Đọc bản đầy đủ ở đây: https://thuvienvatly.com/forums/index.php?topic=13785 : BT về ĐL Bảo Toàn : Trần Anh Tuấn 01:57:41 PM Ngày 27 January, 2013 Nhờ các thầy giải giúp em mấy bài sau :
Bài 1 : Một vật m=1kg đang trượt theo phương ngang với vận tốc [tex]v_{0}=10m/s[/tex] thì theo một máng cong đi lên Do có ma sát vật chỉ lên được độ cao bằng một nửa độ cao nếu không có ma sát Hãy tính công do lực ma sát sinh ra . Bài 2 : cho 1 xe đang đứng yên khối lượng M và trên xe có 1 vật khối lượng m. truyền cho vật khối lượng m 1 vận tốc [tex]v_{0}[/tex] hệ số ma sát giữa vật và mặt sàn xe đề vật là k. biến thiên động lượng của vật là bao nhiêu cho tới khi vật dừng lại (vẫn trên xe) Và đây là lời giải bài 2 của em ban đầu, động lượng hệ (vât+xe) là [tex]p=mv_{0}[/tex] -> (do xe ban đầu đứng yên) lúc sau khi vật đã dừng lại thì động lượng hệ [tex]p'=(m+M).V[/tex] => biến thiên động lượng: của vật là [tex]\Delta p=(m+M).V-m.v_{0}[/tex] Tuy nhiên trong hướng dẫn giải câu trắc nghiệm này đáp án đúng của nó lại là [tex]\Delta p=-\frac{m.M.v_{0}}{m+M}[/tex] Các thầy có thể giải thích thật kĩ cho em xem với ! : Trả lời: BT về ĐL Bảo Toàn : kydhhd 10:20:59 PM Ngày 27 January, 2013 Nhờ các thầy giải giúp em mấy bài sau : chọn mốc thế năng là mặt phăng nằm ngangBài 1 : Một vật m=1kg đang trượt theo phương ngang với vận tốc [tex]v_{0}=10m/s[/tex] thì theo một máng cong đi lên Do có ma sát vật chỉ lên được độ cao bằng một nửa độ cao nếu không có ma sát Hãy tính công do lực ma sát sinh ra . + khi chua có lực ma sat. Áp dụng bảo toàn cơ năng: [tex]\frac{1}{2}mv^{2}=mgh[/tex] + khi có lực ma sát bảo toàn năng lương [tex]\frac{1}{2}mv^{2}=Ams+0,5mgh=Ams+\frac{1}{4}mv^{2}\Rightarrow Ams=\frac{1}{4}mv^{2}[/tex] : Trả lời: BT về ĐL Bảo Toàn : kydhhd 10:27:21 PM Ngày 27 January, 2013 Nhờ các thầy giải giúp em mấy bài sau : nếu xét hệ vật gồm vật nhỏ và xe thì nó là hệ kín theo phương ngang( lực ma sát là nội lực của vật và xe)Bài 2 : cho 1 xe đang đứng yên khối lượng M và trên xe có 1 vật khối lượng m. truyền cho vật khối lượng m 1 vận tốc [tex]v_{0}[/tex] hệ số ma sát giữa vật và mặt sàn xe đề vật là k. biến thiên động lượng của vật là bao nhiêu cho tới khi vật dừng lại (vẫn trên xe) Và đây là lời giải bài 2 của em ban đầu, động lượng hệ (vât+xe) là [tex]p=mv_{0}[/tex] -> (do xe ban đầu đứng yên) lúc sau khi vật đã dừng lại thì động lượng hệ [tex]p'=(m+M).V[/tex] => biến thiên động lượng: của vật là [tex]\Delta p=(m+M).V-m.v_{0}[/tex] Tuy nhiên trong hướng dẫn giải câu trắc nghiệm này đáp án đúng của nó lại là [tex]\Delta p=-\frac{m.M.v_{0}}{m+M}[/tex] Các thầy có thể giải thích thật kĩ cho em xem với ! động lượng ban đâu của hệ:p=mv động lượng của xe và vật khi m dưng lại:p'=(M+m).V bảo toàn động lượng: p=p'====>V=mv/(M+m) + xét riêng mình vật m. đông lượng ban đầu và sau của nó là [tex]P1=mv; p1'=m.V\Rightarrow \Delta p=p1'-p1=m.\frac{mv}{M+m}-mv=\frac{mMv}{M+m}[/tex] |