Ta có:
[tex]cos^{10}x+ sin^{10}x=(\frac{1+cos2x}{2})^{5}+(\frac{1-cos2x}{2})^{5}
=\frac{1}{32}(2+20cos^{2}2x+10cos^{4}2x)
=\frac{1}{16}[1+5(1+cos4x)+5(\frac{1+cos4x}{2})^{2})
=\frac{1}{16}(\frac{29}{4}+\frac{15}{2}cos4x+\frac{5(1+cos8x)}{4.2})
=\frac{1}{16}(\frac{63}{8}+\frac{15}{2}cos4x+\frac{5}{8}cos8x)[/tex]
Khi đó
[tex]\int_{^{}0}^{\frac{\pi }{2}}{\frac{1}{16}(\frac{63}{2}+\frac{15}{2}cos4x+\frac{5}{8}cos8x+sin^{4}2x})dx
=\int_{0}^{\frac{\pi }{2}}{[\frac{1}{16}(\frac{63}{8}+\frac{15}{2}cox4x+\frac{5}{8}cos8x+(\frac{1-cos4x}{2})^{2}]}dx
=\int_{0}^{\frac{\pi }{2}}{\frac{1}{16}(\frac{33}{4}+7cos4x+\frac{3}{4}cos8x)dx}
=\frac{33}{128}[/tex]
Chỉnh lại cách viết của Tom cho dễ đọc ( để nguyên ý tưởng của Tom )
Ta có:
[tex]cos^{10}x+ sin^{10}x=(\frac{1+cos2x}{2})^{5}+(\frac{1-cos2x}{2})^{5}[/tex]
[tex]=\frac{1}{32}(2+20cos^{2}2x+10cos^{4}2x)[/tex]
[tex]=\frac{1}{16}[1+5(1+cos4x)+5(\frac{1+cos4x}{2})^{2})[/tex]
[tex]=\frac{1}{16}(\frac{29}{4}+\frac{15}{2}cos4x+\frac{5(1+cos8x)}{4.2})[/tex]
[tex]=\frac{1}{16}(\frac{63}{8}+\frac{15}{2}cos4x+\frac{5}{8}cos8x)[/tex]
Khi đó
[tex]\int_{^{}0}^{\frac{\pi }{2}}{\frac{1}{16}(\frac{63}{2}+\frac{15}{2}cos4x+\frac{5}{8}cos8x+sin^{4}2x})dx[/tex]
[tex]=\int_{0}^{\frac{\pi }{2}}{[\frac{1}{16}(\frac{63}{8}+\frac{15}{2}cox4x+\frac{5}{8}cos8x+(\frac{1-cos4x}{2})^{2}]}dx[/tex]
[tex]=\int_{0}^{\frac{\pi }{2}}{\frac{1}{16}(\frac{33}{4}+7cos4x+\frac{3}{4}cos8x)dx} =\frac{33}{128}[/tex]