Hiệp Khách Quậy Các nhà vật lí lí thuyết ở trường Imperial College London vừa nghĩ ra một cơ chế làm nóng cực nhanh mà họ tin rằng có thể làm nóng những vật liệu nhất định lên tới hàng chục triệu độ trong thời gian chưa tới một phần triệu triệu của một giây. Xin mời đọc tiếp.
Các nhà vật lí lí thuyết ở trường Imperial College London vừa nghĩ ra một cơ chế làm nóng cực nhanh mà họ tin rằng có thể làm nóng những vật liệu nhất định lên tới hàng chục triệu độ trong thời gian chưa tới một phần triệu triệu của một giây.
Phương pháp lần đầu tiên được đề xuất có thể thích ứng cho những lộ trình mới nghiên cứu năng lượng nhiệt hạch, trong đó các nhà khoa học đang tìm cách bắt chước khả năng của Mặt trời sản sinh nguồn năng lượng sạch.
Quá trình làm nóng sẽ nhanh hơn khoảng 100 lần so với tốc độ hiện thấy ở các thí nghiệm nhiệt hạch sử dụng các hệ thống laser giàu năng lượng nhất thế giới tại Phòng thí nghiệm Lawrence Livermore ở California, Hoa Kì. Cuộc chạy đua đặt ra cho các nhà khoa học hiện nay là đưa phương pháp của đội họ vào thực tiễn.
Theo nghiên cứu mới, các laser có thể làm nóng vật liệu tới các nhiệt độ nóng hơn lõi của Mặt trời, trong thời gian chưa tới một phần triệu triệu của một giây.
Trong nhiều năm qua, các nhà nghiên cứu đã sử dụng laser công suất cao để làm nóng vật chất nhằm tạo ra sự nhiệt hạch. Trong nghiên cứu mới này, các nhà vật lí tại trường Imperial tìm kiếm các phương pháp làm nóng trực tiếp các ion – thành phần cấu tạo của vật chất.
Khi sử dụng laser làm nóng đa số vật liệu, năng lượng từ laser cung cấp trước tiên làm nóng các electron trong tấm bia. Rồi sau đó năng lượng này làm nóng các ion, nên quá trình chậm hơn so với làm nóng trực tiếp các ion.
Đội Imperial phát hiện thấy khi chiếu một laser cường độ cao vào một loại vật liệu nhất định, nó sẽ tạo ra một sóng xung kích tĩnh điện có thể làm nóng trực tiếp các ion. Khám phá của họ công bố trên tạp chí Nature Communications số ra ngày 13/11/2015.
“Đó là một kết quả hoàn toàn bất ngờ. Một trong những vấn đề với nghiên cứu nhiệt hạch là thu năng lượng từ laser ở đúng nơi đúng thời điểm. Phương pháp này đưa năng lượng thẳng cho các ion,” phát biểu của tác giả đứng tên đầu của bài báo, tiến sĩ Arthur Turrell.
Thông thường, các sóng xung kích tĩnh điện cảm ứng-laser đẩy các ion về phía trước, làm chúng gia tốc ra xa sóng nhưng không nóng lên. Tuy nhiên, sử dụng mô hình siêu máy tính phức tạp, các nhà nghiên cứu phát hiện thấy nếu một vật liệu chứa những kết hợp đặc biệt của các ion, thì chúng sẽ bị sóng xung kích làm gia tốc ở những tốc độ khác nhau. Điều này gây ra ma sát, thành ra làm chúng nóng lên nhanh chóng. Họ tìm thấy hiệu ứng sẽ mạnh nhất ở những chất rắn có hai loại ion, ví dụ như plastic.
“Hai loại ion tác dụng giống như que diêm và hộp diêm, bạn cần cả hai loại,” phát biểu của đồng tác giả, tiến sĩ Mark Sherlock. “Một nắm que diêm sẽ không bao giờ tự cháy được, bạn cần lực ma sát gây ra bởi việc quẹt chúng vào hộp diêm.”
“Bản thân vật liệu thật sự mang ra dùng làm bia đã là một bất ngờ,” phát biểu của đồng tác giả, giáo sư Steven Rose. “Ở những vật liệu chỉ có một loại ion, hiệu ứng hoàn toàn biến mất.”
Việc làm nóng diễn ra nhanh như vậy một phần là do vật liệu làm bia có mật độ rất dày đặc. Các ion bị nén lại gần gấp 10 lần so với mật độ thường gặp ở một vật liệu rắn khi sóng xung kích tĩnh điện đi qua, làm cho hiệu ứng ma sát mạnh hơn nhiều so với diễn ra một vật liệu kém đặc hơn, ví dụ chất khí.
Nếu được chứng minh thực nghiệm, kĩ thuật trên có thể sẽ đem lại tốc độ làm nóng nhanh nhất trong phòng thí nghiệm từng thu được cho một số lượng hạt có nghĩa.
“Các biến thiên nhiệt độ nhanh hơn xảy ra khi các nguyên tử lao vào nhau trong các máy gia tốc như Máy Va chạm Hadron Lớn, nhưng những va chạm này là giữa những cặp hạt độc thân,” tiến sĩ Turrell nói. “Trái lại, kĩ thuật mà chúng tôi đề xuất có thể khai thác ở nhiều xưởng laser trên khắp thế giới, và sẽ làm nóng vật liệu ở mật độ chất rắn.”
Tham khảo: A. E. Turrell et al. Ultrafast collisional ion heating by electrostatic shocks, Nature Communications (2015). DOI: 10.1038/ncomms9905