04:36:34 pm Ngày 01 Tháng Năm, 2025 *
Diễn đàn đã ngưng hoạt động và vào chế độ lưu trữ.
Mời tham gia và trao đổi trên nhóm Facebook >> TẠI ĐÂY <<
  Trang chủ Diễn đàn  

Công suất tiêu thụ của một mạch điện xoay chiều được tính bằng công thức
Ba con lắc lò xo 1, 2, 3 đặt thẳng đứng cách đều nhau theo thứ tự 1, 2, 3. Ở vị trí cân bằng ba vật có cùng độ cao. Con lắc 1 và 2 có phương trình dao động lần lượt là x1 = 3cos(20 π t + 0,5 π ) (cm) và x2 = 1,5cos(20 π t) (cm). Ba vật luôn luôn nằm trên một đường thẳng trong quá trình dao động. Phương trình dao động con lắc thứ 3 là
Mạch RLC gồm cuộn thuần cảm có độ tự cảm L = 2π  H, điện trở thuần R=100Ω và tụ điên có điện dung C=10-4π. Khi trong mạch điện có dòng điên xoay chiều i =  2 cos ωt  (A) chạy qua thì hệ số công suất mạch là  22 .  Viết biểu thức điện áp giữa hai đầu mạch:
Trong thí nghiệm giao thoa sóng trên mặt nước,hai nguồn kết hợp A,B dao động đồng pha với tần số f=16Hz.Tại một điểm M cách các nguồn A,B những khoảng d1=30cm, d2 =25,5cm,sóng có biên độ cực đại. Giữa M và đường trung trực có hai dãy cực đại khác. Vận tốc truyền sóng trên mặt nước là bao nhiêu?
Một học sinh làm thí nghiệm như sau: chiếu một chùm ánh sáng kích thích AS vào một quang điện trở R như hình vẽ, thì thấy chỉ số của ampe kế tăng lên so với trước khi chiếu AS. Biết ampe kế và Volt kế là lí tưởng. Chỉ số của ampe kế và Volt kế sẽ thay đổi thế nào nếu ta tắt chùm sáng AS?


Trả lời

Bài phương trình khó nhờ mọi người giúp.

Trang: 1   Xuống
  In  
Tác giả Chủ đề: Bài phương trình khó nhờ mọi người giúp.  (Đọc 1611 lần)
0 Thành viên và 0 Khách đang xem chủ đề.
Ken1202
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 28
-Được cảm ơn: 2

Offline Offline

Bài viết: 21


Email
« vào lúc: 08:19:13 am Ngày 16 Tháng Sáu, 2012 »

Giải phương trình: [tex]25x+ 9\sqrt{9x^{2}-4}=\dfrac{2}{x}+\dfrac{18x}{1+x^{2}}[/tex]

Cám ơn mọi người.


« Sửa lần cuối: 12:11:13 pm Ngày 16 Tháng Sáu, 2012 gửi bởi Alexman113 »

Logged


Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Email
« Trả lời #1 vào lúc: 04:31:52 pm Ngày 16 Tháng Sáu, 2012 »

Giải phương trình: [tex]25x+ 9\sqrt{9x^{2}-4}=\dfrac{2}{x}+\dfrac{18x}{1+x^{2}}[/tex]

Cám ơn mọi người.
Hình như đây là bài ra trên báo THTT thì phải.


Logged

KK09XI ~ Nothing fails like succcess ~
Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Email
« Trả lời #2 vào lúc: 05:36:16 pm Ngày 17 Tháng Sáu, 2012 »

Giải phương trình: [tex]25x+ 9\sqrt{9x^{2}-4}=\dfrac{2}{x}+\dfrac{18x}{1+x^{2}}[/tex]

Cám ơn mọi người.

Giải:
Điều kiện: [tex]\left| x \right| \ge \frac{2}{3}[/tex]

[tex]\bullet[/tex] Với [tex]x \ge \frac{2}{3}[/tex], phương trình tương đương với:
[tex]25 + \dfrac{{9\sqrt {9{x^2} - 4} }}{x} = \dfrac{2}{{{x^2}}} + \dfrac{{18}}{{1 + {x^2}}}\,\,\,\,\,\,\,\,\,\,\left( 1 \right)[/tex]
Dễ thấy phương trình [tex](1)[/tex] có [tex]VT > 25[/tex] và do [tex]x \ge \dfrac{2}{3}[/tex], ta có [tex]VP \le \dfrac{9}{2} + \dfrac{{162}}{{13}} < 25[/tex] nên phương trình vô nghiệm.

[tex]\bullet[/tex] Với [tex]x \le  - \frac{2}{3}[/tex], phương trình tương đương với:
[tex]25 - 9\sqrt {9 - \dfrac{4}{{{x^2}}}}  = \dfrac{2}{{{x^2}}} + \dfrac{{18}}{{{x^2} + 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)[/tex]
Đặt [tex]t = \dfrac{1}{{{x^2}}}\,\,\left( {0 < t \le \frac{9}{4}} \right)[/tex], phương trình [tex](2)[/tex] trở thành:
[tex]25 - 9\sqrt {9 - 4t}  = 2t + \dfrac{{18t}}{{1 + t}} \Leftrightarrow 9 - 9\sqrt {9 - 4t}  = 2t + \dfrac{{18t}}{{1 + t}} - 16[/tex]
[tex] \Leftrightarrow \dfrac{{36\left( {t - 2} \right)}}{{\sqrt {9 - 4t}  + 1}} = \dfrac{{2\left( {t - 2} \right)\left( {t + 4} \right)}}{{t + 1}} \Leftrightarrow \left( {t - 2} \right)\left( {\dfrac{{18}}{{\sqrt {9 - 4t}  + 1}} - \dfrac{{t + 4}}{{t + 1}}} \right) = 0\,\,\,\,\,\,\,\,\,\,\left( 3 \right)[/tex]
Với [tex]0 < t \le \dfrac{9}{4}[/tex] có [tex]\dfrac{{18}}{{\sqrt {9 - 4t}  + 1}} \ge \dfrac{{18}}{4}[/tex] và [tex]\dfrac{{t + 4}}{{t + 1}} = 1 + \dfrac{3}{{t + 1}} < 4 < \dfrac{{18}}{4}[/tex] nên [tex]\dfrac{{18}}{{\sqrt {9 - 4t}  + 1}} - \dfrac{{t + 4}}{{t + 1}} > 0[/tex]

Vậy [tex]\left( 3 \right) \Leftrightarrow t = 2 \Rightarrow x =  - \dfrac{{\sqrt 2 }}{2}\,\,\,\left( \text{vì x < 0} \right)[/tex]

KL: Phương trình đã cho có nghiệm là [tex]\mathbf{x =  - \dfrac{{\sqrt 2 }}{2}}[/tex].
Theo THTT


Logged

KK09XI ~ Nothing fails like succcess ~
Tags:
Trang: 1   Lên
  In  


 
Chuyển tới:  

© 2006 Thư Viện Vật Lý.