BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013
_____________ Môn: TOÁN; Khối A và Khối A1
Thời gian làm bài: 180 phút, không kể thời gian phát đề
ĐỀ CHÍNH THỨCI. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu 1 (2,0 điểm). Cho hàm số [tex]y= -x^3+3x^2+3mx-1,\,\,\, (1)[/tex] với [tex]m[/tex] là tham số thực.
a) Khảo sát sự biến thiên và vẽ đồ thị hàm số [tex](1)[/tex] khi [tex]m = 0.[/tex]
b) Tìm [tex]m[/tex] để hàm số [tex](1)[/tex] nghịch biến trên khoảng [tex](0;\,+\infty)[/tex]
Câu 2 (1,0 điểm). Giải phương trình [tex]1+ \tan x = 2\sqrt 2 \sin \left ( x + \frac{\pi}{4} \right )[/tex].
Câu 3 (1,0 điểm). Giải hệ phương trình: [tex]\begin{cases}\sqrt{x+1}+\sqrt[4]{x-1}-\sqrt{y^4+2}=y\\x^2+2x\left(y-1\right)+y^2-6y+1=0\\ \end{cases}\,\,\,\,\,\,\,\left( {\,\forall x,y \in \mathbb{R}} \right)[/tex]
Câu 4 (1,0 điểm). Tính tích phân [tex]\displaystyle \int_{1}^{2}\frac{x^2-1}{x^2}\ln xdx[/tex]
Câu 5 (1,0 điểm). Cho hình chóp [tex]S.ABC[/tex] có đáy là tam giác vuông tại [tex]A[/tex], [tex]\widehat{ABC} = 30^o[/tex], [tex]SBC[/tex] là tam giác đều cạnh [tex]a[/tex] và mặt bên [tex]SBC[/tex] vuông góc với đáy. Tính theo [tex]a[/tex] thể tích khối chóp [tex]S.ABC[/tex] và khoảng cách từ [tex]C[/tex] đến mặt phẳng [tex](SAB)[/tex].
Câu 6 (1,0 điểm). Cho các số thực [tex]a;\,b;\,c[/tex] thỏa mãn điều kiện [tex](a+c)(b+c)=4c^2.[/tex] Tìm giá trị nhỏ nhất của biểu thức:
[tex]P=\dfrac{32a^3}{\left(b+3c\right)^3}+\dfrac{32b^3}{\left(a+3c\right)^3}-\dfrac{\sqrt{a^2+b^2}}{c}[/tex]
II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B).A. Theo chương trình chuẩnCâu 7.a (1,0 điểm). Trong mặt phẳng với hệ tọa độ [tex]Oxy,[/tex] cho hình chữ nhật [tex]ABCD[/tex] có điểm [tex]C[/tex] thuộc đường thẳng [tex]d:2x+y+5=0[/tex] và [tex]A(-4;\,8).[/tex] Gọi [tex]M[/tex] là điểm đối xứng của [tex]B[/tex] qua [tex]C,\,N[/tex] là hình chiếu vuông góc của [tex]B[/tex] trên đường thẳng [tex]MD.[/tex] Tìm tọa độ các điểm [tex]B[/tex] và [tex]C,[/tex] biết rằng [tex]N(5;\,-4).[/tex]
Câu 8.a (1,0 điểm) Trong không gian với hệ tọa độ [tex]Oxyz[/tex], cho đường thẳng [tex]\Delta:\frac{x-6}{-3}=\frac{y+1}{-2}=\frac{z+5}{1}[/tex] và điểm [tex]A(1;\,7;\,3)[/tex]. Viết phương trình mặt phẳng [tex](P)[/tex] đi qua [tex]A[/tex] và vuông góc với [tex]\Delta[/tex]. Tìm tọa độ điểm [tex]M[/tex] thuộc [tex]\Delta[/tex] sao cho [tex]AM = 2\sqrt{30}[/tex].
Câu 9.a (1,0 điểm). Gọi [tex]S[/tex] là tập hợp tất cả các số tự nhiên gồm ba chữ số phân biệt được chọn từ các chữ số [tex]1;\,2;\,3;\,4;\,5;\,6;\,7[/tex]. Xác định số phần tử của [tex]S[/tex]. Chọn ngẫu nhiên một số từ [tex]S[/tex], tính xác suất để số được chọn là số chẵn.
B. Theo chương trình nâng caoCâu 7.b (1,0 điểm). Trong mặt phẳng với hệ tọa độ [tex]Oxy,[/tex] cho đường thẳng [tex]\Delta :x-y=0.[/tex] Đường tròn [tex](C)[/tex] có bán kính [tex]R=\sqrt{10}[/tex] cắt [tex]\Delta[/tex] tại hai điểm [tex]A[/tex] và [tex]B[/tex] sao cho [tex]AB=4\sqrt{2}.[/tex] Tiếp tuyến của [tex](C)[/tex] tại [tex]A[/tex] và [tex]B[/tex] cắt nhau tại một điểm thuộc tia [tex]Oy.[/tex] Viết phương trình đường tròn [tex](C).[/tex]
Câu 8.b (1,0 điểm) Trong không gian với hệ tọa độ [tex]Oxyz[/tex], cho mặt phẳng [tex](P): 2x+3y+z-11=0[/tex] và mặt cầu [tex](S):x^2+y^2+z^2-2x+4y-2z-8=0[/tex]. Chứng minh [tex](P)[/tex] tiếp xúc [tex](S)[/tex]. Tìm tọa độ tiếp điểm của [tex](P)[/tex] và [tex](S)[/tex].
Câu 9.b (1,0 điểm). Cho số phức [tex]z=1+\sqrt3 i[/tex] . Viết dạng lượng giác của số phức [tex]z[/tex]. Tìm phần thực và phần ảo của số phức [tex]w = (1+i)z^5.[/tex]
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm._____________________________________________________________________________________________________________________
GỢI Ý ĐÁP ÁN.
>>> Xem tại đây