01:27:17 am Ngày 24 Tháng Mười, 2024 *
Diễn đàn đã ngưng hoạt động và vào chế độ lưu trữ.
Mời tham gia và trao đổi trên nhóm Facebook >> TẠI ĐÂY <<
  Trang chủ Diễn đàn  

Đoạn mạch như hình vẽ bên thì: 
Một sóng cơ học có tần số 500Hz truyền đi với tốc độ 250 m/s. Độ lệch pha giữa hai điểm gần nhau nhất trên cùng đường truyền sóng là π4 khi khoảng cách giữa chúng bằng
Đặt điện áp xoay chiều vào hai đầu đoạn mạch có R,L,C mắc nối tiếp. Cường độ dòng điện chạy trong đoạn mạch luôn chậm pha so với điện áp hai đầu 
Từ không khí người ta chiếu xiên tới mặt nước nằm ngang một chùm tia sáng hẹp song song gồm hai ánh sáng đơn sắc: màu vàng, màu tím. Khi đó chùm tia khúc xạ
Sóng cơ có bản chất là


Trả lời

Phương trình đường elip

Trang: 1   Xuống
  In  
Tác giả Chủ đề: Phương trình đường elip  (Đọc 2286 lần)
0 Thành viên và 1 Khách đang xem chủ đề.
cobonla72
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 4
-Được cảm ơn: 0

Offline Offline

Bài viết: 7


Email
« vào lúc: 11:11:55 am Ngày 19 Tháng Tư, 2012 »

hjx, giải hộ bài này với mọi người ơi

Cho (E):
(x2/18)+y2 / Cool=1

Tìm M trên (E) sao cho M nhìn 2 tiêu điểm dưới một góc vuông.


Logged


Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Email
« Trả lời #1 vào lúc: 02:26:33 pm Ngày 17 Tháng Năm, 2012 »

hjx, giải hộ bài này với mọi người ơi
Viết lại đề cho dễ nhìn nhé.

Cho [tex](E):\dfrac{x^2}{18}+\dfrac{y^2}{8}=1[/tex]. Tìm [TEX]M\in(E)[/TEX] sao cho [TEX]M[/TEX] nhìn hai tiêu điểm dưới một góc vuông.

Giải:

[tex](E):\dfrac{x^2}{18}+\dfrac{y^2}{8}=1\Leftrightarrow 4x^2+9y^2=72[/tex]

Ta có: [tex]a^2=18\Rightarrow a=3\sqrt{2}; b^2=8\Rightarrow b=2\sqrt{2}[/tex] và [tex]c^2=a^2-b^2=10\Rightarrow c=\sqrt{10}[/tex]

Gọi: [tex]M(x;y)[/tex] là điểm cần tìm và [tex]F_1, F_2[/tex] lần lượt là hai tiêu điểm.

Ta có: [tex]\begin{cases} M\in(E)\\ \widehat{F_1MF_2}=90^o\end{cases}\Leftrightarrow \begin{cases} M\in(E)\\ OM=c\end{cases}\Leftrightarrow \begin{cases} 4x^2+9y^2=72\\ x^2+y^2=10\end{cases}[/tex]

[tex]\Leftrightarrow \begin{cases} x^2=\frac{18}{5} \\ y^2=\frac{32}{5} \end{cases}\Leftrightarrow \begin{cases} x=\pm\dfrac{3\sqrt{10}}{5} \\ y=\pm\dfrac{4\sqrt{10}}{5}\end{cases}[/tex]

Vậy có bốn điểm [tex]M[/tex] thỏa mãn bài toán:
[tex]\left(\dfrac{3\sqrt{10}}{5}; \dfrac{4\sqrt{10}}{5}\right); \left(\dfrac{3\sqrt{10}}{5}; -\dfrac{4\sqrt{10}}{5}\right); \left(-\dfrac{3\sqrt{10}}{5}; \dfrac{4\sqrt{10}}{5}\right); \left(-\dfrac{3\sqrt{10}}{5}; -\dfrac{4\sqrt{10}}{5}\right)[/tex]


Logged

KK09XI ~ Nothing fails like succcess ~
Tags:
Trang: 1   Lên
  In  


 
Chuyển tới:  

© 2006 Thư Viện Vật Lý.