05:58:40 am Ngày 27 Tháng Tư, 2025 *
Diễn đàn đã ngưng hoạt động và vào chế độ lưu trữ.
Mời tham gia và trao đổi trên nhóm Facebook >> TẠI ĐÂY <<
  Trang chủ Diễn đàn  

Một nguyên tử hidro đang ở trạng thái kích thích mà electron chuyển động trên quỹ đạo dừng N. Khi electron chuyển về các quỹ đạo dừng bên trong thì số vạch tối đa nguyên tử đó phát xạ là
Xác định chiều dòng điện cảm ứng trong vòng dây khi nhìn vào mặt trên trong trường hợp cho nam châm rơi thẳng đứng xuyên qua tâm vòng dây giữ cố định như hình vẽ
Đặt điện áp u = U0cosω t vào hai đầu cuộn cảm thuần có độ tự cảm L. Tại thời điểm điện áp giữa hai đầu cuộn cảm có độ lớn cực đại thì cường độ dòng điện qua cuộn cảm bằng
Một chùm tia sáng từ không khí đi nghiêng góc vào mặt nước, khi góc tới tăng dần thì góc khúc xạ
Trên một đường thẳng cố định trong môi trường đẳng hướng, không hấp thụ và phản xạ âm, một máy thu ở cách nguồn âm một khoảng d thu được âm có cường độ âm là L; khi dịch chuyển máy thu ra xa nguồn âm thêm 9m thì mức cường độ âm thu được là L -20 dB. Khoảng cách d là


Trả lời

Tìm m để phương trình có nghiệm

Trang: 1   Xuống
  In  
Tác giả Chủ đề: Tìm m để phương trình có nghiệm  (Đọc 3399 lần)
0 Thành viên và 0 Khách đang xem chủ đề.
sun_fun99
Thành viên triển vọng
**

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 46
-Được cảm ơn: 8

Offline Offline

Bài viết: 54


Email
« vào lúc: 05:14:33 pm Ngày 05 Tháng Chín, 2014 »

Câu1 : tìm m để phương trình m([tex](\sqrt{1+x^2}-\sqrt{1-x^2} +2)=2\sqrt{1-x^4}+\sqrt{1+x^2}-\sqrt{1-x^2}[/tex]
có nghiệm.
Câu 2: tìm m để phương trình [tex]\sqrt{x^2+mx+2}=2x+1[/tex] có nghiệm
Mọng mọi người giúp giùm em


Logged


Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Email
« Trả lời #1 vào lúc: 03:25:25 am Ngày 06 Tháng Chín, 2014 »

Câu1 : tìm m để phương trình m([tex](\sqrt{1+x^2}-\sqrt{1-x^2} +2)=2\sqrt{1-x^4}+\sqrt{1+x^2}-\sqrt{1-x^2}[/tex]
có nghiệm.
Gợi ý:
Điều kiện xác định: [tex]x\le\left|1\right|[/tex]
Đặt: [tex]t=\sqrt{1+x^2}-\sqrt{1-x^2},\,\,0\le t\le\sqrt{2}[/tex]
Phương trình đã cho viết lại: [tex]\dfrac{-t^2+t+2}{t+2}=m\,\,(*)[/tex]
Để phương trình ban đầu có nghiệm thì phương trình [tex](*)[/tex] có nghiệm [tex]t\in\left[0;\,\sqrt{2}\right][/tex]
Xét [tex]f(t)=\dfrac{-t^2+t+2}{t+2},\,\,t\in\left[0;\,\sqrt{2}\right][/tex]
[tex]f'(t)=\dfrac{-t^2-4t}{\left(t+2\right)^2}\le0,\forall t\in\left[0;\,\sqrt{2}\right][/tex] suy ra [tex]f(t)[/tex] nghịch biến trên [tex]\left[0;\,\sqrt{2}\right][/tex] nên [tex]\boxed{\sqrt{2}-1\le m\le 1}[/tex]


Logged

KK09XI ~ Nothing fails like succcess ~
Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Email
« Trả lời #2 vào lúc: 03:47:33 am Ngày 06 Tháng Chín, 2014 »

Câu 2: tìm m để phương trình [tex]\sqrt{x^2+mx+2}=2x+1[/tex] có nghiệm
Mọng mọi người giúp giùm em
Theo mình đề bài phải muốn hỏi thế này.
Tìm [tex]m[/tex] để phương trình
[tex]\sqrt{x^2+mx+2}=2x+1[/tex]
có hai nghiệm phân biệt.
Gợi ý:
Phương trình ban đầu đã cho tương đương với [tex]\begin{cases}2x+1\ge0\\x^2+mx+2=\left(2x+1\right)^2\end{cases}\Leftrightarrow \begin{cases}x\ge-\dfrac{1}{2}\\3x^2-m\left(m-4\right)x-1=0\,\,(*)\end{cases}[/tex]
Để phương trình đã cho có hai nghiệm phân biệt thì phương trình [tex](*)[/tex] có hai nghiệm phân biệt đều lớn hơn [tex]-\dfrac{1}{2}[/tex]
Giả sử gọi hai nghiệm phương trình [tex](*)[/tex] là [tex]x_1,\,x_2\,\,\left(x_2>x_1\right)\Rightarrow -\dfrac{1}{2}\le x_1<x_2[/tex]
                                                                                     [tex]\Leftrightarrow \begin{cases}\left(m-4\right)^2+12>0\\\dfrac{m-4}{6}\ge-\dfrac{1}{2}\\\dfrac{m-4}{2}-\dfrac{1}{4}\ge0\end{cases}\Leftrightarrow \boxed{m\ge\dfrac{9}{2}}[/tex]



Logged

KK09XI ~ Nothing fails like succcess ~
sun_fun99
Thành viên triển vọng
**

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 46
-Được cảm ơn: 8

Offline Offline

Bài viết: 54


Email
« Trả lời #3 vào lúc: 04:11:40 pm Ngày 06 Tháng Chín, 2014 »

Câu1 : tìm m để phương trình m([tex](\sqrt{1+x^2}-\sqrt{1-x^2} +2)=2\sqrt{1-x^4}+\sqrt{1+x^2}-\sqrt{1-x^2}[/tex]
có nghiệm.
Gợi ý:
Điều kiện xác định: [tex]x\le\left|1\right|[/tex]
Đặt: [tex]t=\sqrt{1+x^2}-\sqrt{1-x^2},\,\,0\le t\le\sqrt{2}[/tex]
Phương trình đã cho viết lại: [tex]\dfrac{-t^2+t+2}{t+2}=m\,\,(*)[/tex]
Để phương trình ban đầu có nghiệm thì phương trình [tex](*)[/tex] có nghiệm [tex]t\in\left[0;\,\sqrt{2}\right][/tex]
Xét [tex]f(t)=\dfrac{-t^2+t+2}{t+2},\,\,t\in\left[0;\,\sqrt{2}\right][/tex]
[tex]f'(t)=\dfrac{-t^2-4t}{\left(t+2\right)^2}\le0,\forall t\in\left[0;\,\sqrt{2}\right][/tex] suy ra [tex]f(t)[/tex] nghịch biến trên [tex]\left[0;\,\sqrt{2}\right][/tex] nên [tex]\boxed{\sqrt{2}-1\le m\le 1}[/tex]

câu này em chưa hiểu điều kiện của t ạ, tại sao lại ở trong đoạn 0, căn 2


Logged
Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Email
« Trả lời #4 vào lúc: 05:56:07 pm Ngày 06 Tháng Chín, 2014 »

câu này em chưa hiểu điều kiện của t ạ, tại sao lại ở trong đoạn 0, căn 2
Cái đấy đúng người ta gọi là miền giá trị ý.
Đặt: [tex]t=\sqrt{1+x^2}-\sqrt{1-x^2}[/tex]
Ta có: [tex]\sqrt{1+x^2}\ge\sqrt{1-x^2}\Leftrightarrow \sqrt{1+x^2}-\sqrt{1-x^2}\ge 0\Rightarrow t\ge0[/tex]
Lại có: [tex]t^2=2-2\sqrt{1-x^4}\le2\Rightarrow t\le\sqrt{2}[/tex]
Lưu ý rằng [tex]\begin{cases}t=0\Leftrightarrow x=0\\t=\sqrt{2}\Leftrightarrow x=\pm 1\end{cases}[/tex] nên [tex]t[/tex] liên tục trên [tex]\left[-1;\,1\right][/tex] do đó miền giá trị của [tex]t[/tex] là [tex]\left[0;\,\sqrt{2}\right][/tex]

« Sửa lần cuối: 05:58:24 pm Ngày 06 Tháng Chín, 2014 gửi bởi Scylla »

Logged

KK09XI ~ Nothing fails like succcess ~
Tags:
Trang: 1   Lên
  In  


 
Chuyển tới:  

© 2006 Thư Viện Vật Lý.