tex]\Leftrightarrow \bigtriangledown \left(\vec{a}\times \vec{b} \right)= - \vec{a}. \left(\bigtriangledown \times \vec{b}\right)+ \vec{b}.\left(\bigtriangledown \times \vec{a} \right)[/tex]

[tex]\Leftrightarrow div \left(\vec{a}\times \vec{b} \right)= - \vec{a}.rot \vec{b}+ \vec{b}. rot\vec{a}[/tex]



Logged
Điền Quang
Administrator
Lão làng
*****

Nhận xét: +125/-8
Cảm ơn
-Đã cảm ơn: 185
-Được cảm ơn: 2994

Offline Offline

Giới tính: Nam
Bài viết: 2742


Giáo viên Vật Lý


Email
« Trả lời #16 vào lúc: 03:27:56 pm Ngày 01 Tháng Chín, 2013 »


Thưa thầy em có chỗ muốn hỏi là nếu cái nào chịu tác dụng của đạo hàm thì phải ở phía bên phải [tex]\Delta[/tex] nhưng em thấy thầy lại đưa sang bên trái Huh


Phần tử nào chịu tác dụng của đạo hàm thì ở bên trái ký hiệu là đúng. Những phần chúng tôi đưa sang trái tức là không chịu tác dụng của đạo hàm.

Điều này giống như lấy đạo hàm lớp 12:

(u.v)' = u' v + u v'

Chỉ khác là chúng tôi đưa những phần không đạo hàm qua trái thôi. Như vậy để tránh hiểu lầm.


Logged

Giang đầu vị thị phong ba ác,
Biệt hữu nhân gian hành lộ nan.
Điền Quang
Administrator
Lão làng
*****

Nhận xét: +125/-8
Cảm ơn
-Đã cảm ơn: 185
-Được cảm ơn: 2994

Offline Offline

Giới tính: Nam
Bài viết: 2742


Giáo viên Vật Lý


Email
« Trả lời #17 vào lúc: 03:31:52 pm Ngày 01 Tháng Chín, 2013 »


Thầy ơi, tại sao lại có dấu trừ (-) đằng trước vậy ạ Huh


Em thử suy luận bằng một phép tính vector đơn giản ở bậc phổ thông:

[tex]\vec{a}\times \vec{b}= - \left(\vec{b}\times \vec{a} \right)[/tex] (tích hữu hướng hai vector)

Điều em hỏi cũng hoàn toàn như trên.


Logged

Giang đầu vị thị phong ba ác,
Biệt hữu nhân gian hành lộ nan.
Tags:
Trang: 1   Lên
  In  


 
Chuyển tới:  

© 2006 Thư Viện Vật Lý.