10:37:32 am Ngày 27 Tháng Mười, 2024 *
Diễn đàn đã ngưng hoạt động và vào chế độ lưu trữ.
Mời tham gia và trao đổi trên nhóm Facebook >> TẠI ĐÂY <<
  Trang chủ Diễn đàn  

Đặt điện áp u=U0cosωt+π2  vào hai đầu đoạn mạch gồm điện trở thuần R mắc nối tiếp với cuộn cảm thuần có độ tự cảm L, cường độ dòng điện trong mạch là i=I0sinωt+2π3. Biết U0,I0  và ω  không đổi. Hệ thức đúng là
Điều kiện nào sau đây là điều kiện của s ự cộng hưởng?
Phát biểu nào sau đây đúng theo định nghĩa công của lực?
Một sóng cơ lan truyền với tốc độ v=20m/s, có bước sóng λ=0,4m. Chu kì dao động của sóng là:
Hai nguồn sóng kết hợp giống hệt nhau được đặt cách nhau một khoảng cách x trên đường kính của một vòng tròn bán kính R (x < R) và đối xứng qua tâm của vòng tròn. Biết rằng mỗi nguồn đều phát sóng có bước sóng λ và x=9λ. Số điểm dao động cực đại trên vòng tròn là:


Trả lời

Tìm giới hạn của hàm số????

Trang: 1   Xuống
  In  
Tác giả Chủ đề: Tìm giới hạn của hàm số????  (Đọc 9177 lần)
0 Thành viên và 0 Khách đang xem chủ đề.
votinh_bn
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 0
-Được cảm ơn: 0

Offline Offline

Bài viết: 5


Email
« vào lúc: 03:09:34 pm Ngày 25 Tháng Giêng, 2010 »

Mọi người giúp mình bài này nhé
1) [tex]\lim_{x\rightarrow \\\frac{\pi }{6} \right)}\left\{\frac{sin2x-\sqrt{3}cos2x}{2cos2x-1} \right\[/tex]
2)[tex]\lim_{x\rightarrow 4}\frac{cos\frac{\pi x}{8}}{2-\sqrt{x}}
3) \lim_{x\rightarrow 0}\frac{1-cosxcos3xcos5x}{1-cos2x}[/tex]
[tex]
4)\lim_{x\rightarrow 0}\frac{\sqrt{cosx}-\sqrt[3]{cosx}}{^{sin2}x}[/tex]

Câu cuối ở dười mẫu là (sin^2)x
Câu 2 trên tử là cos(x pi/8)
Thanks :x
« Sửa lần cuối: 03:17:57 pm Ngày 25 Tháng Giêng, 2010 gửi bởi votinh_bn »

Logged


votinh_bn
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 0
-Được cảm ơn: 0

Offline Offline

Bài viết: 5


Email
« Trả lời #1 vào lúc: 03:20:26 pm Ngày 31 Tháng Giêng, 2010 »

ko ai làm sao mcd-)
giúp mình đi mà mhu-)


Logged
ngudiem111
Thành viên tích cực
***

Nhận xét: +4/-4
Cảm ơn
-Đã cảm ơn: 11
-Được cảm ơn: 8

Offline Offline

Bài viết: 157


Email
« Trả lời #2 vào lúc: 08:46:35 pm Ngày 31 Tháng Giêng, 2010 »

Muốn giúp mà chỉ giúp được 1 bài nên chưa post lên.
Bạn có gợi ý giải thế nào post lên đi!


Logged
votinh_bn
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 0
-Được cảm ơn: 0

Offline Offline

Bài viết: 5


Email
« Trả lời #3 vào lúc: 02:42:41 pm Ngày 01 Tháng Hai, 2010 »

mình ko có gợi ý
bạn làm dc bài nào thì cứ post lên đi


Logged
Colosseo
Thành viên danh dự
****

Nhận xét: +37/-4
Cảm ơn
-Đã cảm ơn: 0
-Được cảm ơn: 30

Offline Offline

Giới tính: Nam
Bài viết: 388


*************** ***************
WWW Email
« Trả lời #4 vào lúc: 04:42:02 pm Ngày 01 Tháng Hai, 2010 »

Để tranquynh hướng dẫn sơ cách giải, phần chi tiết bạn sẽ tự làm lấy nhé.

Bài 4 : Đặt [tex]t = (cos(x))^{1/6}[/tex]. Từ đó suy ra [tex]\sqrt{cos(x)} = t^{3}, (cos(x))^{1/3} = t^{2}, (sin(x))^{2} =1 - t^{12}[/tex].

Lim ban đầu sẽ đưa về dạng đơn giản hơn với t tiến về 1. Biến đổi tử số (TS) và mẫu số (MS) để rút gọn (t-1) đi.

Chú ý TS là : [tex]1 - t^{12} = (1 - t^{6})(1 + t^{6}) = (1 - t^{3})(1 + t^{3})(1 + t^{6}) = (1 - t)(1 + t + t^{2})(1 + t^{3})(1 + t^{6})[/tex].

Bài này kết quả là -1/12.

Bài 1:

Biến đổi tử số về :  [tex]TS = -2*cos(2x + \frac{\pi }{6})[/tex], mẫu số về : [tex]MS = -4sin(x-\frac{\pi}{6})sin(x+\frac{\pi}{6})[/tex].

Sau đó đổi biến [tex]t = x-\frac{\pi}{6}[/tex].

Khi này lim sẽ có giới hạn mới là t tiến về 0 và TS, MS mới như sau:

[tex]TS = -2cos(2t + \frac{\pi }{6} + \frac{\pi }{3}) = -2cos(2t + \frac{\pi }{2}) = 2sin(2t)[/tex]
[tex]MS = -4sin(t)sin(t+\frac{\pi }{3})[/tex]

Lim ban đầu khi này sẽ được rút gọn về dạng lim(t->0) của (sin(2t)/sin(t)). Cái này có giá trị là 2.

Kết quả cuối cùng của bài này là [tex]-\frac{\sqrt{3}}{2}[/tex].















Logged

Là où je t'emmènerai Nghỉ 1 tháng.
Colosseo
Thành viên danh dự
****

Nhận xét: +37/-4
Cảm ơn
-Đã cảm ơn: 0
-Được cảm ơn: 30

Offline Offline

Giới tính: Nam
Bài viết: 388


*************** ***************
WWW Email
« Trả lời #5 vào lúc: 05:01:16 pm Ngày 01 Tháng Hai, 2010 »

Bài 3: Bài này trước tiên ta phải biến đổi cụm [tex]cos(x)cos(3x)cos(5x)[/tex]. Áp dụng công thức cơ bản [tex]cos(a)cos(b) = \frac{1}{2}cos(a+b) + \frac{1}{2}cos(a-b)[/tex] cho [tex]cos(3x)cos(5x)[/tex] rồi tiếp tục như thế cho [tex]cos(x)[/tex] với kết quả vừa thu được, ta sẽ có:

[tex]cos(x)cos(3x)cos(5x) = \frac{1}{4}(cos(x) + cos(3x) + cos(7x) + cos(9x))[/tex]


[tex]MS = 2(sin(x))^{2}[/tex]
[tex]TS = 1 - \frac{1}{4}(cos(x) + cos(3x) + cos(7x) + cos(9x))[/tex]

Tách số 1 ở TS ra 1/4 + 1/4 + 1/4 + 1/4 rồi ghép từng cái 1/4 với 1/4cos(x), 1/4cos(3x),...

Lim ban đầu sẽ được đưa về dưới dạng tổng của 4 lim là :

[tex]\frac{1}{8}(\frac{1-cos(x)}{sin(x)^{2}} + \frac{1-cos(3x)}{sin(x)^{2}} +\frac{1-cos(7x)}{sin(x)^{2}} + \frac{1-cos(9x)}{sin(x)^{2}})[/tex].

Một cách tổng quát, lim của [tex]\frac{1-cos(nx)}{sin(x)^{2}}[/tex] khi x tiến về 0 sẽ là [tex]\frac{n^{2}}{2}[/tex].

Từ đó kết quả cuối cùng sẽ là 1/8*(1/2 + 9/2 + 49/2 + 81/2) = 35/4.

Bài 2:

Ở bài này ta đặt [tex]u = 2 - \sqrt{x}[/tex], suy ra [tex]x = u^{2} - 4u + 4[/tex].

Từ đó biến đổi TS theo u, lim ban đầu sẽ được đơn giản dần dần về : [tex]\frac{sin(\frac{\pi}{2}u - u^{2})}{u}[/tex], u tiến đến 0.

Biến đổi tiếp tục sin ở TS ra hiệu sin*cos - cos*sin, sau đó có thể áp dụng tính lim cho từng phân số một rồi lấy tổng cuối cùng. Kết quả sẽ là [tex]\frac{\pi}{2}[/tex].


 Undecided PS: vì công thức nhiều quá nên tranquynh làm biếng ghi ra chi tiết. Nếu bạn có chỗ nào ko rõ thì tranquynh sẽ giải thích tiếp.





 






Logged

Là où je t'emmènerai Nghỉ 1 tháng.
votinh_bn
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 0
-Được cảm ơn: 0

Offline Offline

Bài viết: 5


Email
« Trả lời #6 vào lúc: 12:49:26 pm Ngày 02 Tháng Hai, 2010 »

Mình làm ra bài 1 là -1/2

[tex]\lim_{x\rightarrow \frac{\pi }{6}}\frac{sin2x-\sqrt{3}cos2x}{2cos2x-1} =\lim_{x\rightarrow \frac{\pi }{6}}\frac{\frac{1}{2}sin2x-\sqrt{3}cos2x}{cos2x-\frac{1}{2}} =\lim_{x\rightarrow \frac{\pi }{6}}\frac{cos(2x+\frac{\pi }{6})}{2sin(x-\frac{\pi }{6})sin(x+\frac{\pi}{6})}[/tex]

Đặt t=x- [tex]\frac{\pi }{6}[/tex] dc

[tex]\lim_{x\rightarrow \frac{\pi }{6}}\frac{sin(-2t)}{2sint.sin(t+\frac{\pi }{3})} =\lim_{x\rightarrow \frac{\pi }{6}}\frac{-cost}{2sin(t+\frac{\pi }{3})} =\frac{-1}{2}[/tex]

Cảm ơn bạn nhiều nhé




Logged
Colosseo
Thành viên danh dự
****

Nhận xét: +37/-4
Cảm ơn
-Đã cảm ơn: 0
-Được cảm ơn: 30

Offline Offline

Giới tính: Nam
Bài viết: 388


*************** ***************
WWW Email
« Trả lời #7 vào lúc: 01:04:05 pm Ngày 02 Tháng Hai, 2010 »

Có một số lỗi nhỏ trong khi bạn biến đổi (hoặc có thể là do đánh máy bị lỗi?!).

Ở biểu thức thứ 2, phải là [tex]\frac{\sqrt{3}}{2}[/tex] thay vì [tex]\sqrt{3}[/tex].

Ở biểu thức cuối cùng, ko có số 2 ở mẫu số, vì sin(-2t) = -2sin(t)cos(t).

Ở 2 biểu thức cuối cùng, nên ghi là lim t->0 thay vì lim x->pi/6, vì ta đã đổi biến rồi.

Ở biểu thức cuối cùng, ta phải thay giá trị t=0 chứ không phải t=pi/6.

Từ đó kết quả là [tex]-\frac{2}{\sqrt{3}}[/tex] (xin đính chính lại kết quả đã nói ở bài trả lời trước đó).


 


Logged

Là où je t'emmènerai Nghỉ 1 tháng.
votinh_bn
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 0
-Được cảm ơn: 0

Offline Offline

Bài viết: 5


Email
« Trả lời #8 vào lúc: 07:57:02 pm Ngày 02 Tháng Hai, 2010 »

uk
đúng rồi
Thanks so much 


Logged
Tags:
Trang: 1   Lên
  In  


 
Chuyển tới:  

© 2006 Thư Viện Vật Lý.