🗣️ Nguyễn Văn Dũng hỏi: Cho mình hỏi một câu Vật lý Lớp 11 trong sách bài tập Sách Kết Nối Tri Thức
\(P\) và \(Q\) là hai điểm trên mặt nước cách nhau một khoảng \(20{\rm{\;cm}}\). Tại một điểm \({\rm{O}}\) trên đường thẳng \({\rm{PQ}}\) và nằm ngoài đoạn \({\rm{PQ}}\), người ta đặt nguồn dao động điều hoà theo phương vuông góc với mặt nước với phương trình \({\rm{u}} = 5{\rm{cos}}\omega {\rm{t}}\left( {{\rm{cm}}} \right)\), tạo ra sóng trên mặt nước với bước sóng \(\lambda = 15{\rm{\;cm}}\). Khoảng cách xa nhất và gần nhất giữa hai phần tử môi trường tại \({\rm{P}}\) và \(Q\) khi có sóng truyền qua là bao nhiêu?
👩 Đánh giá của giáo viên: Câu này dễ, mức độ biết.
🔑 Chủ đề: giai sbt vat ly 11 kntt su truyen nang luong cua song co co dap an.
🕵 Bạn Trần Thị Phú trả lời:
Đối với trường hợp sóng ngang, khoảng cách giữa hai điểm P, Q khi dao động được mô tả như Hình 9.4G. Gọi O1, O2 lần lượt là vị trí cân bằng của P và Q; u1, u2 lần lượt là li độ dao động của các phần tử tại P và Q;\({\rm{\Delta }}u = {u_1} - {u_2}\) . Khoảng cách giữa P và Q trong quá trình dao động là: \(l = \sqrt {{{\left( {{{\rm{O}}_1}{{\rm{O}}_2}} \right)}^2} + {{({\rm{\Delta u}})}^2}} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{l_{{\rm{min}}}} = \sqrt {{{\left( {{{\rm{O}}_1}{{\rm{O}}_2}} \right)}^2} + {{(0)}^2}} = {{\rm{O}}_1}{{\rm{O}}_2}}\\{{l_{{\rm{max}}}} = \sqrt {{{\left( {{{\rm{O}}_1}{{\rm{O}}_2}} \right)}^2} + {{\left( {{\rm{\Delta }}{{\rm{u}}_{{\rm{max}}}}} \right)}^2}} }\end{array}} \right.\) Vậy khoảng cách gần nhất giữa P và Q là: \({l_{{\rm{min}}}} = {O_1}{O_2} = 20{\rm{\;cm}}\) . Khoảng cách xa nhất giữa P và Q là: \({l_{{\rm{max}}}} = \sqrt {{{\left( {{{\rm{O}}_1}{{\rm{O}}_2}} \right)}^2} + {{\left( {{\rm{\Delta }}{{\rm{u}}_{{\rm{max}}}}} \right)}^2}} \) . Giả sử sóng truyền qua P rồi mới đến Q thì dao động tại P sớm pha hơn Q là: \({\rm{\Delta }}\varphi = \frac{{2\pi \left( {PQ} \right)}}{\lambda } = \frac{{8\pi }}{3}\) Chọn mốc thời gian để phương trình dao động của phần tử tại P là: \({u_1} = 5{\rm{cos}}\omega t\left( {{\rm{cm}}} \right)\) thì phương trình dao động của phần tử tại Q là: \({u_2} = 5{\rm{cos}}\left( {\omega t - \frac{{8\pi }}{3}} \right)\left( {{\rm{cm}}} \right)\) . \({\rm{\Delta u}} = {{\rm{u}}_1} - {{\rm{u}}_2} = 5{\rm{cos}}\left( {\omega {\rm{t}} - \frac{{8\pi }}{3}} \right) - 5{\rm{cos}}\omega {\rm{t}} = 5\sqrt 3 {\rm{cos}}\left( {\omega {\rm{t}} - \frac{{5\pi }}{6}} \right)\left( {{\rm{cm}}} \right)\) \( \Rightarrow {\rm{\Delta }}{{\rm{u}}_{{\rm{max}}}} = 5\sqrt 3 {\rm{\;cm}}\) . \({l_{{\rm{max}}}} = \sqrt {{{(20)}^2} + {{(5\sqrt 3 )}^2}} = 5\sqrt {19} {\rm{\;cm}}.\)
Gửi bạn các file hữu ích đi kèm câu hỏi: