09:07:53 pm Ngày 02 Tháng Mười Một, 2024 *
Diễn đàn đã ngưng hoạt động và vào chế độ lưu trữ.
Mời tham gia và trao đổi trên nhóm Facebook >> TẠI ĐÂY <<
  Trang chủ Diễn đàn  

Một nguồn điểm O có công suất không đổi P, phát sóng âm trong một môi trường đẳng hướng và không hấp thụ âm. Hai điểm A và B nằm trên hai phương truyền sóng vuông góc với nhau và đi qua O. Biết mức cường độ âm tại A là 40 dB. Nếu công suất của nguồn được tăng thêm 63P, nhưng không đổi tần số, rồi cho một máy thu di chuyển trên đường thẳng đi qua A và B. Mức cường độ âm lớn nhất mà máy thu thu được là 60 dB. Khi công suất của nguồn là P thì mức cường độ âm tại B có giá trị là
Trên một sợi dây có chiều dài 0,45 m đang có sóng dừng ổn định với hai đầu O và A cố định như hình vẽ. Biết đường nét liền là hình ảnh sợi dậy tại điểm t1, đường nét đứt hình ảnh sợi dây tại thời điểm t2=t1+T4.  Khoảng cách lớn nhất giữa các phần tử tại hai bụng sóng kế tiếp có giá trị gần nhất sau đây?
Trong chùm tia X phát ra từ một ống Rơn-ghen, người ta thấy có những tia có tần số lớn nhất bằng fmax=5.1018 Hz. Coi động năng ban đầu của electron rời catot không đáng kể. Động năng cực đại của electron đập vào đối ca tot là
Trong chân không, bức xạ có bước sóng nào sau đây là bức xạ thuộc miền tử ngoại? 
Khi có một dòng điện xoay chiều chạy qua cuộn dây có điện trở thuần 50 Ω thì hệ số công suất của cuộn dây bằng 0,8. Cảm kháng của cuộn dây đó bằng


Trả lời

Bất đẳng thức khó

Trang: 1   Xuống
  In  
Tác giả Chủ đề: Bất đẳng thức khó  (Đọc 1504 lần)
0 Thành viên và 0 Khách đang xem chủ đề.
Trần Anh Tuấn
Giáo viên Vật lý
Lão làng
*****

Nhận xét: +42/-16
Cảm ơn
-Đã cảm ơn: 217
-Được cảm ơn: 367

Offline Offline

Giới tính: Nam
Bài viết: 709


Chú Mèo Đi Hia

tuan_trananh1997@yahoo.com
Email
« vào lúc: 11:37:01 pm Ngày 11 Tháng Giêng, 2013 »

Cho [tex]a,\,b,\,c>0[/tex] .Chứng minh rằng :
1) [tex]\dfrac{a^4+b^4+c^4}{ab+bc+ca}+\dfrac{abc}{a+b+c}\geq \dfrac{2}{3}\left(a^2+b^2+c^2\right)[/tex]

2) [tex]ab+bc+ca<\sqrt[3]{abc}\left(a+b+c\right)[/tex]
EM xin chân thành cảm ơn !!!!!!!!
Nhờ mọi người giúp đỡ em hai bài bất đẳng thức này với.

« Sửa lần cuối: 11:30:08 pm Ngày 12 Tháng Giêng, 2013 gửi bởi Alexman113 »

Logged



Tận cùng của tình yêu là thù hận
Sâu thẳm trong thù hận là tình yêu
Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Email
« Trả lời #1 vào lúc: 04:22:42 pm Ngày 14 Tháng Giêng, 2013 »

Cho [tex]a,\,b,\,c>0[/tex] .Chứng minh rằng :
2) [tex]ab+bc+ca<\sqrt[3]{abc}\left(a+b+c\right)[/tex]
Bạn xem lại đề nhé, bất đẳng thức này sai rồi!!! Thế [tex]a=b=1;\,c=\dfrac{1}{4}[/tex] sẽ thấy ngay.


Logged

KK09XI ~ Nothing fails like succcess ~
Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Email
« Trả lời #2 vào lúc: 04:33:13 pm Ngày 14 Tháng Giêng, 2013 »

Cho [tex]a,\,b,\,c>0[/tex] .Chứng minh rằng :
1) [tex]\dfrac{a^4+b^4+c^4}{ab+bc+ca}+\dfrac{abc}{a+b+c}\geq \dfrac{2}{3}\left(a^2+b^2+c^2\right)[/tex]
Giải:
Theo Bất đẳng thức [tex]Schur[/tex] bậc 1 ta có:
     
      [tex]a^3+b^3+c^3+3abc\ge a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)[/tex]
[tex]\Leftrightarrow 2\left(a^3+b^3+c^3\right)+3abc\ge\left(a^2+b^2+c^2\right)\left(a+b+c\right)[/tex]
[tex]\Leftrightarrow \dfrac{2\left(a^3+b^3+c^3\right)}{a+b+c}+\dfrac{3abc}{a+b+c}\ge a^2+b^2+c^2[/tex]
[tex]\Leftrightarrow \dfrac{4\left(a^3+b^3+c^3\right)}{3\left(a+b+c\right)}+\dfrac{2abc}{a+b+c}\ge \dfrac{2}{3}\left(a^2+b^2+c^2\right)[/tex]              [tex]\left(1\right)[/tex]

Theo Bất đẳng thức [tex]Schur[/tex] bậc 2 ta có:
     
      [tex]a^4+b^4+c^4+abc\left(a+b+c\right)\ge a^3\left(b+c\right)+b^3\left(c+a\right)+c^3\left(a+b\right)[/tex]
[tex]\Leftrightarrow 2\left(a^4+b^4+c^4\right)+abc\left(a+b+c\right)\ge\left(a^3+b^3+c^3\right)\left(a+b+c\right)[/tex]
[tex]\Leftrightarrow \dfrac{2\left(a^4+b^4+c^4\right)}{\left(a+b+c\right)^2}+\dfrac{abc}{a+b+c}\ge\dfrac{a^3+b^3+c^3}{a+b+c}[/tex]                             [tex]\left(2\right)[/tex]
 
   Từ [tex]\left(1\right)[/tex] và [tex]\left(2\right)[/tex] ta có: [tex]\dfrac{\left(a^3+b^3+c^3\right)}{3\left(a+b+c\right)}+\dfrac{3abc}{a+b+c}+\dfrac{2\left(a^4+b^4+c^4\right)}{\left(a+b+c\right)^2}\ge \dfrac{2}{3}\left(a^2+b^2+c^2\right)[/tex]        [tex]\left(3\right)[/tex]
Mà ta có:
     [tex]\left(a^3+b^3+c^3\right)\left(a+b+c\right)\le3\left(a^4+b^4+c^4\right)[/tex]
[tex]\Rightarrow \dfrac{\left(a^3+b^3+c^3\right)}{3\left(a+b+c\right)}\le\dfrac{a^4+b^4+c^4}{\left(a+b+c\right)^2}[/tex]
[tex]\Rightarrow \dfrac{\left(a^3+b^3+c^3\right)}{3\left(a+b+c\right)}+\dfrac{2\left(a^4+b^4+c^4\right)}{\left(a+b+c\right)^2}\le\dfrac{3\left(a^4+b^4+c^4\right)}{\left(a+b+c\right)^2}\le\dfrac{a^4+b^4+c^4}{ab+bc+ca}[/tex]                 [tex]\left(4\right)[/tex]
Từ [tex]\left(3\right)[/tex] và [tex]\left(4\right)[/tex] ta có đpcm.            [tex]\blacksquare[/tex]


Logged

KK09XI ~ Nothing fails like succcess ~
Tags:
Trang: 1   Lên
  In  


 
Chuyển tới:  

© 2006 Thư Viện Vật Lý.