10:53:02 pm Ngày 23 Tháng Mười, 2024 *
Diễn đàn đã ngưng hoạt động và vào chế độ lưu trữ.
Mời tham gia và trao đổi trên nhóm Facebook >> TẠI ĐÂY <<
  Trang chủ Diễn đàn  

Hai bóng đèn sợi đốt có các hiệu điện thế định mức lần lượt là U1 và U2.Nếu công suất định mức của hai bóng đèn đó bằng nhau thì tỷ số hai điện trở R1/R2 là
Một chất điểm dao động điều hòa trên trục Ox với biên độ 10cm, chu kì 2s. Mốc thế năng ở vị trí cân bằng. Tốc độ trung bình của chất điểm trong khoảng thời gian ngắn nhất khi chất điểm đi từ vị trí có động năng bằng 3 lần thế năng đến vị trí có động năng bằng 1/4   thế năng là:
Một quả cầu khối lượng 1,0 g treo ở đầu một sợi dây mảnh cách điện. Hệ thống nằm trong điện trường đều có phương nằm ngang, cường độ E = 2 kV/m. Khi đó dây treo hợp với phương thẳng đứng một góc 60o. Tìm sức căng của sợi dây, lấy g = 10 m/s2
Trong thí nghiệm Y-âng về giao thoa ánh sáng, các khe hẹp được chiếu sáng bởi ánh sáng đơn sắc. Khoảng vân trên màn là 1,2 mm. Trong khoảng giữa hai điểm M và N trên màn ở cùng một phía so với vân sáng trung tâm, cách vân trung tâm lần lượt 2 mm và 4,5 mm, quan sát được
Trong mạch dao động LC   lí tưởng. Gọi U0   và I0   lần lượt là điện áp cực đại và cường độ dòng điện cực đại của mạch. Biểu thức liên hệ giữa U0   và I0   là


Trả lời

Các định luật bảo toàn

Trang: 1   Xuống
  In  
Tác giả Chủ đề: các định luật bảo toàn  (Đọc 3142 lần)
0 Thành viên và 0 Khách đang xem chủ đề.
thai8418
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 2
-Được cảm ơn: 0

Offline Offline

Bài viết: 4


Email
« vào lúc: 07:02:21 pm Ngày 30 Tháng Ba, 2014 »

Một vật có dạng là một bán cầu khối lượng M được đặt nằm ngang trên một mặt phẳng nằm ngang không ma sát (hình 3). Một vật nhỏ có khối lượng m bắt đầu trượt không ma sát, không vận tốc đầu từ đỉnh bán cầu. Gọi [tex]\alpha[/tex]
 là góc mà bán kính nối vật với tâm bán cầu hợp với phương thẳng đứng khi vật bắt đầu tách khỏi bán cầu.
      1. Thiết lập mối quan hệ giữa M, m và góc [tex]\alpha[/tex] .
      2. Tìm [tex]\alpha[/tex]  khi  M=m
Nhờ các thầy cô giúp đỡ.


Logged


ph.dnguyennam
Giáo viên
Moderator
Thành viên danh dự
*****

Nhận xét: +22/-3
Cảm ơn
-Đã cảm ơn: 22
-Được cảm ơn: 311

Offline Offline

Bài viết: 373



Email
« Trả lời #1 vào lúc: 12:03:45 am Ngày 31 Tháng Ba, 2014 »

Một vật có dạng là một bán cầu khối lượng M được đặt nằm ngang trên một mặt phẳng nằm ngang không ma sát (hình 3). Một vật nhỏ có khối lượng m bắt đầu trượt không ma sát, không vận tốc đầu từ đỉnh bán cầu. Gọi [tex]\alpha[/tex]
 là góc mà bán kính nối vật với tâm bán cầu hợp với phương thẳng đứng khi vật bắt đầu tách khỏi bán cầu.
      1. Thiết lập mối quan hệ giữa M, m và góc [tex]\alpha[/tex] .
      2. Tìm [tex]\alpha[/tex]  khi  M=m
Nhờ các thầy cô giúp đỡ.

1.
Xem hình vẽ.

-Xét theo phương ngang. Động lượng hệ bảo toàn.
[tex]\begin{cases} & \text mv_{1d_{x}}=MV \\ & \text v_{1d_{x}} =v_{12}cos\alpha-V \end{cases}\Rightarrow m(v_{12}cos\alpha-V)=MV \Rightarrow V=\frac{mv_{12}cos\alpha}{m+M}[/tex]  (1)

- Ngay khi vật rời khỏi M:
[tex]mgcos\alpha=\frac{mv_{12}^2}{R}\Rightarrow v_{12}^2=Rgcos\alpha\Rightarrow v_{12}^2=Rgcos\alpha[/tex] (2)

Thay (2) vào (1) : [tex]V=\frac{m}{m+M}cos\alpha\sqrt{Rgcos\alpha}[/tex] (3)

- Công thức cộng vận tốc: [tex]\vec{v_{1d}}=\vec{v_{12}}+\vec{V}\Rightarrow v_{1d}^2=v_{12}^2+V^2-2Vv_{12}cos\alpha[/tex] (4)
Thay (2)(3) vào (4) [tex]\Rightarrow v_{1d}^2=Rg(cos\alpha+(\frac{m}{m+M})^2cos^3\alpha-2\frac{m}{m+M}cos^3\alpha)[/tex] (5)

- Bảo toàn cơ năng cho 2 trường hợp: Ban đầu và khi vật m rời khỏi M (Gốc thế năng mặt đất)
[tex]mgR=\frac{1}{2}mv_{1d}^2+\frac{1}{2}MV^2+mgRcos\alpha\Rightarrow mgR(1-cos\alpha)=\frac{1}{2}mv_{1d}^2+\frac{1}{2}MV^2[/tex] (6)

Thay (3)(5) vào (6): [tex]mgR(1-cos\alpha)=\frac{1}{2}mRg[cos\alpha+(\frac{m}{m+M})^2cos^3\alpha-2\frac{m}{m+M}cos^3\alpha]+\frac{1}{2}M[(\frac{m}{m+M})^2Rgcos^3\alpha][/tex]

   [tex]\Rightarrow \frac{m}{m+M}cos^3\alpha-3cos\alpha+2=0[/tex] (7)

2.

Khi M=m:  (7)[tex] \Rightarrow \frac{1}{2}cos^3\alpha-3cos\alpha+2=0\Rightarrow cos\alpha=\sqrt{3}-1[/tex]
« Sửa lần cuối: 12:06:55 am Ngày 31 Tháng Ba, 2014 gửi bởi ph.dnguyennam »

Logged
Hà Văn Thạnh
GV Vật Lý
Moderator
Lão làng
*****

Nhận xét: +155/-21
Cảm ơn
-Đã cảm ơn: 32
-Được cảm ơn: 4093

Offline Offline

Bài viết: 4292


Email
« Trả lời #2 vào lúc: 07:47:55 am Ngày 31 Tháng Ba, 2014 »

Một vật có dạng là một bán cầu khối lượng M được đặt nằm ngang trên một mặt phẳng nằm ngang không ma sát (hình 3). Một vật nhỏ có khối lượng m bắt đầu trượt không ma sát, không vận tốc đầu từ đỉnh bán cầu. Gọi [tex]\alpha[/tex]
 là góc mà bán kính nối vật với tâm bán cầu hợp với phương thẳng đứng khi vật bắt đầu tách khỏi bán cầu.
      1. Thiết lập mối quan hệ giữa M, m và góc [tex]\alpha[/tex] .
      2. Tìm [tex]\alpha[/tex]  khi  M=m
Nhờ các thầy cô giúp đỡ.

em theo hướng này xem có ra?

Chuyển động bán cầu:
Q.sina=M.a1 ==> N.sina=M.a1 (Q=N là áp lực do vật m đê lên bán cầu M)

Chuyển động vật
P+N=m.a2=m(a21+a1)
chiếu hướng tâm
Pcosa - N = m.aht-m.a1sin(a)
==> [tex]P.cos(a) - N = m.aht - m.N.sin(a)^2/M[/tex]
==> [tex]P.cos(a)-m.aht = N(1-msin(a)/M)[/tex]
Khi rời bán cầu N=0 ==> g.cos(a) = [tex]v12^2/R[/tex] ==> [tex]v12=\sqrt{g.cos(a).R}[/tex]
Mặt khác : v21=v2-v1 và ĐLBTĐL mv2x=Mv1
chiếu OX : v12.cos(a)=v2x-v1=M/m.v1-v1 ==> [tex]v1=v12.cos(a)/(M/m-1)=v2x[/tex]
Chiếu OY :  v12.sin(a) = v2y ==> [tex]v2^2=can(v2x^2+v2y^2)[/tex]
Theo ĐLBTNL
[tex]mgR=mgRcos(a)+1/2mv2^2+1/2Mv1^2[/tex]
thế v1,v2 vào ta suy ra MQH m,M,goc a

« Sửa lần cuối: 07:49:36 am Ngày 31 Tháng Ba, 2014 gửi bởi Hà Văn Thạnh »

Logged
Tags:
Trang: 1   Lên
  In  


 
Chuyển tới:  

© 2006 Thư Viện Vật Lý.