Bài 1: Cho [tex]I(1,\,0,\,3)[/tex] và đương thẳng [tex](d):\,\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z-1}{2}[/tex]. Viết phương trình mặt cầu tâm [tex]I[/tex] và cắt [tex](d)[/tex] tại [tex]A[/tex] và [tex]B[/tex] sao cho [tex]\Delta IAB[/tex] vuông tại [tex]I[/tex].
Bài 2: Cho hàm số [tex]y=\dfrac{mx-1}{x+m}\,\,\,(C_m)[/tex]. Gọi [tex]I[/tex] là giao điểm 2 đường tiệm cận của đồ thị hàm số [tex](C_m)[/tex]. Tiếp tuyến tại điểm bất kì thuộc [tex](C_m)[/tex] cắt hai tiệm cận lần lượt tại [tex]A[/tex] và [tex]B.[/tex] Định [tex]m[/tex] để [tex]S_{\Delta IAB}=12[/tex].
Bài 3: Cho [tex]a,\,b,\,c >0.[/tex] Tìm GTNN của biểu thức:
[tex]P=\dfrac{3(b+c)}{2a}+\dfrac{4a+3c}{3b}+\dfrac{12(b-c)}{2a+3c}[/tex]
Bài 4: Trong không gian [tex]Oxyz[/tex] cho 2 đường thẳng [tex](d_1):\,\dfrac{x+1}{1}=\dfrac{y+2}{2}=\dfrac{z}{1}[/tex] và [tex](d_2):\,\dfrac{x-2}{2}=\dfrac{y-1}{1}=\dfrac{z-1}{1}[/tex] và mặt phẳng [tex](P):\,x+y-2z+5=0.[/tex] Lập phương trình đường thẳng [tex](d)[/tex] song song với mặt phẳng [tex](P)[/tex] và cắt [tex](d_1)[/tex] và [tex](d_2)[/tex] lần lượt tại [tex]A[/tex] và [tex]B[/tex] sao cho độ dài [tex]AB[/tex] nhỏ nhất.
Thầy mình có cho các bài tập này.
Mình cần cách giải cho bài này, cám ơn các bạn trước!