Đọc bản đầy đủ ở đây: https://thuvienvatly.com/forums/index.php?topic=8542 : giúp em bai nay ik! : nguyenanhcrazy 07:53:17 PM Ngày 12 May, 2012 giup em voi
: Trả lời: giúp em bai nay ik! : mark_bk99 10:27:00 PM Ngày 12 May, 2012 Ban tham khảo cách làm bên đây thử xem: http://thuvienvatly.com/forums/index.php?topic=8121.0http://
: Trả lời: giúp em bai nay ik! : Alexman113 11:27:07 PM Ngày 12 May, 2012 Ngoài cách trên ta còn một cách giải khác nữa. Mai em sẽ post lên, tối nay động não đi nhé. :D
: Trả lời: giúp em bai nay ik! : Alexman113 09:20:32 AM Ngày 13 May, 2012 Như đã hứa em sẽ giải bài toán trên với hai cách khác nữa.
[tex]C_1[/tex]: Điều kiện xác định: [tex]\large x\geq0[/tex] Phương trình đã cho tương đương: [tex]\small \large \left( \displaystyle \frac{3+\sqrt{x}}{x^2+x\sqrt{x}+x+3}+1\right)+ \left(\displaystyle \frac{x+\sqrt{x}+2}{x^2+x\sqrt{x}+4}+1\right)+ \left(\displaystyle \frac{x\sqrt{x}+x+2}{x^2+\sqrt{x}+4}+1\right)+\left(\displaystyle \frac{x^2+x\sqrt{x}+2}{x+\sqrt{x}+4}+1\right)+\left(\displaystyle \frac{x^2+3}{x\sqrt{x}+x+\sqrt{x}+3}+1\right)=\displaystyle \frac{25}{3}[/tex] [tex]\small \Leftrightarrow \left(x^2+x\sqrt{x}+x+\sqrt{x}+6\right)\left[ \displaystyle \frac{1}{x^2+x\sqrt{x}+x+3}+\displaystyle \frac{1}{x^2+x\sqrt{x}+4}+\displaystyle \frac{1}{x^2+\sqrt{x}+4}+\displaystyle \frac{1}{x+\sqrt{x}+4}+\displaystyle \frac{1}{x\sqrt{x}+x+\sqrt{x}+3}\right]=\displaystyle \frac{25}{3} (2)[/tex] Do [tex]\large x>0[/tex], áp dụng bất đẳng thức Shawarzt, ta có: [tex]\small \displaystyle \frac{1}{x^2+x\sqrt{x}+x+3}+\displaystyle \frac{1}{x^2+x\sqrt{x}+4}+\displaystyle \frac{1}{x^2+\sqrt{x}+4}+\displaystyle \frac{1}{x+\sqrt{x}+4}+\displaystyle \frac{1}{x\sqrt{x}+x+\sqrt{x}+3}\geq\displaystyle \frac{25}{3x^2+3x\sqrt{x}+3x+3\sqrt{x}+18}=\displaystyle \frac{25}{3\left(x^2+x\sqrt{x}+x+\sqrt{x}+6\right)}[/tex] Do đó: [tex]\small VT_{(2)}\geq\left(x^2+x\sqrt{x}+x+\sqrt{x}+6\right)\displaystyle \frac{25}{3\left(x^2+x\sqrt{x}+x+\sqrt{x}+6\right)}=\displaystyle \frac{25}{3}=VP_{(2)}[/tex] Dấu đẳng thức xảy ra khi và chỉ khi: [tex]\small x^2+x\sqrt{x}+x+3=x^2+x\sqrt{x}+4=x^2+\sqrt{x}+4=x+\sqrt{x}+4=x\sqrt{x}+x+\sqrt{x}+3[/tex] [tex]\small \Leftrightarrow x=1[/tex] Vậy phương trình đã cho có nghiệm duy nhất [tex]\large x=1[/tex] : Trả lời: giúp em bai nay ik! : Alexman113 09:29:48 AM Ngày 13 May, 2012 Với [tex]C_2[/tex] bài toán của ta sẽ trở nên gọn hơn khi đặt ẩn phụ.
Nhận thấy điểm rơi là [tex]x=1[/tex], ta đặt ẩn phụ rồi mới dùng bất đẳng thức. Đặt: [tex]a=2, b=\sqrt{x}+1, c=x+1, d=x\sqrt{x}, e=x^2+1[/tex] đến đây thì ta làm được rồi. : Trả lời: giúp em bai nay ik! : mizu_pro 12:11:12 AM Ngày 15 May, 2012 Alaxman113 siêu thế, biết bao nhiêu bđt. ngưỡng mộ thật đó :x :x :x
: Trả lời: giúp em bai nay ik! : Alexman113 12:15:14 AM Ngày 15 May, 2012 Cái BĐT em lật sách ra xem chứ có thuộc đâu tại nó đâu cho dùng trực tiếp trong thi ĐH đâu anh :D
: Trả lời: giúp em bai nay ik! : Alexman113 12:26:28 AM Ngày 15 May, 2012 Em nhầm cái này có dùng.
|