Làm quen với Mathematica - Một phần mềm hỗ trợ trong giảng dạy Toán học. Vẽ đồ thị, giải phương trình, tính tích phân và nhiều công dụng khác nữa
📁 Chuyên mục: Hướng dẫn dử dụng phần mềm
📅 Ngày tải lên: 22/07/2013
📥 Tên file: lam-quen-voi-mathematica.thuvienvatly.com.02715.36608.pdf (1.3 MB)
🔑 Chủ đề: Huong dan lam quen Mathematica 9.0
Một con lắc lò xo gồm vật nhỏ khối lượng \({\rm{m}} = 0,2{\rm{\;kg}}\), lò xo nhẹ có độ cứng \({\rm{k}} = 20{\rm{\;N}}/{\rm{m}}\) dao động trên mặt phẳng nằm ngang. Hệ số ma sát trượt giữa vật và mặt phẳng nằm ngang là \(\mu = 0,01\). Từ vị trí lò xo không bị biến dạng, truyền cho vật vận tốc ban đầu có độ lớn \({v_0} = 1{\rm{\;m}}/{\rm{s}}\) dọc theo trục lò xo (lấy \({\rm{g}} = 10{\rm{\;m}}/{{\rm{s}}^2}\)). Tính độ lớn lực đàn hồi cực đại của lò xo trong quá trình dao động.
Một con lắc lò xo gồm vật nhỏ có khối lượng \({\rm{m}} = 0,03{\rm{\;kg}}\) và lò xo có độ cứng \({\rm{k}} = 1,5{\rm{\;N}}/{\rm{m}}\). Vật nhỏ được đặt trên giá đỡ cố định nằm ngang dọc theo trục của lò xo. Hệ số ma sát trượt giữa giá đỡ và vật nhỏ là \(\mu = 0,2\). Ban đầu, giữ vật ở vị trí lò xo bị dãn một đoạn \({\rm{\Delta }}{l_0} = 15{\rm{\;cm}}\) rồi buông nhẹ để con lắc dao động tắt dần. Lấy \({\rm{g}} = 10{\rm{\;m}}/{{\rm{s}}^2}\). Tính tốc độ lớn nhất mà vật nhỏ đạt được trong quá trình dao động.
Một con lắc lò xo gồm vật nhỏ khối lượng \({\rm{m}} = 0,02{\rm{\;kg}}\) và lò xo có độ cứng \({\rm{k}} = 1{\rm{\;N}}/{\rm{m}}\). Vật nhỏ được đặt trên giá đỡ cố định nằm ngang dọc theo trục lò xo. Hệ số ma sát trượt giữa giá đỡ và vật nhỏ là \(\mu = 0,1\). Ban đầu giữ vật ở vị trí lò xo bị nén \({\rm{\Delta }}{l_0} = 10{\rm{\;cm}}\) rồi buông nhẹ để con lắc dao động tắt dần. Lấy \({\rm{g}} = 10{\rm{\;m}}/{{\rm{s}}^2}\). Tính độ giảm thế năng của con lắc trong giai đoạn từ khi buông tới vị trí mà tốc độ dao động của con lắc cực đại lần đầu.