Đọc bản đầy đủ ở đây: https://thuvienvatly.com/forums/index.php?topic=15598 : Giao thoa sóng cơ khó cần giải đáp : hochoidr 05:25:31 PM Ngày 24 April, 2013 Câu 1: Hai nguồn sóng kết hợp nằm trên mặt chất lỏng thực hiện các DĐĐH theo phương vuông góc với mặt chất lỏng với pt: uA = acosωt và uB = acos(ωt+φ), φ là số dương. Gọi I là trung điểm của AB, trên đường nối AB ta thấy trong đoạn IB điểm M gần I nhất có biên độ dđ bằng 0 cách I một khoảng λ/3. Giá trị góc lệch pha giữa hai nguồn là φ:
π/6 2π/3 4π/3 5π/3 Câu 2: Ở bề mặt một chất lỏng có hai nguồn phát sóng kết hợp S1 và S2 cách nhau 20cm. Hai nguồn này dao động theo phương thẳng đứng có phương trình lần lượt là u1 = 3 cos(25πt) (mm) và u2 = 4sin(25πt) (mm). Tốc độ truyền sóng trên mặt chất lỏng là 50 cm/s. Những điểm M thuộc mặt nước có hiệu đường đi d = |S1M – S2M|= 2k (cm) (với k = 0, 1,2 ,3, ...) sẽ dao động với biên độ bằng: 7 mm 5 mm 1 mm 6 mm : Trả lời: Giao thoa sóng cơ khó cần giải đáp : Quang Dương 06:02:04 PM Ngày 24 April, 2013 Câu 1: Hai nguồn sóng kết hợp nằm trên mặt chất lỏng thực hiện các DĐĐH theo phương vuông góc với mặt chất lỏng với pt: uA = acosωt và uB = acos(ωt+φ), φ là số dương. Gọi I là trung điểm của AB, trên đường nối AB ta thấy trong đoạn IB điểm M gần I nhất có biên độ dđ bằng 0 cách I một khoảng λ/3. Giá trị góc lệch pha giữa hai nguồn là φ: π/6 2π/3 4π/3 5π/3 Tại điểm M ta có : pha của sóng do nguồn A truyền tới : [tex]\omega t - \frac{2\pi (IA+IM)}{ \lambda }[/tex] Pha của sóng do nguồn B truyền tới : [tex]\omega t - \frac{2\pi (IB - IM)}{ \lambda } + \varphi[/tex] Độ lệch pha của hai sóng tại M [tex]\Delta \varphi = \frac{4\pi IM}{ \lambda } + \varphi[/tex] M đứng yên nên [tex]\Delta \varphi = (2k+1) \pi = \frac{4\pi IM}{ \lambda } + \varphi[/tex] [tex]\varphi = (2k+1) \pi - \frac{4\pi}{3}[/tex] Để phi > 0 thì k nhỏ nhất bằng 1 . Vậy [tex]\varphi = \frac{5\pi}{3}[/tex] : Trả lời: Giao thoa sóng cơ khó cần giải đáp : Quang Dương 06:09:18 PM Ngày 24 April, 2013 Câu 2: Ở bề mặt một chất lỏng có hai nguồn phát sóng kết hợp S1 và S2 cách nhau 20cm. Hai nguồn này dao động theo phương thẳng đứng có phương trình lần lượt là u1 = 3 cos(25πt) (mm) và u2 = 4sin(25πt) (mm). Tốc độ truyền sóng trên mặt chất lỏng là 50 cm/s. Những điểm M thuộc mặt nước có hiệu đường đi d = |S1M – S2M|= 2k (cm) (với k = 0, 1,2 ,3, ...) sẽ dao động với biên độ bằng: 7 mm 5 mm 1 mm 6 mm Bước sóng : 4cm và phương trình của u 2 = 4cos(25πt - π/2) Tại M ta có : [tex]\frac{d}{\lambda } = \frac{k}{2}[/tex] Nên độ lệch pha của hai sóng tại M : [tex]\Delta \varphi = 2\pi \frac{d}{\lambda } + \frac{\pi }{2} = k \pi + \frac{\pi }{2}[/tex] Vì hai sóng thành phần vuông pha nên biên độ dao động tổng hợp : [tex]A = \sqrt{A _{1}^{2}+ A _{2}^{2}} = 5 cm[/tex] : Trả lời: Giao thoa sóng cơ khó cần giải đáp : hochoidr 06:10:11 PM Ngày 24 April, 2013 Tại điểm M ta có : pha của sóng do nguồn A truyền tới : [tex]\omega t - \frac{2\pi (IA+IM)}{ \lambda }[/tex] Pha của sóng do nguồn B truyền tới : [tex]\omega t - \frac{2\pi (IB - IM)}{ \lambda } + \varphi[/tex] Độ lệch pha của hai sóng tại M [tex]\Delta \varphi = \frac{2\pi IM}{ \lambda } - \varphi[/tex] M đứng yên nên [tex]\Delta \varphi = \frac{\pi }{2} = \frac{2\pi IM}{ \lambda } - \varphi[/tex] [tex]\Rightarrow \varphi = \frac{\pi }{6}[/tex] Đáp án là 5π/3 thầy ơi : Trả lời: Giao thoa sóng cơ khó cần giải đáp : hochoidr 06:49:31 PM Ngày 24 April, 2013 Em thử thay đáp án vào độ lệch pha của M xem nó có đứng yên không ? uB chậm pha hơn uA sao φ = π/6 được ạ : Trả lời: Giao thoa sóng cơ khó cần giải đáp : hocsinhIU 08:23:46 PM Ngày 24 April, 2013 sao uB chậm hơn uA được
vì góc phi dương nên uB sớm pha hơn uA chứ bạn : Trả lời: Giao thoa sóng cơ khó cần giải đáp : ngochocly 09:07:35 PM Ngày 24 April, 2013 [tex]\varphi = (2k+1)\frac{\pi }{2} - \frac{4\pi}{3}[/tex] Thầy ơi, tại sao ở đây lại lấy giá trị nhỏ nhất của k vậy ạ!Để phi > 0 thì k nhỏ nhất bằng 1 . Vậy [tex]\varphi = \frac{\pi}{6}[/tex] Em làm thế này: Biên độ tại điểm M cách 2 nguồn lần lượt d1 và d2 là: [tex]\begin{vmatrix} 2Acos(\pi \frac{d1-d2}{\lambda }+\frac{\varphi}{2})\end{vmatrix}[/tex] Điểm M đứng yên khi: [tex]\pi \frac{d1-d2}{\lambda }+\frac{\varphi}{2} =(2k+1)\frac{\pi }{2}[/tex] [tex]\Leftrightarrow \pi \frac{2IM}{\lambda }+\frac{\varphi}{2} =(2k+1)\frac{\pi }{2}[/tex] [tex]\Leftrightarrow \frac{2\pi }{\3 }+\frac{\varphi}{2} =(2k+1)\frac{\pi }{2}[/tex] Do M gần I nhất nên d1-d2 nhỏ nhất (khác 0) hay k nhỏ nhất và [tex]\varphi >0[/tex] nên k=1 =>[tex]\varphi =5\Pi /3[/tex] : Trả lời: Giao thoa sóng cơ khó cần giải đáp : hochoidr 09:31:10 PM Ngày 24 April, 2013 Bạn giải ra đáp án đúng rồi, chỗ d1-d2 sao ra được 2IM vậy bạn :D
: Trả lời: Giao thoa sóng cơ khó cần giải đáp : ngochocly 09:35:00 PM Ngày 24 April, 2013 Bạn giải ra đáp án đúng rồi, chỗ d1-d2 sao ra được 2IM vậy bạn :D d1=AI+IMd2=IB-IM : Trả lời: Giao thoa sóng cơ khó cần giải đáp : hochoidr 09:55:09 PM Ngày 24 April, 2013 Cám ơn thầy và các bạn nhiều :D
: Trả lời: Giao thoa sóng cơ khó cần giải đáp : hocsinhIU 09:58:16 PM Ngày 24 April, 2013 [tex]\varphi = (2k+1)\frac{\pi }{2} - \frac{4\pi}{3}[/tex] Thầy ơi, tại sao ở đây lại lấy giá trị nhỏ nhất của k vậy ạ!Để phi > 0 thì k nhỏ nhất bằng 1 . Vậy [tex]\varphi = \frac{\pi}{6}[/tex] Em làm thế này: Biên độ tại điểm M cách 2 nguồn lần lượt d1 và d2 là: [tex]\begin{vmatrix} 2Acos(\pi \frac{d1-d2}{\lambda }+\frac{\varphi}{2})\end{vmatrix}[/tex] Điểm M đứng yên khi: [tex]\pi \frac{d1-d2}{\lambda }+\frac{\varphi}{2} =(2k+1)\frac{\pi }{2}[/tex] [tex]\Leftrightarrow \pi \frac{2IM}{\lambda }+\frac{\varphi}{2} =(2k+1)\frac{\pi }{2}[/tex] [tex]\Leftrightarrow \frac{2\pi }{\3 }+\frac{\varphi}{2} =(2k+1)\frac{\pi }{2}[/tex] Do M gần I nhất nên d1-d2 nhỏ nhất (khác 0) hay k nhỏ nhất và [tex]\varphi >0[/tex] nên k=1 =>[tex]\varphi =5\Pi /3[/tex] ví dụ như các điểm cực đại, bạn thầy điểm cực đại càng gần trung điểm thì trị tuyệt đối k càng nhỏ, có thể xem hình vẽ hệ vân giao thoa trong sách giáo khoa hoặc bạn tự vẽ hình để kiểm chứng cách suy luận của bạn và thầy là hoàn toàn như nhau, chỉ là cách nói khác nhau thôi thầy gõ nhầm chỗ IM thôi, phương pháp là hoàn toàn đúng : Trả lời: Giao thoa sóng cơ khó cần giải đáp : ngochocly 10:18:33 PM Ngày 24 April, 2013 vì M gần trung điểm I nhất nên trị tuyệt đối k phải càng nhỏ ví dụ như các điểm cực đại, bạn thầy điểm cực đại càng gần trung điểm thì trị tuyệt đối k càng nhỏ, có thể xem hình vẽ hệ vân giao thoa trong sách giáo khoa hoặc bạn tự vẽ hình để kiểm chứng cách suy luận của bạn và thầy là hoàn toàn như nhau, chỉ là cách nói khác nhau thôi thầy gõ nhầm chỗ IM thôi, phương pháp là hoàn toàn đúng Tại thắc mắc ở đó nên hỏi mà! Các điểm cực đại hay cực tiểu càng gần trung điểm I thì trị tuyệt đối k càng nhỏ khi tại I là điểm cực đại hay cực tiểu ứng với k=0 thôi chứ! Mà mình thấy thầy có nhầm gì đâu!? : Trả lời: Giao thoa sóng cơ khó cần giải đáp : superburglar 02:00:54 AM Ngày 25 April, 2013 [tex]\varphi = (2k+1)\frac{\pi }{2} - \frac{4\pi}{3}[/tex] Thầy ơi, tại sao ở đây lại lấy giá trị nhỏ nhất của k vậy ạ!Để phi > 0 thì k nhỏ nhất bằng 1 . Vậy [tex]\varphi = \frac{\pi}{6}[/tex] Em làm thế này: Biên độ tại điểm M cách 2 nguồn lần lượt d1 và d2 là: [tex]\begin{vmatrix} 2Acos(\pi \frac{d1-d2}{\lambda }+\frac{\varphi}{2})\end{vmatrix}[/tex] Điểm M đứng yên khi: [tex]\pi \frac{d1-d2}{\lambda }+\frac{\varphi}{2} =(2k+1)\frac{\pi }{2}[/tex] [tex]\Leftrightarrow \pi \frac{2IM}{\lambda }+\frac{\varphi}{2} =(2k+1)\frac{\pi }{2}[/tex] [tex]\Leftrightarrow \frac{2\pi }{\3 }+\frac{\varphi}{2} =(2k+1)\frac{\pi }{2}[/tex] Do M gần I nhất nên d1-d2 nhỏ nhất (khác 0) hay k nhỏ nhất và [tex]\varphi >0[/tex] nên k=1 =>[tex]\varphi =5\Pi /3[/tex] +Ý tưởng: Đưa điểm M về điểm I cho dễ tính Giải: Khi biên độ M cực tiểu mà khoảng cách MI=[tex]\lambda /3(>\lambda /4)[/tex] tức khi đó biên độ của I là [tex]-\sqrt{3}a[/tex] hay [tex]cos(\frac{\varphi }{2})=-\frac{\sqrt{3}}{2}\Rightarrow \varphi =5\Pi /3+k2\Pi hoac \varphi =7\Pi /3[/tex] +[tex]k2\Pi[/tex] vì B sớm pha hơn A nên chọn phi nhỏ nhất (M thuộc IB mà :D).còn ngiệm kia chắc là điểm M' tương tự M nhưng bên IA [-O< : Trả lời: Giao thoa sóng cơ khó cần giải đáp : superburglar 02:28:27 AM Ngày 25 April, 2013 [tex]\varphi = (2k+1)\frac{\pi }{2} - \frac{4\pi}{3}[/tex] Thầy ơi, tại sao ở đây lại lấy giá trị nhỏ nhất của k vậy ạ!Để phi > 0 thì k nhỏ nhất bằng 1 . Vậy [tex]\varphi = \frac{\pi}{6}[/tex] Em làm thế này: Biên độ tại điểm M cách 2 nguồn lần lượt d1 và d2 là: [tex]\begin{vmatrix} 2Acos(\pi \frac{d1-d2}{\lambda }+\frac{\varphi}{2})\end{vmatrix}[/tex] Điểm M đứng yên khi: [tex]\pi \frac{d1-d2}{\lambda }+\frac{\varphi}{2} =(2k+1)\frac{\pi }{2}[/tex] [tex]\Leftrightarrow \pi \frac{2IM}{\lambda }+\frac{\varphi}{2} =(2k+1)\frac{\pi }{2}[/tex] [tex]\Leftrightarrow \frac{2\pi }{\3 }+\frac{\varphi}{2} =(2k+1)\frac{\pi }{2}[/tex] Do M gần I nhất nên d1-d2 nhỏ nhất (khác 0) hay k nhỏ nhất và [tex]\varphi >0[/tex] nên k=1 =>[tex]\varphi =5\Pi /3[/tex] +Ý tưởng: Đưa điểm M về điểm I cho dễ tính Giải: Khi biên độ M cực tiểu mà khoảng cách MI=[tex]\lambda /3(>\lambda /4)[/tex] tức khi đó biên độ của I là [tex]-\sqrt{3}a[/tex] hay [tex]cos(\frac{\varphi }{2})=-\frac{\sqrt{3}}{2}\Rightarrow \varphi =5\Pi /3+k2\Pi hoac \varphi =-5\Pi /3[/tex] +[tex]k2\Pi[/tex] mà \varphi dương nên chọn \varphi =5\Pi /3. Mình đã chỉnh lại chỗ chưa đúng.mong các bạn thông cảm :D : Trả lời: Giao thoa sóng cơ khó cần giải đáp : ngochocly 11:37:20 AM Ngày 25 April, 2013 Bài này mình xin giải cách hơi tà đạo %-) %-) %-) +Ý tưởng: Đưa điểm M về điểm I cho dễ tính Giải: Khi biên độ M cực tiểu mà khoảng cách MI=[tex]\lambda /3(>\lambda /4)[/tex] tức khi đó biên độ của I là [tex]-\sqrt{3}a[/tex] hay [tex]cos(\frac{\varphi }{2})=-\frac{\sqrt{3}}{2}\Rightarrow \varphi =5\Pi /3+k2\Pi hoac \varphi =-5\Pi /3[/tex] +[tex]k2\Pi[/tex] mà \varphi dương nên chọn \varphi =5\Pi /3. Mình thấy cách này cũng hay thật, nhưng vấn đề là M và I ''lệch pha biên độ'' là 2Pi/3 nên biên độ I cũng có thể là aCăn3. : Trả lời: Giao thoa sóng cơ khó cần giải đáp : superburglar 03:14:17 PM Ngày 25 April, 2013 Bài này mình xin giải cách hơi tà đạo %-) %-) %-) +Ý tưởng: Đưa điểm M về điểm I cho dễ tính Giải: Khi biên độ M cực tiểu mà khoảng cách MI=[tex]\lambda /3(>\lambda /4)[/tex] tức khi đó biên độ của I là [tex]-\sqrt{3}a[/tex] hay [tex]cos(\frac{\varphi }{2})=-\frac{\sqrt{3}}{2}\Rightarrow \varphi =5\Pi /3+k2\Pi hoac \varphi =-5\Pi /3[/tex] +[tex]k2\Pi[/tex] mà \varphi dương nên chọn \varphi =5\Pi /3. Mình thấy cách này cũng hay thật, nhưng vấn đề là M và I ''lệch pha biên độ'' là 2Pi/3 nên biên độ I cũng có thể là aCăn3. : Trả lời: Giao thoa sóng cơ khó cần giải đáp : ngochocly 09:54:29 PM Ngày 25 April, 2013 Ở đây mình vẽ 1 trường hợp của M! Bạn xem thử sai ở đâu!
: Trả lời: Giao thoa sóng cơ khó cần giải đáp : Quang Dương 07:32:46 AM Ngày 27 April, 2013 Câu 1: Hai nguồn sóng kết hợp nằm trên mặt chất lỏng thực hiện các DĐĐH theo phương vuông góc với mặt chất lỏng với pt: uA = acosωt và uB = acos(ωt+φ), φ là số dương. Gọi I là trung điểm của AB, trên đường nối AB ta thấy trong đoạn IB điểm M gần I nhất có biên độ dđ bằng 0 cách I một khoảng λ/3. Giá trị góc lệch pha giữa hai nguồn là φ: π/6 2π/3 4π/3 5π/3 Đã chỉnh lại lời giải ! Nhân tiện có thể giải lại cách khác Gọi N là bụng gần I nhất trên đoạn IB , ta có :IN = λ/3 - λ/4 = λ/12 và [tex]- 2\pi \frac{d_1}{\lambda }= - 2\pi \frac{d_2 }{\lambda } + \varphi + k 2 \pi[/tex] [tex]\Rightarrow d_{1} - d_{2} = ( k - \frac{\varphi }{2\pi }) \lambda[/tex] Vì N là điểm gần I nhất nên k = 1 , nên [tex]d_{1} - d_{2} = ( 1 - \frac{\varphi }{2\pi }) \lambda[/tex] Mà :[tex]d_{1} - d_{2} = 2.IN = \frac{\lambda }{6}[/tex] Vậy [tex]\varphi = \frac{5\pi }{3}[/tex] : Trả lời: Giao thoa sóng cơ khó cần giải đáp : hoanlan 09:46:46 AM Ngày 25 August, 2013 [tex]\varphi = (2k+1)\frac{\pi }{2} - \frac{4\pi}{3}[/tex] Thầy ơi, tại sao ở đây lại lấy giá trị nhỏ nhất của k vậy ạ!Để phi > 0 thì k nhỏ nhất bằng 1 . Vậy [tex]\varphi = \frac{\pi}{6}[/tex] Em làm thế này: Biên độ tại điểm M cách 2 nguồn lần lượt d1 và d2 là: [tex]\begin{vmatrix} 2Acos(\pi \frac{d1-d2}{\lambda }+\frac{\varphi}{2})\end{vmatrix}[/tex] Điểm M đứng yên khi: [tex]\pi \frac{d1-d2}{\lambda }+\frac{\varphi}{2} =(2k+1)\frac{\pi }{2}[/tex] [tex]\Leftrightarrow \pi \frac{2IM}{\lambda }+\frac{\varphi}{2} =(2k+1)\frac{\pi }{2}[/tex] [tex]\Leftrightarrow \frac{2\pi }{\3 }+\frac{\varphi}{2} =(2k+1)\frac{\pi }{2}[/tex] Do M gần I nhất nên d1-d2 nhỏ nhất (khác 0) hay k nhỏ nhất và [tex]\varphi >0[/tex] nên k=1 =>[tex]\varphi =5\Pi /3[/tex] Bạn chưa biết điểm M nằm bên phải hay trái của trung điểm I thì làm sao biết + hay - 2IM ? theo mình bài này sẽ có 2 nghiệm là pi/3 và 5pi/3 , nhưng đáp án ko có pi/3 thìa ta chọn 5pi/3, mọi người xem có đúng ko nhé! : Trả lời: Giao thoa sóng cơ khó cần giải đáp : ken0123456 03:12:03 PM Ngày 31 August, 2013 hay nhi
|