10:57:18 am Ngày 28 Tháng Tư, 2025 *
Diễn đàn đã ngưng hoạt động và vào chế độ lưu trữ.
Mời tham gia và trao đổi trên nhóm Facebook >> TẠI ĐÂY <<
  Trang chủ Diễn đàn  

Dòng điện có cường độ i=3√2 cos(100πt)A chạy qua một điện trở R=50Ω. Điện áp hiệu dụng giữa hai đầu điện trở bằng
Biết gia tốc cực đại và vận tốc cực đại của một vật dao động điều hòa là amax và vmax. Biên độ dao động của vật được xác định theo công thức
Một sóng hình sin đang truyền trên một sợi dây theo chiều dương của trục Ox. Hình vẽ mô tả hình dạng của sợi dây tại thời điểm t1 (đường nét đứt) và  t2= t1+0,3 (s) (đường liền nét) như  hình bên. Tại thời điểm t2, vận tốc của điểm N trên dây gần nhất với giá trị nào sau đây?
Một con lắc đơn có chiều dài   dao động điều hòa tại nơi có gia tốc trọng trường g=10 m/s2 . Lấy π2=10 . Tần số dao động của con lắc là
Phản ứng hạt nhân sau: . Biết mLi = 7,0144u; mH = 1,0073u; mHe= 4,0015u,  1u = 931,5MeV/c2. Năng lượng phản ứng tỏa ra là


Trả lời

Bài hệ phương trình cần giúp

Trang: 1   Xuống
  In  
Tác giả Chủ đề: bài hệ phương trình cần giúp  (Đọc 2193 lần)
0 Thành viên và 0 Khách đang xem chủ đề.
gmvd
Thành viên triển vọng
**

Nhận xét: +0/-2
Cảm ơn
-Đã cảm ơn: 91
-Được cảm ơn: 11

Offline Offline

Bài viết: 56


Email
« vào lúc: 11:22:00 am Ngày 13 Tháng Năm, 2012 »

[tex]\begin{cases} \sqrt{x}+\sqrt{y}=6\\ \sqrt{x+7}+\sqrt{y+7}=8 & \end{cases}[/tex]

giải giúp minh bài hệ này nhé


Logged


mark_bk99
Sinh Viên +1
Lão làng
*****

Nhận xét: +22/-4
Cảm ơn
-Đã cảm ơn: 124
-Được cảm ơn: 629

Offline Offline

Giới tính: Nam
Bài viết: 818


Phong độ là nhất thời,đẳng cấp là mãi mãi!!!BKU

mark_bk94
Email
« Trả lời #1 vào lúc: 11:49:40 am Ngày 13 Tháng Năm, 2012 »

[tex]\begin{cases} \sqrt{x}+\sqrt{y}=6\\ \sqrt{x+7}+\sqrt{y+7}=8 & \end{cases}[/tex]

giải giúp minh bài hệ này nhé
Đk: x,y[tex]\geq 0[/tex]

Bình phương 2 vế của 2 pt ta được: PT(1)<--->x+y +[tex]2\sqrt{xy}=36[/tex] (*)
Pt(2)<->x+y+14+2[tex]\sqrt{(x+7)(y+7)}=64[/tex] (**)
Lấy (**)- (*) ta được ([tex]\sqrt{(x+7)(y+7)}-\sqrt{xy})=7[/tex]<-->[tex]\sqrt{x+y+7(x+y)+49}=\sqrt{xy}+7[/tex] <-->[tex](x+y)=2\sqrt{xy}[/tex] kết hợp với (*)
-->x+y=18<-->x=18-y
-->9=[tex]\sqrt{(18-y)y}[/tex]<-->y=9 -->x=9
Vậy hệ PT đã cho có nghiệm (x,y): (9,9)








Logged

Seft control-Seft Confident , All Izz Well
Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Email
« Trả lời #2 vào lúc: 10:22:11 pm Ngày 13 Tháng Năm, 2012 »

Để ngắn gọn ta có thể làm như sau:

Điều kiện: [tex]x,y\geq0[/tex]

Hệ phương trình đã cho tương đương:

[tex]\begin{cases} x+y+2\sqrt{xy}=36 \\x+y+2\sqrt{7(x+y)+xy+49}=50 \end{cases}[/tex]

 Đặt [TEX]x+y=u[/TEX] và [TEX]\sqrt{xy}=v[/TEX]

[tex]\Leftrightarrow \begin{cases} u+2v=36 \\ u+2\sqrt{7u+v^2+49}=50\end{cases}[/tex]

[tex]\Leftrightarrow \begin{cases} u=36-2v \\\sqrt{301-14v+v^2}=7+v\end{cases}[/tex]

[tex]\Leftrightarrow \begin{cases} u=18 \\v=9\end{cases}[/tex]

[tex]\Rightarrow x=y=9[/tex]
Thử lại ta thấy [tex](x; y)=(9; 9)[/tex] thỏa mãn đề bài.
« Sửa lần cuối: 10:31:23 pm Ngày 13 Tháng Năm, 2012 gửi bởi Alexman113 »

Logged

KK09XI ~ Nothing fails like succcess ~
Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Email
« Trả lời #3 vào lúc: 10:38:56 pm Ngày 13 Tháng Năm, 2012 »

Ngoài ra ta còn một cách rất ngắn gọn.
Áp dụng bất đẳng thức Minkowsky ta có:

[tex]\sqrt{x+7}+\sqrt{y+7}\geq\sqrt{\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{7}+\sqrt{7}\right)^2}=\sqrt{6^2+\left(2\sqrt{7}\right)^2}=8[/tex]

Dấu "=" xảy ra khi [tex]x=y=9[/tex].




Logged

KK09XI ~ Nothing fails like succcess ~
Tags:
Trang: 1   Lên
  In  


 
Chuyển tới:  

© 2006 Thư Viện Vật Lý.