Có một bạn bên
Box Math đã giải bài này rồi (chưa hẳn đúng), em tham khảo thử.
Dạ bài đó do em giải nhưng có 1 bài giải khác đó là:
Vì sau va chạm, biên độ của vật 1 giảm, năng lượng đó đã được chuyển cho vật 2. Áp dụng định luật bảo toàn năng lượng ta có:
[tex]\frac{K_1( \Delta l_1 )^2} {2} = \frac {K_1( \Delta l_2 )^2} {2}+ \frac{K_2 (A_2)^2} {2}[/tex]. Suy ra [tex]A_2=\sqrt{3} cm.[/tex]
Chọn gốc thời gian lúc 2 vật va chạm lần đầu tiên, chiều dương hướng sang vật 2, gốc tọa độ tại vị trí va chạm lần đầu tiên. Phương trình dao động của 2 vật lần lượt là ( chọn gốc tọa độ tại vị trí cân bằng ứng mỗi vật), :
[tex] \begin{cases} x_1= 2 \sqrt{2} \cos( 10 \pi t + \frac{\pi}{4} ) \\ x_2 = 2 + \sqrt{3} \cos( 10 \pi t - \frac{\pi}{2}) \end{cases} [/tex]
Cho [tex]x_1 = x_2 [/tex] ta giải phương trình lượng giác trên bằng máy tính ta tìm được t = 0,1313186505...
Vậy chọn A