Đọc bản đầy đủ ở đây: https://thuvienvatly.com/forums/index.php?topic=13425 : Phương trình lượng giác : Trần Anh Tuấn 02:59:00 PM Ngày 31 December, 2012 Giải các phương trình:
[tex]1)\,\left(3\sin x+\cos x\right)\left(2\sin x-\cos x\right)+2\sin\left(2x+\dfrac{\pi}{6}\right)+2\cos^2x=0[/tex] [tex]2)\,\left[2\sin\left(x+\dfrac{\pi}{6}\right)+\sin x\right]\left[\cos x-\sin x\right]=1[/tex] Nhờ mọi người giải hộ em mấy bài này với ạ : Trả lời: Phương trình lượng giác : Alexman113 07:56:19 PM Ngày 01 January, 2013 Giải các phương trình: Giải:[tex]1)\,\left(3\sin x+\cos x\right)\left(2\sin x-\cos x\right)+2\sin\left(2x+\dfrac{\pi}{6}\right)+2\cos^2x=0[/tex] PT tương đương: [tex]6\sin^2 x -\sin x \cos x -\cos^2 x+\sin 2x.\sqrt 3+\cos 2x+2\cos^2x=0\\\Leftrightarrow 6\sin^2 x -\sin x \cos x -\cos^2 x+2\sqrt 3\sin x \cos x+\cos^2x-\sin^2 x +2\cos^2x=0\\\Leftrightarrow 5\sin^2 x +(2\sqrt 3-1)\sin x \cos x +2\cos^2 x=0[/tex] + Nếu [tex]\cos x =0\Rightarrow \sin x =0[/tex]. Điều này vô lý vì [tex]\sin^2 x +\cos^2 x =1[/tex]. +Xét [tex]\cos x \ne 0[/tex]. Chia hai vế của PT trên cho [tex]\cos^2 x[/tex] ta được [tex]\Leftrightarrow 5\left ( \dfrac{\sin x}{\cos x}\right )^2 +(2\sqrt 3-1)\left ( \dfrac{\sin x}{\cos x}\right ) +2=0[/tex] [tex]\Leftrightarrow 5\tan^2 x +(2\sqrt 3-1)\tan x +2=0[/tex] Phương trình này vô nghiệm. Vậy Phương trình đã cho vô nghiệm. : Trả lời: Phương trình lượng giác : Trần Anh Tuấn 11:37:35 PM Ngày 01 January, 2013 Em cảm ơn , còn cái thứ 2 làm thế nào hả anh ?
: Trả lời: Phương trình lượng giác : Alexman113 05:15:41 PM Ngày 03 January, 2013 Giải các phương trình: Giải:[tex]2)\,\left[2\sin\left(x+\dfrac{\pi}{6}\right)+\sin x\right]\left[\cos x-\sin x\right]=1[/tex] Phương trình đã cho tương đương với: [tex]\left[\sqrt 3\sin x+\cos x+\sin x\right]\left[\cos x-\sin x\right]=1\\\Leftrightarrow \left[(\sqrt 3+1)\sin x+\cos x\right]\left[\cos x-\sin x\right]=\sin^2 x +\cos^2 x\\\Leftrightarrow -(\sqrt 3+1)\sin^2 x +\sqrt 3\sin x \cos x +\cos^2 x=\sin^2 x +\cos^2 x\\\Leftrightarrow (\sqrt 3+2)\sin^2 x +\sqrt 3\sin x \cos x =0[/tex] + Nếu [tex]\cos x =0\Rightarrow \sin x =0[/tex]. Điều này vô lý vì [tex]\sin^2 x +\cos^2 x =1[/tex]. + Xét [tex]\cos x \ne 0[/tex]. Chia hai vế của PT trên cho [tex]\cos^2 x[/tex] ta được: [tex](\sqrt 3+2)\left ( \dfrac{\sin x}{\cos x}\right )^2 +\sqrt 3\left ( \dfrac{\sin x}{\cos x}\right ) =0\\\Leftrightarrow (\sqrt 3+2)\tan^2 x +\sqrt 3\tan x =0[/tex] Đến đây chắc ổn rồi phần còn lại mọi người tiếp tục nhé. |