09:01:08 am Ngày 29 Tháng Mười, 2024 *
Diễn đàn đã ngưng hoạt động và vào chế độ lưu trữ.
Mời tham gia và trao đổi trên nhóm Facebook >> TẠI ĐÂY <<
  Trang chủ Diễn đàn  

Đồ thị độ dịch chuyển – thời gian trong chuyển động thẳng của một vật được vẽ ở hình dưới. Xác định quãng đường đi được của xe sau 10 giây chuyển động
Cho mạch điện xoay chiều gồm  R , L,C   mắc nối tiếp như hình vẽ bên (hình H.1). Hình H.2 là các đồ thị biểu diễn sự phụ thuộc của điện áp  uAM  giữa hai điểm A, M và điện áp uMB   giữa hai điểm M, B trong mạch theo thời gian t . Tại thời điểm t=103    điện áp tức thời hai đầu đoạn mạch AB có giá trị 150 V. Biểu thức của điện áp hai đầu đoạn mạch AB tính theo  t (t   tính bằng s) là
Một sóng điện từ đang truyền từ một đài phát sóng ở Vĩnh Phúc đến máy thu. Biết cường độ điện trường cực đại là 50V/m và cảm ứng từ cực đại là 0,3T. Tại điểm A có sóng truyền về hướng Nam theo phương nằm ngang, ở một thời điểm nào đó khi cường độ điện trường là 20V/m và đang có hướng Đông thì vectơ cảm ứng từ có hướng và độ lớn là 
Các đồng vị của cùng một nguyên tố hóa học được phân biệt bởi:
Một vật tham gia đồng thời hai dao động điều hoà cùng phương, có phương trình lần lượt là x1 = 3sin(10t + π/3) cm và x2 = 4cos(10t – π/6) cm. Biên độ dao động tổng hợp của vật là


Trả lời

Hình giải tích phẳng.

Trang: 1   Xuống
  In  
Tác giả Chủ đề: Hình giải tích phẳng.  (Đọc 3434 lần)
0 Thành viên và 0 Khách đang xem chủ đề.
Trần Anh Tuấn
Giáo viên Vật lý
Lão làng
*****

Nhận xét: +42/-16
Cảm ơn
-Đã cảm ơn: 217
-Được cảm ơn: 367

Offline Offline

Giới tính: Nam
Bài viết: 709


Chú Mèo Đi Hia

tuan_trananh1997@yahoo.com
Email
« vào lúc: 02:41:18 pm Ngày 04 Tháng Hai, 2013 »

Nhờ mọi người giúp đỡ mình giải các bài toán sau
Bài 1: Cho hai véctơ: [tex]\overrightarrow{a}\left(x_a;\,y_a\right),\,\,\overrightarrow{b}\left(x_b;\,y_b\right)[/tex] và [tex]\overrightarrow{a}\times\overrightarrow{b}=x_ay_b-x_by_a.[/tex] Chứng minh rằng: [tex]\left|\overrightarrow{a}\times\overrightarrow{b} \right|=\left|\overrightarrow{a}\right|\left|\overrightarrow{b}\right|\sin\left(\overrightarrow{a};\,\overrightarrow{b}\right)[/tex]

Bài 2: Cho [tex]\Delta ABC[/tex] có trung điểm một cạnh là [tex]M\left(1;\,2\right)[/tex] . Biết hai trung tuyến xuất phát từ hai đỉnh có phương trình lần lượt là: [tex]x+y-3=0[/tex] và [tex]2x-y+4=0.[/tex] Viết phương trình các cạnh của [tex]\Delta ABC[/tex].

Bài 3: Cho [tex]\Delta ABC[/tex] có [tex]C\left(-3;\,1\right)[/tex]. Phân giác [tex]AD[/tex] có phương trình: [tex]x+3y+12=0[/tex], đường cao [tex]AH[/tex] có phương trình: [tex]x+7y+32=0.[/tex] Lập phương trình các cạnh của tam giác.

Bài 4: Cho điểm [tex]A\left(1;\,b\right)\,\,\,\,\,a>0;\,b>0.[/tex] Viết phương trình đường thẳng [tex](d)[/tex] đi qua [tex]A[/tex] không đi qua gốc [tex] O[/tex] cắt tia [tex]Ox,\,Oy[/tex] tại [tex]M,\,N[/tex] sao cho [tex]MO + ON[/tex] nhỏ nhất.

Bài 5: Cho hai hình vuông [tex]ABCD[/tex] và [tex]A'B'C'D'[/tex] cùng hướng. Chứng minh rằng các đường thẳng [tex]BB';\,CC'[/tex] và [tex]DD'[/tex] đồng quy.  

Bài 6: Cho [tex]A\left(a;\,0\right)[/tex] và [tex]B\left(0;\,b\right)\,\,\,\,\,a,\,b>0;\,M[/tex] di chuyển trên đoạn [tex]OA ,\,N[/tex] di chuyển trên đoạn [tex]OB[/tex] sao cho [tex]AM=ON.[/tex] Chứng minh rằng trung trực [tex]MN[/tex] luôn đi qua điểm cố định và hãy tìm tọa độ điểm đó.

Cảm ơn mọi người rất nhiều.
____________________________________________
@ Trần Anh Tuấn: mình đã bỏ ra hơn 30' ngồi đánh lại
bài của bạn đấy. Từ này bạn mà đăng bài cái kiểu ẩu thả
không gõ Tex đàng hoàng thì đừng hỏi TẠI SAO nhé!
« Sửa lần cuối: 06:00:11 pm Ngày 04 Tháng Hai, 2013 gửi bởi Alexman113 »

Logged



Tận cùng của tình yêu là thù hận
Sâu thẳm trong thù hận là tình yêu
Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Email
« Trả lời #1 vào lúc: 09:30:07 pm Ngày 05 Tháng Hai, 2013 »

Bài 1: Cho hai véctơ: [tex]\overrightarrow{a}\left(x_a;\,y_a\right),\,\,\overrightarrow{b}\left(x_b;\,y_b\right)[/tex] và [tex]\overrightarrow{a}\times\overrightarrow{b}=x_ay_b-x_by_a.[/tex] Chứng minh rằng: [tex]\left|\overrightarrow{a}\times\overrightarrow{b} \right|=\left|\overrightarrow{a}\right|\left|\overrightarrow{b}\right|\sin\left(\overrightarrow{a};\,\overrightarrow{b}\right)[/tex]
Giải:
Ta có:[tex]\overrightarrow a\centerdot \overrightarrow b=x_ax_b+y_ay_b[/tex] và [tex]\left|\overrightarrow a\centerdot \overrightarrow b\right|=\left|\overrightarrow a\right|\left|\overrightarrow b\right|\cos\left(\overrightarrow a;\overrightarrow b\right)[/tex]
Lại có:
     [tex]\left(\overrightarrow a\times\overrightarrow b\right)^2+\left(\overrightarrow a\centerdot \overrightarrow b\right)^2[/tex]
[tex]=\left(x_ay_b-x_by_a\right)^2+\left(x_ax_b+y_ay_b\right)^2[/tex]
[tex]=x_a^2y_b^2+x_b^2y_a^2+x_a^2x_b^2+y_a^2y_b^2[/tex]
[tex]=\left(x_a^2+y_a^2\right)\left(x_b^2+y_b^2\right)[/tex]
[tex]=\left|\overrightarrow a\right|^2\left|\overrightarrow b\right|^2[/tex]
Suy ra: [tex]\left|\overrightarrow a\times \overrightarrow b\right|^2=\left|\overrightarrow a\right|^2\left|\overrightarrow b\right|^2\sin^2\left(\overrightarrow a;\overrightarrow b\right)[/tex]
[tex]\Rightarrow \left|\overrightarrow a\times \overrightarrow b\right|=\left|\overrightarrow a\right|\left|\overrightarrow b\right|\sin\left(\overrightarrow a;\overrightarrow b\right)[/tex], do [tex]\sin\left(\overrightarrow a;\overrightarrow b\right)\ge0.\,\,\,\,\,\,\,\,\,\blackquare[/tex]


Logged

KK09XI ~ Nothing fails like succcess ~
Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Email
« Trả lời #2 vào lúc: 09:35:09 pm Ngày 05 Tháng Hai, 2013 »

Bài 2: Cho [tex]\Delta ABC[/tex] có trung điểm một cạnh là [tex]M\left(1;\,2\right)[/tex] . Biết hai trung tuyến xuất phát từ hai đỉnh có phương trình lần lượt là: [tex]x+y-3=0[/tex] và [tex]2x-y+4=0.[/tex] Viết phương trình các cạnh của [tex]\Delta ABC[/tex].
Bạn xem lại đề hộ mình nhé thiếu dữ kiện không thể làm được đâu.



Logged

KK09XI ~ Nothing fails like succcess ~
Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Email
« Trả lời #3 vào lúc: 09:46:04 pm Ngày 05 Tháng Hai, 2013 »

Bài 3: Cho [tex]\Delta ABC[/tex] có [tex]C\left(-3;\,1\right)[/tex]. Phân giác [tex]AD[/tex] có phương trình: [tex]x+3y+12=0[/tex], đường cao [tex]AH[/tex] có phương trình: [tex]x+7y+32=0.[/tex] Lập phương trình các cạnh của tam giác.
Giải:
Tọa độ [tex]A[/tex] là nghiệm của hệ: [tex]\begin{cases} x+3y+12=0\\x+7y+32=0\end{cases} \Leftrightarrow \begin{cases}x=3\\y=-5 \end{cases}[/tex] hay [tex]A\left(3;-5\right)[/tex]
Phương trình [tex]AC[/tex] đi qua [tex]A\left(3;-5\right);C\left(-3;1\right)[/tex] là: [tex]x+y+2=0[/tex]
Đường thẳng [tex]BC[/tex] đi qua [tex]C\left(-3;1\right)[/tex] và vuông góc với: [tex]AH:x+7y+32=0[/tex] nên phương trình đương thẳng [tex]BC[/tex] là: [tex]7\left(x+3\right)-\left(y-1\right)=0 \Leftrightarrow 7x-y+22=0[/tex].
Gọi [tex]C'[/tex] là điểm đối xứng của [tex]C[/tex] qua [tex]AD[/tex], suy ra: [tex]C'\in AB[/tex]
Phương trình đường thẳng [tex]\left(d\right)[/tex] đi qua [tex]C[/tex] và vuông góc với [tex]AD[/tex] là:
[tex]3\left(x+3\right)-\left(y-1\right)=0 \Leftrightarrow 3x-y+10=0[/tex]
Giao điểm [tex]I[/tex] của [tex]AD[/tex] và [tex]\left(d\right)[/tex] là nghiệm của hệ: [tex]\begin{cases}x+3y+12=0\\3x-y+10=0\end{cases}.\Leftrightarrow \begin{cases}x=\dfrac{-21}{5}\\y=\dfrac{-13}{5}\end{cases}[/tex]
Từ đó suy ra: [tex]C'\left(\dfrac{-27}{5};\dfrac{-31}{5}\right)[/tex]
Phương trình [tex]AB[/tex] đi qua [tex]A\left(3;-5\right);C'\left(\dfrac{-27}{5};\dfrac{-31}{5}\right)[/tex] là: [tex]x-7y-38=0[/tex]


Logged

KK09XI ~ Nothing fails like succcess ~
Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Email
« Trả lời #4 vào lúc: 09:54:52 pm Ngày 05 Tháng Hai, 2013 »

Bài 4: Cho điểm [tex]A\left(1;\,b\right)\,\,\,\,\,a>0;\,b>0.[/tex] Viết phương trình đường thẳng [tex](d)[/tex] đi qua [tex]A[/tex] không đi qua gốc [tex] O[/tex] cắt tia [tex]Ox,\,Oy[/tex] tại [tex]M,\,N[/tex] sao cho [tex]MO + ON[/tex] nhỏ nhất.
Hướng dẫn:
Bạn xem lại đề hộ mình nhé cho [tex]a>0[/tex] nhưng không thấy cho [tex]a[/tex] trong đề chắc có lẻ đề như trên nhưng điểm [tex]A[/tex] phải có tọa độ thế này [tex]A\left(a;\,b\right)[/tex] thì mình giải như sau:
Vì [tex]a,b>0[/tex] nên phương trình đường thẳng [tex]\left(d\right)[/tex] có dạng: [tex]\dfrac{x}{OM}+\dfrac{y}{ON}=1.[/tex]
Vì [tex]A\in \left(d\right)[/tex] nên [tex]\dfrac{a}{OM}+\dfrac{b}{ON}=1[/tex].
Áp dụng BĐT [tex]Cauchy-Schwarz[/tex] ta có: [tex]OM+ON=\left(OM+ON\right)\left\left( \dfrac{a}{OM}+\dfrac{b}{ON}\right\right) \geq \left(\sqrt{a}+\sqrt{b}\right)^2.[/tex]
Dấu [tex]\,\,"="\,\,\Leftrightarrow\,\dfrac{OM}{\sqrt{a}}=\dfrac{ON}{\sqrt{b}}[/tex].
Khi đó đường thẳng [tex]\left(d\right)[/tex] có phương trình: [tex]\dfrac{x}{\sqrt{a}}+\dfrac{y}{\sqrt{b}}=\sqrt{a}+\sqrt{b}[/tex].


Logged

KK09XI ~ Nothing fails like succcess ~
Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Email
« Trả lời #5 vào lúc: 09:58:06 pm Ngày 05 Tháng Hai, 2013 »

Bài 5: Cho hai hình vuông [tex]ABCD[/tex] và [tex]A'B'C'D'[/tex] cùng hướng. Chứng minh rằng các đường thẳng [tex]BB';\,CC'[/tex] và [tex]DD'[/tex] đồng quy. 
Bài này đề sai bạn nhé!
Lấy hai hình vuông [tex]ABCD[/tex] và [tex]A'B'C'D'[/tex] bằng nhau và đặt tên theo chiều kim đồng hồ sao cho [tex]A,\,B,\,A',\,B'[/tex] nằm cùng trên một đường thẳng. Khi đó [tex]BB' \parallel DD' \equiv CC'[/tex] nên chúng không thể đồng quy được.


Logged

KK09XI ~ Nothing fails like succcess ~
Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Email
« Trả lời #6 vào lúc: 10:02:56 pm Ngày 05 Tháng Hai, 2013 »

Bài 6: Cho [tex]A\left(a;\,0\right)[/tex] và [tex]B\left(0;\,b\right)\,\,\,\,\,a,\,b>0;\,M[/tex] di chuyển trên đoạn [tex]OA ,\,N[/tex] di chuyển trên đoạn [tex]OB[/tex] sao cho [tex]AM=ON.[/tex] Chứng minh rằng trung trực [tex]MN[/tex] luôn đi qua điểm cố định và hãy tìm tọa độ điểm đó.
Giải:
Đặt [tex]N(0,n), \quad 0 < n <b[/tex] vì [tex]N[/tex] nằm trong [tex]OB[/tex].
Do [tex]ON=AM\Rightarrow M(a-n,0)[/tex]. Phương trình đoạn chắn đi qua [tex]M,\,N[/tex] có dạng:
[tex]\dfrac{x}{a-n}+\dfrac{y}{n}=1\implies nx + (a-n) y=n(a-n)[/tex]
và trung điểm của [tex]MN[/tex] có tọa độ [tex]I=\left ( \dfrac{a-n}{2},\dfrac{n}{2} \right )[/tex].
Suy ra đường trung trực của [tex]MN[/tex] đi qua [tex]I[/tex] và có VTPT [tex](n-a,n)[/tex] nên nó có dạng
[tex](d) : (n-a)\left ( x - \dfrac{a-n}{2}\right )+n\left ( y - \dfrac{n}{2}\right )=0 \quad (1)[/tex]
Để tìm điểm cố định thuộc đường thẳng trên thì ta tìm [tex]x,y[/tex] sao cho Phương trình [tex](1)[/tex] có nghiệm với mọi [tex]n[/tex].
Ta có:
[tex](1) \iff n(x+y-a)+\left ( \dfrac{a^2}{2}-ax \right )=0[/tex]
Phương trình này có nghiệm với mọi [tex]n \iff \begin{cases}x+y-a=0 \\ \dfrac{a^2}{2}-ax =0 \end{cases}\iff \begin{cases}x= \dfrac{a}{2} \\y= \dfrac{a}{2} \end{cases}[/tex]
Vậy điểm cố định cần tìm là [tex]\left (\dfrac{a}{2},  \dfrac{a}{2} \right )\,\,\,\,\,\,\,\blacksquare[/tex]


Logged

KK09XI ~ Nothing fails like succcess ~
Trần Anh Tuấn
Giáo viên Vật lý
Lão làng
*****

Nhận xét: +42/-16
Cảm ơn
-Đã cảm ơn: 217
-Được cảm ơn: 367

Offline Offline

Giới tính: Nam
Bài viết: 709


Chú Mèo Đi Hia

tuan_trananh1997@yahoo.com
Email
« Trả lời #7 vào lúc: 10:52:16 pm Ngày 06 Tháng Hai, 2013 »

Thực sự rất cảm ơn anh Alexman113
Hôm đó em có việc phãi xa nhà sớm nên nhờ một người khác gõ hộ bài tập lên nên mới xảy ra sự cố trên
Rất mong anh lượng thứ !!!!!!!!!!!!!!
Mong được anh giúp đỡ nhiều hơn nữa ạ !!!!!!!!1


Logged

Tận cùng của tình yêu là thù hận
Sâu thẳm trong thù hận là tình yêu
Trần Anh Tuấn
Giáo viên Vật lý
Lão làng
*****

Nhận xét: +42/-16
Cảm ơn
-Đã cảm ơn: 217
-Được cảm ơn: 367

Offline Offline

Giới tính: Nam
Bài viết: 709


Chú Mèo Đi Hia

tuan_trananh1997@yahoo.com
Email
« Trả lời #8 vào lúc: 01:01:53 am Ngày 08 Tháng Hai, 2013 »

Anh Alexman 113 giải tiếp cho em một bài hình nữa được không ạ ? Bài này không phải hình giải tích anh cho phép em đăng vào topic này nhé
Tính số cạnh của một đa giác lồi có tất cả các đường chéo bằng nhau?


Logged

Tận cùng của tình yêu là thù hận
Sâu thẳm trong thù hận là tình yêu
Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Email
« Trả lời #9 vào lúc: 01:28:37 pm Ngày 14 Tháng Hai, 2013 »

Tính số cạnh của một đa giác lồi có tất cả các đường chéo bằng nhau?
Giải:
Giả sử tồn tại đa giác [tex]A_1A_2...A_n[/tex] cạnh mà tất cả các đường chéo của nó bằng nhau.
Dễ thấy [tex]n\in \{ 3,4,5\}[/tex] thỏa mãn bài toán.
Xét trường hợp [tex]n\geq 6[/tex], khi đó [tex]A_1A_3=A_3A_5=A_5A_1=l[/tex] nên [tex]\Delta A_1A_3A_5[/tex] đều.
Đồng thời với mọi [tex]6\leq i\leq n[/tex] thì [tex]A_2A_4=A_4A_i=A_iA_2=l[/tex] nên [tex]\Delta A_2A_4A_i[/tex] đều.
Từ đó suy ra [tex]n=6.[/tex]
Khi đó [tex]\Delta A_1A_3A_4=\Delta A_6A_3A_4[/tex] nên [tex]\widehat{A_1A_3A_4}=\widehat{A_6A_3A_4}[/tex] (vô lý).
Vậy [tex]n\geq 6[/tex] không thỏa mãn bài toán.


Logged

KK09XI ~ Nothing fails like succcess ~
Trần Anh Tuấn
Giáo viên Vật lý
Lão làng
*****

Nhận xét: +42/-16
Cảm ơn
-Đã cảm ơn: 217
-Được cảm ơn: 367

Offline Offline

Giới tính: Nam
Bài viết: 709


Chú Mèo Đi Hia

tuan_trananh1997@yahoo.com
Email
« Trả lời #10 vào lúc: 12:21:59 am Ngày 15 Tháng Hai, 2013 »

Nhờ anh Alex giải hộ em bài hình giải tích này
Cho hình chữ nhật [tex]ABCD[/tex] có [tex]I\left(6;\,2\right)[/tex] là giao điểm của hai đường chéo [tex]AC[/tex] và [tex]BD[/tex]. Điểm [tex]M\left(1;\,1\right)[/tex] thuộc đường thẳng [tex]AB.[/tex] Trung điểm [tex]E[/tex] của cạnh [tex]CD[/tex] nằm trên đường thẳng [tex]x+y-5=0.[/tex] Viết phương trình đường thẳng [tex]AB.[/tex]
Cảm ơn anh nhiều.








« Sửa lần cuối: 12:28:24 am Ngày 15 Tháng Hai, 2013 gửi bởi Alexman113 »

Logged

Tận cùng của tình yêu là thù hận
Sâu thẳm trong thù hận là tình yêu
Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Email
« Trả lời #11 vào lúc: 11:44:49 pm Ngày 24 Tháng Hai, 2013 »

Cho hình chữ nhật [tex]ABCD[/tex] có [tex]I\left(6;\,2\right)[/tex] là giao điểm của hai đường chéo [tex]AC[/tex] và [tex]BD[/tex]. Điểm [tex]M\left(1;\,1\right)[/tex] thuộc đường thẳng [tex]AB.[/tex] Trung điểm [tex]E[/tex] của cạnh [tex]CD[/tex] nằm trên đường thẳng [tex]x+y-5=0.[/tex] Viết phương trình đường thẳng [tex]AB.[/tex]
Cảm ơn anh nhiều.
Giải:


Logged

KK09XI ~ Nothing fails like succcess ~
Tags:
Trang: 1   Lên
  In  


 
Chuyển tới:  

© 2006 Thư Viện Vật Lý.