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PREFACE TO THE THIRD EDITION

In his 1969 Preface to the first edition of this book, the late Philip Bevington aptly
stated his purpose, “ to provide an introduction to the techniques of data reduction
and error analysis commonly employed by individuals doing research in the physi-
cal sciences and to present them in sufficient detail and breadth to make them useful
for students throughout their undergraduate and graduate studies. The presentation
is developed from a practical point of view, including enough derivation to justify
results, but emphasizing the methods more than the theory.” This third edition con-
tinues Phil’s original mission, updated to reflect the ready availability of modern
computers.

The first four chapters introduce the concepts of measuring uncertainties, er-
ror analysis, and probability distributions, with a new section on probabilities in
low-statistics experiments. Chapter 5 provides an introduction to Monte Carlo
methods for simulating experimental data, methods that are applied in later chapters
to generate data for examples and to study and evaluate the statistical significance
of experimental results. In chapters 6 through 9, the least-squares method is applied
to problems of increasing complexity, from analytic straight-line fits to nonlinear
fits that require iterative solutions. Chapter 10 provides an introduction to the direct
application of the maximum-likelihood method, and chapter 11 includes a discus-
sion of x2-probability, confidence intervals, and correlation coefficients. Exercises
at the end of the chapters range in complexity from simple statistical calculations to
minor projects such as least-squares fitting and Monte Carlo calculations. Answers
to selected exercises are provided.

The appendixes from previous editions have been retained. Appendix A in-
cludes a brief section on basic differential calculus but is devoted mainly to numer-
ical methods that are useful in analyzing data on the computer. Determinants and
matrices are discussed in appendix B. Appendix C provides tables and graphs of sta-
tistical functions, augmented by computer routines on the website for calculating
probabilities. Appendix D sets forth some guidelines for the preparation of effective
graphs. Appendix E provides listings of computer routines that illustrate the text.

ix



X PREFACE

COMPUTER ROUTINES

Simple, illustrative computer routines that were a useful feature of the original book
have been retained and are listed in Fortran77 in appendix E. Fortran was chosen
because it has proved to be the most durable of languages over many decades. (Pas-
cal, which was provided in the second edition, has vanished, displaced by C++.)
With the help of the comments at the beginning of appendix E, students should be
able to read the Fortran programs and follow their logic without special expertise in
the language. To simplify the listed routines and to clarify their main objectives, we
have deleted most of the calls to graphics routines.

Computer routines and programs are available for downloading in both For-
tran and C++ from the www.mhhe.com/bevington website, along with supporting
routines to facilitate the construction of complete programs for Monte Carlo gener-
ation, least-squares fitting, and probability calculations. A “Read Me” file on the site
describes the organization of the programs and provides instructions for using them.
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CHAPTER

UNCERTAINTIES
IN MEASUREMENTS

1.1 MEASURING ERRORS

t is a well-established fact of scientific investigation that the first time an experi-

ment is performed the results often bear all too little resemblance to the “truth”
being sought. As the experiment is repeated, with successive refinements of tech-
nique and method, the results gradually and asymptotically approach what we may
accept with some confidence to be a reliable description of events. We may some-
times feel that nature is loath to give up her secrets without a considerable expendi-
ture of effort on our part, and that first steps in experimentation are bound to fail.
Whatever the reason, it is certainly true that for all physical experiments, errors and
uncertainties exist that must be reduced by improved experimental techniques and
repeated measurements, and those errors remaining must always be estimated to es-
tablish the validity of our results.

Error is defined by Webster as “the difference between an observed or calcu-
lated value and the true value.” Usually we do not know the “true” value; otherwise
there would be no reason for performing the experiment. We may know approxi-
mately what it should be, however, either from earlier experiments or from theoret-
ical predictions. Such approximations can serve as a guide but we must always
determine in a systematic way from the data and the experimental conditions them-
selves how much confidence we can have in our experimental results.

There is one class of error that we can deal with immediately: errors that orig-
inate from mistakes or blunders in measurement or computation. Fortunately, these
errors are usually apparent either as obviously incorrect data points or as results that
are not reasonably close to expected values. They are classified as illegitimate errors
and generally can be corrected by carefully repeating the operations. Our interest is

1



2 Data Reduction and Error Analysis for the Physical Sciences

in uncertainties introduced by random fluctuations in our measurements, and sys-
tematic errors that limit the precision and accuracy of our results in more or less
well-defined ways. Generally, we refer to the uncertainties as the errors in our
results, and the procedure for estimating them as error analysis.

Accuracy Versus Precision

It is important to distinguish between the terms accuracy and precision. The accu-
racy of an experiment is a measure of how close the result of the experiment is to
the true value; the precision is a measure of how well the result has been deter-
mined, without reference to its agreement with the true value. The precision is also
a measure of the reproducibility of the result in a given experiment. The distinction
between accuracy and precision is illustrated by the two sets of measurements in
Figure 1.1 where the straight line on each graph shows the expected relation be-
tween the dependent variable y and the independent variable x. In both graphs, the
scatter of the data points is a reflection of uncertainties in the measurements, con-
sistent with the error bars on the points. The data in Figure 1.1(a) have been mea-
sured to a high degree of precision as illustrated by the small error bars, and are in
excellent agreement with the expected variation of y with x, but are clearly inaccu-
rate, deviating from the line by a constant offset. On the other hand, the data points
in Figure 1.1(b) are rather imprecise as illustrated by the large error bars, but are
scattered about the predicted distribution.

It is obvious that we must consider the accuracy and precision simultaneously
for any experiment. It would be a waste of time and energy to determine a result with
high precision if we knew that the result would be highly inaccurate. Conversely, a

FIGURE 1.1
Illustration of the difference between precision and accuracy. (a) Precise but inaccurate data.
(b) Accurate but imprecise data. True values are represented by the straight lines.
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result cannot be considered to be extremely accurate if the precision is low. In general,
when we quote the uncertainty or error in an experimental result, we are referring to
the precision with which that result has been determined. Absolute precision indicates
the magnitude of the uncertainty in the result in the same units as the result; relative
precision indicates the uncertainty in terms of a fraction of the value of the result.

Systematic Errors

The accuracy of an experiment, as we have defined it, is generally dependent on
how well we can control or compensate for systematic errors, errors that will make
our results different from the “true” values with reproducible discrepancies. Errors
of this type are not easy to detect and not easily studied by statistical analysis. They
may result from faulty calibration of equipment or from bias on the part of the ob-
server. They must be estimated from an analysis of the experimental conditions and
techniques. A major part of the planning of an experiment should be devoted to un-
derstanding and reducing sources of systematic errors.

EXAMPLE 1.1 A student measures a table top with a steel meter stick and finds
that the average of his measurements yields a result of (1.982 * 0.001)m for the
length of the table. He subsequently learns that the meter stick was calibrated at 25 °C
and has an expansion coefficient of 0.0005 °C~!. Because his measurements were
made at a room temperature of 20°C, they are systematically too small. To correct for
this effect, he multiplies his results by 1 + 0.0005 X (20 — 25) = 0.9975 so that his
new determination of the length is 1.977 m.

When the student repeats the experiment, he discovers a second systematic er-
ror, his technique for reading the meter stick was faulty in that he did not always read
the divisions from directly above. By experimentation he determines that this consis-
tently resulted in a reading that was 2 mm short. The corrected result is 1.979 m.

In this example, the first result was given with a fairly high precision, approx-
imately 1 part in 2000. The corrections to this result were meant to improve the ac-
curacy by compensating for known sources of deviation of the first result from the
best estimate possible. These corrections did not improve the precision at all, but did
in fact worsen it, because the corrections were themselves only estimates of the ex-
act corrections. Before quoting his final result, the student must reexamine his error
analysis and take account of any additional uncertainties that may have been intro-
duced by these corrections.

Random Errors

The precision of an experiment depends upon how well we can overcome random
errors, fluctuations in observations that yield different results each time the experi-
ment is repeated, and thus require repeated experimentation to yield precise results.
A given accuracy implies an equivalent precision and, therefore, also depends to
some extent on random errors.

The problem of reducing random errors is essentially one of improving the ex-
perimental method and refining the techniques, as well as simply repeating the
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experiment. If the random errors result from instrumental uncertainties, they may
be reduced by using more reliable and more precise measuring instruments. If the
random errors result from statistical fluctuations in a limited number of measure-
ments, they may be reduced by making more measurements. There are practical
limits to these improvements. In the measurement of the length of the table of Ex-
ample 1.1, the student might attempt to improve the precision of his measurements
by using a magnifying glass to read the scale, or he might attempt to reduce statis-
tical fluctuations in his measurements by repeating the measurement several times.
In neither case would it be useful to reduce the random errors much below the sys-
tematic errors, such as those introduced by the calibration of the meter stick or the
correction for his initial faulty reading of the scale. The limits imposed by system-
atic errors are important considerations in planning and performing experiments.

Significant Figures and Roundoff

The precision of an experimental result is implied by the number of digits recorded
in the result, although generally the uncertainty should be quoted specifically as
well. The number of significant figures in a result is defined as_follows:

1. The leftmost nonzero digit is the most significant digit.

2. If there is no decimal point, the rightmost nonzero digit is the least significant
digit.

3. If there is a decimal point, the rightmost digit is the least significant digit, even
ifitisa 0.

4. All digits between the least and most significant digits are counted as signifi-
cant digits.

For example, the following numbers each have four significant digits: 1234,
123,400, 123.4, 1001, 1000., 10.10, 0.0001010, 100.0. If there is no decimal point,
there are ambiguities when the rightmost digit is 0. Thus, the number 1010 is con-
sidered to have only three significant digits even though the last digit might be
physically significant. To avoid ambiguity, it is better to supply decimal points or to
write such numbers in scientific notation, that is, as an argument in decimal notation
multiplied by the appropriate power of 10. Thus, our example of 1010 would be
written as 1010. or 1.010 X 103 if all four digits are significant.

When quoting an experimental result, the number of significant figures should
be approximately one more than that dictated by the experimental precision. The
reason for including the extra digit is to avoid errors that might be caused by round-
ing errors in later calculations. If the result of the measurement of Example 1.1 is L
= 1.979 m with an uncertainty of 0.012 m, this result could be quoted as L = (1.979
* 0.012) m. However, if the first digit of the uncertainty is large, such as 0.082 m,
then we should probably quote L = (1.98 = 0.08) m. In other words, we let the un-
certainty define the precision to which we quote our result.

When insignificant digits are dropped from a number, the last digit retained
should be rounded off for the best accuracy. To round off a number to fewer significant
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digits than were specified originally, we truncate the number as desired and treat the ex-
cess digits as a decimal fraction. Then:

1. If the fraction is greater than Y2, increment the new least significant digit.
2. If the fraction is less than Y2, do not increment.
3. If the fraction equals Y2, increment the least significant digit only if it is odd.

The reason for rule 3 is that a fractional value of %2 may result from a previous
rounding up of a fraction that was slightly less than 2 or a rounding down of a frac-
tion that was slightly greater than 2. For example, 1.249 and 1.251 both round to
three significant figures as 1.25. If we were to round again to two significant figures,
both would yield the same value, either 1.2 or 1.3, depending on our convention.
Choosing to round up if the resulting last digit is odd and to round down if the result-
ing last digit is even, reduces systematic errors that would otherwise be introduced
into the average of a group of such numbers. Note that it is generally advisable to re-
tain all available digits in intermediate calculations and round only the final results.

1.2 UNCERTAINTIES

Uncertainties in experimental results can be separated into two categories: those
that result from fluctuations in measurements, and those associated with the theo-
retical description of our result. For example, if we measure the length of a rectan-
gular table along one edge, we know that any uncertainties, aside from systematic
errors, are associated with the fluctuations of our measurements from trial to trial.
With an infinite number of measurements we might be able to estimate the length
very precisely, but with a finite number of trials there will be a finite uncertainty. If
we were to measure the length of the table at equally spaced positions across the
table, the measurements would show additional fluctuations corresponding to irreg-
ularities in the table itself, and our result could be expressed as the mean length. If,
however, we were to describe the shape of an oval table, we would be faced with
uncertainties both in the measurement of position of the edge of the table at various
points and in the form of the equation to be used to describe the shape, whether it be
circular, elliptical, or whatever. Thus, we shall be concerned in the following chap-
ters with a comparison of the distribution of measured data points with the distrib-
ution predicted on the basis of a theoretical model. This comparison will help to
indicate whether our method of extracting the results is valid or needs modification.

The term error suggests a deviation of the result from some “true” value. Usu-
ally we cannot know what the true value is, and can only estimate the errors inher-
ent in the experiment. If we repeat an experiment, the results may well differ from
those of the first attempt. We express this difference as a discrepancy between the
two results. Discrepancies arise because we can determine a result only with a given
uncertainty. For example, when we compare different measurements of a standard
physical constant, or compare our result with the accepted value, we should refer to
the differences as discrepancies, not errors or uncertainties.

Because, in general, we shall not be able to quote the actual error in a result,
we must develop a consistent method for determining and quoting the estimated
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error. A study of the distribution of the results of repeated measurements of the same
quantity can lead to an understanding of these errors so that the quoted error is a
measure of the spread of the distribution. However, for some experiments it may not
be feasible to repeat the measurements and experimenters must therefore attempt to
estimate the errors based on an understanding of the apparatus and their own skill in
using it. For example, if the student of Example 1.1 could make only a single mea-
surement of the length of the table, he should examine his meter stick and the table,
and try to estimate how well he could determine the length. His estimate should be
consistent with the result expected from a study of repeated measurements; that is,
to quote an estimate for the standard error, he should try to estimate a range into
which he would expect repeated measurements to fall about seven times out of ten.
Thus, he might conclude that with a fine steel meter stick and a well-defined table
edge, he could measure to about =1 mm or +£0.001 m. He should resist the tempta-
tion to increase this error estimate, “just to be sure.”

We must also realize that the model from which we calculate theoretical para-
meters to describe the results of our experiment may not be the correct model. In the
following chapters we shall discuss hypothetical parameters and probable distribu-
tions of errors pertaining to the “true” states of affairs, and we shall discuss meth-
ods of making experimental estimates of these parameters and the uncertainties
associated with these determinations.

Minimizing Uncertainties and Best Results

Our preoccupation with error analysis is not confined just to the determination of
the precision of our results. In general, we shall be interested in obtaining the max-
imum amount of useful information from the data on hand without being able either
to repeat the experiment with better equipment or to reduce the statistical uncer-
tainties by making more measurements. We shall be concerned, therefore, with the
problem of extracting from the data the best estimates of theoretical parameters and
of the random errors, and we shall want to understand the effect of these errors on
our results, so that we can determine what confidence we can place in our final re-
sults. It is reasonable to expect that the most reliable results we can calculate from
a given set of data will be those for which the estimated errors are the smallest.
Thus, our development of techniques of error analysis will help to determine the op-
timum estimates of parameters to describe the data.

It must be noted, however, that even our best efforts will yield only estimates
of the quantities investigated.

1.3 PARENT AND SAMPLE DISTRIBUTIONS

If we make a measurement x; of a quantity x, we expect our observation to approx-
imate the quantity, but we do not expect the experimental data point to be exactly
equal to the quantity. If we make another measurement, we expect to observe a dis-
crepancy between the two measurements because of random errors, and we do not
expect either determination to be exactly correct, that is, equal to x. As we make
more and more measurements, a pattern will emerge from the data. Some of the
measurements will be too large, some will be too small. On the average, however,
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we expect them to be distributed around the correct value, assuming we can neglect
or correct for systematic errors.

If we could make an infinite number of measurements, then we could describe
exactly the distribution of the data points. This is not possible in practice, but we
can hypothesize the existence of such a distribution that determines the probability
of getting any particular observation in a single measurement. This distribution is
called the parent distribution. Similarly, we can hypothesize that the measurements
we have made are samples from the parent distribution and they form the sample
distribution. In the limit of an infinite number of measurements, the sample distrib-
ution becomes the parent distribution.

EXAMPLE 1.2 In a physics laboratory experiment, students drop a ball 50 times
and record the time it takes for the ball to fall 2.00 m. One set of observations, cor-
rected for systematic errors, ranges from about 0.59 s to 0.70 s, and some of the ob-
servations are identical. Figure 1.2 shows a histogram or frequency plot of these
measurements. The height of a data bar represents the number of measurements that
fall between the two values indicated by the upper and lower limits of the bar on the
abscissa of the plot. (See Appendix D.)

If the distribution results from random errors in measurement, then it is very
likely that it can be described in terms of the Gaussian or normal error distribution,
the familiar bell-shaped curve of statistical analysis, which we shall discuss in Chap-
ter 2. A Gaussian curve, based on the mean and standard deviation of these measure-
ments, is plotted as the solid line in Figure 1.2. This curve summarizes the data of the
sample distribution in terms of the Gaussian model and provides an estimate of the
parent distribution.

The measured data and the curve derived from them clearly do not agree ex-
actly. The coarseness of the experimental histogram distinguishes it at once from the
smooth theoretical Gaussian curve. We might imagine that, if the students were to
make a great many measurements or combine several sets of measurements so that
they could plot the histogram in finer and finer bins, under ideal circumstances the his-
togram would eventually approach a smooth Gaussian curve. If they were to calculate
the parameters from such a large sample, they could determine the parent distribution
represented by the dotted curve in Figure 1.2.

It is convenient to think in terms of a probability density function p(x), nor-
malized to unit area (i.e., so that the integral of the entire curve is equal to 1) and de-
fined such that in the limit of a very large number N of observations, the number AN
of observations of the variable x between x and x + Ax is given by AN = Np(x)Ax.
The solid and dashed curves in Figure 1.2 have been scaled in this way so that the
ordinate values correspond directly to the numbers of observations expected in any
range Ax from a 50-event sample and the area under each curve corresponds to the
total area of the histogram.

Notation

A number of parameters of the parent distribution have been defined by convention.
We use Greek letters to denote them, and Latin letters to denote experimental esti-
mates of them.
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FIGURE 1.2

Histogram of measurements of the time for a ball to fall 2.00 m. The solid Gaussian curve was
calculated from the mean (T = 0.635 s) and standard deviation (s = 0.020 s) estimated from these
measurements. The dashed curve was calculated from the parent distribution with mean u. = 0.639 s
and standard deviation o = 0.020 s.

In order to determine the parameters of the parent distribution, we assume that
the results of experiments asymptotically approach the parent quantities as the num-
ber of measurements approaches infinity; that is, the parameters of the experimen-
tal distribution equal the parameters of the parent distribution in the limit of an
infinite number of measurements. If we specify that there are N observations in a
given experiment, then we can denote this by

(parent parameter) = lim (experimental parameter)

If we make N measurements and label them x,, x,, x3, and so forth, up to a final mea-
surement xy, then we can identify the sum of all these measurements as

N
D =X txtx ety

i=1

where the left-hand side is interpreted as the sum of the observations x; over the in-
dex i from i = 1 to i = N inclusive. Because we shall be making frequent use of the
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sum over N measurements of various quantities, we simplify the notation by omitting
the index whenever we are considering a sum where the index i runs from 1 to N;

N
ExlE 21x:
1=

Mean, Median, and Mode

With the preceding definitions, the mean X of the experimental distribution is
given as the sum of N determinations x, of the quantity x divided by the number of
determinations

"E%Ex, (1.1)

and the mean p of the parent population is defined as the limit

1
pzbm(ﬁzx) (1.2)

The mean is therefore equivalent to the centroid or average value of the quantity x.

The median of the parent population ., is defined as that value for which, in
the limit of an infinite number of determinations x,, half the observations will be less
than the median and half will be greater. In terms of the parent distribution, this
means that the probability is 50% that any measurement x, will be larger or smaller
than the median

P(x,< p.1/2)=P(x,> Ml/z)= 1/2 (1.3)

so that the median line cuts the area of the probability density distribution in half.
Because of inconvenience in computation, the median is not often used as a statis-
tical parameter.

The mode, or most probable value ., of the parent population is that value
for which the parent distribution has the greatest value. In any given experimental
measurement, this value is the one that is most likely to be observed. In the limit of
a large number of observations, this value will probably occur most often

P(“’max) 2 P(x # l“'max) (1'4)

The relationship of the mean, median, and most probable value to one another
is illustrated in Figure 1.3. For a symmetrical distribution these parameters would
all be equal by the symmetry of their definitions. For an asymmetric distribution
such as that of Figure 1.3, the median generally falls between the most probable
value and the mean. The most probable value corresponds to the peak of the distri-
bution, and the areas on either side of the median are equal.

Deviations

The deviation d, of any measurement x, from the mean p of the parent distribution
is defined as the difference between x, and p.:
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Asymmetric distribution illustrating the positions of the mean, median, and mode of the variable.

d,=x—p (1.5)

For computational purposes, deviations are generally defined with respect to the
mean, rather than the median or most probable value. If w is the true value of the
quantity, d, is also the true error in x,..

The average of the deviations d must vanish by virtue of the definition of the
mean in Equation (1.2):

o= |1 . (1
Modﬂlgg[ﬁz,(x,—u)]=},lgr;(ﬁ§‘,x,)—u=0 (1.6)

The average deviation a, therefore, is defined as the average of the absolute values
of the deviations:

1
o EL@C[NZ Ix, - ul} (1.7)

The average deviation is a measure of the dispersion of the expected observations
about the mean. The presence of the absolute value sign makes its use inconvenient
for statistical analysis.

A parameter that is easier to use analytically and that can be justified fairly
well on theoretical grounds to be a more appropriate measure of the dispersion of
the observations is the standard deviation o. The variance o? is defined as the limit
of the average of the squares of the deviations from the mean .:
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o? = lim [iz(x,—u)ﬂam Gz:&)—uz (1.8)

and the standard deviation o is the square root of the variance. Note that the second
form of Equation (1.8) is often described as “the average of the squares minus the
square of the average.” The standard deviation is the root mean square of the devi-
ations, and is associated with the second moment of the data about the mean. The
corresponding expression for the variance s? of the sample population is given by

1
s? =y_1 (x, — x)? (1.9)
where the factor N — 1, rather than N, is required in the denominator to account for
the fact that the parameter x has been determined from the data and not indepen-
dently. We note that the symbol o (instead of s) is often used to represent the best
estimate of the standard deviation of the parent distribution determined from a sam-
ple distribution.

Significance

The mean w and the standard deviation, as well as the median, the most probable
value, and the average deviation, are all parameters that characterize the informa-
tion we are seeking when we perform an experiment. Often we wish to describe our
distribution in terms of just the mean and standard deviation. The mean may not be
exactly equal to the datum in question if the parent distribution is not symmetrical
about the mean, but it should have the same characteristics. If a more detailed de-
scription is desired, it may be useful to compute higher moments about the mean.

In general, the best we can say about the mean is that it is one of the parame-
ters that specifies the probability distribution: It has the same units as the “true”
value and, in accordance with convention, we shall consider it to be the best esti-
mate of the “true” value under the prevailing experimental conditions.

The variance s? and the standard deviation s characterize the uncertainties as-
sociated with our experimental attempts to determine the “true” values. For a given
number of observations, the uncertainty in determining the mean of the parent dis-
tribution is proportional to the standard deviation of that distribution. The standard
deviation s is, therefore, an appropriate measure of the uncertainty due to fluctua-
tions in the observations in our attempt to determine the “true” value.

Although, in general, the distribution resulting from purely statistical errors
can be described well by the two parameters, the mean and the standard deviation,
we should be aware that, at distances of a few standard deviations from the mean of
an experimental distribution, nonstatistical errors may dominate. In especially se-
vere cases, it may be preferable to describe the spread of the distribution in terms of
the average deviation, rather than the standard deviation, because the latter tends to
deemphasize measurements that are far from the mean. There are also distributions
for which the variance does not exist. The average deviation or some other quantity
must be used as a parameter to indicate the spread of the distribution in such cases.
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In the following sections, however, we shall be concerned mainly with distributions
that result from statistical errors and for which the variance exists.

1.4 MEAN AND STANDARD DEVIATION
OF DISTRIBUTIONS

We can define the mean . and the standard deviation o in terms of the distribution
p (x) of the parent population. The probability density p(x) is defined such that in the
limit of a very large number of observations, the fraction dN of observations of the
variable x that yield values between x and x + dx is given by dN = Np (x) dx.

The mean . is the expectation value ( x ) of x, and the variance o? is the ex-
pectation value (( x — p)? ) of the square of deviations of x from . The expectation
value ( f(x) ) of any function of x is defined as the weighted average of f (x), over all
possible values of the variable x, with each value of f (x) weighted by the probabil-
ity density distribution p (x).

Discrete Distributions

If the probability function is a discrete function P(x) of the observed value x, we re-
place the sum over the individual observations 3.x, in Equation (1.2) by a sum over
the values of the possible observations multiplied by the number of times these ob-
servations are expected to occur. If there are n possible different observable values
of the quantity x, which we denote by x, (where the index j runs from 1 to n with no
two values of x, equal), we should expect from a total of N observations to obtain
each observable NP(x)) times. The mean can then be expressed as

N 1N

.1 .
b= Jim o 3% = fim 5 35 b NPG)
=1lim ¥ [x,Px)] (1.10)
N—x

Similarly, the variance o in Equation (1.8) can be expressed in terms of the
probability function P(x):

o2=lim 3 —lim 3 w2 111
fim 320~ wPAE) = im 3, (53 (1.11)
In general, the expectation value of any function of f{x) is given by

(fo) = 21 [f(x)P(x,)] (1.12)

Continuous Distributions

If the probability density function is a continuous smoothly varying function p(x) of
the observed value x, we replace the sum over the individual observations by an
integral over all values of x multiplied by the probability p(x). The mean p becomes
the first moment of the parent distribution
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= J_pr(x) dx (1.13)

and the variance o becomes the second central product moment

o= f;(x — wPpx)dx = mexzp(x)dx - w2 (1.14)

The expectation value of any function of x is

(o) = | rop@ax (1.15)

What is the connection between the probability distribution of the parent pop-
ulation and an experimental sample we obtain? We have already seen that the un-
certainties of the experimental conditions preclude a determination of the “true”
values themselves. As a matter of fact, there are three levels of abstraction between
the data and the information we seek:

1. From our experimental data points we can determine a sample frequency dis-
tribution that describes the way in which these particular data points are dis-
tributed over the range of possible data points. We use x to denote the mean of
the data and s? to denote the sample variance. The shape and magnitude of the
sample distribution vary from sample to sample.

2. From the parameters of the sample probability distribution we can estimate the
parameters of the probability distribution of the parent population of possible
observations. Our best estimate for the mean . is the mean of the sample dis-
tribution X, and the best estimate for the variance ¢? is the sample variance 5.
Even the shape of this parent distribution must be estimated or assumed.

3. From the estimated parameters of the parent distribution we estimate the results
sought. In general, we shall assume that the estimated parameters of the parent
distribution are equivalent to the “true” values, but the estimated parent distri-
bution is a function of the experimental conditions as well as the “true” values,
and these may not necessarily be separable.

Let us refer again to Figure 1.2, which shows a histogram of time interval
measurements and two Gaussian curves, a solid curve based on the parameters
= 0.635 s and s = 0.020 s, which were determined experimentally from the data
displayed in the histogram, and a dotted curve based on the parameters p. = 0.639 s
and o = 0.020 s of the parent distribution. (Although, in general we don’t know the
properties of the parent distribution, they could have been estimated to high preci-
sion in another experiment involving many more measurements.) Comparing the
two curves, we observe a slight difference between the experimental mean T and the
“true” mean ., and between s and o.

By considering the data to be a sample from the parent population with the
values of the observations distributed according to the parent population, we can es-
timate the shape and dispersion of the parent distribution to obtain useful informa-
tion on the precision and reliability of our results. Thus, we consider the sample
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mean T to be our best estimate from the data of the mean w, and we consider the
sample variance s? to be our best estimate from the data of the variance o2, from
which we can estimate the uncertainty in our estimate of .

SUMMARY

Errors: Difference between measured and “true” values. Generally applied to the
uncertainty in a measurement. Not blunders or mistakes.

Systematic error: Reproducible inaccuracy introduced by faulty equipment, cali-
bration, or technique.

Random error: Indefiniteness of result introduced by finite precision of measure-
ment or statistical variations. Measure of fluctuation after repeated experimentation.
Uncertainry: Magnitude of error that is estimated to have been made in determina-
tion of results.

Accuracy: Measure of how close the result of an experiment comes to the “true”
value.

Precision: Measure of how carefully the result is determined without reference to
any “true” value.

Significant figures:

1. The leftmost nonzero digit is the most significant digit.

2. If there is no decimal point, the rightmost nonzero digit is the least significant
digit.

3. If there is a decimal point, the rightmost digit is the least significant digit, even
if it is zero.

4. All digits between the least and most significant digits are counted as s1gn1ﬁ-
cant digits.

Roundoff: Truncate the number to the specified number of significant digits and
treat the excess digits as a decimal fraction.

1. If the fraction is greater than /2, increment the new least significant digit.
2. If the fraction is less than /2, do not increment.
3. If the fraction equals 2, increment the least significant digit only if it is odd.

Parent population: Hypothetical infinite set of data points of which the experimen-
tal data points are assumed to be a random sample.

Parent distribution: Probability distribution of the parent population from which the
sample data are chosen.

Expectation value f(x): Weighted average of a function f(x) over all values of x:

n

(f&)) = lim [i > fx) x,} > [f(x)P(x)] f f)P(x) dx

=1 ®

Median . 5: P(x, <) = Px> ) =



Most probable value ppgy:

= (x)
Average deviation: o = (|x - p.l)

— P =
Standard deviation: o = \/c?

Sample mean: ¥ = (1/N)Zx,

Mean: p.

Variance: 0?2 =

Sample variance: s? =

EXERCISES

(x2) —

Ww-1)

P

Uncertainties in Measurements

P(“'max) = P(x # p"max)

1.1. How many significant features are there in the following numbers?

(a) 976.45
(e) 4.000
(i) 4.00 X 102

(b) 84,000

(f) 10

(j) 3.010 X 10*

(c) 0.0094
(g) 5280

(d) 301.07

(h) 400.

15

1.2. What is the most significant figure in each of the numbers in Exercise 1.1? What is the

least significant?
1.3. Round off each of the numbers in Exercise 1.1 to two significant digits.

1.4. Find the mean, median, and most probable value of x for the following data (from

rolling dice).

i X, i X, i X, i X, i X,
1 3 6 8 11 12 16 6 21 5
2 7 7 9 12 8 17 7 22 10
3 3 8 7 13 6 18 8 23 8
4 7 9 5 14 6 19 9 24 8
5 12 10 7 15 7 20 8 25 8

1.5. Find the mean, median, and most probable grade from the following set of grades.

Group them to find the most probable value.

X, i X, i X, i X,
1 73 11 73 21 69 31 56
2 91 12 46 22 70 32 94
3 72 13 64 23 82 33 51
4 81 14 61 24 90 34 79
5 82 15 50 25 63 35 63
6 46 16 89 26 70 36 87
7 89 17 91 27 94 37 54
8 75 18 82 28 44 38 100
9 62 19 7A 29 100 39 72
10 58 20 76 30 88 40 81

1.6. Calculate the standard deviation of the data of Exercise 1.4.
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1.7.
1.8.

1.9,

Data Reduction and Error Analysis for the Physical Sciences

Calculate the standard deviation of the data of Exercise 1.5.

Justify the second equality in Equations (1.8) and (1.14).

Carefully measure in centimeters the length of the cover of this book along the bound
edge. Estimate the uncertainty in your measurement. Quote your answer with its uncer-
tainty in decimal form and in scientific notation.



CHAPTER

2

PROBABILITY
DISTRIBUTIONS

f the many probability distributions that are involved in the analysis of experi-

mental data, three play a fundamental role: the binomial distribution, the Pois-
son distribution, and the Gaussian distribution. Of these, the Gaussian, or normal
error, distribution is undoubtedly the most important in statistical analysis of data.
Practically, it is useful because it seems to describe the distribution of random ob-
servations for many experiments, as well as describing the distributions obtained
when we try to estimate the parameters of most other probability distributions.

The Poisson distribution is generally appropriate for counting experiments
where the data represent the number of items or events observed per unit interval. It
is important in the study of random processes such as those associated with the ra-
dioactive decay of elementary particles or nuclear states, and is also applied to data
that have been sorted into ranges to form a frequency table or a histogram.

The binomial distribution is generally applied to experiments in which the re-
sult is one of a small number of possible final states, such as the number of “heads”
or “tails” in a series of coin tosses, or the number of particles scattered forward or
backward relative to the direction of the incident particle in a particle physics ex-
periment. Because both the Poisson and the Gaussian distributions can be consid-
ered as limiting cases of the binomial distribution, we shall devote some attention to
the derivation of the binomial distribution from basic considerations.

2.1 BINOMIAL DISTRIBUTION

Suppose we toss a coin in the air and let it land. There is a 50% probability that it
will land heads up and a 50% probability that it will land tails up. By this we mean
that if we continue tossing a coin repeatedly, the fraction of times that it lands with
heads up will asymptotically approach !4, indicating that there was a probability of

17
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14 of doing so. For any given toss, the probability cannot determine whether or not
it will land heads up; it can only describe how we should expect a large number of
tosses to be divided into two possibilities.

Suppose we toss two coins at a time. There are now four different possible
permutations of the way in which they can land: both heads up, both tails up, and
two mixtures of heads and tails depending on which one is heads up. Because each
of these permutations is equally probable, the probability for any choice of them is
Va or 25%. To find the probability for obtaining a particular mixture of heads and
tails, without differentiating between the two kinds of mixtures, we must add the
probabilities corresponding to each possible kind. Thus, the total probability of find-
ing either head up and the other tail up is /2. Note that the sum of the probabilities
for all possibilities (Y4 + Va + V4 + Y4)is always equal to 1 because something is
bound to happen.

Let us extrapolate these ideas to the general case. Suppose we toss n coins into
the air, where n is some integer. Alternatively, suppose that we toss one coin » times.
What is the probability that exactly x of these coins will land heads up, without dis-
tinguishing which of the coins actually belongs to which group? We can consider
the probability P(x; n) to be a function of the number n of coins tossed and of the
number x of coins that land heads up. For a given experiment in which » coins are
tossed, this probability P(x; n) will vary as a function of x. Of course, x must be an
integer for any physical experiment, but we can consider the probability to be
smoothly varying with x as a continuous variable for mathematical purposes.

Permutations and Combinations

If n coins are tossed, there are 2" different possible ways in which they can land.
This follows from the fact that the first coin has two possible orientations, for each
of these the second coin also has two such orientations, for each of these the third
coin also has two, and so on. Because each of these possibilities is equally proba-
ble, the probability for any one of these possibilities to occur at any toss of # coins
is 1/2",

How many of these possibilities will contribute to our observations of x coins
with heads up? Imagine two boxes, one labeled “heads” and divided into x slots, and
the other labeled “tails.” We shall consider first the question of how many permuta-
tions of the coins result in the proper separation of x in one box and » — x in the
other; then we shall consider the question of how many combinations of these per-
mutations should be considered to be different from each other.

In order to enumerate the number of permutations Pm(n, x), let us pick up the
coins one at a time from the collection of z coins and put x of them into the “heads”
box. We have a choice of n coins for the first one we pick up. For our second selec-
tion we can choose from the remaining » — 1 coins. The range of choice is dimin-
ished until the last selection of the xth coin can be made from only » — x + 1
remaining coins. The total number of choices for coins to fill the x slots in the
“heads” box is the product of the numbers of individual choices:

Pmn,x)=nn—10n-2)-- h—x+2r—-—x+1) 2.1
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This expansion can be expressed more easily in terms of factorials

n!
(n—x)

So far we have calculated the number of permutations Pm(n, x) that will yield
x coins in the “heads” box and » — x coins in the “tails” box, with the provision that
we have identified which coin was placed in the “heads” box first, which was
placed in second, and so on. That is, we have ordered the x coins in the “heads” box.
In our computation of 2" different possible permutations of the #n coins, we are only
interested in which coins landed heads up or heads down, not which landed first.
Therefore, we must consider contributions different only if there are different coins
in the two boxes, not if the x coins within the “heads” box are permuted into differ-
ent time orderings.

The number of different combinations C(n, x) of the permutations in the pre-
ceding enumeration results from combining the x! different ways in which x coins
in the “heads” box can be permuted within the box. For every x! permutations, there
will be only one new combination. Thus, the number of different combinations
C(n, x) is the number of permutations Pm(n, x) divided by the degeneracy factor x!
of the permutations:

Pm(n, x) = 2.2)

Pm(n, x) n!
- (

Cln, %) = 7 2.3)

X! xl(n — x)!
This is the number of different possible combinations of # items taken x at a time,
commonly referred to as (%) or “n over x.”

Probability

The probability P(x; n) that we should observe x coins with heads up and » — x with
tails up is the product of the number of different combinations C(#n, x) that con-
tribute to that set of observations multiplied by the probability for each of the com-
binations to occur, which we have found to be (12)".

Actually, we should separate the probability for each combination into two
parts: one part is the probability p* = (12)* for x coins to be heads up; the other part
is the probability g"™* = (1 — ¥2)"™* = (V2)"~* for the other n — x coins to be tails
up. For symmetrical coins, the product of these two parts p*q" —* = (¥2)" is the prob-
ability of the combination with x coins heads up and » — x coins tails up. In the gen-
eral case, the probability p of success for each item is not equal in magnitude to the
probability ¢ = 1 — p for failure. For example, when tossing a die, the probability
that a particular number will show is p = 1/6, while, the probability of its not show-
ingis g = 1 — 1/6 = 5/6 so that p*q"~* = (1/6)* X (5/6)".

With these definitions of p and g, the probability Py (x; n, p) for observing x of
the » items to be in the state with probability p is given by the binomial distribution

n!
Py(x; n, p) = G)p"q”"‘ = -p*(1 =py 2.4)

xl(n — x)
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where ¢ = 1 — p. The name for the binomial distribution comes from the fact that
the coefficients Pg(x; n, p) are closely related to the binomial theorem for the ex-
pansion of a power of a sum. According to the binomial theorem,

(p+qr =x2:0 [(ﬁ)p"q"”*] (2.5)

The (j + 1)th term, corresponding to x = j, of this expansion, therefore, is equal to
the probability Pg(j; n, p). We can use this result to show that the binomial distrib-
ution coefficients Py (x; n, p) are normalized to a sum of 1. The right-hand side of
Equation (2.5) is the sum of probabilities over all possible values of x from O to n
and the left-hand side is just 1" = 1.

Mean and Standard Deviation

The mean of the binomial distribution is evaluated by combining the definition of w
in Equation (1.10) with the formula for the probability function of Equation (2.4):

i n—x ), p*1—pyr=—=|=np (2.6)

We interpret this to mean that if we perform an experiment with » items and observe
the number x of successes, after a large number of repeated experiments the average
X of the number of successes will approach a mean value . given by the probability
for success of each item p times the number of items #. In the case of coin tossing
where p = 2, we should expect on the average to observe half the coins land heads
up, which seems eminently reasonable.

The variance o? of a binomial distribution is similarly evaluated by combin-
ing Equations (1.11) and (2.4):

i (e = wp = . ),p‘(l—p)"‘* = np(1 —p) 2.7)

The evaluation of these sums is left as an exercise. We are mainly interested in the
results, which are remarkably simple.

If the probability for a single success p is equal to the probability for failure p
= g = ¥, then the distribution is symmetric about the mean pw, and the median ),
and the most probable value are both equal to the mean. In this case, the variance o?
is equal to half the mean: o2 = p/2. If p and g are not equal, the distribution is
asymmetric with a smaller variance.

Example 2.1. Suppose we toss 10 coins into the air a total of 100 times. With each
coin toss we observe the number of coins that land heads up and denote that number
by x,, where i is the number of the toss; i ranges from 1 to 100 and x, can be any inte-
ger from O to 10. The probability function governing the distribution of the observed
values of x is given by the binomial distribution Pg(x; n, p) withn = 10 and p = V2.
This is the parent distribution and is not affected by the number N of repeated proce-
dures in the experiment.
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Binomial distribution for . = 5.0 and p = Y2 shown as a continuous curve although the function is
only defined at the discrete points indicated by the round dots.

The parent distribution Pg(x; 10, 2) is shown in Figure 2.1 as a smooth curve
drawn through discrete points. The mean . is given by Equation (2.6):

w=np=10(%)=5
the standard deviation o is given by Equation (2.7):

o= Vnp(1 - p) = V10(V)(V) = V2.5 = 1.58

The curve is symmetric about its peak at the mean so that approximately 25% of the
throws yield five heads and five tails, about 20% yield four heads and six tails, and
the same fraction yields six heads and four tails. The magnitudes of the points are
such that the sum of the probabilities over all ten points is equal to 1.

Example 2.2. Suppose we roll ten dice. What is the probability that x of these dice
will land with the 1 up? If we throw one die, the probability of its landing with 1 up is
p = ¥6. If we throw ten dice, the probability for x of them to land with 1 up is given by
the binomial distribution Pg(x; n, p) with n = 10 and p = V6:

1 100 (1)e[5\0
d B(x’ 10, 6) ~ X110 — ! (6) (6)

This distribution is illustrated in Figure 2.2 as a smooth curve drawn through
discrete points. The mean and standard deviation are

w=10/6 = 1.67

and

o= V10(1/6)(5/6) = 1.18
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Binomial distribution for . = 10/6 and p = 1/6 shown as a continuous curve.

The distribution is not symmetric about the mean or about any other point. The most
probable value is x = 1, but the peak of the smooth curve occurs for a slightly larger
value of x.

Example 2.3 A particle physicist makes some preliminary measurements of the angu-
lar distribution of K mesons scattered from a liquid hydrogen target. She knows that
there should be equal numbers of particles scattered forward and backward in the cen-
ter-of-mass system of the particles. She measures 1000 interactions and finds that 472
scatter forward and 528 backward. What uncertainty should she quote in these numbers?

The uncertainty is given by the standard deviation from Equation (2.7),
o= Vnp(1 — p) = V1000(%)(%) = V250 = 15.8

Thus, she could quote
fr=1(472 = 15.8)/1000 = 0.472 = 0.15

for the fraction of particles scattered in the forward direction and
f5=1(528 = 15.8)/1000 = 0.528 = 0.15

for the fraction scattered backward.

Note that the uncertainties in the numbers scattering forward and backward
must be the same because losses from one group must be made up in the other.

If the experimenter did not know the a priori probabilities of scattering forward
and backward, she would have to estimate p and g from her measurements; that is,
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p=472/1000 = 0.472
and
g =528/1000 = 0.528

She would then calculate

s =1/1000(0.472)(0.528) = \/249.2 = 15.8

For probability p near 50%, the standard deviation is relatively insensitive to uncer-
tainties in the experimental determination of p.

2.2 POISSON DISTRIBUTION

The Poisson distribution represents an approximation to the binomial distribution
for the special case where the average number of successes is much smaller than the
possible number; that is, when w < n because p < 1. For such experiments the bi-
nomial distribution correctly describes the probability Pg(x; n, p) of observing x
events per time interval out of n possible events, each of which has a probability p
of occurring, but the large number » of possible events makes exact evaluation from
the binomial distribution impractical. Furthermore, neither the number » of possible
events nor the probability p for each is usually known. What may be known instead
is the average number of events w expected in each time interval or its estimate X.
The Poisson distribution provides an analytical form appropriate to such investiga-
tions that describes the probability distribution in terms of just the variable x and the
parameter .

Let us consider the binomial distribution in the limiting case of p < 1. We are
interested in its behavior as n becomes infinitely large while the mean p = np re-
mains constant. Equation (2.4) for the probability function of the binomial distribu-
tion can be written as

1 n! (1 —
Py(x; n, P)—;!mp (1-p)=*(1-p) (2.8)
If we expand the second factor
!
—n'—=n(n—1)(n—2)--~(n—x—2)(n—x—1) (2.9)
(n— x)

we can consider it to be the product of x individual factors, each of which is very
nearly equal to n because x < n in the region of interest. The second factor in
Equation (2.8) thus asymptotically approaches n*. The product of the second and
third factors then becomes (np)* = p*. The fourth factor is approximately equal to
1 + px, which tends to 1 as p tends to 0.

The last factor can be rearranged by substituting w/p for » and expanding the
expression to show that it asymptotically approaches e™*:

lim(1 — p)*=1lim[(1 — p)/r]» = (l>u= e+ (2.10)
p—0 p—0 e
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Combining these approximations, we find that the binomial distribution prob-
ability function Py(x; n, p) asymptotically approaches the Poisson distribution
Pp(x; W) as p approaches 0:

lim Py (x; n, p) = Py )=t e 2.11)
p—0 x!

Because this distribution is an approximation to the binomial distribution for p < 1,
the distribution is asymmetric about its mean p and will resemble that of Figure 2.2.
Note that P,(x; p) does not become O for x = 0 and is not defined for negative val-
ues of x. This restriction is not troublesome for counting experiments because the
number of counts per unit time interval can never be negative.

Derivation

The Poisson distribution can also be derived for the case where the number of
events observed is small compared to the total possible number of events.! Assume
that the average rate at which events of interest occur is constant over a given inter-
val of time and that event occurrences are randomly distributed over that interval.
Then, the probability dP of observing no events in a time interval dt is given by

dP(0; 1, 7) = —P(0; 1, T)d:’ (2.12)

where P(x; t, ) is the probability of observing x events in the time interval dr, T is a
constant proportionality factor that is associated with the mean time between events,
and the minus sign accounts for the fact that increasing the differential time interval
dt decreases the probability proportionally. Integrating this equation yields the prob-
ability of observing no events within a time 7 to be

P(0; 1, T) = Pye™ '/ (2.13)

where P, the constant of integration, is equal to 1 because P(0; ¢, T) = 1 att = 0.
The probability P(x; ¢, T) for observing x events in the time interval T can be

evaluated by integrating the differential probability

e—t/‘r X ‘ﬁ
=1 T

x!

dPx;1,7) = (2.14)
which is the product of the probabilities of observing each event in a different in-
terval dr, and the probability e~/ of not observing any other events in the remain-
ing time. The factor of x! in the denominator compensates for the ordering implicit
in the probabilities dP(1, t, T) as discussed in the preceding section on permutations
and combinations.

Thus, the probability of observing x events in the time interval 7 is obtained by
integration

T

-t/1 x
Pp(x; p) = P(x; 1,7) = ex, <£> (2.15)

IThis derivation follows that of Orear (1958), pages 21-22.
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or
)= -
Pp(x, W) = ;] e ™ (2.16)

which is the expression for the Poisson distribution, where p = #/7 is the average
number of events observed in the time interval ¢. Equation (2.16) represents a nor-
malized probability function; that is, the sum of the function evaluated at each of the
allowed values of the variable x is unity:

i 0 (x, ) = i = i:——e‘”e“=1 2.17)

Mean and Standard Deviation

The Poisson distribution, like the binomial distribution, is a discrete distribution.
That is, it is defined only at integral values of the variable x, although the parame-
ter W is a positive, real number. The mean of the Poisson distribution is actually the
parameter . that appears in the probability function P.(x; ) of Equation (2.16). To
verify this, we can evaluate the expectation value (x ) of x:

= S (xE )= 2 B e E o @)
0\ x! - 1! y=oy!

To find the standard deviation o, the expectation value of the square of the devia-
tions can be evaluated:

=(x—wh)= i[x—u)z—xe "] 0 (2.19)

Thus, the standard deviation o is equal to the square root of the mean p and the
Poisson distribution has only a single parameter, ..

Computation of the Poisson distribution by Equation (2.16) can be limited by
the factorial function in the denominator. The problem can be avoided by using log-
arithms or by using the recursion relations

PO, =e* Plxp)= (x—l ) (2.20)

This form has the disadvantage that, in order to calculate the function for particular
values of x and ., the function must be calculated at all lower values of x as well.
However, if the function is to be summed from x = 0 to some upper limit to obtain
the summed probability or to generate the distribution for a Monte Carlo calculation
(Chapter 5), the function must be calculated at all lower values of x anyway.

Example 2.4 As part of an experiment to determine the mean life of radioactive iso-
topes of silver, students detected background counts from cosmic rays. (See Example
8.1.) They recorded the number of counts in their detector for a series of 100 2-s in-
tervals, and found that the mean number of counts was 1.69 per interval. From the
mean they estimated the standard deviation to be ¢ = \/1.69 = 1.30, compared to
s = 1.29 from a direct calculation with Equation (1.9).
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FIGURE 2.3

Histogram of counts in a cosmic ray detector. The Poisson distribution is an estimate of the parent
distribution based on the measured mean x = 1.69. It is shown as a continuous curve although the
function is only defined at the discrete points indicated by the round dots.

The students then repeated the exercise, this time recording the number of
counts in 15-s intervals for 60 intervals, obtaining a mean of 11.48 counts per interval,
with standard deviations o = \/11.48 = 3.17 and s = 3.39.

Histograms of the two sets of data are shown in Figures 2.3, and. 2.4. The cal-
culated mean in each case was used as an estimate of the mean of the parent distribu-
tion to calculate a Poisson distribution for each data set. The distributions are shown
as continuous curves, although only the points at integral values of the abscissa are
physically significant.

The asymmetry of the distribution in Figure 2.3 is obvious, as is the fact that
the mean w does not coincide with the most probable value of x at the peak of the
curve. The curve of Figure 2.4, on the other hand, is almost symmetric about its
mean and the data are consistent with the curve. As w increases, the symmetry of the
Poisson distribution increases and the distribution becomes indistinguishable from
the Gaussian distribution.

Summed Probability

We may want to know the probability of obtaining a sample value of x between lim-
its x; and x, from a Poisson distribution with mean . This probability is obtained
by summing the values of the function calculated at the integral values of x between
the two integral limits x; and x,,

SP(xl’ X ) = i PP(X; P«) (2.21)
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FIGURE 2.4

Histogram of counts in a cosmic ray detector. The Poisson distribution, shown as a continuous curve,
is an estimate of the parent distribution based on the measured mean x = 11.48. Only the calculated
points indicated by the round dots are defined.

More likely, we may want to find the probability of recording » or more events in a
given interval when the mean number of events is . This is just the sum

o n—1 n—1, x
Sp(n, o0y p) = Pplax; p) =1 — ZOBD(x; p=1—e* 2‘6% (2.22)
x=n x= x= .

In Example 2.4, the mean number of counts recorded in a 15-s time interval was
x = 11.48. In one of the intervals, 23 counts were recorded. From Equation (2.22),
the probability of collecting 23 or more events in a single 15-s time interval
is ~ 0.0018, and the probability of this occurring in any one of 60 15-s time intervals
is just the complement of the joint probability that 23 or more counts not be observed
in any of the 60 time intervals, or p =1 — (1 — 0.0018)% = (.10, or about 10%.

For large values of ., the probability sum of Equation (2.22) may be approx-
imated by an integral of the Gaussian function.

2.3 GAUSSIAN OR NORMAL ERROR
DISTRIBUTION

The Gaussian distribution is an approximation to the binomial distribution for the spe-
cial limiting case where the number of possible different observations n becomes in-
finitely large and the probability of success for each is finitely large so np > 1. It is
also, as we observed, the limiting case for the Poisson distribution as . becomes large.
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There are several derivations of the Gaussian distribution from first principles,
none of them as convincing as the fact that the distribution is reasonable, that it has a
fairly simple analytic form, and that it is accepted by convention and experimentation
to be the most likely distribution for most experiments. In addition, it has the satisfy-
ing characteristic that the most probable estimate of the mean . from a random sam-
ple of observations x is the average of those observations x.

Characteristics

The Gaussian probability density is defined as

__1 _fx—uy
Po=— Z“CXP[ 2( - )] (2.23)

This is a continuous function describing the probability of obtaining the value x in
a random observation from a parent distribution with parameters w and o, corre-
sponding to the mean and standard deviation, respectively. Because the distribution
is continuous, we must define an interval in which the value of the observation x
will fall. The probability density function is properly defined such that the proba-
bility dP;(x; W, o) that the value of a random observation will fall within an inter-
val dx around x is given by

dP;(x; w, 0) = p6(x; w, 0)dx (2.24)

considering dx to be an infinitesimal differential, and the probability density func-
tion to be normalized, so that

J{;’c (6 m, @) = Jp_;(x; K, 0)dx (2.25)

The width of the curve is determined by the value of o, such that for x = n + o, the
height of the curve is reduced to e~ of its value at the peak:

pclx; w * 0, 0) = e pg(p; p, o) (2.26)

The shape of the Gaussian distribution is shown in Figure 2.5. The curve displays
the characteristic bell shape and symmetry about the mean .

We can characterize a distribution by its full-width at half maximum T, often
referred to as the half-width, defined as the range of x between values at which the
probability ps(x; ., o) is half its maximum value:

po(w = 4T, w, o) = Vapg(; w, o) (2.27)
With this definition, we can determine from Equation (2.23) that
I'=2354¢ (2.28)

As illustrated in Figure 2.5, tangents drawn along a portion of steepest descent of
the curve intersect the curve at the e~ 2 points x = p. * o and intersect the x axis at
the points x = p * 20.
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FIGURE 2.5
Gaussian probability distribution illustrating the relation of ., o, I, and PE. to the curve. The curve
has unit area.

Standard Gaussian Distribution

It is generally convenient to use a standard form of the Gaussian equation obtained
by defining the dimensionless variable z = (x — w)/o, because with this change of
variable, we can write

1 2
pel2)dz = 2n exp( 22) dz (2.29)

Thus, from a single computer routine or a table of values of ps(z), we can find the
Gaussian probability function pg(x; w, o) for all values of the parameters p and o by
changing the variable and scaling the function by 1/o to preserve the normalization.

Mean and Standard Deviation

The parameters w and o in Equation (2.23) for the Gaussian probability density dis-
tribution correspond to the mean and standard deviation of the function. This equiv-
alence can be verified by calculating w and o with Equations (1.13) and (1.14) as
the expectation values for the Gaussian function of x and (x — p.)?, respectively.
For a finite data sample, which is expected to follow the Gaussian probability
density distribution, the mean and standard deviation can be calculated directly
from Equations (1.1) and (1.9). The resulting values of X and s will be estimates of
the mean . and standard deviation o. Values of X and s, obtained in this way from
the original 50 time measurements in Example 1.2, were used as estimates of u and
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o in Equation (2.23) to calculate the solid Gaussian curve in Figure 1.2. The curve
was scaled to have the same area as the histogram. The curve represents our esti-
mate of the parent distribution based on our measurements of the sample.

Integral Probability

We are often interested in knowing the probability that a measurement will deviate
from the mean by a specified amount Ax or greater. The answer can be determined
by evaluating numerically the integral

w+Ax [ 1( — M)Z]dx 230
exp|—5 .
. \/— | el (2.30)
which gives the probability that any random value of x will deviate from the mean
by less than *=Ax. Because the probability function Pg(x; w, o) is normalized to
unity, the probability that a measurement will deviate from the mean by more than
Ax is just 1 — Pg(Ax; w, o). Of particular interest are the probabilities associated
with deviations of o, 20, and so forth from the mean, corresponding to 1, 2, and so
on standard deviations. We may also be interested in the probable error (o), de-
fined to be the absolute value of the deviation |x — I such that the probability for
the deviation of any random observation |x, — ! is less than 4. That is, half the ob-
servations of an experiment would be expected to fall within the boundaries denoted
by p * o,
If we use the standard form of the Gaussian distribution of Equation (2.29),
we can calculate the integrated probability P;(2) in terms of the dimensionless vari-
able z = (x — w/o,

PG(A X, My o) =

Az )
Ps(z) = ;J_ e %2 dg (2.31)

V21—

where Az = Ax/o measures the deviation from the mean in units of the standard
deviation o.

The integral of Equation (2.31) cannot be evaluated analytically, so in order to
obtain the probability P;(Ax; ., o) it is necessary either to expand the Gaussian
function in a Taylor’s series and integrate the series term by term, or to integrate nu-
merically. With modern computers, numerical integration is fast and accurate, and
reliable results can be obtained from a simple quadratic integration (Appendix A.3).

Tables and Graphs

The Gaussian probability density function p;(z) and the integral probability Ps(z)
are tabulated and plotted in Tables C.1 and C.2, respectively. From the integral
probability Table C.2, we note that the probabilities are about 68% and 95% that a
given measurement will fall within 1 and 2 standard deviations of the mean, re-
spectively. Similarly, by considering the 50% probability limit we can see that the
probable error is given by ¢,, = 0.67450.
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Comparison of Gaussian and Poisson
Distributions

A comparison of the Poisson and Gaussian curves reveals the nature of the Poisson
distribution. It is the appropriate distribution for describing experiments in which
the possible values of the data are strictly bounded on one side but not on the other.
The Poisson curve of Figure 2.3 exhibits the typical Poisson shape. The Poisson
curve of Figure 2.4 differs little from the corresponding Gaussian curve of Figure
2.5, indicating that for large values of the mean w, the Gaussian distribution be-
comes an acceptable description of the Poisson distribution. Because, in general, the
Gaussian distribution is more convenient to calculate than the Poisson distribution,
it is often the preferred choice. However, one should remember that the Poisson
distribution is only defined at 0 and positive integral values of the variable x,
whereas the Gaussian function is defined at all values of x.

2.4 LORENTZIAN DISTRIBUTION

There are many other distributions that appear in scientific research. Some are phe-
nomenological distributions, created to parameterize certain data distributions. Oth-
ers are well grounded in theory. One such distribution in the latter category is the
Lorentzian distribution, similar but unrelated to the binomial distribution. The
Lorentzian distribution is an appropriate distribution for describing data corre-
sponding to resonant behavior, such as the variation with energy of the cross section
of a nuclear or particle reaction or absorption of radiation in the Mossbauer effect.

The Lorentzian probability density function P;(x; w, I'), also called the
Cauchy distribution, is defined as

a1 TR
pL(xs ) F) - T (x _ p.)2 + (F/2)2

(2.32)

This distribution is symmetric about its mean w. with a width characterized by its
half-width I'. The most striking difference between it and the Gaussian distribution
is that it does not diminish to O as rapidly; the behavior for large deviations is pro-
portional to the inverse square of the deviation, rather than exponentially related to
the square of the deviation.

As with the Gaussian distribution, the Lorentzian distribution function is a
continuous function, and the probability of observing a value x must be related to
the interval within which the observation may fall. The probability dP;(x; w, I') for
an observation to fall within an infinitesimal differential interval dx around x is
given by the product of the probability density function p,(x; w, I') and the size of
the interval dx:

dP(x; w, T) = p,(x; u, T) dx (2.33)

The normalization of the probability density function p;(x; w, I') is such that
the integral of the probability over all possible values of x is unity:
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1

o © 1
f_ fL(x; w, I)dx = - Lc

1+ 22

dz=1 (2.34)
where z = (x — w)/(I'/2).

Mean and Half-Width

The mean p. of the Lorentzian distribution is given as one of the parameters in
Equation (2.32). It is obvious from the symmetry of the distribution that . must be
equal to the mean as well as to the median and to the most probable value.

The standard deviation is not defined for the Lorentzian distribution as a con-
sequence of its slowly decreasing behavior for large deviations. If we attempt to
evaluate the expectation value for the square of the deviations

2 [ 2
02=((X_M)2>=1F—J 2

= I 339

we find that the integral is unbounded: the integral does not converge for large de-
viations. Although it is possible to calculate a sample standard deviation by evalu-
ating the average value of the square of the deviations from the sample mean, this
calculation has no meaning and will not converge to a fixed value as the number of
samples increases.

The width of the Lorentzian distribution is instead characterized by the full-
width at half maximum I', generally called the half-width. This parameter is defined
such that when x = . £ I'/2, the probability density function is equal to one-half its
maximum value, or p(u £ I'/2; w, I') = Yap(w; w, I'). Thus, the half-width T is the
full width of the curve measured between the levels of half maximum probability.
We can verify that this identification of I" with the full-width at half maximum is
correct by substituting x = w = I'/2 into Equation (2.32).

The Lorentzian and Gaussian distributions are shown for comparison in Fig-
ure 2.6, for w = 10 and I = 2.354 (corresponding to o = 1 for the Gaussian func-
tion). Both distributions are normalized to unit area according to their definitions in
Equations (2.23) and (2.32). For both curves, the value of the maximum probability
is inversely proportional to the half-width I'. This results in a peak value of
2/mT" = 0.270 for the Lorentzian distribution and a peak value of 1/c /21 ~ 0.399
for the Gaussian distribution.

Except for the normalization, the Lorentzian distribution is equivalent to the
dispersion relation that is used, for example, in describing the cross section of a nu-
clear reaction for a Breit-Wigner resonance:

r,T,
(E — Ey)* +(/2)?

o = m\? (2.36)

SUMMARY

Binomial distribution: Describes the probability of observing x successes out of »
tries when the probability for success in each try is p:
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Comparison of normalized Lorentzian and Gaussian distributions, with I' = 2.3540.

_ n!
pa(x;n,p)=(§’c)p"q" == (1 —p)n==

W= np a2=np(1 — p)

Poisson distribution: Limiting case of the binomial distribution for large » and con-
stant w; appropriate for describing small samples from large populations.

Rew-Een o=y

Gaussian distribution: Limiting case of the binomial distribution for large » and
finite p; appropriate for smooth symmetric distributions.

pe(x; p, o) = G\/fexp[ 1( _p‘)]

Half-width I' = 2.354¢; probable error PE. = 0.67450.
Standard form:

potdde = —=esp(-3 )

Lorentzian distribution: Describes resonant behavior

r/2
pulxs )= (x— w)? + (T/2)?
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EXERCISES

2.1.

2.2.

23.

24.

2.5.

2.6.

2.7.

28.

2.9.

Consider five coins labeled a, b, c, d, and e. Let x = number of heads showing.
(a) Manually count and tabulate all possible permutations for each of the following

configurations:
i. x=0
if. x=1
iii. x =2
iv. x=3
v. x=4
vii x=15

Compare your results to those given by Equation (2.2).

(b) Manually delete all duplicate permutations from each example of part (a), that is,
cross out permutations that repeat a previous combination in a different order.
Compare your results to those given by Equation (2.3).

Evaluate the following:

@@ oF) o) @)

Evaluate the binomial distribution Pg(x; n, p) forn = 6, p = Y2, and x = 0 to 6. Sketch
the distribution and identify the mean and standard deviation. Repeat for p = Y.
The probability distribution of the sum of the points showing on a pair of dice is given by

x—1
= =x=
P(x) 36 2=x=<7
13 —x
= < <<
36 T=x=<12

Find the mean, median, and standard deviation of the distribution.

Show that the sum in Equation (2.6) reduces to p = np. Hint: Definey = x — 1 and
m = n — 1 and use the fact that

m

)

m! m
———p(1 = p)" =3 Py;m,p)=1
P y!(m_y)!P p };) (Y p

On a certain kind of slot machine there are 10 different symbols that can appear in

each of three windows. The machine pays off different amounts when either one, two,

or three lemons appear. What should be the payoff ratio for each of the three possibil-

ities if the machine is honest and there is no cut for the house?

Show that the sum in Equation (2.7) reduces to 62 = np(1 — p). Hint: Definey = x — 1

and m = n — 1 and use the results of Exercise 2.5.

At rush hour on a typical day, 25.0% of the cars approaching a fork in the street turn left

and 75.0% turn right. On a particular day, 283 cars turned left and 752 turned right. Find

the predicted uncertainty in these numbers and the probability that these measurements

were not made on a “typical day”; that is, find the probability of obtaining a result that

is as far or farther from the mean than the result measured on the particular day.

In a certain physics course, 7.3% of the students failed and 92.7% passed, averaged

over many semesters.

(a) What is the expected number of failures in a particular class of 32 students, drawn
from the same population?

(b) What is the probability that five or more students will fail?



2.10.

2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

2.17.

2.18.
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Evaluate and plot the two Poisson distributions of Example 2.4. Plot on each graph the
corresponding Gaussian distribution with the same mean and standard deviation.
Verify that, for the Poisson distribution, if w is an integer, the probability for x = . is
equal to the probability forx = p — 1, Po(p, ) = Pp(n — 1 ).

Show that the sum in Equation (2.19) reduces to a> = . Hint: Use Equation (2.18)

to simplify the expression. Define y = x — 1 and show that the sum reduces to

ply + 1) = p2

Members of a large collaboration that operated a giant proton-decay detector in a salt

mine near Cleveland, Ohio, detected a burst of 8 neutrinos in their apparatus coinci-

dent with the optical observation of the explosion of the Supernova 1987A.

(a) If the average number of neutrinos detected in the apparatus is 2 per day, what is
the probability of detecting a fluctuation of 8 or more in one day?

(b) In fact, the 8 neutrinos were all detected within a 10-min period. What is the prob-
ability of detecting a fluctuation of 8 or more neutrinos in a 10-min period if the
average rate is 2 per 24 hours?

In a scattering experiment to measure the polarization of an elementary particle, a total

of N = 1000 particles was scattered from a target. Of these, 670 were observed to

be scattered to the right and 330 to the left. Assume that there is no uncertainty in

N = N + N,.

(a) Based on the experimental estimate of the probability, what is the uncertainty in
Ng?In N;?

(b) The asymmetry parameter is defined as A = (N — N, )/(Ng + N,). Calculate the
experimental asymmetry and its uncertainty.

(c) Assume that the asymmetry has been predicted to be A = 0.400 and recalculate
the uncertainties in (a) and (b) using the predicted probability.

A problem arises when recording data with electronic counters in that the system may

saturate when rates are very high, leading to a “dead time.” For example, after a parti-

cle has passed through a detector, the equipment will be “dead” while the detector re-
covers and the electronics stores away the results. If a second particle passes through
the detector in this time period, it will not be counted.

(a) Assume that a counter has a dead time of 200 ns (200 X 107? s) and is exposed to
a beam of 1 X 109 particles per second so that the mean number of particles hit-
ting the counter in the 200-ns time slot is w = 0.2. From the Poisson probability
for this process, find the efficiency of the counter, that is, the ratio of the average
number of particles- counted to the average number that pass through the counter
in the 200-ns time period.

(b) Repeat the calculation for beam rates of 2, 4, 6, 8, and 10 X 109 particles per sec-
ond, and plot a graph of counter efficiency as a function of beam rate.

Show by numerical calculation that, for the Gaussian probability distribution, the full-

width at half maximum I' is related to the standard deviation by I' = 2.3540 [Equation

(2.28)].

The probability that an electron is at a distance r from the center of the nucleus of a

hydrogen atom is given by

dP(r) = Cr2e~"Rdr

Find the mean radius r and the standard deviation. Find the value of the constant C.
Show that a tangent to the Gaussian function is steepest at x = u * o, and therefore
intersects the curve at the ¢~ points. Show also that these tangents intersect the x axis
atx = p * 20.



CHAPTER

ERROR
ANALYSIS

In Chapter 1 we discussed methods for extracting from a set of data points esti-
mates of the mean and standard deviation that describe, respectively, the desired
result and the uncertainties in the results. In this chapter we shall further consider
how to estimate uncertainties in our measurements, the sources of the uncertainties,
and how to combine uncertainties in separate measurements to find the error in a re-
sult calculated from those measurements.

3.1 INSTRUMENTAL AND STATISTICAL
UNCERTAINTIES

Instrumental Uncertainties

If the quantity x has been measured with a physical instrument, the uncertainty in
the measurement generally comes from fluctuations in readings of the instrumental
scale, either because the settings are not exactly reproducible due to imperfections
in the equipment, or because of human imprecision in observing settings, or a com-
bination of both. Such uncertainties are called instrumental because they arise from
a lack of perfect precision in the measuring instruments (including the observer).
We can include in this category experiments that deal with measurements of such
characteristics as length, mass, voltage, current, and so forth. These uncertainties
are often independent of the actual value of the quantity being measured.
Instrumental uncertainties are generally determined by examining the instru-
ments and considering the measuring procedure to estimate the reliability of the mea-
surements. In general, one should attempt to make readings to a fraction of the smallest
scale division on the instrument. For example, with a good mercury thermometer, it
is often easy to estimate the level of the mercury to a least count of one-half of the

36



Error Analysis 37

smallest scale division and possibly even to one-fifth of a division. The measurement
is generally quoted to plus or minus one-half of the least count, and this number rep-
resents an estimate of the standard deviation of a single measurement. Recalling that,
for a Gaussian distribution, there is a 68% probability that a random measurement will
lie within 1 standard deviation of the mean, we observe that our object in estimating
errors is not to place outer limits on the range of the measurement, which is impossi-
ble, but to set a particular confidence level that a repeated measurement of the quantity
will fall this close to the mean or closer. Often we choose the standard deviation, the
68% confidence level, but other levels are used as well. We shall discuss the concept
of confidence levels in Chapter 11.

Digital instruments require special consideration. Generally, manufacturers
specify a rolerance; for example, the tolerance of a digital multimeter may be given
as £1%. At any rate, the precision cannot be better than half the last digit on the
display. The manufacturer’s quoted tolerances may require interpretation as to
whether the uncertainty must be treated as a systematic effect or a statistical effect.
For example, if a student uses a resistor with a stated 1% tolerance in an experiment,
he can expect the stated uncertainty in the resistance to make a systematic contribu-
tion to all experiments with that resistor. On the other hand, when he combines his
results with those of the other students in the class, each of whom used a different
resistor, the uncertainties in the individual resistances contribute in a statistical man-
ner to the variation of the combined sample.

If it is possible to make repeated measurements, then an estimate of the stan-
dard deviation can be calculated from the spread of these measurements as dis-
cussed in Chapter 1. The resulting estimate of the standard deviation corresponds to
the expected uncertainty in a single measurement. In principle, this internal method
of determining the uncertainty should agree with that obtained by the external
method of considering the equipment and the experiment itself, and in fact, any sig-
nificant discrepancy between the two suggests a problem, such as a misunderstand-
ing of some aspect of the experimental procedure. However, when reasonable
agreement is achieved, then the standard deviation calculated internally from the
data generally provides the better estimate of the uncertainties.

Statistical Uncertainties

If the measured quantity x represents the number of counts in a detector per unit time
interval for a random process, then the uncertainties are called szatistical because they
arise not from a lack of precision in the measuring instruments but from overall sta-
tistical fluctuations in the collections of finite numbers of counts over finite intervals
of time. For statistical fluctuations, we can estimate analytically the standard deviation
for each observation, without having to determine it experimentally. If we were to
make the same measurement repeatedly, we should find that the observed values were
distributed about their mean in a Poisson distribution (as discussed in Section 2.2) in-
stead of a Gaussian distribution. We can justify the use of this distribution intuitively
by considering that we should expect a distribution that is related to the binomial dis-
tribution, but that is consistent with our boundary conditions that we can collect any
positive number of counts, but no fewer than zero counts, in any time interval.
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The Poisson distribution and statistical uncertainties do not apply solely to ex-
periment where counts are recorded in unit time intervals. In any experiment in
which data are grouped in bins according to some criterion to form a histogram or
frequency plot, the number of events in each individual bin will obey Poisson sta-
tistics and fluctuate with statistical uncertainties.

One immediate advantage of the Poisson distribution is that the standard de-
viation is automatically determined:

o=Vn (3.1)

The relative uncertainty, the ratio of the standard deviation to the average rate,
o/w =1/ \/_, decreases as the number of counts received per interval increases.
Thus relative uncertainties are smaller when counting rates are higher.

The value for . to be used in Equation (3.1) for determining the standard de-
viation o is, of course, the value of the mean counting rate from the parent popula-
tion, of which each measurement x is only an approximate sample. In the limit of an
infinite number of determinations, the average of all the measurements would very
closely approximate the parent value, but often we cannot make more than one mea-
surement of each value of x, much less an infinite number. Thus, we are forced to
use V/x as an estimate of the standard deviation of a single measurement.

Example 3.1. Consider an experiment in which we count gamma rays emitted by a
strong radioactive source. We cannot determine the counting rate instantaneously be-
cause no counts will be detected in an infinitesimal time interval. But we can deter-
mine the number of counts x detected over a time interval Ar, and this should be
representative of the average counting rate over that interval. Assume that we have
recorded 5212 counts in a 1-s time interval. The distribution of counts is random
in time and follows the Poisson probability function, so our estimate of the standard
deviation of the distribution is ¢ = \/5212. Thus, we should record our result for the
number of counts x in the time interval Ar as 5212 * 72 and the relative error is

o, Vx 1 1

Do Yoo = =0014=14%

x x \/}72

There may also be instrumental uncertainties contributing to the overall un-
certainties. For example, we can determine the time intervals with only finite preci-
sion. However, we may have some control over these uncertainties and can often
organize our experiment so that the statistical errors are dominant. Suppose that the
major instrumental error in our example is the uncertainty o, = 0.01 s in the time in-
terval Ar = 1.00 s. The relative uncertainty in the time interval is thus

o, _0.0l1

=== =001 =1.
AT Too 00I=1L%

This relative instrumental error in the time interval will produce a 1.% relative error
in the number of counts x. Because the instrumental uncertainty is comparable to
the statistical uncertainty, it might be wise to attempt a more precise measurement
of the interval or to increase its length. If we increase the counting time interval
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from 1 s to 4 s, the number of counts x will increase by about a factor of 4 and the
relative statistical error will therefore decrease by a factor of 2 to about 0.7%,
whereas the relative instrumental uncertainty will decrease by a factor of 4 to
0.25%, as long as the instrumental uncertainty o, remains constant at 0.01 s.

3.2 PROPAGATION OF ERRORS

We often want to determine a dependent variable x that is a function of one or more
different measured variables. We must know how to propagate or carry over the un-
certainties in the measured variables to determine the uncertainty in the dependent
variable.

Example 3.2. Suppose we wish to find the volume V of a box of length L, width W,
and height H. We can measure each of the three dimensions to be L, width W, and
height H, and combine these measurements to yield a value for the volume:

Vo = LoWoH, (3.2)

How do the uncertainties in the estimates Ly, Wy, and H,, affect the resulting uncer-
tainties in the final result V;?

If we knew the actual errors, AL = L — L and so forth, in each dimension, we
could obtain an estimate of the error in the final result V, by expanding V about the
point (Ly, Wy, Hy) in a Taylor series. The first term in the Taylor expansion gives

oV oV oV
V=V,+ AL (ﬁ)w(,yf AW (W)Lﬂ’; AH(ﬁ)Lown 3.3)

from which we can find AV = V — V. The terms in parentheses are the partial deriv-
atives of V, with respect to each of the dimensions, L, W, and H, evaluated at the point
Lg, Wy, Hy. They are the proportionality constants between changes in V and infinites-
imally small changes in the corresponding dimensions. The partial derivative of V
with respect to L, for example, is evaluated with the other variables W and H held
fixed at the values W, and H,, as indicated by the subscript. This approximation ne-
glects higher-order terms in the Taylor expansion, which is equivalent to neglecting
the fact that the partial derivatives are not constant over the ranges of L, W, and H
given by their errors. If the errors are large, we must include in this definition at least
second partial derivatives (9V?%dL?, etc.) and partial cross derivatives (3°V/oL oW,
etc.), but we shall omit these from the discussion that follows.
For our example of V = LWH, Equation (3.3) gives

which we could evaluate if we knew the uncertainties AL, AW, and AH.

Uncertainties

In general, however, we do not know the actual errors in the determination of the
dependent variables (or if we do, we should make the necessary corrections). In-
stead, we may be able to estimate the error in each measured quantity, or to estimate
some characteristic, such as the standard deviation o, of the probability distribution
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of the measured qualities, How can we combine the standard deviation of the indi-
vidual measurements to estimate the uncertainty in the result?

Suppose we want to determine a quantity x that is a function of at least two
measured variables, # and v. We shall determine the characteristics of x from those
of u and v and from the fundamental dependence

x=flu,v,...) (3.5)

Although it may not always be exact, we shall assume that the most probable value
for x is given by

x=f(@,v,...) (3.6)

The uncertainty in the resulting value for x can be found by considering the
spread of the values of x resulting from combining the individual measurements u,
V, . .. into individual results x,:

xl =f(ul’ vl’ AR ) (3.7)

In the limit of an infinite number of measurements, the mean of the distribution
will coincide with the average x given in Equation (3.6) and we can use the defin-
ition of Equation (1.8) to find the variance o2 (which is the square of the standard
deviation o,):

= llml > (x, — x) ] (3.8)

Just as we expressed the deviation of V in Equation (3.4) as a function of the
deviations in the dimensions L, W, and H, so we can express the deviations x, — X in
terms of the deviations 4, — u, v, — v, ... of the observed parameters

x,—)"cz(u,—ﬁ)(%)+(v—V)(z—i)+--- (3.9)

where we have omitted specific notation of the fact that each of the partial deriva-
tives is evaluated with all the other variables fixed at their mean values.

Variance and Covariance

Combining Equations (3.8) and (3.9) we can express the variance o2 for x in terms of
the variances o2, a2, . .. for the variables u, v, . . ., which were actually measured:

o2 = N_mNZI(u—u)( )+(v—v)(v)+---
bz o2 (2
+2(u—u)(v—v)( )(3i)+] (3.10)

2
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The first two terms of Equation (3.10) can be expressed in terms of the vari-
ances o2 and o? given by Equation (1.8):

"3:&2[%2(""‘_")2} °3=,1vi£2[;1\;2(v,—v.>2] (3.11)

In order to express the third term of Equation (3.10) in a similar form, we introduce
the covariances o2 between the variables u and v defined analogous to the vari-
ances of Equation (3.11):

0%, = lim L—{; 3 - 8, - v)]] (312

With these definitions, the approximation for the variance o2 for x given in
Equation (3.10) becomes

2 2
ol=g¢? (%) + 03(%) + - -+ 202 (%) (g—j) + (3.13)

Equation (3.13) is known as the error propagation equation.

The first two terms in the equation are averages of squares of deviations
weighted by the squares of the partial derivatives, and may be considered to be the
averages of the squares of the deviations in x produced by the uncertainties in « and
in v, respectively. In general, these terms dominate the uncertainties. If there are ad-
ditional variables besides u and v in the determination of x, their contributions to the
variance of x will have similar terms.

The third term is the average of the cross terms involving products of devia-
tions in « and v weighted by the product of the partial derivatives. If the fluctuations
in the measured quantities « and v, . . . are uncorrelated, then, on the average, we
should expect to find equal distributions of positive and negative values for this
term, and we should expect the term to vanish in the limit of a large random selec-
tion of observations. This is often a reasonable approximation and Equation (3.13)

then reduces to
2 2
or=o2 () 4 o2 () 4. (3.14)
Ju v

with similar terms for additional variables. In general, we use Equation (3.14) for
determining the effects of measuring uncertainties on the final result and neglect the
covariant terms. However, as we shall see in Chapter 7, the covariant terms often
make important contributions to the uncertainties in parameters determined by fit-
ting curves to data by the least-squares method.

3.3 SPECIFIC ERROR FORMULAS

The expressions of Equations (3.13) and (3.14) were derived for the general rela-
tionship of Equation (3.5) giving x as an arbitrary function of u and v, . . . . In the
following specific cases of functions f(u, v, . . . ), the parameters a and b are defined
as constants and « and v are variables.
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Simple Sums and Differences

If the dependent variable x is related to a measured quantity « by the relation

x=u+ta (3.15)
then the partial derivative dx/du = 1 and the uncertainty in x is just
g, =0, (3.16)

and the relative uncertainty is given by

o,_0,__0,

X X uta

(3.17)

Note that if we are dealing with a small difference between u and g, the uncertainty in
x might be greater than the magnitude of x, even for a small relative uncertainty in w.

Example 3.3. In an experiment to count particles emitted by a decaying radioactive
source, we measure N; = 723 counts in a 15-s time interval at the beginning of the ex-
periment and N, = 19 counts in a 15-s time interval later in the experiment. The events
are random and obey Poisson statistics so that we know that the uncertainties in N, and
N, are just their square roots. Assume that we have made a very careful measurement
of the background counting rate in the absence of the radioactive source and obtained
a value B = 14.2 counts with negligible error for the same time interval At. Because
we have averaged over a long time period, the mean number of background counts in
the 15-s interval is not an integral number.
For the first time interval, the corrected number of counts is

x, =N, — B=723 — 14.2 = 708.8 counts
The uncertainty in x, is given by
O, =0y = V723 = 26.9 counts
and the relative uncertainty is

oy _ 269 _ -
. 708 0.038 =3.8%

For the second time interval, the corrected number of events is
x,=N,— B =19 — 14.2 = 4.8 counts
The uncertainty in x is given by
O, =0y, = \/1_9 = 4.4 counts
and the relative uncertainty in x is
o, 44

I
I
|
I
o
e

Weighted Sums and Differences
If x 1s the weighted sum of « and v,
x=aqu+ bv (3.18)
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the partial derivatives are simply the constants
dx dx
—_— = —_— = . 1
(6 u ) a (6 v) b (3-19)

o= qa%?+ b%c?+ 2abc}? (3.20)

and we obtain

Note the possibility that the variance o2 might vanish if the covariance o2 has
the proper magnitude and sign. This could happen in the unlikely event that the fluc-
tuations were completely correlated so that each erroneous observation of u was ex-
actly compensated for by a corresponding erroneous observation of v.

Example 3.4. Suppose that, in the previous example, the background counts B were
not averaged over a long time period but were simply measured for 15 s to give
B = 14 with standard deviation o5 = \/ﬁ = 3.7 counts. Then the uncertainty in x
would be given by

o2=0%+(-03)?=N+B

because the uncertainties in N and B are equal to their square roots.

For the first time interval, we would calculate
x, =(723 — 14) = \/723 + 14 = 709 * 27.1 counts
and the relative uncertainty would be

o, _21.1

709 0.038

For the second time interval, we would calculate
x,=(19 —14) = /19 + 14 = 5 = 5.7 counts

and the relative uncertainty would be

o, _57_
<5 1.1

Multiplication and Division

If x is the weighted product of u and v,
X = auy (3.21)

the partial derivatives of each variable are functions of the other variable,

ax\ 9x\ _
(5) = av (av> = au (3.22)

and the variance of x becomes

ol =(ave,)? + (auc,)? + 2a*uvo?, (3.23)
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which can be expressed more symmetrically as

2 2 2 2

o’x o-u O-V Guv

L=y LW 3.24
x2  ur y? uy ( )

Similarly, if x is obtained through division,

xX=-— (3.25)
v
the relative variance for x is given by
o2 o} o! _o!?
X __"u + v _ 2 uy '
xr  u?r y? uy (3.26)

Example 3.5. The area of a triangle is equal to half the product of the base times the
height A = bh/2. If the base and height have values ¥ = 5.0 = 0.1 cm and 2 = 10.0
+ 0.3 cm, the area is A = 25.0 cm? and the relative uncertainty in the area is given by

oi_9%%, o}

2oty (3.27)
or
o} o}
o} = Az(g—g + zg)
0.12 0.3?
= 252(cm)4<? + W) (cm*/cm?)
=(0.81cm*

Although the absolute uncertainty in the height is 3 times the absolute uncertainty in
the base, the relative uncertainty is only 1Y2 times as large and its contribution to the
variance of the area is only (1Y2)? as large.

Powers

If x is obtained by raising the variable u to a power

x = au’ (3.28)
the derivative of x with respect to u is
(%> =agbub ! = bx (3.29)
du u
and relative error in x becomes
g, .0,
S b ” (3.30)

For the special cases of b = +1, we have
X = au o, = ac

SO

—=— (3.31)
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For b = —1, we have

SO
e (3.32)

The negative sign indicates that, in division, a positive error in u will produce a cor-
responding negative error in x.

Example 3.6. The area of a circle is proportional to the square of the radius A = mr>.
If the radius is determined to be r = 10.0 * 0.3 cm, the area is A = 100.7w cm? with an
uncertainty given by

Tu_ O

A r

or

0, =2A "7 = 21(10.0 cm)X0.3 cm)/(10.0 cm) = 67 cm?

Exponentials

If x is obtained by raising the natural base to a power proportional to ,

x = aeb* (3.33)
the derivative of x with respect to u is
9% _ abet = bx (3.34)
du

and the relative uncertainty becomes
(3.35)
If the constant that is raised to the power is not equal to ¢, the expression can

be rewritten as

x = a" (3.36)

— (eln a)hu — e(h In a)u
=e“withc=blna

where In indicates the natural logarithm. Solving in the same manner as before we
obtain

G—X" =co,=(bInao, (3.37)
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Logarithms
If x is obtained by taking the logarithm of «,
x = a In(bu) (3.38)
the derivative with respect to u is
X _a
% = 7b (3.39)
o, =ab "7 (3.40)

Angle Functions

If x is determined as a function of u, such as
x = a cos(bu) (3.41)

The derivative of x with respect to u is

dx _ —ab sin(bu) (3.42)
du
)
o, = —a,ab sin(bu) (3.43)
Similarly, if
x = a sin(bu) (3.44)
then
dx _ ab cos(bu) (3.45)
du
)
o, = o,ab cos(bu) (3.46)

Note that o, is the uncertainty in an angle and therefore must be expressed in radians.

These relations can be useful for making quick estimates of the uncertainty in
a calculated quantity caused by the uncertainty in a measured variable. For a simple
product or quotient of the measured variable ¥ with a constant, a 1% error in u
causes a 1% error in x. If u is raised to a power b, the resulting error in x becomes
b% for a 1% uncertainty in u. Even if the complete expression for x involves other
measured variables, x = f(u, v, . . . ) and is considerably more complicated than
these simple examples, it is often possible to use these relations to make approxi-
mate estimates of uncertainties.

3.4 APPLICATION OF ERROR EQUATIONS

Even for relatively simple calculations, such as those encountered in undergraduate
laboratory experiments, blind application of the general error propagation expression
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[Equation (3.14)] can lead to very lengthy and discouraging equations, especially if
the final results depend on several different measured quantities. Often the error
equations can be simplified by neglecting terms that make negligible contributions to
the final uncertainty, but this requires a certain amount of practice.

Approximations

Students should practice making quick, approximate estimates of the various con-
tributions to the uncertainty in the final result by considering separately the terms in
Equation (3.14). A convenient rule of thumb is to neglect terms that make final con-
tributions that are less than 10% of the largest contribution. (Like all rules of this
sort, one should be wary of special cases. Several smaller contributions to the final
uncertainty can sum to be as important as one larger uncertainty.)

Example 3.7. Suppose that the area of a rectangle A = LW is to be determined from
the following measurements of the lengths of two sides:

L=221*+0.1cm W=73*0.1cm
The relative contribution of ¢; to the error in L will be

%, _ % _ 0l

1L nl =0.005
and the corresponding contribution of o, will be

o, O

I _Tw 01 _ 6014

A W 173

The contribution from o is thus about one-third of that from o,. However, when the
contributions are combined, we obtain

o, = AV/0.0142 + 0.0052
which can be expanded to give

1 (0.005

~0.014A(1 +~
o ( 0.014

2
> ) ) = 0.014A(1 + 0.06) = 0.015A

Thus, the effective contribution from o is only about 6% of the effective contribution
from o, and could safely be neglected in this calculation.

Computer Calculation of Uncertainties

Finding analytic forms for the partial derivatives is sometimes quite difficult. One
should always break Equation (3.14) into separate components and not attempt to
find one complete equation that incorporates all error terms. In fact, if the analysis
is being done by computer, it may not even be necessary to find the derivatives ex-
plicitly. The computer can find numerically the variations in the dependent variable
caused by variations in each independent, or measured, variable.
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Suppose that we have a particularly complicated equation, or set of equations,
relating our final result x to the individually measured variables u, v, and so forth.
Let us assume that the actual equations are programmed as a computer function
CALCULATE, which returns the single variable x when called with arguments
corresponding to the measured parameters

X = CALCULATE(U, V, W .. .)

We shall further assume that correlations are small so that the covariances may be
ignored. Then, to find the variations of x with the measured quantities u, v, and so
forth, we can make successive calls to the function of the form

DXU = CALCULATE(U + DU, V, W, . .. ) =X,
DXV = CALCULATE(U, V+ DV, W, ... ) - X,
DXW = CALCULATE(U, V, W + DW, .. .) - X,
ETC.

where DU, DV, DW, and so forth are the standard deviations o,, o,, 0,,, and so
on. The resulting contributions to the uncertainty in x are combined in quadrature as

DX = SQRT(SQR(DXU) + SQR(DXV) + SQR(DXW) + . . .)

Note that it would not be correct to incorporate all the variations into one equation
such as

DX = CALCULATE(U + DU, V+ DV, W + DW, ... )-X

because this would imply that the errors DU, DV, and so on were actually known
quantities, rather than independent, estimated variations of the measured quantities,
corresponding to estimates of the widths of the distributions of the measured variables.

SUMMARY

Covariance: a2, = ((u — a)(v — v)).
Propagation of errors: Assume x = f(u, v):

dx \? ax \? ax\ [ dx
2 — 2 = + g2l —= +2 2 - _

For u and v uncorrelated, o2, = 0.

Specific formulas:
x=au+ by o2 = a’c’+ b*c? + 2abc}
7 g2 o2 2
o} o2 o o
X = auv S =+t +2-=
x2 ur v uv
au o ol o o,
== 2 a2,
v U v uv
o o
x=au’ —“=p—4
x u
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x = qet Ix bo,
X
x = qgb¥ $=(blna)0u
X
x = a In(bu) o, =ab ;"
x=acos(bu) o,= —a,ab sin(bu)

x = a sin(bu)

o, = g,ab cos(bu)
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3.1.

3.2

3.3.

34.

3.5.

3.6.

3.7.

3.8.

Find the uncertainty o, in x as a function of the uncertainties o, and o, in # and v for
the following functions:

@ x=12u+v) (b)) x=12um—v) (c) x= 1ui?

) x=w? (e) x=u*+?

If the diameter of a round table is determined to within 1%, how well is its area
known? Would it be better to determine its radius to within 1%?

The resistance R of a cylindrical conductor is proportional to its length L and inversely
proportional to its cross-sectional area A = w2, Which should be determined with
higher precision, r or L, to optimize the determination of R? How much higher?

The initial activity N, and the mean life 7 of a radioactive source are known with un-
certainties of 1% each. The activity follows the exponential distribution N = Nge ™",
The uncertainty in the initial activity Ny dominates at small #; the uncertainty in the
mean life T dominates at large ¢ ( > 7). For what value of #/1 do the uncertainties in N,
and 7 contribute equally to the uncertainty in N? What is the resulting uncertainty in N?
Snell’s law relates the angle of refraction 9, of a light ray traveling in a medium of in-
dex of refraction n, to the angle of incidence 8, of a ray traveling in a medium of in-
dex n, through the equation n, sin 8, = n, sin 0,. Find n, and its uncertainty from the
following measurements:

8, = (2203 02  0,=(1445+02° n, = 1.0000

The change in frequency produced by the Doppler shift when a sound source of fre-
quency fis moving with velocity v toward a fixed observer is given by Af = fu/(u —
v), where u is the velocity of sound. From the following values of , f, and v and their
uncertainties, calculate Af and its uncertainty. Which, if any, of the uncertainties make
a negligible contribution to the uncertainty in Af?

u; = (332 £ 8) m/s; f= (1000 = 1)Hz; and v = (0.123 = 0.003) m/s.

The radius of a circle can be calculated from measurements of the length L of a chord
and the distance & from the chord to the circumference of the circle from the equation
R = L?/2h + h/2. Calculate the radius and its uncertainty from the following values of
L and h.

(@) L =(125.0 = 5.0)cm, h = (0.51 * 0.22) cm

(b)) L=(125.0 £5.0)cm, h = (57.4 = 1.2) cm

Was it necessary to use the second term to calculate R in both (a) and (b)? Explain.
Students measure the speed of sound in the laboratory by creating a sound pulse that
travels down a 1-m tube and reflects back so that both the initial and reflected pulses
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3.9.

3.10.

3.11.

are detected by the same microphone. The signals are recorded by computer and the
pulse amplitudes versus time are displayed on the monitor. The students measure the
time intervals for ten such pairs of pulses on the monitor and record the following
transit times in milliseconds:

Trial | 1 2 3 4 5 6 7 8 9 10
Transit imes | 5.77 578 574 580 578 583 576 578 576 5.78

(a) Examine the data and try to estimate the spread of the data, that is, their standard
deviation.

(b) Calculate the mean transit time, the standard deviation of the sample, and the stan-
dard error (error in the mean).

(¢) One of the transit time measurements differs from the mean by more than 2 stan-
dard deviations. In a ten-event sample, how many measurements are predicted by
Gaussian statistics to differ from the mean by 2 or more standard deviations? Re-
fer to Table C.2.

(d) Calculate the speed of sound and its uncertainty from the data.

Students in the undergraduate laboratory recorded the following counts in 1-min in-

tervals from a radioactive source. The nominal mean decay rate from the source is 3.7

decays per minute.

Decays per minute | 0 1 2 3 4 5 6 7 8 9 10
1

Frequencey of occurrence | 9 20 24 9 11 11 0 3 1 1

(a) Find the mean decay rate and its standard deviation. Compare the standard devia-
tion to the value expected from the Poisson distribution for the mean value that
you obtained.

(b) Plot a histogram of the data and show Poisson curves of both the parent and ob-
served distributions.

Find by numerical integration the probability of observing a value from the Gaussian

distribution that is:

(a) More than 1 standard deviation (o) from the mean.

(b) More than 2 standard deviations from the mean.

(¢) More than 3 standard deviations from the mean.

Find by numerical integration the probability of observing a value from the Lorentz-

ian distribution that is:

(a) More than 1 half-width (I'/2) from the mean.

(b) More than 2 half-widths from the mean.

(¢) More than 3 half-widths from the mean.
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4.1 METHOD OF LEAST SQUARES

In Chapter 2 we defined the mean p of the parent distribution and noted that the
most probable estimate of the mean w of a random set of observations is the av-
erage X of the observations. The justification for that statement is based on the as-
sumption that the measurements are distributed according to the Gaussian
distribution. In general, we expect the distribution of measurements to be either
Gaussian or Poisson, but because these distributions are indistinguishable for most
physical situations we can assume the Gaussian distribution is obeyed.

Method of Maximum Likelihood

Assume that, in an experiment, we have observed a set of N data points that are ran-
domly selected from the infinite set of the parent population, distributed according
to the parent distribution. If the parent distribution is Gaussian with mean . and
standard deviation o, the probability dP, for making any single observation x; within
an interval dx is given by

dP, = p,dx 4.1)

with probability function p; = pg(x;; 1, o) [see Equation(2.23)]. For simplicity, we
shall denote the probability P; for making an observation x, by

1 1fx,— 2}
P = exp|—3 4.2
|45 42
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Because, in general, we do not know the mean p of the distribution for a phys-
ical experiment, we must estimate it from some experimentally derived parameter.
Let us call the estimate n'. What formula for deriving .’ from the data will yield the
maximum likelihood that the parent distribution had a mean equal to n.?

If we hypothesize a trial distribution with a mean .’ and standard deviation o’
= o, the probability of observing the value x; is given by the probability function

N1 x—wy
AR

Considering the entire set of N observations, the probability for observing that par-
ticular set is given by the product of the individual probability functions, P ("),

Pw) = ﬂﬂ(u') (4.4)

where the symbol II denotes the product of the N probabilities P;(.").

The product of the constants multiplying the exponential in Equation (4.3) is
the same as the product to the Nth power, and the product of the exponentials is the
same as the exponential of the sum of the arguments. Therefore, Equation (4.4) re-

duces to
P(u') = 1 N _12 u_’ 2]
(pJ) (0 \/211') exp[ 2 < o ) (4.5)

According to the method of maximum likelihood, if we compare the probabil-
ities P(") of obtaining our set of observations from various parent populations with
different means p’ but with the same standard deviation ¢’ = o, the probability is
greatest that the data were derived from a population with ' = w; that is, the most
likely population from which such a set of data might have come is assumed to be
the correct one.

Calculation of the Mean

The method of maximum likelihood states that the most probable value for ' is the
one that gives the maximum value for the probability P(u") of Equation (4.5). Be-
cause this probability is the product of a constant times an exponential to a negative
argument, maximizing the probability P(p.") is equivalent to minimizing the argu-
ment X of the exponential,

D R il S
o= 23 (52¥) .o

To find the minimum value of a function X we set the derivative of the func-
tion to 0,

aX __d lg(xnzw ) _
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and obtain

dax _ A b A
aeasaE) -3 (5E)0 e

which, because o is a constant, gives

II
=I
lIl

5 s, 4.9)

Thus, the maximum likelihood method for estimating the mean by maximiz-
ing the probability P(u.") of Equation (4.5) shows that the most probable value of
the mean is just the average x as defined in Equation (1.1).

Estimated Error in the Mean

What uncertainty o is associated with our determination of the mean p’ in Equation
(4.9)? We have assumed that all data points x, were drawn from the same parent dis-
tribution and were thus obtained with an uncertainty characterized by the same stan-
dard deviation o. Each of these data points contributes to the determination of the
mean p" and therefore each data point contributes some uncertainty to the determi-
nation of the final results. A histogram of our data points would follow the Gauss-
ian shape, peaking at the value W' and exhibiting a width corresponding to the
standard deviation o. Clearly we are able to determine the mean to much better than
*0, and our determination will improve as we increase the number of measured
points N and are thus able to improve the agreement between our experimental his-
togram and the smooth Gaussian curve.

In Chapter 3 we developed the error propagation equation [see Equation
(3.13)] for finding the contribution of the uncertainties in several terms contributing
to a single result. Applying this relation to Equation (4.9) to find the variance o of

the mean p.’, we obtain
ap' \?
ol=3 [giz(—-ax’ ) ] (4.10)

where the variance o? in each measured data point x, is weighted by the square
of the effect du'/dx,, that that data point has on the result. This approximation
neglects correlations between the measurements x; as well as second- and higher-
order terms in the expansion of the variance Uﬁ, but it should be a reasonable ap-
proximation as long as none of the data points contributes a major portion of the
final result.

If the uncertainties of the data points are all equal o, = o, the partial deriva-
tives in Equation (4.10) are simply

o’ a9 (1 1
ax, =a_x,<ﬁ2x'>:ﬁ 4.11)
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and combining Equations (4.10) and (4.11), we obtain

ol=>> [0?(%)2} = %2 4.12)

for the estimated error in the mean o,. Thus, the standard deviation of our determi-
nation of the mean .’ and, therefore, the precision of our estimate of the quantity .,
improves as the square root of the number of measurements.

The standard deviation o of the parent population can be estimated from a
consideration of the measuring equipment and conditions, or internally from the
data, according to Equation (1.8):

0'=s=\/ﬁ—1_—12(x,—)_c)2 (4.13)

which gives for the uncertainty o, in the determination of the mean

g S

=9 5 4.14
Oy \/— VN (4.14)

where o, is referred to as the standard deviation of the mean, or the standard error.
In principle, the value of o obtained from Equation (4.13) should be consistent with
the estimate made from the experimental equipment.

Example 4.1 We return to the student’s measurement of the dropped ball (Example
1.2). Let us assume that the time for the ball to fall 2.00 m had been established previ-
ously by careful measurements to be T,, = 0.639 s. The student drops the ball
50 times and concludes, from a consideration of the electronic timer and the experi-
mental arrangement that the uncertainty in each of his individual measurements is
*+0.020 s, consistent with the standard deviation determined from the data. This finite
precision of the apparatus results in a spread of observations grouped around the es-
tablished time as illustrated by the histogram of the data in Figure 1.2.

Because the uncertainties in all the data points are equal (s, = s), the student
calculates from his measurements and Equation (4.9) that his estimate of the
mean time is p = T = 0.635s, with a standard deviation from Equation (4.13) of
o = s = 0.020 s. From Equation (4.14), he estimates the uncertainty in his determina-
tion of the mean to be o, = s/\/ITI = 0.020/\/36 or ¢, = 0.0028. He quotes his
experimental result as T,,, = (0.635 = 0.003) s.

To compare his experimental value T,,, to the established value T, the student
calculates the number of standard deviations by which the two differ, n = IT,,, — T, /o,
= 1.4. From the integral of the Gaussian probability equation in Table C.2, we observe
that we might expect a measurement to be within 1.4 standard deviations in about
83.8% of repeated experiments, or to exceed 1.4 standard deviations in about 16.2% of
the cases.

It is important to realize that the standard deviation of the data does not de-
crease with repeated measurement; it just becomes better determined. On the other
hand, the standard deviation of the mean decreases as the square root of the number
of measurements, indicating the improvement in our ability to estimate the mean of
the distribution. Graphically we could illustrate this improvement by plotting a



Estimates of Mean and Errors 55

histogram of the data and noting that our ability to determine the peak of the distri-
bution improves as the number of measurements increases and the distribution be-
comes smoother.

A Warning About Statistics

Equation (4.12) might suggest that the error in the mean of a set of measurements
x, can be reduced indefinitely by repeated measurements of x;, We should be aware
of the limitations of this equation before assuming that an experimental result can
be improved to any desired degree of accuracy if we are willing to do enough
work. There are three main limitations to consider: those of available time and re-
sources, those imposed by systematic errors, and those imposed by nonstatistical
fluctuations.

The first of these limitations is a very practical one. It may not be possible to
take enough repeated measurements to make a significant improvement in the stan-
dard deviation of the result. The student of Example 1.2 may be able to make 50
measurements of the time, but might not have the patience to make four times as
many measurements to cut the uncertainty by a factor of 2. Similarly, an experiment
at a particle accelerator may be assigned 1000 hours of beam time. It may not be
possible to increase the allocation to 16,000 hours to improve the precision of the
result by a factor of 4.

All experiments are subject to systematic errors at some level. Even after
every possible effort has been made to understand the experimental equipment and
correct for all known defects and errors of calibration, there comes a point at which
further knowledge is unobtainable. For instance, any error in the placement of the
detectors that measure times at the beginning and ending of the ball’s fall in Exam-
ple 1.2 will lead to a systematic uncertainty in the time (or in the distance through
which the ball fell) and thus in the final result of the experiment.

The phrase “nonstatistical fluctuations” can hide a multitude of sins, or at least
problems, in our experiments. It is a rare experiment that follows the Gaussian dis-
tribution beyond 3 or 4 standard deviations. More likely, some unexplained data
points, or outliers, may appear in our data sample, far from the mean. Such points
may imply the existence of other contaminating points within the central probabil-
ity region, masked by the large body of good points. A thorough study of back-
ground effects and sources of possible contaminating is obviously required, but at
some level, these effects are bound to limit the accuracy of the experiment.

What are we to make of those unexpected points that appear in our data plots
well beyond their level of probability? Some may arise from a chance careless mea-
surement. Did our attention wander at the instant when we should have recorded the
data point? Did we accidentally interchange two digits in writing down our mea-
surement? Perhaps we can understand and make corrections for some of these ef-
fects. Other anomalies in the data may be caused by equipment malfunction. Did
our electronic detector respond to a particularly striking clash of metal from the lo-
cal all-powerful rock radio station? Did our trusty computer decide to check e-mail
rather than respond to an urgent data interrupt? And was the distribution that we
chose to represent our data the correct one for this experiment?
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We may be able to make corrections for these problems, once we are aware of
their existence, but there are always others. At some level, things will happen that
we cannot understand, and for which we cannot make corrections, and these
“things” will cause data to appear where statistically no data should exist, and data
points to vanish that should have been there. The moral is, be aware and do not trust
statistics in the tails of the distributions.

Elimination of Data Points

There will be occasions when we feel justified in eliminating or correcting outlying
data points. For example, suppose that among the time measurements in Example
1.2, the student had recorded one as 0.86s. The student would likely conclude that he
had meant to write 0.68s and either ignore or correct the point. What if one measure-
ment had been recorded as 0.72s? Should any action be taken? The point is about 4
standard deviations away from the mean of all the data points, and referring to Table
C.2 we see that there is about a 0.06% probability of obtaining in a single measure-
ment a value that is that far from the mean. Thus, in a sample of 50 such measure-
ments we should expect to collect about 50 X 0.00006 = 0.003 such events.

The established condition for discarding data in such circumstances is known
as Chauvenet’s criterion, which states that we should discard a data point if we ex-
pect less than half an event to be farther from the mean than the suspect point. If our
sample point satisfies this requirement and, as long as we are convinced that our
data do indeed follow the Gaussian distribution, we may discard the point with rea-
sonable confidence and recalculate the mean and standard deviation. Thus, for the
two examples cited in the preceding paragraph, it would be permissible under Chau-
venet’s criterion to discard both the 0.86s and the 0.72s data points.

Removing an outlying point has a greater effect on the standard deviation than
on the mean of a data sample, because the standard deviation depends on the
squares of the deviations from the mean. Deleting one such point will lead to a
smaller standard deviation and perhaps another point or two will now become can-
didates for rejection. We should be very cautious about changing data unless we are
confident that we understand the source of the problem we are seeking to correct,
and repeated point deletion is generally not recommended. The importance of keep-
ing good records of any changes to the data sample must also be emphasized.

Weighting the Data—Nonuniform Uncertainties

In developing the probability P(p.") of Equation (4.5) from the individual probabil-
ities P,(u") of Equation (4.3), we assumed that the data points were all extracted
from the same parent population. In some circumstances, however, there will be
data points that have been measured with better or worse precision than others. We
can express this quantitatively by assuming parent distributions with the same mean
. but with different standard deviations o,

If we assign to each data point x; its own standard deviation o, representing the
precision with which that particular data point was measured, Equation (4.5) for the
probability P(j.") that the observed set of N data points come from parent distribu-
tions with means w; = W' and standard deviations o; becomes
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P(p)= ljl (0 \l/ﬂ>exp[—_;_ > (x,- (_, }L')zl 4.15)

Using the method of maximum likelihood, we must maximize this probabil-
ity, which is equivalent to minimizing the argument in the exponential. Setting the
first derivative of the argument to 0, we obtain

__l_d xt_“',z_ xi_“', _
2du'2( 5 )_2( = )‘0 (*19

The most probable value is therefore the weighted average of the data points

' _ 2(xi/(f;z)
= >(1/a?)

where each data point x; in the sum is weighted inversely by its own variance o?.

@.17)

Error in the Weighted Mean

If the uncertainties of the data points are not equal, we evaluate dp.'/dx, from the ex-
pression of Equation (4.17) for the mean p.":

aw _ 8 S(x/op) __1/o?
ax,- ax,- 2(1/0',2) 2(1/0'12)

Substituting this result into Equation (4.10) yields a general formula for the uncer-
tainty of the mean o

(4.18)

_ 1/6? 1
h = 2[2(1/0;2)]2_2(1/0;2)

g

(4.19)

Relative Uncertainties

It may be that the relative values of o, are known, but the absolute magnitudes are not.
For example, if one set of data is acquired with one scale range and another set with a
different scale range, the o; may be equal within each set but differ by a known factor
between the two sets, as would be the case if o; were proportional to the scale range.
In such a case, the relative values of the o; should be included as weighting factors in
the determination of the mean w and its uncertainty, and the absolute magnitudes of
the o, can be estimated from the dispersion of the data points around the mean.
Let us define weighting factors w; such that

kw; = 1/0} (4.20)

where k is an unknown scaling constant and the o, are the standard deviations asso-
ciated with each measurement. We assume that the weights w, are known but that
the absolute values of the standard deviations o; are not. Then, Equation (4.17) can
be written

r_ Z(X,-/O'iz) — kal'xl — EW;X,
M TS0 T Shw Sw,

4.21)
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and the result depends only on the relative weights and not on the absolute magni-
tudes of the o;.

To find the error in the estimate p.’ of the mean we must calculate a weighted
average variance of the data:

EW,'(X; - ,)2 N EW;X;Z , N
= [ X = < S M2> X W:T) (4.22)

>w, N-1)
where the last factor corrects for the fact that the mean p.' was itself determined
from the data. We may recognize the expression in brackets as'the difference be-
tween the weighted average of the squares of our measurements x; and the square of
the weighted average. The variance of the mean can then be determined by substi-
tuting the expression for o from Equation (4.22) into Equation (4.14):

0.2

ol=— (4.23)

If they are required, the value of the scaling constant k and of the values of the sep-
arate variances g; can be estimated by equating the two expressions for o, of Equa-
tions (4.14) and (4.19) and replacing 1/c? by kw; to give

a? 1 1

— = = 4.24
N =(1/0?) kSw; (4.24)
SO
N 1
k= p E_w, (4.25)
and therefore
1 g Iw;
1=~ — i
OF P N, (4.26)

Example 4.2. A student performs an experiment to determine the voltage of a stan-
dard cell. The student makes 40 measurements with the apparatus and finds a result
X, = 1.022 V with a spread s, = 0.01 V in the observations. After looking over her
data she realizes that she could improve the equipment to decrease the uncertainty by
a factor of 2.5 (s, = 0.004 V) so she makes 10 more measurements that yield a result
X, = 1018 V.

The mean of all these observations is given by Equation (4.17):

40(1.022) . 10(1.018)
0.012 0.0042

FEXTT0 10 v
+ —_—
0.012 " 0.0042
_4.00(1.022) +625(1.018)
4.00 + 6.25

= 1.0196 V
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The uncertainty o, in the mean is given by Equation (4.19):

40 10 \'/2
~¢=|— 4+ ——— = (),
o,=5§ (0.012 0'0042> 0.00099 V

The result should be quoted as p = (1.0196 * 0.0010)V although p = (1.020 *
0.001)V would also be acceptable. Carrying the fourth place (which is completely un-
defined) after the decimal point just eliminates any possible rounding errors if these
data should later be merged with data from other experiments.

The precision of the final result in Example 4.2 is better than that for either
part of the experiment. The uncertainties in the estimates of the means w; and p., de-
termined from the two sets of data independently are given by Equation (4.14):

5= v 00016V 5,=2%%y 00013V

V/40 V10
A comparison of these values illustrates the fact that taking more measurements
decreases the resulting uncertainty only as the square root of the number of obser-
vations, which for this case is not so important as decreasing o;.

What if the student did not know the absolute uncertainties in her measure-
ments, but only that the uncertainties had been improved by a factor of 2.5? She
could obtain the estimate of the mean directly from Equation (4.21) by replacing
1/ by the weight w, = 1, and 1/0 by the weight w, = 2.52, to give

40(1)(1.022) V + 10(2.52)(1.018) V
a 40(1) + 10(2.5

=1.0196 V

To find the error in the mean the student could calculate o from her data by Equa-
tion (4.22) and use Equation (4.23) to estimate o,

Discarding Data

Even though the student in Example 4.2 made four times as many observations at
the lower precision ( higher uncertainty), the high-precision contribution is over 1.5
times as effective as the low-precision data in determining the mean. The student
should probably consider ignoring the low-precision data entirely and using only
the high-precision data. Why should we ever throw away data that are not known to
be bad? Additionally, because in this case the earlier data are weighted so as to be
rather unimportant to the result, what is the point in neglecting them and thereby
wasting all the effort that went into collecting those first 40 data points?

These are questions that arise again and again in experimental science as one
works to find the elusive parameters of the parent distribution. The answer lies in
the fact that experiments tend to be improved over time and often the earliest data-
taking period is best considered a training period for the experimenters and a
“shakedown” period for the equipment. Why risk contaminating the sample with
data of uncertain results when they contribute so little to the final result? The rela-
tive standard deviations of the two data sets can serve as a guide. If the spread of the
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later distribution shows marked improvement over that of the earlier data, then we
should seriously consider throwing away the earlier data unless we are certain of
their reliability. There is no hard and fast rule that defines when a group of data
should be ignored—common sense must be applied. However, we should make an
effort to overcome the natural bias toward using all data simply to recover our in-
vestment of time and effort. Greater reliability may be gained by using the cleaner
sample alone.

4.2 STATISTICAL FLUCTUATIONS

For some experiments the standard deviations o; can be determined more accu-
rately from a knowledge of the estimated parent distribution than from the data or
from other experiments. If the observations are known to follow the Gaussian dis-
tribution, the standard deviation o is a free parameter and must be determined ex-
perimentally. If, however, the observations are known to be distributed according
to the Poisson distribution, the standard deviation is equal to the square root of the
mean.

As discussed in Chapter 2, Poisson probability is appropriate for describing
the distribution of the data points in counting experiments where the observations
are the numbers of events detected per unit time interval. In such experiments, there
are fluctuations in the counting rate from observation to observation that result
solely from the intrinsically random nature of the process and are independent of
any imprecision in measuring the time interval or of any inexactness in counting the
number of events occurring in the interval. Because the fluctuations in the observa-
tions result from the statistical nature of the process, they are classified as statisti-
cal fluctuations, and the resulting errors in the final determinations are classified as
statistical errors.

In any given time interval there is a finite chance of observing any positive (or
zero) integral number of events. The probability for observing any specific number
of counts is given by the Poisson probability function, with mean p.,, where the sub-
script ¢ indicates that these are average values for the time interval of length Ar.
Thus, if we make N measurements of the number of counts in time intervals of fixed
length Az, we expect that a histogram of the number of counts x; recorded in each
time interval would follow the Poisson distribution for mean ..

Mean and Standard Deviation

For values of the mean ., greater than about ten, the Gaussian distribution closely
approximates the shape of the Poisson distribution. Therefore, we can use the for-
mula of Equation (4.9) for estimating the mean with the assumption that all data
points were extracted from the same parent population and thus have the same
uncertainties:

1
b=%=53x (4.27)
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Here the x; are the numbers of events detected in the N time intervals Az, and the as-
sumption that the data were all drawn from the same parent population is equivalent
to assuming that the lengths of the time intervals were the same for all measurements.

According to Equation (2.19), the variance o? for a Poisson distribution is
equal to the mean pw.:

of = =X (4.28)

The uncertainty in the mean o,, is obtained by combining Equations (4.12) and

(4.28):
R | T b
RV \ﬁ \[v (*.29)

We usually wish to find the mean number of counts per unit time, which is just

=_& 1 =ﬁ= ——lL—
w= with o, Af / NA? (4.30)

As we might expect, the uncertainty in the mean number of counts per unit time o,
is inversely proportional to the square roots of both the time interval Ar and the
number of measurements N.

In some experiments, as in Example 4.2, data may be obtained with varying
uncertainties. For purely statistical fluctuations, this implies that counts were
recorded in varying time intervals Az;. If we wish to find the mean number of counts
p per unit time from such data, there are two possible ways to proceed. If we have
the raw data counts (the x;) and we know they are all independent, then we can sim-
ply add all the x; and divide the sum by the sum of the time intervals:

X,

= ——— 2 —
T A, and o‘=p

The more likely situation is that we know only the means ., and corresponding
standard deviations g; of the means, obtained from the experiments. For example,
when dealing with published experimental data, we should assume that the errors
incorporate instrumental as well as statistical uncertainties. With such data, the
safest procedure is to apply Equations (4.17) and (4.19) to evaluate the weighted
mean . of the individual means p; and the standard deviation o, of the mean:
2
~M and oﬁ=—1— (4.31)

A (V) 2(1/0?)

Example 4.3. The activity of a radioactive source is measured N = 10 times with a
time interval Az = 1 min. The data are given in Table 4.1. The average of these data
points is X = 15.1 counts per minute. The spread of the data points is characterized by
o = 3.9 counts per minute calculated from the mean according to Equation (4.27). The
uncertainty in the mean is calculated according to Equation (4.29) to be o3 = 1.2
counts per minute.
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TABLE 4.1
Experimental data for the activity of a radioactive source from the
experiment of Example 4.3

Interval Counts
At; (min) X;
1 19
1 11
1 .
1 24 x= NEx, = 151 counts per 10 minutes
1 16 = 15.1 counts per minute
1 11
1 15
1 22 o= \/«% = 3.9 counts per minute
1 9
o .
1 9 o, = W = 1.2 counts per minute
! 1
Sum = 151
10 147 019 = V147 counts per 10 minutes
- - = 1.2 counts per minute
Total 20 298 X0 = (151 + 147)/(10 + 10)

= 298/20 = 14.9 counts per minute

0y = V298 counts per 20 minutes
= 0.9 counts per minute

Note: The data tabulated are the number of counts x, detected in each time interval At,.

If we were to combine the data into one observation x' = Zx, from one 10-min
interval, we would obtain the same result. The activity is x" = 151 counts per 10 min-
utes = 15.1 counts per minute as before. The uncertainty in the result is given by the
standard deviation of the single data point o, = \/151 = 12.3 counts per 10 minutes
= 1.2 counts per minute.

Suppose that we made an additional measurement for a 10-min period and ob-
tained x” = 147 counts. We could combine x' and x” exactly as before to obtain a total

xr=x"+x"=(151 + 147)/(10 + 10) = 14.9 counts per minute
with an uncertainty
03, = V298/20 = 0.87 counts per minute

which is smaller than o by a factor of V2. Alternatively, we could combine the orig-
inal data points according to Equation (4.17) and calculate the uncertainty in the final
result o7 by combining the uncertainties of the individual data points according to
Equation (4.19).

Note that, although we could have simplified matters by recording all the data
as one experimental point, x = 298 counts per 20 minutes, by so doing, we would



Estimates of Mean and Errors 63

lose all independent information about the shape of the distribution that could be
used as a partial check on the validity of the experiment.

4.3 PROBABILITY TESTS

The object of our analysis is to obtain the best estimates, X and s,,, of the mean
and its uncertainty o, and to interpret the probability associated with the uncer-
tainty as a measure of our success in determining the parent parameters. Regard-
less of the method used to make the measurements and analyze the data, we must
always estimate the uncertainty in our results to indicate numerically our confi-
dence in them.

Generally, we relate the uncertainty to a Gaussian probability. We have noted
that approximately 68% of the measurements in a Gaussian distribution fall within
*+ 1 standard deviation of the mean . Thus, when we find the average of a large
number of individual measurements, we expect the distribution of means to be
Gaussian, centered on X = p with width s = o, so that approximately 68% of our
measurements of x would fall within the range (x — s) < x < (x + s). Similarly, if
we were to repeat the entire experiment many times, we should expect our individ-
ual determinations of x to form a Gaussian distribution about the mean w, with
width s, = s/ \/_ = g/ \/ﬁ Again, we should expect that approximately 68% of
our determinations of X should fall within the range (. — s5,) <X < (n + s5,). If we
are convinced that we have made careful and unbiased measurements, we make a
slight logical leap to state that there is approximately 68% probability that the true
value of the mean p lies in the range (X — s5,) < w < (X + s,) or that the specified
range is the 68% confidence interval.

Rather than state confidence intervals in terms of 1 standard deviation, we
may prefer to state a range that refers to a specific probability level. For example,
we may wish to state that our result lies between two values, x, and x, with a 90%
level of confidence, which would correspond to x, = X — 1.64 5, and x, = X + 1.64
s,- Thus, in Example 4.1, the student may report 90% probability that the mean time
is within the interval 0.635 = (1.64 X 0.0028) s, or T = (0.635 = 0.005) s at a 90%
confidence level. In science, it is customary to report 1 standard deviation uncer-
tainties unless we state otherwise. In other fields, for example political polling, it is
customary to report a 95% confidence level, corresponding to approximately 2 stan-
dard deviations. American polls are generally accompanied by a statement like “Poll
of 1000 adults; margin of error plus or minus 3 percentage points.” Canadian media
would report “Poll results are likely to be accurate within 3 percentage points 19
times out of 20.” If you assume a binomial distribution, you should realize that both
statements have almost the same content.

Student’s ¢ Distribution

We should be aware that Gaussian probability may not apply to our particular data
set, and even an experimental distribution that nominally follows Gaussian statistics
is apt to deviate in the tails. When the data set is small, there is another considera-
tion. Not only the mean, but also our estimate s, of the standard error o, may be
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poorly determined. The probabilities that we calculate from the Gaussian distribu-
tion take no account of the latter problem.

In such cases, a better estimate of the probability can be obtained from Sru-
dent s t distribution,' which describes the distribution of the parameter t = Ix — xl/s,,,
where 1 is the number of standard deviations of the sample distribution s, by which
x differs from Xx.

__1 T[(v+1)/2] 2oz
plt, v) = oo TR (1 + v)

where the gamma function I'(n) is equivalent to the factorial function n! extended
to nonintegral arguments. (See Equation 11.7).

Unlike the Gaussian distribution, Student’s ¢ distribution depends upon the
number of degrees of freedom v. If X represents the mean of N numbers and x is not
derived from the data, then v = N — 1. If both x and X are means, s, must be the joint
standard deviation of x and X, and v must be the total number of degrees of freedom.
In the limit of large v, Student’s r and Gaussian probability distributions agree. As
with the Gaussian distribution, we are usually interested in integrated values that re-
late to the probability of obtaining a result within a specific range *¢ standard devi-
ations. For example, we might wish to report our estimate of the probability that the
true value of . lies within the range (x — #s,) < p < (X + 15,) with 7 = |x — pl/s,,.

Table C.8 lists probabilities obtained by integrating the Student’s # distribution
from x = X — 15, tox = X + 15, for specified values of 7 and the number of degrees
of freedom v. The corresponding values for Gaussian probability (which are inde-
pendent of v) are listed in the last column.

Consider again Example 4.1 in which the student made 50 time measurements
and found that the mean of his measurements deviated by 1.4s, from the established
value. From Gaussian probability we observed that approximately 84% of experi-
ments should yield a result that is within 1.4 standard deviations of the expected re-
sult. From Student’s ¢ distribution (Table C.8.), we observe that the probability is
lower by about 0.6%. However, suppose the student made only six measurements
using a more precise measuring system and again obtained a result that differed
from the mean by ¢ = 1.4s, (see Exercise 4.12). Small numbers of measurements
are common in undergraduate laboratory experiments, where time may be short and
the measurements may be tedious. What probability is implied for 5 degrees of free-
dom by a difference of r = 1.4s,? The Gaussian probability is unchanged at ~84%;
Student’s ¢ predicts ~78%. Thus, for experiments with only a few degrees of free-
dom, Gaussian probability overestimates the confidence level associated with a
given range t. Another way of looking at this is to note that, for the same confi-
dence level, Student’s ¢ probability requires a larger uncertainty estimate than does
Gaussian probability.

Generally, a result is considered to be significant only at confidence levels of
95% or better. In Gaussian probability, this corresponds to a range of approximately
*20. We can observe from Table C.8 that for a sample of only three data points

1“Review of Particle Physics,” The European Physical Journal C, vol. 15, p. 193 (2000)
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(v = 2), the Student’s ¢ probability for 95% confidence corresponds to a range of
more than *40.

44 CHI-SQUARE TESTS OF A
DISTRIBUTION

Once we have calculated the mean and standard deviation from our data, we may
be in a position to say even more about the parent population. If we can be fairly
confident of the type of parent distribution that describes the spread of the data
points (e.g., Gaussian or Poisson distribution), then we can describe the parent dis-
tribution in detail and predict the outcome of future experiments from a statistical
point of view.

Because we are concerned with the behavior of the probability density function
p(x,) as a function of the observed values of x,, a complete discussion will be post-
poned until Chapter 11 following the development of procedures for comparing data
with complex functions. Let us for now use the results of Chapter 11 without deriva-
tion. The test that we shall describe here is the x? (chi-square) test for goodness of fit.

Probability Distribution

If N measurements x, are made of the quantity x, we can truncate the data to a com-
mon least count and group the observations into frequencies of identical observations
to make a histogram. Let us assume that j runs from 1 to # so there are n possible dif-
ferent values of x,, and let us call the frequency of observations, or number of counts
in each histogram bin, h(x)) for each different measured value of x,. If the probability
for observing the value x, in any random measurement is denoted by P(x,), then the
expected number of such observations is y(x,) = NP(x,), where N is the total number
of measurements. Figures 4.1 and 4.2 show the same six-bin histogram, drawn from
a Gaussian parent distribution with mean p. = 5.0 and standard deviation o = 1, cor-
responding to 100 total measurements. The parent distribution, y(x,) = NP(x), is il-
lustrated by the solid Gaussian curve on each histogram.

For each measured value x,, there is a standard deviation o (h) associated with
the uncertainty in the observed frequency h(x,). This is not the same as the uncer-
tainty o, associated with the spread of the individual measurements x, about their
mean p, but rather describes the spread of the measurements of each of the fre-
quencies h(x,) about its mean .. If we were to repeat the experiment many times to
determine the distribution of frequency measurements at each value of x,, we should
find each parent distribution to be Poisson with mean p, = y(x,) and variance g X(y)
= ¥(x)). Thus, for each value of x,, there is a distribution curve, P(y,), that de-
scribes the probability of obtaining the value of the frequency A,(x) in the kth trial
experiment when the expected value is y(x)). It is the spread of these measurements
for each value of j that is characterized by o,(h). These distributions are illustrated
in Figures 4.1 and 4.2 as dotted Poisson curves at each value of x,. In Figure 4.1 the
Poisson curves are centered at the observed frequencies h(x,) with standard devia-
tions a,(h) = V h(xj). In principle, we should center the Poisson curves at the
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FIGURE 4.1

Histogram, drawn from a Gaussian distribution mean p. = 5.0 and standard deviationo = 1,
corresponding to 100 total measurements. The parent distribution y(x) = NP(x)) is illustrated by the
large Gaussian curve. The smaller dotted curves represent the Poisson distribution of events in each
bin, based on the sample data.
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The same histogram as shown in Figure 4.1 with dotted curves representing the Poisson distribution
of events in each bin, based on the parent distribution.
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frequencies w, = y(x,) with standard deviation o,(h) = \/;J of the parent popula-
tion as illustrated in Figure 4.2. However, in an actual experiment, we generally
would not know these parameters.

Definition of x2
With the preceding definitions for n, N, x, h(x), P(x,), and o,(h), the definition of x?
from Chapter 11 is

) — NP(x
o,(h)?

[h(x

J

Al

(4.32)

In most experiments, however, we do not know the values of o (h) because we make
only one set of measurements f(x,). Fortunately, these uncertainties can be estimated
from the data directly without measuring them explicitly.

If we consider the data of Figure 4.2, we observe that for each value of X, we
have extracted a proportionate random sample of the parent population for that
value. The fluctuations in the observed frequencies h(x;) come from the statistical
probabilities of making random selections of finite numbers of items and are dis-
tributed according to the Poisson distribution with y(x,) as mean. Although the dis-
tribution of frequencies y(x,) in Figure 4.2 is Gaussian, the probability functions for
the spreads of the measurements of each frequency are Poisson distributions.

For the Poisson distribution, the variance o,(h) is equal to the mean y(x,)
of the distribution, and thus we can estimate o,(h) from the data to be o;(h) =
V. NP(x,) = \/h(xj). Equation (4.32) simplifies to

n [h(X,) — NP(x,)]? - [A(x) — NP(XJ)]Z
JZI NP(xJ) a /Z:l h(xj)

X2 (4.33)

Test of x?2

As defined in Equations (4.32) and (4.33), x? is a statistic that characterizes the dis-
persion of the observed frequencies from the expected frequencies. If the observed
frequencies were to agree exactly with the predicted frequencies h(x,) = NP(x)),
then we should find x? = 0. From our understanding of probability, we realize that
this is not a very likely outcome of an experiment. The numerator of Equation
(4.32) is a measure of the spread of the observations; the denominator is a measure
of the expected spread. We might imagine that for good agreement, the average
spread of the data would correspond to the expected spread, and thus we should get
a contribution of about one from each frequency, or x? = » for the entire distribu-
tion. This is almost correct. In fact, the true expectation value for x? is

(x=v=n-—n, (4.34)

where v is the number of degrees of freedom and is equal to the number » of sam-
ple frequencies minus the number 7, of constraints or parameters that have been cal-
culated from the data to describe the probability function NP(x)). For our example,
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even if NP(x)) is chosen completely independently of the distribution A (x)), there is
still the normalizing factor N corresponding to the total number of events in the dis-
tribution, so that the expectation value of x*> must at best be (x*) = n — 1.

In order to estimate the probability that our calculated values of x? are consis-
tent with our expected distribution of the data, we must know how x? is distributed.
If our value of x? corresponds to a reasonable high probability, then we can have
confidence in our assumed distribution.

It is convenient to define the reduced chi-square as x = x*/v, with expecta-
tion value (x2) = 1. Values of x2 much larger than 1 result from large deviations
from the assumed distribution and may indicate poor measurements, incorrect as-
signment of uncertainties, or an incorrect choice of probability function. Very small
values of x2 are equally unacceptable and may imply some misunderstanding of the
experiment. Rather than consider the probability of obtaining any particular value
of x2 or x2 (which is infinitesimally small), we shall use an integral test to determine
the probability of observing a value of x2 equal to or greater than the one we calcu-
lated. This is similar to our consideration of the probability that a measurement of a
variable deviates by more than a certain amount from the mean.

Table C.4 gives the probability that a random sample of data points drawn
from the assumed probability distribution would yield a value of x? as large as or
larger than the observed value in a given experiment with v degrees of freedom.

If the probability is reasonably close to 1, then the assumed distribution de-
scribes the spread of the data points well. If the probability is small, either the as-
sumed distribution is not a good estimate of the parent distribution or the data
sample is not representative of the parent distribution. There is no yes-or-no answer
to the test; in fact, we should expect to find a probability of about 0.5 with 2 = 1,
because statistically the observed values of x? should exceed the norm half the time.
But in most cases, the probability is either reasonably large or unreasonably small,
and the test is fairly conclusive. A further discussion of the statistical significance of
the x2 probability function will be given in Chapter 11.

Let us consider again the data of Example 1.2 (and 4.1), which are summarized
as a histogram in Figure 1.2 with the frequencies listed in Table 4.2. To test the agree-
ment between the data and the predicted distribution, we have calculated the function
y(x,) = NP(x) at each value of x, from the mean and standard deviation of the parent
distribution (column 3 of Table 4.2), and from the mean and standard deviation of the
data, that is, from the sample distribution (column 6). The uncertainties o, calculated
as the square roots of the values predicted by the parent distribution and by the sam-
ple distribution are listed in columns 4 and 7 respectively. The individual contribu-
tions (before squaring) to the values of x?, [A(x)) — NP(x))/o,, are listed in columns
5 and 8. The calculated values of x? from the comparison between the data and each
distribution are the sums of the squares of these last quantities.

For the comparison of the 11 data points with the parent distribution we have
one constraint, the normalization constant N determined from the data, and there-
fore the expectation value of x?*isv = 11 — 1 = 10. We obtained x> = 13.03 and
thus, x2 = 1.30. Interpolating in Table C.4, we observe that the corresponding prob-
ability of obtaining a value x2? = 1.30 with 10 degrees of freedom is ~23%. For a
similar comparison with an estimate of the parent distribution based on the mean
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and standard deviation of the data, we have two additional constraints, the mean and
standard deviation. Thus, for this comparison, the expectation value of x? is v =
11 — 3 = 8. We obtained x> = 7.85 and, thus, x2 = 0.98. The corresponding prob-
ability for obtaining a value x? = 0.98 with 8 degrees of freedom is ~45%.

Generalizations of the x? Test

In the preceding example we knew the parent distributions and were therefore able
to determine the uncertainties o,(h) from the predicted probability. In most cases,
where the actual parameters of the probability function are being determined in the
calculation, we must use an estimate of the parent population based on these para-
meters and must estimate the uncertainties in the y(x,) from the data themselves. To
do this we must replace the uncertainties in columns 4 and 7 of Table 4.2 with the
square roots of the observed frequencies in column 2.

Furthermore, although our example was clearly based on a simple probability
function, the x? test is often generalized to compare data obtained in any type of ex-
periment to the prediction of a model. The uncertainties in the measurements may
be instrumental or statistical or a combination of both, and the uncertainty o (k) in
the denominator of Equation (4.32) may represent a Gaussian error distribution
rather than the Poisson distribution. In fact, several of the histogram bins in our ex-
ample contained small numbers of counts, and thus, the statistical application of the
test was not strictly correct, because we assume Gaussian statistics in the x? calcu-
lation. However, the test still provides us with a reproducible method of evaluating

TABLE 4.2
x? analysis of the data of Example 4.1

Observed
frequency From From
h, parent distribution sample distribution
Time h; Y, o = h ¥ o, /)
0', ol
0.595 2 0.89 0.94 —1.18 1.35 1.16 0.56
0.605 2 2.35 1.53 0.23 3.24 1.80 —0.69
0.615 11 4.85 2.20 -2.79 6.05 2.46 2.01
0.625 6 7.81 2.79 0.65 8.80 2.97 —0.94
0.635 12 9.78 3.13 —0.71 9.97 3.16 0.64
0.645 8 9.53 3.09 0.50 8.80 2.97 —0.27
0.655 4 7.24 2.69 1.20 6.05 2.46 —0.83
0.665 3 4.28 2.07 0.62 3.24 1.80 —0.13
0.675 1 1.97 1.40 0.69 1.35 1.16 —0.30
0.685 1 0.71 0.84 —0.35 0.44 0.66 0.85
0.695 0 0.20 0.44 0.44 0.11 0.33 —0.33
x2=13.03/10 = 1.30 x2 = 7.85/8 = 0.98

Note: Parameters of the parent Gaussian distribution are p. = 0.639 and o = 0.020 s; parameters estimated from the
sample distribution are p. = 0.635 s and o = 0.020 s.
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the quality of our data, and if we are concerned with statistical accuracy, we can
merge the low-count bins to satisfy the Gaussian statistics requirement.

Another application of the chi-squared test is in comparing two sets of data to
attempt to decide whether or not they were drawn from the same parent population.
Suppose that we have measured two distributions, g(x,) and h(x,), and wish to de-
termine the probability that the two sets were not drawn from the same parent prob-
ability distribution P(x,). Clearly, we could apply the x? test separately to the two
sets of data and determine separately x? probabilities that each set was not associ-
ated with the supposed parent population P(x)). However, we can also make a direct
test, independent of the parent population by writing

n, [g(x) — h(x)P?
Z g) o (4.35)

The denominator a*(g) + o?(h) is just the variance of the difference g(x,) — h(x,).
As in the previous examples, the expectation value of x? depends on the relation be-
tween the two parts of the numerator, g(x,) and h(x,). If the two parts, corresponding
to the distributions of the two data sets, were obtained completely independently of
one another, then the number of degrees of freedom equals » and (x?) = ». If one of
the distributions g(x)) or h(x,) has been normalized to the other, then the number of
degrees of freedom is reduced by 1 and (x*) = n — 1. Again, we interpret the x?
probability in a negative sense. If the value of x*/v is large, and therefore the prob-
ability given in Table C.4 is low, we may conclude that the two sets of data were
drawn from different distributions. However, for a low value of x? and therefore
high probability, we cannot draw the opposite conclusion that the two data sets g(x,)
and h(x,) were drawn from the same distribution. There is always the possibility that
there are indeed two different but closely similar distributions and that our data are
not sufficiently sensitive to detect the difference between the two.

Constraints and Degrees of Freedom

Equation (4.34) defines the number of degrees of freedom, v, and <x?>, the expec-
tation value of x2. To clarify the relation between constraints and degrees of free-
dom in a x? test, consider a data set that is expected to show a linear relation
between the measured values x, and h,, that is,

y,=A + Bx,

Clearly, two measurements of y at two different values of x are required just to
define the two parameters, A and B, of the straight line so there are two constraints
(n. = 2) on the system and at least three measurements (» = 3) must be made be-
fore a test can be applied. Under these circumstances, if we assume that points j = 1
and j = 2 are used to calculate A and B, Equation (4.32) becomes

X’ = (ha }’3) %/a3(h)
and we should expect to find
(x)=n-n.=3-2=1
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Similarly, if we measure n = 4 points, there will be two points available for the
X2 test or 2 degrees of freedom. Of course, in general, we would not use just two
points to calculate the two parameters. Rather, we should perform a least-squares
fit in which all measurements are treated equally (or weighted according to their
uncertainties). However, the same principle holds: we impose two constraints on
our calculation to define the two parameters of a straight line, leaving 2 degrees of
freedom.

SUMMARY
Weighted mean:
__ 2ol
= (l /(r U o N 2
Variance of mean:
2 1 o?

= —_— ) —
T S{/eD o N

Instrumental uncertainties: Fluctuations in measurements due to finite precision of
measuring instruments:

1
2=g2= —— 3 (x, - %)?
g =5 = X X
N-1 (x, = %)
Statistical fluctuations: Fluctuations in observations resulting from statistical prob-
ability of taking random samples of finite numbers of items:

o2=p=%

x? test: Comparison of observed frequency distribution h(x,) of possible observa-
tions x, versus predicted distribution NP(x,), where N is the number of data points
and P(x)) is the theoretical probability distribution:

& [h(x) — NP(x))?
B Z o,(h)?

1

Degrees of freedom v: Number of data points minus the number of parameters to be
determined from the data points.

Reduced x?: x* = x*/v. For X tests, x2 should be approximately equal to 1.
Graphs and tables of x*: Table C.4 gives the probability that a random sample of
data when compared to its parent distribution would yield values of x2 as large as
or larger than the observed value.

EXERCISES

4.1. Calculate the standard deviation and the error in the mean value of x from the data of
Exercise 1.4. Are the values reasonable? (See Exercise 2.4.)

4.2. Repeat Exercise 4.1 for the data of Exercise 1.5.
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4.3.

4.4.
4.5.

4.6.

4.7.

4.8.

4.9.
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Read the data of Example 2.4 from Figures 2.3 and 2.4. Recalculate the curves and
calculate 2 and x? for the agreement between the curves and the histograms. Use only
bins with five or more counts.

Work out the intermediate steps in Equation (4.19).
A student measures the period of a pendulum and obtains the following values.

Trial | 1 2 3 4 5 6 7 8
Period | 1.35 134  1.32 1.36 133 134 137 135

(a) Find the mean and standard deviation of the measurements and the standard devi-
ation of the mean.

(b) Estimate the probability that another single measurement will fall within 0.02 s of
the mean.

(a) Find the mean and the standard deviation of the mean of the following numbers
under the assumption that they were all drawn from the same parent population.

(b) In fact, data points 1 through 20 were measured with uniform uncertainty o,
whereas data points 21 through 30 were measured more carefully so that the uni-
form uncertainty was only ¢/2. Find the mean and standard deviation of the mean
under these conditions.

Trial x(o) Trial x(o) Trial x(o/2)
1 2.40 11 1.94 21 2.59
2 2.45 12 1.55 22 2.65
3 2.47 13 2.12 23 2.55
4 3.13 14 2.17 24 2.07
5 2.92 15 3.06 25 2.61
6 2.85 16 1.97 26 2.61
7 2.05 17 2.23 27 2.54
8 2.52 18 3.20 28 2.76
9 2.94 19 2.24 29 2.37

10 1.89 20 2.60 30 2.57

A counter is set to count gamma rays from a radioactive source. The total number of
counts, including background, recorded in each 1-min interval is listed in the accom-
panying table. An independent measurement of the background in a 5-min interval
gave 58 counts. From these data find:

(a) The mean background in a 1-min interval and its uncertainty.

(b) The corrected counting rate from the source alone and its uncertainty.

Trial | 1 2 3 4 5 6 7 8 9 10
Total counts | 125 130 105 126 128 119 137 131 115 116

The Particle Data Tables list the following eight experimental measurements of the
mean lifetime of the K, meson with their uncertainties, in units of 107'° s, Find the
weighted mean of the data and the uncertainty in the mean.

0.8971x0.0021 0.8941%0.0014 0.8929+0.0016 0.8920*+0.0044 0.881*0.009
0.8924+0.0032 0.8937%=0.0048 0.8958+0.0045

Eleven students in an undergraduate laboratory combined their measurements of the
mean lifetime of an excited state. Their individual measurements are tabulated.
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Student | 1 2 3 4 5 6 7 8 9 10 1

7(s) ’ 343 322 354 335 347 335 279 320 324 310 198
o, 1.6 1.2 1.5 1.4 1.6 1.5 1.9 1.2 1.4 1.8 1.3

Find the maximum likelihood estimate of the mean and its uncertainty.

4.10. Assume that you have a box of resistors that have a Gaussian distribution of resis-
tances with mean value . = 100 () and standard deviation o = 20 () (i.e., 20% resis-
tors). Suppose that you wish to form a subgroup of resistors with p = 100 {2 and
standard deviation of 5 {1 (i.e., 5% resistors) by selecting all resistors with resistance
between the two limits r; = w —aand r, = u + a.

(a) Find the value of a.

(b) What fraction of the resistors should satisfy the condition?

(c) Find the standard deviation of the remaining sample.

4.11. Suppose that 1000 adults responded to a poll about a current bill in Congress, and that
622 approved, while 378 disapproved.

(a) Assume that there was 50% a priori probability of obtaining either answer and cal-
culate the standard deviation of the result. Find the “margin of error,” that is, the
uncertainty that corresponds to a 95% confidence interval. (Use Gaussian proba-
bility. Justify this.)

(b) Assume the probabilities implied by the observed numbers of votes in each cate-
gory and repeat the calculation. Note the insensitivity of the standard deviation of
the binomial distribution to variations in probability near 50%.

(¢) Refer to the two statements about polling reports in Section 4.3 and show that they
are approximately equivalent.

4.12. Six measurements of the length of a wooden block yielded the following values: 20.3,
20.4, 19.8, 20.4, 19.9, 20.7.

(a) From these numbers, calculate the mean, standard deviation, and standard error.
Assume that the actual mean length has been established by previous measure-
ments to be 20.00 cm and calculate ¢, the number of standard errors by which the
calculated mean differs from the established value.

Refer to the tables in Appendix C to find the limits on the 95% confidence
level for both Gaussian and Student’s ¢ probabilities.

(b) The experiment was repeated to obtain a total of 25 data sets of six measurements
each from which the following 25 values of the mean were calculated.

20.25 20.10 20.02 20.12 20.00 19.73 19.73 20.13 20.22 20.22 20.27 19.83 20.00
19.77 20.10 20.28 19.97 19.88 20.32 19.98 20.05 20.23 19.92 19.97 19.77

Find the mean of these “means” and calculate their standard deviation. Compare
this standard deviation to the standard error calculated in (a).

4.13. The following data represent the frequency distribution of 200 variables drawn from a
parent Gaussian population with mean p = 26.00 and standard deviation o = 5.00.
The bins are two units wide and the lower edge of the first bin is at x = 14.

4 8 11 20 26 31 29 22 26 13 5 2 3

(a) Plot a histogram of these data.

(b) From the mean w and standard deviation o, calculate the Gaussian function that
represents the parent distribution, normalized to the area of the histogram. Your
first point should be calculated at x = 15, the midpoint of the first bin.

(¢) Calculate x? to test the agreement between the data and the theoretical curve.

(d) What is the expectation value of x??
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(e) Refer to Table C.4 to find the x? probability of the fit, that is, the probability of
drawing a random sample from the parent population that will yield a value of x?
as large as or larger than your calculated value.

4.14. Plot a histogram in ten-point bins of the course grades listed in Exercise 1.5. Plot a
Gaussian curve based on the mean and standard deviation of the data, normalized to
the area of the histogram. Apply the x? test and check the associated probability from
Table C 4.
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5.1 INTRODUCTION

We saw in Chapter 4 the importance of probability distributions in the analysis
of data samples, and observed that we are usually interested in the integrals or
sums of such distributions over specified ranges. Although we have considered only
experiments that are described by a single distribution, most experiments involve a
combination of many different probability distributions. Consider, for example, a
simple scattering experiment to measure the angular distribution of particles scat-
tered from protons in a fixed target. The magnitude and direction of the momentum
vector of the incident particles, the probability that a particle will collide with a pro-
ton in the target, and the resulting momentum vectors of the scattered particles can
all be described in terms of probability distributions. The final experimental result
can be treated in terms of a multiple integration over all these distributions.

Analytical evaluation of such an integral is rarely possible, so numerical
methods must be used. However, even the simplest first-order numerical integration
can become very tedious for a multidimensional integral. A one-dimensional inte-
gral of a function can be determined efficiently by evaluating the function N times
on a regular grid, where the number of samples N depends on the structure of the
function and the required accuracy. (See Appendix A.3.) A two-dimensional integral
requires sampling in two dimensions and, for accuracy comparable to that of the
corresponding one-dimensional problem, requires something like N2 samples. A
three-dimensional integral requires something like N3 samples. For integrals with
many dimensions, the number of grid points at which the function must be calcu-
lated becomes excessively large.

75
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Before we continue with methods of extracting parameters from data, let us
look at the Monte Carlo method, a way of evaluating these multiple integrals that
depends on random sampling from probability density distributions, rather than
regular grid-based sampling techniques. The Monte Carlo method provides the ex-
perimental scientist with one of the most powerful tools available for planning ex-
periments and analyzing data. Basically, Monte Carlo is a method of calculating
multiple integrals by random sampling. Practically, it provides a method of simu-
lating experiments and creating models of experimental data. With a Monte Carlo
calculation, we can test the statistical significance of data with relatively simple cal-
culations that require neither a deep theoretical understanding of statistical analysis
nor sophisticated programming techniques.

The name Monte Carlo comes from the city on the Mediterranean with its fa-
mous casino, and a Monte Carlo calculation implies a statistical method of studying
problems based on the use of random numbers, similar to those generated in the
casino games of chance. One might reasonably ask whether the study of science can
be aided by such associations, but in fact, with Monte Carlo techniques, very com-
plicated scientific and mathematical problems can be solved with considerable ease
and precision.

Example 5.1. Suppose that we wish to find the area of a circle of radius r, but have
forgotten the equation. We might inscribe the circle within a square of known area A;
and cover the surface of the square uniformly with small markers, say grains of rice.
We find the ratio of the number of grains that lie within the circle to those that cover
the square, and determine the area of the circle A. from the relation

AczAvNc/IVs (51)

where N, and N, are the numbers of grains of rice within the boundaries of the circle
and of the square, respectively.

What would be the accuracy of this determination; that is, how close should
we expect our answer to agree with the true value for the area of a circle? Clearly it
would depend on the number and size of the rice grains relative to the size of the
square, and on the uniformity of both the grains and their distribution over the
square. What if we decided that instead of attempting to cover the square uniformly,
we would be content with a random sampling obtained by tossing the rice grains
from a distance so that they landed randomly on the square, with every location
equally probable? Then we would obtain an interesting result: Our problem would
reduce to a simple binomial calculation as long as we did not overpopulate the
square but kept the density of rice grains low so that position of any grain on the
square was not influenced by the presence of other grains. We should find that, for
a fixed number of grains N, thrown onto the square, the uncertainty o in the mea-
surement of the circular area would be given by the standard deviation for the bino-
mial distribution with probability p = A /A,

o= VNp(l —p)= VN1 - p) (52)
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Thus, if we were to increase the number of rice grains N, by a factor of 4, the relative
error in our determination of the area of the circle would decrease by a factor of 2.

Replacing the tossed rice grains by a set of computer generated random num-
bers is an obvious improvement. Let us inscribe our circle of unit radius in a square
of side length 2, and generate N = 100 pairs of random numbers between —1 and
+1 to determine the area. Then the probability of a “hit” is just the ratio of the area
of the circle to the area of a square, or p = m/4, so in 100 tries, the mean number of
hits will be w = 100p = 78.5, and the standard deviation, from Equation (5.2), will
be 0 = VNp(1 — p = V100(w/4)(1 — w/4) = 4.1. For our measurements of the
area of the circle with 100 tries we should expect to obtain from Equation (5.1)
A, =A; X N./N, = (78.5 = 4.1) X 2%/100 = 3.14 * 0.16.

Figure 5.1 shows a typical distribution of hits from one *“toss” of 100 pairs of
random numbers. In this example there were 73 hits, so we should estimate the area
and its uncertainty from Equations (5.1) and (5.2) to be A = 2.92 * 0.18. To deter-
mine the uncertainty, we assumed that we did not know the a priori probability
p = /4 and, therefore, we used our experimental estimate p = 73/100.

Figure 5.2 shows a histogram of the circle area estimates obtained in 100 in-
dependent Monte Carlo runs, each with 100 pairs of random numbers (or a total of
10,000 “tosses”). The Gaussian curve was calculated from the mean, A = 3.127,
and standard deviation, o = 0.156, of the 100 estimated areas.

Obviously, the area determination problem of Example 5.1 is much too sim-
ple to require a Monte Carlo calculation. However, for problems involving integra-
tions of many variables and for those with complicated integration limits, the Monte
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FIGURE 5.1
Estimation of the area of a circle by the Monte Carlo method. The plot illustrates a typical distribution of
hits from one “toss” of 100 pairs of random numbers uniformly distributed between —1.00 and +1.00.



78 Data Reduction and Error Analysis for the Physical Sciences

20 T ] T ] T | T | I
16 | ] _
» = i
o
g 12p ™\ -
3
8 u _
©
sk -
) |
z
L 3 i
4 2 \
- E —
=
0 | ] ] | 1 |
2.5 2.7 3.0 32 35 3.7
Area of circle
FIGURE 5.2

Histogram of the circle area estimates obtained in 100 independent Monte Carlo runs, each with 100
pairs of random numbers. The Gaussian curve was calculated from the mean A = 3.127 and standard
deviation o = 0.156 of the 100 estimated areas.

Carlo technique is invaluable, with its straightforward sampling and its relatively
simple determination of the uncertainties.

5.2 RANDOM NUMBERS

A successful Monte Carlo calculation requires a reliable set of random numbers, but
truly random numbers for use in calculations are hard to obtain. One might think of
a scheme based upon measuring the times between cosmic ray hits in a detector, or
on some physical process such as the generation of noise in an electronic circuit.
Such numbers would be random in the sense that it would be impossible to predict
the value of the next number from previous numbers but they are hardly convenient
to use in extended calculations, and some might not have the necessary uniformity
required for a Monte Carlo calculation.

In fact, it is generally preferable to use pseudorandom numbers, numbers gen-
erated by a computer algorithm designed to produce a sequence of apparently un-
correlated numbers that are uniformly distributed over a predefined range. In
addition to the convenience of being able to generate these numbers within the
Monte Carlo program itself, pseudorandom numbers have another important ad-
vantage over truly random numbers for Monte Carlo calculations. A Monte Carlo
program may use a great many random numbers, and the path of the calculation
through the program will depend on the numbers chosen in each run. With truly ran-
dom numbers, every run of a Monte Carlo calculation would follow a different path
and produce different results. Such a program would be very difficult to debug.
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With pseudorandom numbers, we can repeat a calculation with the same sequence
of numbers, and search for any particular problems that may be hidden in the code.
There are other advantages too. If we are studying the sensitivity of a calcula-
tion to variations in a selected parameter, we can reduce the variance of the differ-
ence between results calculated with two trial values of the parameter by using the
same random number sequence for those parts of the calculation that are indepen-
dent of the parameter in question. Finally, a pseudorandom number generator can be
written to be portable; that is, the sequence of numbers produced by the algorithm
is independent of computer hardware and language, so that a given program will
produce the same results when run on different computers. In view of these advan-
tages and the fact that we rarely, if ever, encounter situations where truly random
numbers are required, we shall henceforth use the term random numbers to denote
pseudorandom numbers.
In general, our random number generator must satisfy the following basic
criteria:
1. The distribution of the numbers should be uniform within a specified range and

should satisfy statistical tests for randomness, such as lack of predictability and
of correlations among neighboring numbers.

2. The calculation should produce a large number of unique numbers before re-
peating the cycle.

3. The calculation should be very fast.

A simple multiplication method is often used to generate random numbers, or
uniform deviates, as they are often called. An integer starting value or seed ry and
two integer constants are chosen. Successive random numbers are derived from the
recursion relation

r..;=(aXr)modm (5.3)

where the mod operation corresponds to dividing the product in parentheses by the
integer m to obtain the remainder. With appropriate choices of constants a and m,
we can obtain a finite sequence of numbers that appear to be randomly selected be-
tween 1 and m — 1. The length of the sequence is determined by the choice of con-
stants and is limited by the computer word size. For example, if we choose m = 37
and a = 5, Equation (5.3) gives us the cycle of 36 nicely mixed up numbers, listed
in Table 5.1. Random number generators included with computer languages are of-
ten based on some variation of this multiplication technique. Careful and thorough
statistical studies must be made to be sure that an untested random number genera-
tor produces an acceptable sequence of numbers.

Because the numbers generated by Equation (5.3) are not truly random, we
might worry that our calculations are affected by hidden correlations in successively
generated numbers. We can improve the randomness of our sample by shuffling the
numbers. We generate two sequences of numbers with different generators a and m;
one sequence is stored in an array and a number from the second sequence is used
as an index to select numbers from the first sequence. For large programs that em-
ploy many random numbers, this method is limited by storage space, although local
shuffling within a block of random numbers can be used.
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TABLE 5.1
Pseudorandom numbers

i r; i r, i r; i r,
1 1 10 6 19 36 28 31
2 5 11 30 20 32 29 7
3 25 12 2 21 12 30 35
4 14 13 10 22 23 31 27
5 33 14 13 23 4 32 24
6 17 15 28 24 20 33 9
7 11 16 29 25 26 34 8
8 18 17 34 26 19 35 3
9 16 18 22 27 21 36 15

Note: The generating equation is r, . ; = (@ X r,) mod m, with a = 5 and m = 37. The cycle repeats a;; = a,, a5 = a,,
and so forth,

Even a modest Monte Carlo program can require many random numbers and,
to assure the statistical significance of results, we must be certain that the calcula-
tion does not use more than the maximum number generated by the algorithm be-
fore the sequence repeats. The sample generator of Equation (5.3) cannot produce
more than m — 1 different values of r,. The actual cycle length may be less than this
range, depending on the choice of constants. The cycle length can be increased by
employing two or more independent sequences such that the resulting cycle length
is proportional to the product of the lengths of the component cycles.

A generator developed by Wichmann and Hill,! based on a simple linear com-
bination of numbers from three independent sequences, is said to have a very long
cycle (~7 X 10') and appears to be well tested. Because the algorithm uses three
seeds, it is a little longer and slower than one- or two-seed algorithms, but its long
repeat cycle, portability, and lack of correlations seem to make it a convenient,
worry-free generator for most purposes. The algorithm is listed in Appendix E.

Although the fact that pseudorandom number generators always produce the
same sequences of numbers from the same seeds is an advantage in program de-
bugging, it may be a disadvantage in production running. For example, a simulation
program developed for use as a science museum display could be very uninterest-
ing if it repeated the same sequence of events every time it was run. If unpredictable
seeds are required, they can easily be derived from the least counts of the computer
clock. Commercial routines often include such a method of randomizing the start-
ing seeds. On the other hand, if we wish to run a simulation program several times
and to combine the results of the several different runs, the safest method to assure
the statistical independence of the separate runs is to record the last values of the
seeds at the end of each run and use these as starting seeds for the next run.

A thorough discussion of random number generation and of the Monte Carlo
technique is given in Knuth (1981).

The authors include a thorough and very useful discussion of the tests applied to a random number se-
quence, and of the development and testing of the published algorithm.
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Warning

If you are using random numbers provided in commercial programs such as spread
sheets or even scientific data analysis programs, you should always check the ran-
dom number distributions for correlations, and make sure that the function behaves
as advertised. For example, in early versions of one very popular scientific data
analysis program, the choice of seed had no effect on the numbers produced by the
random number routine.

5.3 RANDOM NUMBERS FROM
PROBABILITY DISTRIBUTIONS

Transformation Method

Most number generators scale their output to provide real numbers uniformly dis-
tributed between 0 and 1. In general, however, we require numbers drawn from spe-
cific probability distributions. Let us define uniform deviates p(r) drawn from a
standard probability density distribution that is uniform between r = 0 and r = 1:

_J1 for0=r<1
plr) = {0 otherwise 54)
The distribution is normalized so that
o 1
J p(r)dr= f 1dr=1 (5.5)
— 0

We shall refer to p(r) as the uniform distribution.

Suppose that we require random deviates from a different normalized proba-
bility density distribution P(r), which is defined to be uniform between x = —1 and
1; that is, the distribution

| for—-1=x<1
P(x) = {0 otherwise (5.6)

If we choose a random deviate r between 0 and 1 from the uniform distribution of
Equation (5.4), it is obvious that we can calculate another random deviate x as a
function of r:

x=f(r)=2r-1 5.7

which will be uniformly distributed between —1 and + 1. This is an example of a
simple linear transformation.

To pick a random sample x from the distribution Equation (5.6), we started
with a random deviate r drawn from the uniform distribution of Equation (5.4) and
found a function f(r) that gave the required relation between x and r. Let us find a
general relation for obtaining a random deviate x from any probability density dis-
tribution P(x), in terms of the random deviate r drawn from the uniform probability
distribution p(r).
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Conservation of probability requires that the intervals Ar and Ax be related by
the following expression

|p(r) Ar| = |P(x)Ax] (5.8)

and, therefore, we can write

jr p(r)dr=£:_xP(x)dx or J

r=—ow T

"ldr= J " P(x) dx (5.9)
=0

x= -0

which gives the general result

x
r= f P(x) dx (5.10)
Thus, to find x, selected randomly from the probability distribution P(x), we gener-
ate a random number r from the uniform distribution and find the value of the limit
x that satisfies the integral equation (5.10).

Example 5.2. Consider the distribution described by the equation

(x)z{A(l +ax?) for-1=x<1
p 0 otherwise

(5.11)

where P(x) is positive or zero everywhere within the specified range, and the normal-
izing constant A is chosen so that

LIIP(x) dx=1 (5.12)
We have
r= me(x) dr = ﬁA(l + ax?) dx (5.13)
which gives
r=Alx+ax’/3+1+a/3) (5.14)

and therefore, to find x we must solve the third-degree equation (5.14).

The procedure we have described is referred to as the transformation method
of generating random deviates from probability distributions. In general, neither the
integral equation (5.13) nor the solution of the resulting equation (5.14) can be ob-
tained analytically, so numerical calculations are necessary.

The following steps are required to generate random deviates from a specific
probability distribution by the transformation method with a numerical integration:

1. Decide on the range of x. Some probability density functions are defined in a fi-
nite range, as in Equation (5.6); others, such as the Gaussian function, extend to
infinity. For numerical calculations, reasonable finite limits must be set on the
range of the variable.
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2. Normalize the probability function. If it is necessary to impose limits on the
range of the variable x, then the function must be renormalized to assure that
the integral is unity over the newly defined range. The normalization integral
should be calculated by the same analytical integration or numerical integration
routine that is used to find y.

3. Generate a random variable r drawn from the uniform distribution p(r).

4. Integrate the normalized probability function P(x) from negative infinity (or its
defined lower limit) to the value x = x, where x satisfies Equation (5.10).

Because the Monte Carlo method usually requires the generation of large
numbers of individual events, it is essential to have available fast numerical inter-
polation and integration routines. To reduce computing time, it is often efficient to
set up tables of repeatedly used solutions or integrals within the initializing section
of a Monte Carlo program. For example, to pick a random deviate x from the distri-
bution of Equation (5.11), we could do the integral of Equation (5.13) numerically
at the beginning of our program, and set up a table of values of r versus x. Then,
when we require a random number from the distribution, we generate a random
number r and search the table for the corresponding value of x. In general, the
search should be followed by an interpolation within the table (see Appendix A.1.)
to avoid introducing excessive graininess into the resulting distribution. It would be
even more convenient, but a little trickier, to produce a table of x versus r, so that
the required value of x could be obtained from an index derived from . In all cases
of precalculated tables, it is important to consider the resolution required in the gen-
erated variable, because this will determine the intervals at which data must be
stored, and therefore the size of the table, and the time required for a search.

Rejection Method

Although the transformation method is probably the most useful method for ob-
taining random deviates drawn from particular distributions, the rejection method is
often the easiest to use. This is the method that we used in Example 5.1 to find the
area of a circle, by generating random numbers uniformly over the surface of the
circle and rejecting all except those that fell within the circumference.

Example 5.3. Suppose we wish to obtain random deviates between x = —1 and
x = +1, drawn from the distribution function
P(x)=1+ax? (5.15)

which is just the unnormalized distribution of Equation (5.11). To use the rejection
method, we begin by generating a random deviate x’ uniformly distributed between
—1 and +1, corresponding to the allowed range of x, and a second random deviate y’
uniformly distributed between 0 and (1 + a), corresponding to the allowed range of
P(x). We can see that x" and y’ must be given by

xX==14+2r, and y' =(+ar.,, (5.16)

where r, and r, , | are successively generated random values of r drawn from the uni-
form distribution.
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We count an event as a “hit” if the point (x’, y") falls between the curve defined
by P(x) and the x axis, that is, if y’ < P(x"), and a “miss” if it falls above the curve. In
the limit of a large number of trials, the entire plot, including the area between the
curve and the x axis, will be uniformly populated by this operation and our selected
samples will be the x coordinates of the “hits,” or the values of x’, drawn randomly
from the distribution P(x). Note that with this method it is not necessary to normalize
the distribution to form a true probability function. It is sufficient that the distribution
be positive and well behaved within its allowed range.

The advantage of the rejection method over the transformation method is its
simplicity. An integration is not required—only the probability function itself must
be calculated. A disadvantage of the method is often its low efficiency. In a complex
Monte Carlo program only a small fraction of the events may survive the complete
calculation to become successful “hits” and the generation and subsequent rejection
of so many random numbers may be very time consuming. To reduce this problem,
it is advisable to place the strictest possible limits on the random coordinates used
to map out the distribution function when using the rejection method.

5.4 SPECIFIC DISTRIBUTIONS

Gaussian Distribution

Almost any Monte Carlo calculation that simulates experimental measurements will
require the generation of deviates drawn from a Gaussian distribution, or Gaussian
deviates. A common application is simulation of measuring uncertainties by smear-
ing variables. Fortunately, because of the convenient scaling properties of the
Gaussian function, it is only necessary to generate Gaussian deviates from the stan-
dard distribution

—Z—2}dz (5.17)

1
ex
V2w P [ 2
with mean O and standard deviation 1, and to scale to different means w and stan-
dard deviations o by calculating

Py(z)dz=

x=o0gz+pm (5.18)

There are several different ways of obtaining random samples of the variable
z from the distribution P;(z) of Equation (5.17). The two most obvious are the re-
jection and transformation methods discussed previously. Because the Gaussian
function is defined between — and +, these methods require that limits be
placed on the range of z. For low-statistics calculations in which the Gaussian func-
tion is being used to simulate smearing of data caused by measuring errors, a range
of =30 should be satisfactory because all but ~0.3% of normally distributed events
lie within this range.

Because the Gaussian function cannot be integrated analytically, numerical in-
tegrations are required for the transformation method. Decisions must be made on
the order of integration and the step size as well as on the limits. A first- or second-
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order numerical integration (Appendix A.3.) is generally satisfactory, with a linear
interpolation to find an approximation to the value of x in Equation (5.10) at the re-
quired value of the integral.

An interesting method for generating Gaussian deviates is based on the fact
that if we repeatedly calculate the means of groups of numbers drawn randomly
from any distribution, the distribution of those means tends to a Gaussian as the
number of means increases. Thus, if we calculate many times the sums of N uniform
deviates, drawn from the uniform distribution, we should expect the sums to fall
into a truncated Gaussian distribution, bounded by 0 and N, with mean value N/2. If
we generate N values of r from the distribution of Equation (5.4) and calculate

N
r6=>r,—N/2 (5.19)
1=1

the variable r; will be drawn from an approximately Gaussian distribution with
mean w = 0 and standard deviation o = \/N/12. We should note that the maxi-
mum range of r; will be limited to . = N/2 or p * o\/EN. For N = 2, the sum is
a triangle function and as N increases, the distribution quickly takes on a Gaussian-
like shape. Values of N as small as N = 4 are suitable for low statistics calculations.
With N = 4, we have ¢ = \/1/3 = 0.058 and the range of r; from —2 to +2 cor-
responds to u * oV12or m * 3.460. If a better approximation to the Gaussian
function is require and calculation time is not a problem, N = 12 is particularly con-
venient because the resulting variance and standard deviation are unity.

A particularly elegant method for obtaining random numbers drawn from the
Gaussian distribution was suggested by Box and Miiller (1958). This method makes
use of the fact that, although the simple transformation method requires an integra-
tion of the Gaussian function, it is possible to find a function that generates the two-
dimensional Gaussian distribution,

2

1 (2+ 22 1 22 1 Z
(z;,2,) = —ex (— <2 )= ex (——‘) X ex (——2> 5.20

From this equation, the authors obtained expressions that generate two Gaussian de-
viates, z; and z,, from two uniform deviates, r; and r,:

1=V —21Inr, cos2mr,
2 =V _2 11’1 r S]n 21Tr2 (5.21)

Example 5.4. A uniform 10-cm long rod has one end held at 0°C and the other at
100°C so that the temperature along the rod is expected to vary linearly from 0° to
100°C. Let us attempt to simulate data that would be obtained by measuring the tem-
perature at regular intervals along the rod. We shall assume that the parent population
is described by the equation

T=ay+ byx (5.22)

with @y, = 0°C and b, = 10°C/cm, and that 10 measurements are made at 1-cm inter-
vals from x = 0.5 to x = 9.5 cm, with negligible uncertainties in x, and uniform mea-
suring uncertainties in T, of o = 1.0°C.
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Example 5.4 illustrates a common Monte Carlo technique: simulating the ef-
fects of measuring uncertainties by smearing data points. If a particular variable has
a mean value T,, with uncertainties o, and Gaussian uncertainties are assumed, then
we obtain the smeared value of 7, from the relation

T,=T,+ or, (5.23)

where r, is a random variable drawn from the standard Gaussian distribution with
mean 0 and standard deviation 1. The calculation is equivalent to drawing the ran-
dom variable T, directly from a Gaussian distribution with mean 7, and standard
deviation o,.

Program 5.1. HOTROD (Appendix E) A simple Monte Carlo calculation to sim-
ulate the measurements described in Example 5.4. The program uses routines in the
program unit MONTEL.IB.

Program 5.3. MONTELIB (Appendix E) Some useful Monte Carlo routines.

The data generated by the program HOTROD are shown in Table 5.2, with values
of T, for the parent population, predicted by Equation (5.22), and of T, for the sam-
ple population, calculated from Equation (5.23) for various values of x,. Note that,
as we should expect, the modified values of T are scattered about the values calcu-
lated from Equation (5.22).

Choice of a Method

Which of these methods for generating samples from the Gaussian probability dis-
tribution is the best? The answer depends on need and circumstance. For general use
it is convenient to keep a version of the Box-Miiller method in your program library.

TABLE 5.2

Simulated temperature versus position data for
a 10-cm rod held at T = 0°C atx = 0.0 cm and
atT = 100°C at x = 10.0 cm

i X, (cm) T, (°C) T, °C)
1 0.5 5.00 4.71
2 1.5 15.00 15.43
3 2.5 25.00 23.24
4 35 35.00 35.77
5 4.5 45.00 45.39
6 5.5 55.00 52.26
7 6.5 65.00 65.71
8 7.5 75.00 76.96
9 8.5 85.00 85.97
10 9.5 95.00 93.77

Note: A uniform temperature gradient was assumed. The uncertainty 1n the
measurement of T was assumed to be o = 1.0 °C.
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This routine produces a continuous range of samples limited only by the computer
word size. For high-precision work, however, we should be aware that subtle corre-
lations between adjacent uniform deviates have been shown to distort the tails of the
Gaussian distribution of these numbers. If highest speed is essential, then the trans-
formation method with a precalculated table of the integral and some pointers for
quick access to the table should be the choice. This method requires making deci-
sions on the range and resolution of the generated variable and some extra pro-
gramming to create and access the integral table, but the lookup method can be very
fast. Finally, if you are stranded on a desert island with only your laptop computer
and have an urgent need for random selections from a Gaussian distribution, the
method of summing N random numbers is sufficiently simple that you should be
able to write and debug the routine in a few minutes, provided you can remember
that the magic number is N = 12 for a variance of 1.

Poisson Distribution

Poisson statistics are important in most Monte Carlo calculations, but they are usu-
ally implied rather than calculated explicitly. Nevertheless, we sometimes wish to
generate data that are distributed according to the Poisson function, and application
of the transformation method to the problem is particularly simple and instructive.
To find an integer x drawn from the Poisson distribution with mean w, a Poisson
deviate, we generate a random variable r from the uniform distribution, replace the
integral of Equation (5.10) by the sum

x x X
r=Plup=Y Een (5.24)
x=0 x=0 X!

and solve Equation (5.24) for x.

Although the Poisson function does not have the convenient scaling properties
of the Gaussian function, and thus different calculations are required for each value
of the mean ., very few calculations are actually needed because we are interested
in this distribution only at small values of w, say w < 16, and only at integral val-
ues of the argument x. At larger values of w, the Poisson distribution becomes in-
distinguishable from the Gaussian and it is generally more convenient to employ the
Gaussian function in calculations.

Example 5.5. An instructor is preparing an exercise on Poisson statistics for his
class. He plans to provide each student with a simulated data set corresponding to 200
Geiger counter measurements of cosmic ray flux recorded in 10-s intervals with an as-
sumed mean counting rate of 8.4 counts per interval. The data will correspond to the
number of counts recorded in each 10-s interval.

Students will be asked to make histograms of their individual data samples, find
the means and standard deviations of the data, and compare their distributions with the
predictions of Gaussian and Poisson probability functions.

For each student, a set of values of x is generated from Equation (5.24) with
p = 8.4 and 200 different random numbers. The transformation method is used
with a precalculated table of sums so that the value of x associated with each value
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of r can be selected by a simple search. To assure that each student’s data set is in-
dependent, either all sets are generated in a single computer run or else the random
number seeds are saved at the end of each run and used to start the next run.

Program 5.2. POISDECAY (Appendix E) Generates 200 random variables
drawn from the Poisson probability distribution with mean u = 8.4 to illustrate Ex-
ample 5.5. The program uses routines in the program unit MONTELIB.

The program calls the function POISSONDEVIATE with second argument
INIT = TRUE to set up a table of sums of Pp(i; w) from i = 0 to n indexed by #;
that is, to form the array

S,= S P(isp) forn=1,2,..., (5.25)
=0
so that
S,=S,_1+ Po(n;n) withSy=P(0; p)=e* (5.26)

where n,, = N + 8\/E is selected as a reasonable upper range for the Poisson
curve.

For each event, the program calls POISSONDEVIATE with second argument
INIT = FALSE to select a value from the table. The routine POISSONDEVIATE
generates a random number r from the uniform distribution and searches the table
beginning at S, to find the value of »n for which S, = r. The value of » at which this
occurs is the desired random sample from the Poisson distribution. As the samples
are generated they are entered in a histogram by calls to the routine HISTOGRAM.

A histogram of 200 variables drawn from the Poisson distribution Program 5.2
is shown in Figure 5.3 with the parent distribution represented as a solid curve (al-
though it is, of course, not defined between integer values of the abscissa). The val-
ues of the Poisson function, calculated by the routine POISSONRECUR, and the
sums, calculated by the routine POISSONDEVIATE, for w = 8.4 and for n rang-
ing from O to 31, are displayed in Table 5.3.

We note that with the precalculated table it is only necessary to increment a
counter a few times and compare two real numbers to obtain each random variable,
whereas, without the table, it would have been necessary to calculate the Poisson
function several times for each generated sample, in addition to comparing the two
real numbers.

Exponential Distribution

If the Monte Carlo problem includes the generation of unstable states, random num-
bers drawn from an exponential distribution will be needed. Here the transformation
method is clearly the method of choice because the integral equation (5.10) and re-
sultant equation can be solved analytically.

Example 5.6. Consider an experiment to study the decay rate of a radioactive source
with estimated mean life of T seconds. The experiment involves collecting counts over
successive time intervals At with a Geiger counter and scaler combination and plotting
the number of counts in each interval against the mean interval time.
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FIGURE 5.3
Histogram of 200 random variables generated by Program 5.3 from the Poisson distribution with
mean p = 8.4.
TABLE 5.3
Poisson probability Pp(i; ) and summed probability S; = >7_, Pp(i; p)
for pn = 8.4
n PP(n; l"“) Sn n PP(n; P«) Su
0 0.0002248673 0.0002248673 16 0.0066035175 0.9940781736
1 0.0018888855 0.0021137528 17 0.0032629145 0.9973410882
2 0.0079333192 0.0100470720 18 0.0015226935 0.9988637816
3 0.0222132938 0.0322603658 19 0.0006731908 0.9995369724
4 0.0466479169 0.0789082827 20 0.0002827401 0.9998197126
5 0.0783685004 0.1572767830 21 0.0001130961 0.9999328086
6 0.1097159005 0.2669926835 22 0.0000431821 0.9999759908
7 0.1316590806 0.3986517641 23 0.0000157709 0.9999917616
8 0.1382420346 0.5368937988 24 0.0000055198 0.9999972814
9 0.1290258990 0.6659196977 25 0.0000018547 0.9999991361
10 0.1083817551 0.7743014529 26 0.0000005992 0.9999997353
11 0.0827642494 0.8570657023 27 0.0000001864 0.9999999217
12 0.0579349746 0.9150006768 28 0.0000000559 0.9999999776
13 0.0374349066 0.9524355835 29 0.0000000162 0.9999999938
14 0.0224609440 0.9748965275 30 0.0000000045 0.9999999983
15 0.0125781286 0.9874746561 31 0.0000000012 1.0000000000

Note. The summation was terminated arbitrarily at n = p. + 8\/; =31, and P,(31; p) was setto I.

We wish to simulate this experiment with a Monte Carlo calculation. The nor-
malized probability density function for obtaining a count at time ¢ from an expo-
nential distribution with mean life T is given by
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0 forr<O0

P(t;7)={e " for 1 2= 0 (5.27)

We can obtain an expression for random samples ¢, from this distribution by
applying Equation (5.10) to obtain

t,=—1lnr, (5.28)

Thus, to obtain each value of ¢,, we find a random number from the uniform distri-
bution and calculate 7, from Equation (5.28).

Let us consider a second method of generating a histogram of data for this
example, a method that is much more efficient, but that severely limits any later
treatment of the data.

We can calculate the fraction of events that the parent distribution predicts
would fall into each of the Ar wide histogram bins from the equation

Aww=j

t-d T

t+d g=x/1 wa AL e

de=e |, =—¢

(5.29)

where we have written d = A#/2. The effect of the statistical errors is to smear each
of these calculated values in a way consistent with the Poisson distribution with
mean w = AN,’. For small values of AN,” we find the smeared value AN, directly
from Equation (5.24):

AN
r= Z‘Bﬂ,(x; AN') (5.30)

For larger values of AN,’ calculation with the Poisson equation would be too te-
dious, but we can use Gaussian smearing as in Example 5.4 with o, = \/ﬁ Note
that the Poisson equation must be used for bins with low statistics to assure a posi-
tive number of counts in each bin. (A reminder: The overall distribution of events in
this example is exponential; the expected distribution of events in each individual
bin follows the Poisson distribution, as discussed in Section 4.3.)

Although these two methods of generating a data set or histogram produce
equivalent statistical results for Example 5.6, they differ in important details. The
full Monte Carlo method required generating individual “events” that can be
recorded and studied. For example, we could check the statistical behavior of the
data by subdividing the sample into several smaller groups. We could also investi-
gate the effect of decreasing as well as increasing the binning intervals Az. Finally,
if we should wish to expand the study, perhaps to consider experimental geometry
and detector efficiency, the full Monte Carlo method will allow that. The smear-
ing method, on the other hand, produces only the ten numbers, representing the
counts in the ten bins. Aside from merging the bins, we have no control over the
data for future calculations. It is strictly a fast, “one-shot” procedure with a specific
limited aim.

Example 5.7. Consider an experiment to determine the mean life of an elementary
particle, the short-lived K§ meson (which we shall refer to as the kaon), from
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measurements of the decay in flight of many such particles. In principle, we can
determine the mean life T by measuring the distribution of decay times, fitting the
probability density function of Equation (5.27) to the data and solving for 7. In prac-
tice, we must make corrections for biases resulting from detection inefficiencies,
including those associated with the finite sizes of our detectors. We can use a Monte
Carlo calculation to estimate these biases and enable us to apply the appropriate
correction.

The experimental arrangement is sketched in Figure 5.4. A high-energy charged
particle p, interacts in the target at the production vertex V, to produce several charged
and neutral secondary particles, including a neutral kaon. The kaon travels a distance
L before decaying into two pions, 1, and 7, at the decay vertex V,. We determine the
coordinates of the production vertex by measuring in the production vertex detector
the trajectories of charged particles that are produced with the kaon, and tracing back
these trajectories to their intersection point in the target. Similarly, we determine the
coordinates of the decay vertex by measuring in the decay vertex detector the trajec-
tories of the two charged pions from the kaon decay, and tracing these trajectories back
to their intersection point, V,. (The trajectories of neutral particles are much more dif-
ficult to measure than those of the charged particles.) We calculate the momentum of
the neutral kaon from measurements of the momentum vectors of its two decay prod-
ucts, 7, and ,.

The geometry of the detector plays a critical role in the analysis of the data. We
can make useful measurements only on events in which the trajectories of the charged
particles can be measured in the vertex detectors. To assure precise measurements of
the secondary tracks from the decay of the kaon, we define a fiducial region in which
the decay must occur. The dashed rectangle on Figure 5.4 indicates the fiducial region
with its limits d, and d, along the x-axis. With these limits, very short-lived and long-
lived particles will be eliminated from the data sample, introducing a bias into the de-
termination of the mean life.

ped

Charged particle veto

Fiducial volume

Production \
vertex detector \

Decay vertex
detector

FIGURE 5.4
Experimental arrangement to measure the lifetime of an elementary particle.
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In a Monte Carlo study of these biases, we could take the following steps to

simulate measurements of decaying kaons:

1.

3.

4.

5.

6.

Generate the production vertex coordinates and kaon momentum vector P from
the known cross section for kaon production in the interaction of the incident
and target particles.

Consider the efficiency of the production detector. If the detector successfully
records charged particles produced in the initial interaction, proceed to step 3;
if not, mark the event a failure and go to step 8.

Apply Equation (5.28) to find the time of flight (or lifetime) T of each individual
kaon in its own rest frame. Use the current best-known value for the mean life 7.

Apply the Lorentz transformation to 7 to find the lifetime 7" in the laboratory
system.

Calculate the range r of the kaon in the laboratory and from this, the coordinate
of the decay point.

Check that the kaon decays within the fiducial volume. If so, proceed to step 7;
otherwise, mark the event a failure and go to step 8.

In the rest frame of the kaon, generate the pair of pion vectors. Transform to the
laboratory system and check whether or not both particles can be detected in the
decay vertex detector. If they can be detected, mark the event a success; if not,
mark the event a failure.

Record details of the event and return to step 1 to generate a new event, or ter-
minate if the desired number of events has been generated.
Program 5.4. KDECAY (website) Illustration of Example 5.7.

For this sample program, we simplify the problem by treating it in two dimensions and
simplify or skip some of the steps as noted below.

1. Assume that each kaon is produced in the plane illustrated in Figure 5.4 and trav-
els along the x-axis. Generate a vertex x-coordinate x, and the magnitude of the
kaon’s momentum P from suitable Gaussian distributions.

2. Skip

3. Find the lifetime T of the kaon in its own rest frame from the published value of
the kaon mean life T and Equation (5.28).

4. Apply the Lorentz transformation to T to find the lifetime 7" in the laboratory
system:

T'=+~T,, wherey=1/\/1 —B%and B = v/c
where v is the velocity of the kaon in the laboratory and c is the velocity of light.

5. Calculate the range r and decay point x,:
r=BcT andx;,=xy+r
6. Check that the decay is within the fiducial area, that is, that

dl Sxd<d2

If it is not, mark the event as a failure; otherwise, mark the event as a success.
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FIGURE 5.5

Distribution of times of flight (in units of 1071%s) of 2355 successful K° decays from a total sample of
4000 generated events. The curve shows the predicted exponential distribution of the total 4000-event
sample.

7. Skip this step.

8. Increment the event counters and record only successful events. If the desired
number of events has been generated, terminate the calculation; otherwise, go to
step 1 to begin generating the next event.

The properties of the two Gaussians and the other constants of the calculation are
listed in Table 5.4. Note that we must use as input to our program a reasonable value
of the kaon mean life, the quantity that we are attempting to measure. If the quantity
had been only poorly measured previously, or perhaps not at all, it might be necessary
to run the Monte Carlo program with several different trial values of T, bracketing the
expected value.

For this example, we generated 4000 events of which 2355 passed the fiducial
cut. Figure 5.5 shows the distribution of the times of flight T (or lifetimes) in the rest
frame of the kaon for successful events. The curve shows the expected distribution
of the times of flight if no events had been rejected. We obtain the efficiency of the
system as a function of the time of flight T by calculating the ratio of the number
N'(T) of successful events to the total number N(7) generated
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TABLE 54

Constants used in the Monte Carlo generation of Program 5.3

TauKaon (K, mean life) 0.894 X 10710

MassKaon (K, mass) 497.7 Mev/c?

d1 (Lower limit of fiducial range) 10m

d2 (Upper limit of fiducial range) 40 m

xMean (mean coordinate of the production vertex, V) 5.00cm

xSig (Standard deviation of production vertex) 0.50 cm

pMean (mean K; momentum) 2000 MeV/c

pSig (Standard deviation of Ky momentum) 100 MeV/c

¢ (velocity of light) 3.00 X 10'° cm/s
e(T) = N'(T)/N(T) (5.31)

We note that there are large losses of events at short times, below about T = 0.5 X
107195, caused by the gap between the production vertex V, and the beginning of the
fiducial region d,, and smaller, but significant losses at long times of events that de-
cayed beyond the end of the fiducial region, d,.

To correct data obtained in an actual experiment and distributed as N,(7), we
should first run the Monte Carlo to generate sufficient numbers of events so that the
uncertainties in the N'(7) are negligible compared to the uncertainties in the exper-
imental data sample. We should then select a continuous region of our data sample
where the efficiency is reasonably good (and definitely not zero!) and correct the
measurements by scaling N.,(7) by 1/e(T). Note that the statistical uncertainties in
the measured data must also be scaled, so there is little point in including data from
very low-efficiency regions of the sample. We can then obtain our estimate of the
mean life of the kaon from a least-squares fit of Equation (5.27) to the corrected
data. (A reminder: Although the overall distribution of events in this example is ex-
ponential, the expected distribution of events in each individual bin follows the
Poisson distribution, as discussed in Section 4.4.)

A more detailed discussion of analysis techniques for this experiment is in
Chapter 10.

5.5 EFFICIENT MONTE CARLO
GENERATION

Because the relative error in a result calculated by the Monte Carlo method is
inversely proportional to the square root of the number of successful events gen-
erated, it is important, especially for a long calculation, to have the highest possi-
ble program efficiency. Rejected events do not improve the statistical accuracy
and every effort should be made to reduce the time spent on calculations that
lead to “misses” rather than “hits.” There are several ways to improve generation
efficiency:

1. Don’t be a purist. The Monte Carlo method is basically a way of doing compli-
cated multidimensional integrals. If you can save time by doing part of the
problem by analytic methods, do so.
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2. Program carefully. Do not repeat calculations if the results can be saved for
later use.

3. If possible, test the low-yield sections of the simulation early and cut out as
soon as a “miss” occurs. Except for particular loss studies, it is usually not prof-
itable to follow the calculation of an event that is known to end in failure.

4. Try to reduce the variance of the results by limiting ranges wherever possible.
One application of this technique can be illustrated in Example 5.1, where the
area of a circle of radius r, is calculated by inscribing it within a square. Mak-
ing the side of the square larger than the diameter of the circle would be waste-
ful and would increase the variance of the area determination.

5. When repeating a calculation to find the effects of varying a parameter, con-
sider setting up the program in such a way that the identical sequence of ran-
dom numbers is repeated throughout the calculation, except for calculations
specifically associated with the change. This technique will not improve the
variance of the overall calculation, but will reduce the variance of the difference
of results from two calculations.

6. Inspect each probability function carefully before beginning a calculation and
estimate the resolution and detail that will be required in the calculation. If a
distribution has fine structure, try to determine whether or not such structure is
of interest and must be preserved. If necessary, consider breaking the calcula-
tions into separate regions and varying the sampling sensitivity as appropriate
for each region.

7. Be critical. Examine your generated variables to see that they fall within the ex-
pected ranges and follow expected distributions. In a large program, errors that
affect the results in subtle ways may be buried within the program and be very
difficult to detect. The only way to prevent problems is to make detailed checks
at every stage of the program.

SUMMARY

Pseudorandom numbers: Numbers created by a computer algorithm such that suc-
cessive numbers appear to be uncorrelated with previous numbers. They are re-
ferred to as random numbers or random deviates.

Uniform deviates: Pseudorandom numbers that are uniformly distributed between 0
and 1:

() = {1 for0<r<1
p 0 otherwise

Normalized distribution: A distribution that is scaled so that its integral over a spec-
ified range is equal to unity.

Transformation integral: Transforms the variable r drawn randomly from the uni-
form distribution into a variable x drawn randomly from the distribution P(x):

["1ar= " PWa
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Rejection method: A method of generating random numbers drawn from particular
distributions by rejecting those that fall outside the geometrical limits of the speci-
fied distribution.

Gaussian deviate: Random number drawn from a Gaussian distribution.

Quick Gaussian deviate: The sum of N random numbers is approximately Gaussian
distributed with w = N/2 and o = \/N/12. Choose N = 12 and calculate
r; = 2r, — N/2 to obtain r; drawn from

the standard Gaussian distribution with w. = 0 and 0 = 1.

Box-Miiller method for Gaussian deviates: Select r; and r, from the uniform distri-
bution and calculate

z7=V-—-2Inrcos2mr, and 2z,=Y\ —2lnr, sin2wr,

to obtain z; and z, drawn from the standard Gaussian distribution.

Data smearing: Method for adding random variations to calculations to simulate the
effects of finite measuring errors, T,' = T, + ar,.

Random numbers from the exponential distribution: To obtain a random number
t, drawn from the exponential distribution, calculate t, = —7 In r, from a random
deviate r,.

EXERCISES

5.1. Write a computer program that incorporates the Wichmann and Hill pseudorandom
number generator and use it to generate 100 random numbers beginning with seeds
s, = 13,5, = 117, and s; = 2019. Make a histogram of the numbers and draw a line
representing the expected number of events in each bin. Calculate x? for the agree-
ment between the expected and generated number of events and find the associated
probability.

5.2. (a) Generate 1000 random numbers uniformly distributed between —m and +mr.

(b) Generate 1000 random numbers between x = 0 and 1, distributed according to the
distribution function P(x) = (5x + 3). Use the transformation method with an
analytic integration.

(¢) Find the mean and standard deviation of each distribution and compare them to
the predicted values.

(d) Make a 20-bin histogram of each distribution and plot on each the predicted
distribution.

(e) Calculate 2 to compare each generated distribution to its parent distribution.

5.3. Write a general routine to generate random integers drawn from the binomial distrib-
ution by the transformation method. Use the routine to generate 1000 events corre-
sponding to the distribution of heads or tails when a coin is tossed 50 times. Plot your
results and compare them to the direct prediction of Equation (2.4).

5.4. Write a Monte Carlo routine to simulate 200 rolls of a pair of dice and find the fre-
quency of occurrences of each possible sum. Plot a histogram of the occurrences with
statistical error bars and plot the prediction of the binomial distribution. Calculate x?
for the agreement between the prediction and the data, and find the x? probability.
Compare your results to the exact probability calculation of Exercise 2.4.

5.5. Make a histogram of 200 random numbers that follow the Gaussian distribution by
finding the distribution of the sums of groups of 12 random variates drawn from the
uniform distribution. Calculate the mean and standard deviation of the generated num-
bers and the uncertainty in the mean.
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Generate 1000 random numbers between x = —3 and + 3, distributed according to the
Lorentzian distribution with mean p = 0 and half-width I" = 1.0. Use the transforma-
tion method with a numerical integration and interpolation. (See Appendix A.1 and A.3.)
Make a 20-bin histogram of the generated numbers and plot Lorentzian the curve on the
distribution. Calculate x? to compare the generated distribution to the parent distribution.
Use the transformation method to produce a sequence of 200 random numbers x
drawn from the distribution

P(x)=sinx for0<x<mm
=0 elsewhere

Make a histogram of the events and compare it to the expected distribution. Note that
the calculation can be done analytically and requires an inverse trigonometric function.
Use the rejection method to generate 500 random deviates between x = 0 and x = 1,
drawn from the distribution y(x) = a, + ayx?, witha, = 3.4 and a, = 12.1. Find the
mean and standard deviation of the generated numbers and compare them to the ex-
pected values.

Write a Monte Carlo program to generate 200 cubes with sides a = 2.0 = 0.1 cm,
b= 3.0 0.1 cm, and ¢ = 4.0 = 0.2 cm. Plot the distribution of the volumes of the
cubes and find the mean volume, the standard deviation of the distribution, and the un-
certainty in the mean. Compare the standard deviation of the distribution to the value
predicted by the error propagation equation.

A Pascal triangle provides an interesting illustration of the relation between the bino-
mial and Gaussian probability distributions. Assume an arrangement of pins in the
form of a triangle as illustrated.

Row

AN B WN -

LUl

Bin-3-2-1 01 2 3

A ball, dropped into the device strikes the top pin and has a 50% probability of strik-
ing either of the two pins below it in the next row. The ball bounces down until it
reaches the bottom where it is collected in one of the vertical bins.

(a) Find a general expression for the probability that a ball will land in a given bin af-
ter dropping through N rows of pins.

(b) Assume that 512 balls are dropped onto the top pin. Find the number of balls in
each bottom bin for a device with three rows of pins above the bins. Repeat for de-
vices with four, five, and six rows of pins.

(c) Find the standard deviation of the distribution of balls for each example; that is,
assume that the bin number is the independent variable so that x = 0.

(d) Plot histograms of the distribution of the balls with Gaussian curves with the
means and standard deviations determined in (c).

Write a Monte Carlo program to simulate the Pascal triangle device described in the

previous exercise. Compare the results obtained by the two methods.



CHAPTER

LEAST-SQUARES
FIT TO A
STRAIGHT

LINE

6.1 DEPENDENT AND INDEPENDENT
VARIABLES

We often wish to determine one characteristic y of an experiment as a function
of some other quantity x. That is, instead of making a number of measure-
ments of a single quantity x, we make a series of N measurements of the pair (x,, y,),
one for each of several values of the index i, which runs from 1 to N. Our object is
to find a function y = y(x) that describes the relation between these two measured
variables. In this chapter we consider the problem of pairs of variables (x,, y,) that
are linearly related to one another, and refer to data from two undergraduate labora-
tory experiments as examples. In the following chapters, we shall discuss methods
of finding relationships that are not linear.

Example 6.1. A student is studying electrical currents and potential differences. He
has been provided with a 1-m nickel-silver wire mounted on a board, a lead-acid bat-
tery, and an analog voltmeter. He connects cells of the battery across the wire and mea-
sures the potential difference or voltage between the negative end and various
positions along the wire. From examination of the meter, he estimates the uncertainty
in each potential measurement to be 0.05 V. The uncertainty in the position of the
probe is less than 1 mm and is considered to be negligible.

The data are listed in Table 6.1 and are plotted in Figure 6.1 to show the poten-
tial difference as a function of wire length x. The estimated common uncertainty in
each measured potential difference is indicated on the graph by the vertical error bars.
From these measurements, we wish to find the linear function y(x) (shown as a solid
line) that describes the way in which the voltage V varies as a function of position x
along the wire.

98
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Example 6.2. In another experiment, a student is provided with a radioactive source
enclosed in a small 8-mm-diameter plastic disk and a Geiger counter with a 1-cm-
diameter end window. Her object is to investigate the 1/r2 law by recording Geiger
counter measurements over a fixed period of time at various distances from the source
between 20 and 100 cm. Because the counting rate is not expected to vary from mea-
surement to measurement, except for statistical fluctuations, the student can record
data long enough to obtain good statistics over the entire range of the experiment. She
uses an automatic recording system and records counts for thirty 15-s intervals at each
position. For analysis in this experiment, she sums the counts from each set of 30 mea-
surements to obtain the number of counts in 7.5 m intervals. The separate 15-s inter-
val measurements at each position can be used in other statistical studies.

The data are listed in Table 6.2 and plotted against x = 1/r? in Figure 6.2. The
vertical error bars on the data points represent the statistical uncertainties in the mea-
sured numbers of counts and are equal to the square roots of the numbers of counts.
The uncertainties in the measurements of the distances from the source to the counter
were assumed to be negligible.

Linear Approximation

In both of these examples, the functional relationship between the dependent and in-
dependent variables can be approximated by a straight line of the form

y(x) =a+ bx (6.1)

We shall consider in this chapter a method for determining the most probable val-
ues for the coefficients a and b.
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FIGURE 6.1

Potential difference as a function of position along a conducting wire (Example 6.1). The uniform
uncertainties 1n the potential measurements are indicated by the vertical error bars The straight line 1s
the result of a least-squares fit to the data.
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TABLE 6.1
Potential difference V as a function of position along a current-carrying
nickel-silver wire

Fitted
Potential potential
Point Postition difference difference
number x, (cm) V, (V) x? x,V, a+bx
1 10.0 0.37 100 3.70 0.33
2 20.0 0.58 400 11.60 0.60
3 30.0 0.83 900 24.90 0.86
4 40.0 1.15 1,600 46.00 1.12
5 50.0 1.36 2,500 68.00 138
6 60.0 1.62 3,600 97.20 1.64
7 70.0 1.90 4,900 133.00 191
8 80.0 2.18 6,400 174.40 2.17
9 90.0 2.45 8,100 220.50 2.43
Sums 450.0 12.44 28,500 779.30

A =NZx2— (Sx)2 = (9 X 28,500) — (450)* = 54,000

a=(Sx2ZV, — Ix,SxV,)A = (28,500 X 12.44 — 450.0 X 779.30)/54,000 = 0.0714
b=(NZxV,— Sx3IV,)A = (9 X 779.30 — 450.0 X 12.44)/54,000 = 0.0262
o2=g3Zx2/A = 0.05% X 28,500/ 54,000 = 0.001319 0, = 0.036 0, = 0.019
o2 = NoZ/A =9 X 0.05?/54,000 = 0.417 X 10~ o, = 0.00065 o}, = 0.00034

Note: A uniform uncertainty in V of 0 05 V 1s assumed A linear fit to the data, calculated by the method of determi-
nants, gives a = 0.07 = 004 V and b = 0.0262 * 0 0006 V/cm, with x2 = 195 for 7 degrees of freedom The
x? probability for the fit 1s approximately 96%
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Number of counts 1n constant time 1ntervals from a radioactive source as a function of the inverse
distance from source to Geiger counter (Example 6.2). The vertical error bars indicate the statistical
uncertainties 1n the counts. The straight line 1s the result of a least-squares fit to the data.
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TABLE 6.2
Number of counts detected in 7/2-min intervals as a function of distance from
the source

Weight Fitted

Distance x, =1/d?> Counts (1/C? counts

i d, (m) (m™?) C, o, w, wx, wC, wx? wxC, a+bx,
1 0.20 25.00 901 30.0 0.00111 0.0278 1 0.694 250 887
2 025 16.00 652 25.5 0.00153 00254 1 0393 160 610
3 030 11.11 443 21.0 000226 0.0251 1 0279 11.1 461
4 0.35 8.16 339 18.4 0.00295 00241 1 0.197 82 370
5 0.40 6.25 283 16.8 0.00353 00221 1 0.138 6.3 311
6 0.45 494 281 16.8 000356 0.0176 1 0087 49 271
7 0.50 4.00 240 15.5 0.00417 00167 1 0.067 4.0 242
8 0.60 2.78 220 148 000455 0.0126 1 0.035 2.8 205
9 0.75 1.78 180 13.4 0.00556 00099 1 0018 1.8 174
10 100 100 154 124 000649 0.0065 1 0.007 1.0 150

Sums 0.03570 01868 10 1912 81.0

o, = \/)7, w, = /o2 = 1ly,
A =Zw,Zwx2— (Zw,x,)* = 0.03570 X 1.912 — (0.1868)> = 0.0334
a = [Sw,C Zw,x2 — Sw,x,Zw,x, C,J/A = [10 X 1.912 — 0.1868 X 81.0]/A = 119 5
b= [Ew,Zw,x,C, — Zw,x, Zw, C, J/A = [0.03570 X 81.0 — 0 1868 X 10]/A = 30.7
o2=3wx2/A =1912/0.0334 =573 0,=176
o2 = Sw,/A = 0.03570/0.0334 = 1.07 o, = 1.1

Note A linear fit to the data of the function C = a + bx by the method of determinants gives a = 119 * 8 and
b =31 %=1, with x2 = 11 1 for 8 degrees of freedom The x? probabulity for the fit 1s about 20%

We cannot fit a straight line to the data exactly in either example because it is
impossible to draw a straight line through all the points. For a set of N arbitrary
points, it is always possible to fit a polynomial of degree N — 1 exactly, but for our
experiments, the coefficients of the higher-order terms would have questionable sig-
nificance. We assume that the fluctuations of the individual points above and below
the solid curves are caused by experimental uncertainties in the individual mea-
surements. In Chapter 11 we shall develop a method for testing whether higher-
order terms are significant.

Measuring Uncertainties

If we were to make a series of measurements of the dependent quantity y, for one
particular value x, of the independent quantity, we would find that the measured
values were distributed about a mean in the manner discussed in Chapter 5 with a
probability of ~68% that any single measurement of y, be within 1 standard devia-
tion of the mean. By making a number of measurements for each value of the in-
dependent quantity x,, we could determine mean values y, with any desired
precision. Usually, however, we can make only one measurement y, for each value
of x = x,, so that we must determine the value of y corresponding to that value of x
with an uncertainty that is characterized by the standard deviation o, of the distri-
bution of data for that point.
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We shall assume for simplicity in all the following discussions that we can as-
cribe all the uncertainty in each measurement to the dependent variable. This is
equivalent to assuming that the precision of the determination of x is considerably
higher than that of y. This difference is illustrated in Figures 6.1 and 6.2 by the fact
that the uncertainties are indicated by error bars for the dependent variables but not
for the independent variables.

Our condition, that we neglect uncertainties in x and consider just the uncer-
tainties in y, will be valid only if the uncertainties in y that would be produced by
variations in x corresponding to the uncertainties in the measurement of x are much
smaller than the uncertainties in the measurement of y. This is equivalent, in first or-
der, to the requirement at each measured point that

d
0'x-1<< o,

where dy/dx is the slope of the function y = y(x).

We are not always justified in ascribing all uncertainties to the dependent pa-
rameter. Sometimes the uncertainties in the determination of both quantities x and y
are nearly equal. But our fitting procedure will still be fairly accurate if we estimate
the indirect contribution o, from the uncertainty o, in x to the total uncertainty in y
by the first-order relation

=0, (6.2)

and combine this with the direct contribution o, which is the measuring uncer-
tainty in y, to get

0’3 = 0').2] + OIyzD (6.3)

For both Examples 6.1 and 6.2 the condition would be reasonable because we pre-
dict a linear dependence of y with x. With the linear assumption, we treat the uncer-
tainties in our data as if they were in the dependent variable only, while realizing
that the corresponding fluctuations may have been originally derived from uncer-
tainties in the determinations of both dependent and independent variables.

In those cases where the uncertainties in the determination of the independent
quantity are considerably greater than those in the dependent quantity, it might be
wise to interchange the definition of the two quantities.

6.2 METHOD OF LEAST SQUARES

Our data consist of pairs of measurements (x,, y,) of an independent variable x and a
dependent variable y. We wish to find values of the parameters a and b that mini-
mize the discrepancy between the measured values y, and calculated values y(x). We
cannot determine the parameters exactly with only a finite number of observations,
but can hope to extract the most probable estimates for the coefficients in the same
way that we extracted the most probable estimate of the mean in Chapter 4.

Before proceeding, we must define our criteria for minimizing the discrep-
ancy between the measured and predicted values y,. For any arbitrary values of a
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and b, we can calculate the deviations Ay, between each of the observed values y,
and the corresponding calculated or fitted values

Ayl=yl_y(xl)=yl_a_b‘xl (64)

With well chosen parameters, these deviations should be relatively small. However,
the sum of these deviations is not a good measure of how well our calculated
straight line approximates the data because large positive deviations can be bal-
anced by negative ones to yield a small sum even when the fit of the function y(x)
to the data is bad. We might consider instead summing the absolute values of the de-
viations, but this leads to difficulties in obtaining an analytical solution. Instead we
sum the squares of the deviations.

There in no correct unique method for optimizing the parameters valid for all
problems. There exists, however, a method that can be fairly well justified, that is
simple and straightforward, and that is well established experimentally. This is the
method of least squares, similar to the method discussed in Chapter 4, but extended
to include more than one variable. It may be considered as a special case of the
more general method of maximum likelihood.

Method of Maximum Likelihood

Our data consist of a sample of observations drawn from a parent distribution that
determines the probability of making any particular observation. For the particular
problem of an expected linear relationship between dependent and independent
variables, we define parent parameters a, and b, such that the actual relationship be-
tween y and x is given by

yo(x) =aq + byx (6.5)

We shall assume that each individual measured value of y, is itself drawn from a
Gaussian distribution with mean yy(x,) and standard deviation g, We should be
aware that the Gaussian assumption may not always be exactly true. In Example 6.2
the y, = C, were obtained in a counting experiment and therefore follow a Poisson
distribution. However, for a sufficiently large number of counts y, the distribution
may be considered to be Gaussian. We shall discuss fitting with Poisson statistics in
Section 6.6.

With the Gaussian assumption, the probability P, for making the observed
measurement y, with standard deviation o, for the observations about the actual

value y,y(x,) is
P[ _ 1 [__;_ I:yl — yO(xz)]2] (66)

oV c*P g,

The probability for making the observed set of measurements of the N values of y,
is the product of the probabilities for each observation:

Plag, b)) =TIP,=|] (G \1/2_17) exp {—% D [3’;50@}2] (6.7)
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where the product II is taken with i ranging from 1 to N and the product of the ex-
ponentials has been expressed as the exponential of the sum of the arguments. In
these products and sums, the quantities 1/a? act as weighting factors.

Similarly, for any estimated values of the parameters a and b, we can calculate
the probability of obtaining the observed set of measurements

Pla,b)=1]] (0 \1/%> exp [—% 2[)’:_7)’(%)]2] (6.8)

with y(x) defined by Equation (6.1) and evaluated at each of the values x,.

We assume that the observed set of measurements is more likely to have come
from the parent distribution of Equation (6.5) than from any other similar distribu-
tion with different coefficients and, therefore, the probability of Equation (6.7) is
the maximum probability attainable with Equation (6.8). Thus, the maximum-
likelihood estimates for a and b are those values that maximize the probability of
Equation (6.8).

Because the first factor in the product of Equation (6.8) is a constant, inde-
pendent of the values of a and b, maximizing the probability P(a, b) is equivalent to
minimizing the sum in the exponential. We define this sum to be our goodness-of-
fit parameter x*:

_ 2 2

X' = Z[yﬂl = ZF (y—a- bx,)] (6.9)
Ul o-l

We use the same symbol x?, defined earlier in Equation (4.32), because this is es-

sentially the same definition in a different context.

Our method for finding the optimum fit to the data will be to find values of a
and b that minimize this weighted sum of the squares of the deviations x? and
hence, to find the fit that produces the smallest sum of the squares or the least-
squares fit. The magnitude of x? is determined by four factors:

1. Fluctuations in the measured values of the variables y,, which are random sam-
ples from a parent population with expectation values y,(x,).

2. The values assigned to the uncertainties o, in the measured variables y,. Incor-
rect assignment of the uncertainties o, will lead to incorrect values of x>.

3. The selection of the analytical function y(x) as an approximation to the “true”
function yy(x). It might be necessary to fit several different functions in order to
find the appropriate function for a particular set of data.

4. The values of the parameters of the function y(x). Our objective is to find the
“best values” of these parameters.

6.3 MINIMIZING x>

To find the values of the parameters a and b that yield the minimum value for x?, we
set to zero the partial derivatives of x* with respect to each of the parameters
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RN R B S
X = _0?(y' a bx)]
[ 1

=23 ;(y,—a—bx,) =0
R I I U
abX _abz_o_lz(yt a b‘xl)]
[ 1 B
:_22 (ﬁ()’z—a—bx;) =0

(6.10)

These equations can be rearranged as a pair of linear simultaneous equations

in the unknown parameters a and b:

Y, 1 X,

_— = —_— + it 24

> o? ay, o2 by, o?
XY, X, x?

= — + —

Ee B E R

(6.11)

The solutions can be found in any one of a number of different ways, but, for
generality we shall use the method of determinants. (See Appendix B.) The' solu-

tions are
R X
120 2| 1 Pan < has
Ay ‘A(Eo?EG% 2522
257 2y
1 Y
125 26| 1 lany <X
b_A X, x,y,_A(Eo,zzcr,2 20,22
E(,—; 2—;
1 X
2_2 2_12 2 2
g, ag, 1 X, X
A=l . |2 =20720._’2_<2;>
25 2

For the special case in which all the uncertainties are equal (o =

cel and the solutions may be written

_1 Py x| 1 g el
a= A’ Ex,y, Exlz - A;(zxtzyt E‘xlleyl)
_ 1IN 2y (1 _
b= A’ Ex, leyl A’ (Nleyl Exlzyl)
, _IN 2x|_ - ,
A= lle o = N2 = (3)

Vi
?) (6.12)
o), they can-
(6.13)
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Examples

For the data of Example 6.1 (Table 6.1), we assume that the uncertainties in the
measured voltages V are all equal and that the uncertainties in x, are negligible. We
can therefore use Equation (6.13). We accumulate four sums 2x, Xy, = 2V, 2x2,
and 2x,y, = Zx,V, and combine them according to Equation (6.13) to find numeri-
cal values for a and b. The steps of the calculation are illustrated in Table 6.1, and
the resulting fit is shown as a solid line on Figure 6.1.

Determination of the parameters a and b from Equation (6.12) is somewhat
more tedious, because the uncertainties o, must be included. Table 6.2 shows steps
in the calculation of the data of Example 6.2 with the uncertainties o, in the num-
bers of counts C, determined by Poisson statistics so that ¢ = C,. The values of a
and b found in this calculation were used to calculate the straight line through the
data points in Figure 6.2.

It is important to note that the value of C, to be used in determining the un-
certainty o, must be the actual number of events observed. If, for example, the
student had decided to improve her statistics by collecting data at the larger dis-
tances over longer time periods A, and to normalize all her data to a common
time interval Az,

C.=C, X At,/At,
then the statistical uncertainty in C’ would be given by

o/ = \/C, X At /A1,

Program 6.1. FITLINE (Appendix E) Solution of Equations (6.11) by the deter-
minant method of Equation (6.12).

The program uses routines in the programs units FITVARS, FITUTIL, and
GENUTIL, which are also used by other fitting programs. The sample programs
use single precision variables for simplicity, although double, or higher, precision is
highly recommended.

Program 6.1 uses Equation (6.12) to solve both Examples 6.1 and 6.2, al-
though separate routines written for each problem would be slightly more efficient.
Because the measurements of Example 6.1 have common errors, we could, for ex-
ample, increase the fitting speed by using Equations (6.13) rather than Equations
(6.12). Similarly, for Example 6.2, we could simplify the fitting routine by replac-
ing the statistical errors SIGY[1] by the explicit expression for \/y,. However, in
most calculations that involve statistical errors, there are also other errors to be con-
sidered, such as those arising from background subtractions, so the loss of general-
ity would more than compensate for any increased efficiency in the calculations.

Program 6.2. FITVARS (website) Include file of constants, variables, and arrays
for least-squares fits.

Program 6.3. FITUTIL (website) Utility routines for fitting programs
Input/output routine, x? calculation, x?-density, and x>-integral probability.
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Program 64. GENUTIL (website) General Utility Routines
Includes approximate gamma function, Simpson’s rule integration.

6.4 ERROR ESTIMATION

Common Uncertainties

If the standard deviations o, for the data points y, are unknown but we can assume
that they are all equal, o2 = o, then we can estimate them from the data and the re-
sults of our fit. The requirement of equal errors may be satisfied if the uncertainties
are instrumental and all the data are recorded with the same instrument and on the
same scale, as was assumed in Example 6.1.

In Chapter 2 we obtained, for our best estimate of the variance of the data
sample,

1

R
g°=5*=
N—m

> (y, —9)? (6.14)

where N — m is the number of degrees of freedom and is equal to the number of
measurements minus the number of parameters determined from the fit. In Equation
(6.14) we identify y, with the measured value of the dependent variable, and for y,
the expected mean value of y,, we use the value calculated from Equation (6.1) for
each data point with the fitted parameters a and b. Thus, our estimate o, = o for the
standard deviation of an individual measurement is

02=s2=N+22(y,—a—bx,)2 (6.15)

By comparing Equation (6.15) with Equation (6.9), we see that it is just this com-
mon uncertainty that we have minimized in the least-squares fitting procedure.
Thus, we can obtain the common error in our measurements of y from the fit, al-
though at the expense of any information about the quality of the fit.

Variable Uncertainties

In general the uncertainties o, in the dependent variables y, will not all be the same.
If, for example, the quantity y represents the number of counts in a detector per unit
time interval (as in Example 6.2), then the errors are statistical and the uncertainty
in each measurement y, is directly related to the magnitude of y (as discussed in Sec-
tion 4.2), and the standard deviations o, associated with these measurements is

ol=C, (6.16)

In principle, the value of y,, which should be used in calculating the standard
deviations o, by Equation (6.16), is the value y,(x,) of the parent population. In prac-
tice we use the measured values that are only samples from that population. In the
limit of an infinite number of determinations, the average of all the measurements
would very closely approximate the parent value, but generally we cannot make
more than one measurement of each value of x, much less an infinite number. We
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could approximate the parent value y,(x,) by using the calculated value y(x) from
our fit, but that would complicate the fitting procedure. We shall discuss this possi-
bility further in the following section.

Contributions from instrumental and other uncertainties may modify the sim-
ple square root form of the statistical errors. For example, uncertainties in measur-
ing the time interval during which the events of Example 6.2 were recorded might
contribute, although statistical fluctuations generally dominate in counting experi-
ments. Background subtractions are another source of uncertainty. In many count-
ing experiments, there is a background under the data that may be removed by
subtraction, or may be included in the fit. In Example 6.2, cosmic rays and other
backgrounds contribute to a counting rate even when the source is moved far away
from the detector, as indicated by the nonzero intercept of the fitted line of Figure
6.2 on the C axis. If the student had chosen to record the radiation background
counts C, in a separate measurement and to subtract C, from each of her measure-
ments C, to obtain

C'=C—-C,

then the uncertainty in C' would have been given by combining in quadrature the
uncertainties in the two measurements:

o'’ =0+ o}
x? Probability

For those data for which we know the uncertainties o, in the measured values y, we
can calculate the value of x? from Equation (6.9) and test the goodness of our fit.
For our two-parameter fit to a straight line, the number of degrees of freedom will
be N — 2. Then, for the data of Example 6.2, we should hope to obtain x> = 10 — 2
= 8. The actual value, x? = 11.1, is listed in Table 6.2, along with the probability
(p = 20%). (See Table C.4.) We interpret this probability in the following way.
Suppose that we have obtained a x2 probability of p% for a certain set of data. Then,
we should expect that, if we were to repeat the experiment many times, approxi-
mately p% of the experiments would yield x* values as high as the one that we ob-
tained or higher. This subject will be discussed further in Chapter 11.

In Example 6.1, we obtained a value of x2 = 1.95 for 7 degrees of freedom,
corresponding to a probability of about 96%. Although this probability may seem to
be gratifyingly high, the very low value of x? gives a strong indication that the com-
mon uncertainty in the data may have been overestimated and it might be wise to
use the value of x? to obtain a better estimate of the common uncertainty. From
Equations (6.15) and (6.9), we obtain an expression for the revised common uncer-
tainty o in terms of x* and the original estimate,

o'2=02X x¥(N—-2) (6.17)
or, more generally
ol =07 XX} (6.18)

where x2 = x?/v and v is the number of degrees of freedom in the fit. Thus, for Ex-
ample 6.1, we find a>= 0.05% X 1.95/(9 — 2) = 0.0007, or ¢/ = ~0.03 V.
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Uncertainties in the Parameters

In order to find the uncertainty in the estimation of the parameters a and b in our fit-
ting procedure, we use the error propagation method discussed in Chapter 3. Each
of our data points y, has been used in the determination of the parameters and each
has contributed some fraction of its own uncertainty to the uncertainty in our final
determination. Ignoring systematic errors, which would introduce correlations be-
tween uncertainties, the variance o? of the parameter z is given by Equation (3.14)
as the sum of the squares of the products of the standard deviations o, of the data
points with the effects that the data points have on the determination of z:

ol = 2[0,2@—;)1 (6.19)

Thus, to determine the uncertainties in the parameters a and b, we take the
partial derivatives of Equation (6.12):

da_1(1 % _ K &
dy, A\o}<“g? o< q?

ab_l(xj 1 1 x,)
ay, AUZEG? o2 “ o?

J J

(6.20)

We note that the derivatives are functions only of the variances and of the indepen-
dent variables x,. Combining these equations with the general expression of Equa-
tion (6.19) and squaring, we obtain for o2,
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For the special case of common uncertainties in y,, o, = o, these equations
reduce to

a? a?

A A (6.23)

with o given by Equation (6.15) and A" given by Equation (6.13).

The uncertainties in the parameters o, and o, calculated from the original er-
ror estimates, are listed in Tables 6.1 and 6.2. For Example 6.1, revised uncertain-
ties o, and o;, based on the revised common data uncertainty calculated from
Equation (6.18), are also listed.

ol=—3x! and o©}=N

6.5 SOME LIMITATIONS OF THE
LEAST-SQUARES METHOD

When a curve is fitted by the least-squares method to a collection of statistical
counting data, the data must first be histogrammed, that is, a histogram must be
formed of the corrected data, either during or after data collection. In Example 6.2,
the data were collected over intervals of time Az, with the size of the interval cho-
sen to assure that a reasonable number of counts would be collected in each time in-
terval. For data that vary linearly with the independent variable, this treatment poses
no special problems, but one could imagine a more complex problem in which fine
details of the variation of the dependent variable y with the independent variable x
are important. Such details might well be lost if the binning were too coarse. On the
other hand, if the binning interval were too fine, there might not be enough counts
in each bin to justify the Gaussian probability hypothesis. How does one choose the
appropriate bin size for the data?

A handy rule of thumb when considering the Poisson distribution is to assume
that large enough = 10. A comparison of the Gaussian and Poisson distributions for
mean p. = 10 and standard deviation o = \/;_1, (see Figures 2.4 and 2.5) shows very
little difference between the two distributions. We might expect this because the
mean is more than 3 standard deviations away from the origin. Thus, we may be
reasonably confident about the results of a fit if no histogram contains less than ten
counts and if we are not placing excessive reliance on the actual value of x2 ob-
tained from the fit. If a bin does have fewer than the allowed minimum number of
counts, it may be possible to merge that bin with an adjacent one. Note that there is
no requirement that intervals on the abscissa be equal, although we must be careful
in our choice of the appropriate value of x, for the merged bin. We should also be
aware that such mergers necessarily reduce the resolution of our data and may,
when fitting functions more complicated than a straight line, obscure some interest-
ing features.

In general, the choice of bin width will be a compromise between the need for
sufficient statistics to maintain a small relative error in the values of y, and thus in
the fitted parameters, and the need to preserve interesting structure in the data.
When full details of any structure in the data must be preserved, it might be advis-
able to apply the maximum-likelihood method directly to the data, event by event,
rather than to use the least-squares method with its necessary binning of the data.
We return to this subject in Chapter 10.
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There is also a question about our use of the experimental errors in the fitting
process, rather than the errors predicted by our estimate of the parent distribution.
For Example 6.2, this corresponds to our choosing o? = y, rather than ¢? = y(x,) =
a + bx,. We shall consider the possibility of using errors from our estimate of the
parent distribution, as well as the direct application of the Poisson probability func-
tion, in the following section.

Another important point to consider when fitting curves to data is the possi-
bility of rounding errors, which can reduce the accuracy of the results. With manual
calculations, it is important to avoid rounding the numbers until the very end of the
calculation. With computers, problems may arise because of finite computer word
length. This problem can be especially severe with matrix and determinant calcula-
tions, which often involve taking small differences between large numbers.
Depending on the computer and the software, it may be necessary to use double-
precision variables in the fitting routine.

We discuss in Chapter 7 the interaction of parameters in a multiparameter fit.
For now, it is worth noting that, for a nominally “flat” distribution of data, the in-
tercept obtained from a fit to a straight line may not be identical to the mean value
of the data points on the ordinate. See Exercise 6.7 for an example of this effect.

6.6 ALTERNATE FITTING METHODS

In this section we attempt to solve the problem of fitting a straight line to a collec-
tion of data points by using errors determined from the estimated parent distribution
rather than from the measurements, and by directly applying Poisson statistics,
rather than Gaussian statistics. Because it is not possible to derive a set of indepen-
dent linear equations for the parameters with these conditions, explicit expressions
for the parameters a and b cannot be obtained. However, with fast computers, solv-
ing coupled, nonlinear equations is not difficult, although the clarity and elegance
of the straightforward least-squares method can be lost.

Poisson Uncertainties

Let us consider a collection of purely statistical data that obey Poisson statistics (as
in Example 6.2) so that the uncertainties can be expressed by Equation (6.16). We
begin by substituting the approximation ¢?> = y(x,) = a + bx, into the definition of
x* in Equation (6.9), which is based on Gaussian probability, and minimizing the
value of x? as in Equations (6.10). The result is a pair of simultaneous equations that
can be solved for a and b:

_2w+my
(6.24)

X }’z
=2 L) (a + bx,)?
Poisson Probability

Next, let us replace the Gaussian probability P(a, b) of Equation (6.8) by the corre-
sponding probability for observing y, counts from a Poisson distribution with mean

M, = ¥(x),
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[y
P(a, b)= 1‘[( Y e ¥(x) (6.25)
and apply the method of maximum likelihood to this probability. It is easier and
equivalent to maximize the natural logarithm of the probability with respect to each

of the parameters a and b:
In P(a, b) = =[y, In y(x,)] — Zy(x,) + constant (6.26)

where the constant term is independent of the parameters a and b. The result of tak-
ing partial derivatives of Equation (6.26) is a pair of simultaneous equations similar
to those of Equation (6.24),

Y
N= ) ——
2 a+ bx, (6.27)
—_ xlyl
2x, = 2a + bx,

but with less emphasis on fitting the larger values of y,.

Neither the coupled simultaneous Equations (6.24) nor the Equations (6.27)
can be solved directly for a and b, but each pair can be solved by an iterative
method in which values of a and b are chosen and then adjusted until the two si-
multaneous equations are satisfied. (See Appendix A.S.)
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FIGURE 6.3

Least-squares fit of a straight line to the data by three different methods. (i) Standard least-squares
method with Gaussian statistics and experimental uncertainties; (ii) Gaussian statistics and analytic
uncertainties; (iii) Poisson statistics and analytic uncertainties. The analytic errors are expressed as

o =a + bx,
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TABLE 6.3
Comparison of fits to a selection of statistical data from Example 6.2 for three
different fitting methods

Inverse Number
distance of 2) A3
squared counts (4] Gaussian Poisson
i x, (m™?) C, Standard o =yx) o’ =y)
1 25.00 44 320 36.3 351
2 16.00 18 21.0 24.1 23.2
3 11.11 17 15.1 17.5 16.8
4 8.16 6 11.5 13.5 129
5 6.25 8 9.1 10.9 10.4
6 4.94 9 7.5 9.2 8.6
7 4.00 9 6.4 7.9 7.4
8 278 11 4.9 6.3 5.8
9 1.78 3 37 4.9 4.5
10 100 3 2.7 3.9 34
Sums 128 114.0 134.4 128.0
a 1.52 2.50 2.11
b 1.22 1.35 1.32
X2 13.7 17.6 15.5

Note (1) Standard least-squares method with Gaussian staustics and experimental uncertainties, (2) Gaussian statis-
tics and analytic uncertainties, (3) Poisson statistics and analytic uncertainties. The analytic uncertainties are ex-
pressed as 02 = a + bx,

Example 6.3. Because we expect the methods discussed here to be equivalent to the
standard method for large data samples, we selected a low statistics sample to emphasize
the differences. We chose from the measurements of Example 6.2 only those events col-
lected at each detector position during the first 15-s interval, a total of 128 events at ten
different positions. The results of (i) calculations by the standard method, (ii) calcula-
tions with Gaussian statistics and with errors given by o, = y(x,) = a + bx,, and (iii) cal-
culations with Poisson statistics with errors as in method (ii) are listed in Table 6.3 and
illustrated in Figure 6.3. We note that method (i) appears to underestimate the number of
events in the sample, whereas method (ii) overestimates the number. Method (iii) with
Poisson statistics and errors calculated as in method (ii) finds the exact number.

We can avoid questions of finite binning and the choice of statistics by mak-
ing direct use of the maximum-likelihood method, treating the fitting function as a
probability distribution. This method also allows detailed handling of problems in
which the probability associated with individual measurements varies in a complex
way from observation to observation. We shall pursue this subject further in Chap-
ter 10.

In general, however, the simplicity of the least-squares method and the diffi-
culty of solving the equations that result from other methods, particularly with more
complicated fitting functions, leads us to choose the standard method of least
squares for most problems. We make the following two assumptions to simplify the
calculation:
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1. The shapes of the individual Poisson distributions governing the fluctuations in
the observed y, are nearly Gaussian.

2. The uncertainties o, in the observations y, may be obtained from the uncertain-
ties in the data and may be approximated by o2 = y, for statistical uncertainties.

SUMMARY

Linear function: y(x) = a + bx.
Chi-square:

1 2
X= [—(y, —a- bx,)]
0.!
Least-squares fitting procedure: Minimize x* with respect to each of the parameters

simultaneously.
Solutions for least-squares fit of a straight line:

_120_.2 20_3_1 < Y X X
a_ZE%_y. Ex_?_A(Ec?EG_?_Eo?ZG_?
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Estimated uniform variance s*:
02=s2=LE(y — )
N—-2 !
Statistical fluctuations:
o2=y,  (raw data counts)
Uncertainties in coefficients:

2
X

1 1
03=K2— 0,§=K2

2
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il S}



Least-Squares Fit to a Straight Line 115

EXERCISES

6.1. Fit the data of Example 6.2 as if all the data had equal uncertainties o, = & = 18.5,
where G is the average of the given values of o. Note that the fitted parameters are in-
dependent of the value of &, but the values of x, ¢, and o, are not.

6.2. Derive Equation (6.23) from Equations (6.21) and (6.22).

6.3. Show that Equation (6.12) reduces to Equation (6.13) if o, = o.

6.4. Derive a formula for making a linear fit to data with an intercept at the origin so that
y = bx. Apply your method to fit a straight line through the origin to the following co-
ordinate pairs. Assume uniform uncertainties o, = 1.5 in y,. Find x? for the fit and the
uncertainty in b.

x | 2 4 6 8 10 12 14 16 18 20 22 24
b2 I 53 144 207 30.1 350 413 527 557 630 721 805 879

6.5. A student hangs masses on a spring and measures the spring’s extension as a function
of the applied force in order to find the spring constant k. Her measurements are:

Mass (kg) | 200 300 400 500 600 700 800 900
Extenson(cm) | 51 55 59 68 74 75 86 94

There is an uncertainty of 0.2 in each measurement of the extension. The uncertainty in
the masses is negligible. For a perfect spring, the extension AL of the spring will be re-
lated to the applied force by the relation kAL = F, where F = mg, and AL = L — L,
and L, is the unstretched length of the spring. Use these data and the method of least
squares to find the spring constant k, the unstretched length of the spring Ly, and their
uncertainties. Find x? for the fit and the associated probability.

6.6. Outline a procedure for solving the simultaneous Equations (6.27). Refer to Ap-
pendix A.

6.7. A student measures the temperature (T) of water in an insulated flask at times (#) sepa-

rated by 1 minute and obtains the following values:

(s) | 0 1 2 3 4 5 6 7 8
TeC) | 9851 9850 9850 98.49 98.52 98.49 98.52 98.45 98.47

(a) Calculate the mean temperature and its standard error.

(b) To test whether or not the water is cooling, plot a graph of the temperatures versus
the time and make a least-squares fit of a straight line to the data. Is there a statisti-
cally significant slope to the graph?

(c) Note that the intercept is not identical to the mean value of the temperature you cal-
culated in part (a). Now, shift the time coordinates by 4 s so that the mean time is
0. Refit the data with the new values of T. Is the intercept now identical to the mean
value of T'?

(d) Clearly, the results of this experiment cannot depend upon the time at which the
measurements were made. Show that, if the mean value of x is equal to zero, then
the intercept b calculated from Equation (6.13) is identically equal to the mean
value of y.



CHAPTER

7

LEAST-SQUARES
FIT

TO A
POLYNOMIAL

7.1 DETERMINANT SOLUTION

So far we have discussed fitting a straight line to a group of data points. However,
suppose our data (x,, y,) were not consistent with a straight line fit. We might con-
struct a more complex function with extra parameters and try varying the parame-
ters of this function to fit the data more closely. A very useful function for such a fit
is a power-series polynomial

yx)=a,+ax+azx*+ax3+---+a,xm! 7.1)

where the dependent variable y is expressed as a sum of power series of the inde-
pendent variable x with coefficients a,, a,, a3, a,, and so forth.

For problems in which the fitting function is linear in the parameters, the
method of least squares is readily extended to any number of terms m, limited only
by our ability to solve m linear equations in m unknowns and by the precision with
which calculations can be made. We can rewrite Equation (7.1) as

y(x)= i a,x*! (7.2)
k=1

116
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where the index k runs from 1 to m. In fact, we can generalize the method even fur-
ther by writing Equation (7.2) as

y(x) = 2 afi(x) (1.3)

where the functions f(x) could be the powers of x as in Equation (7.2), fi(x) = 1,
f(x) = x, f3(x) = x% and so forth, or they could be other functions of x as long as
they do not involve the parameters a,, a,, a;, and so forth.

With this definition, the probability function of Equation (6.8) can be written as

1

P(ay, ay,...,a,)=1]] (0 \/ﬂ) exp [—%2 (% [y, —kgml akfk(x,)}z] (7.4)

and Equation (6.9) for x? becomes

=3 Ll[y —lﬁlakfk(x,)n2 (7.5)

The method of least squares requires that we minimize x?, our measure of the
goodness of fit to the data, with respect to the parameters a,, a,, a;, and so forth. The
minimum is determined by taking partial derivatives with respect to each parameter
in the expression for x? of Equation (7.5), and setting them to zero:

aia, X a(l [ [ 2 akfk(xz)H

= [f% [y, - kz"'l a, fk(x,)” =0 (1.6)

Thus, we obtain a set of m coupled linear equations for the m parameters a;, with the
index / running from 1 to m:

m

$3880= 8 las| Lience|

t k=

or ZJ’«JL?) = Efl(il)[alfl(x:) +ayfolx) + asfa(x) - ]

g, O

(1.7)

sy 5 (')[alfl(,)+a2f2( )+ asfi(e) ]

01

sy L) 5 (')[alfl(xwazfz( ) ah(x) -]

0,

and so forth.
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The solutions can be found by the method of determinants, as in Chapter 6.
We shall display the full solution for the particular case of m = 3:

1

aI_K

1

az=K

_1

as A

>

with A=

>

{

Eylfnc(:;,) 2fl(x.()rjiz(x,) 2fl(x,():?za(«\f.)
Ey,f% 2f2(xt(),-j;é(xt) EfZ(xt()rfj(xt)
2)’,% Ef:i(xl();f;(xt) Eﬁ(xt();f;(xt)
< Axfi(x) H(x)fi(x) )f1 2 fz?) 2 ,)fa(x,)
2fa(x)fl Sy faJ;,) 2 ,)f3(x.)
2fl(x,()rjz(x,) 2fl(x.()rJ;z(x,) Zy.j%
E fz(x’(),_f; (x,) 2 f2(xl())..f;2(xl) 2 y,f%
2JS(J@():;](JC,) 2:fs(x.()rJ;z(x.) 2ylfac(:;,)
f(%f(x) Eﬁ(x,():;z(x.) zﬁ(x,()ré(x.)
fi(%fz’l(xt) 2f2(xli?(xl) sz(xl()’f(xl)
f(+f(x) Eﬁ(x,()ﬁ(x.) Eﬁ(x,()ﬁ(x,)

(7.8)

We note that, as in the straight-line fits in Chapter 6, the denominator A is a func-
tion only of the independent variable x and the uncertainties o, in the dependent
variable, and is not a function of the dependent variable y, itself. For the special

case of a quadratic power series in x, y(x,) =

fo(x)

a; + a;x, + a;x?, we have fi(x) = 1,
= x,, and f3(x,) = x2, so that Equations (7.8) become
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>~

ap =

(7.9)

|-
™M

Q4
™M
<

a, =

az =

> —

Example 7.1. A student plans to use a thermocouple to monitor temperatures and must
first calibrate it against a thermometer. The thermocouple consists of a junction of a cop-
per wire and a constantan wire. In order to measure the junction voltage with high pre-
cision, she connects the sample junction in series with a reference junction that is held at
0°C in an ice water bath. The data, therefore, will be valid only for calibrating the
relative variation of the junction voltage with temperature. The absolute voltage must
be determined in a separate experiment by measuring it at one specific temperature.
The student measures the difference in output voltage between the two junctions
for a temperature variation in the sample junction from 0 to 100°C in steps of 5°C. The
measurements are made on the 3-mV scale of the voltmeter, and fluctuations of the
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TABLE 7.1

Experimental data for the determination of the relative output
voltage V of a thermocouple junction as a function of temperature
T of the junction

Measured Calculated
Trial Temperature voltage voltage

i T(°C) V (mV) W(T) (mV)
1 0 —0.849 —0.918
2 5. —0.738 —0.728
3 10. —0.537 —0.536
4 15. —0.354 —0.341
5 20 —0.196 —0.143
6 25. —0.019 0.058
7 30. 0.262 0261
8 3s. 0.413 0.467
9 40 0.734 0.676
10 45. 0.882 0.888
11 50. 1.258 1.102
12 55. 1.305 1319
13 60. 1.541 1.539
14 65. 1.768 1.761
15 70. 1.935 1.987
16 75. 2.147 2215
17 80. 2.456 2.446
18 85. 2.676 2.679
19 90. 2.994 2.915
20 95. 3.200 3.155
21 100. 3.318 3.396

a, = —0.918 = 0.030
a, = 0.0377 = 0.0013
a; = 0.000055 * 0.000013

Note The common uncertainty 1n the voltage measurement 1s assumed to be 0.05 V. The value of x>
for the fit was x? = 26.6 for 18 degrees of freedom, with a probability of 8.8% Parameters obtained
from the fit are listed at the bottom of the table.

needle indicate that the uncertainties in the measurements are approximately 0.05 mV
for all readings.

Data from the experiment are listed in Table 7.1 and are plotted in Figure 7.1.
To a first approximation, the variation of V with T is linear, but close inspection of
the graph reveals a slight curvature. Theoretically, we expect a good fit to these data
with a quadratic curve of the form V = a; + a,T + a;T %

The parameters for the fit to the data of Example 7.1 have been obtained by
evaluating the sums and determinants of Equations (7.9). For a second-degree poly-
nomial with 21 data points, Equation (7.5) becomes

21 1

X2 = > _oz[y' —a; — ax, — azx?)? (7.10)
=1Y
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FIGURE 7.1

Thermocouple voltage versus temperature (Example 7.1). The curved line was calculated by fitting to
the data second-degree polynomial V = a, + a,T + a;T? by the least-squares method. Uniform
uncertainties were assumed.

The values of x? and the parameters a,, a,, and a; determined from the fit are
listed in Table 7.1, as are the calculated values of V(T,) = y(x,). The calculated val-
ues of V are also represented by the solid line on the graph of Figure 7.1. We obtain
x? = 26.6 for this fit, or x2 = x%v = 1.5, where the number of degrees of free-
dom v is related to the number of events N and the number of free parameters m by
v = N — m. The probability for obtaining x? this high or higher can be determined
from the x 2-probability distribution (see Table C.4) and is about 8.8%, indicating a
reasonable fit to the data.

As an alternative to calculating x? from the fit, we could extend Equation
(6.15) to three parameters and calculate the average uncertainty in the temperature
readings to obtain

2

1

21
ol=g’= N—m 21 [y, — (a1 + ayx, + asx})))* =

X
N —

(7.11)

which is just the value of the uncertainty that would make x> = 1. For Example 7.1,
we obtain for an estimate of the variance,

0’2 =02 X x¥(N — n)=0.05 X 26.6/18 = 0.06°C

suggesting, perhaps, that the student slightly underestimated the uncertainty in her
measurements of V.
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7.2 MATRIX SOLUTION

The techniques of least-squares fitting fall under the general name of regression
analysis. Because we have been considering only problems in which the fitting
function

y(x,) =§ afi(x,) (7.12)

is linear in the parameters a,, we are considering only linear regression or multiple
linear regression, usually shortened to multiple regression. In Chapter 8 we deal
with techniques for handling problems with fitting functions that are not linear in
the parameters.

Matrix Equations

We have not yet determined the uncertainties in the three parameters we obtained
when we fitted the second-order equation to the data of Example 7.1. We could find
the uncertainties by extending the method used for the linear fits of Examples 6.1
and 6.2. However, the algebra becomes even more tedious as the number of terms
in the fitted equation increases, and in fact, our method only yielded estimates of the
variances o2 and not of the covariances o 2, which are often important for fitted pa-
rameters. Rather than pursue the determinant method, we shall discuss immediately
the more elegant and general matrix method for solving the multiple regression
problem. Some of the properties of matrices are discussed in Appendix B.

Equations (7.7) can be expressed in matrix form as the equivalence between a
row matrix 8 and the product of a row matrix a with a symmetric matrix e, all of
order m:

B =ax (7.13)
The elements of the row matrix B are defined by

those of the symmetric matrix a by

= [O%ﬁ(xt)ﬁc (xz)} (7.15)

and the elements of the row matrix a are the parameters of the fit. For m = 3, the
matrices may be written as

B =[B: B, B3 a=[a; a, a] (7.16)
and
Q. G Qg3
@ =|0,; O Oy (7.17)

Q3; Q3 Q33
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To solve for the parameter matrix a we multiply both sides of Equation (7.13)
on the right by the inverse € of the matrix a, defined such that ae = e~ = 1, the
unity matrix. We obtain

Be = ace = a (7.18)
which gives
a=PBe=pa! (7.19)

Equation (7.19) can also be expressed as

=2 (Brew) = 2[%2[ =5V felx ” (7.20)

3

where the 8, is given by Equation (7.14).

The solution of Equation (7.19) requires that the matrix « be inverted. This
generally is not a simple procedure, except for matrices of very low order, but com-
puter routines are readily available. The inversion of a matrix is discussed in Ap-
pendix B.

The symmetric matrix « is called the curvature matrix because of its relation-
ship to the curvature of the x? function in parameter space. The relationship be-
comes apparent when we take the second derivatives of x? with respect to the
parameters. From Equation (7.6), we have for the partial derivative of x? with re-
spect to any arbitrary parameter a,,

ax2 f X, m
Fy —22[ 1((,_2) [)’: _kzlakﬁc(x;)“ (7.21)
and the second cross-partial derivative with respect to two such parameters is
X" _ o3| L (x)fe(x)| =2 (7.22)
da,da; 2 O',Zfl X)felx)| = 2o :

Estimation of Errors

The variance o of any parameter g, is the sum of the variances of each of the data
points o, multiplied by the square of the effect that each data point has on the deter-
mination of the parameter g, [see Equation (6.19)]. Similarly, the covariance of two
parameters a, and g, is given by

%, a_a:]

2 = 2
Taa 2[0' ay, 3y,

(which also gives the variance for j = /), where we have assumed that there are no
correlations between uncertainties in the measured variables y,. Taking the deriva-
tives in Equation (7.23) of g, with respect to y, we obtain

m 1
2 [e,k ojf}‘(x,)} (7.24)
k=1 4

(7.23)

ay.
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and, substituting into Equation (7.23), we obtain for the weighted sum of the
squares of the derivatives,

I RPRET AW

o8zt

€ i e}, ]]

[ek} llk

[
Ms
I Ms

k

(7.25)

[
Ms

k=1

|
Mz

k

1]
—

where we have switched the order of the sums over the dummy indices i, k, and [
and have used the fact that because the curvature matrix « is symmetric, its inverse
€ must also be symmetric, so that €, = €,. The elements of the unity matrix, which
result from the summed products of the elements of & with its inverse €, are repre-
sented by 1.

The inverse matrix € = ™! is called the error matrix or the covariance matrix
because its elements are the variances and covariances of the fitted parameters

2 _
Ooa, = €.

Example 7.2. The matrix method is illustrated by a straight-line fit V = a; + a,T to
a selection of data from Example 7.1. To show clearly each step of the calculation, we
have selected just six points spaced at 25° intervals between 0 and 100° and have as-
sumed a common uncertainty in the dependent variable o, = 0.05 mV. The data are
listed in the columns 2 and 3 of Table 7.2a.

We begin by calculating each of the fitting functions f; = 1 and f, = x at each
value of the independent variable T. These are listed in columns 4 and 5 of Table 7.2a.
For each measured value of x, the values of B, the elements of the column matrix 8,
and of ay, the elements of the symmetric matrix e, are calculated according to Equa-
tions (7.14) and (7.15). The individual terms in the calculation of B, and B, are listed
in columns 6 and 7 of Table 7.2a and the individual terms in the calculation of o are
listed in columns 8 through 10. (We assume symmetry in «.) The resulting matrices
are displayed in Table 7.2b.

The symmetric matrix e is inverted to obtain the variance matrix € with elements
€4, Shown in Table 7.2b, and the product matrix of the fitted parameters & = Be is cal-
culated and displayed in Table 7.2b. The calculated values of the fitted variable V for
each value of the independent variable T are listed in the last column of Table 7.2a.

Program 7.1. MULTREGR (Appendix E) Least-squares fitting with matrices.

Multiple regression problems are usually solved by computer. The program
MULTREGR calls a set of routines for fitting any function that is linear in the pa-
rameters a,, d,, . . . , G, to a set of N data points. Branches in the program on the char-
acter variable PAE permit selection of the fitting function for each example in this
chapter, with PAE = ‘P’ for the power series in x, PAE = ‘A’ for all terms of a
fourth-order Legendre polynomial, or PAE = ‘E’ for only the even terms in the Le-
gendre polynomial. The program uses several program units in addition to those re-
ferred to in Chapter 6.
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TABLE 7.2
Matrix solution for linear fit to data of Example 7.2

(a) Data and components of matrix elements

i T | 4 k)  filx) B, B ay (L 293 [ 7 Vi
1 0 -0849 1 0 -3396 0 400 0 0 —0.947
2 20 -0.196 1 20 -784 —1,458 400 8,000 160,000 —0.101
3 40 0.734 1 40 293.6 11,744 400 16,000 640,000 0.745
4 60 1.541 1 60 616.4 36,984 400 24,000 1,440,000 1.590
5 80 2.456 1 80 982.4 78,592 400 32,000 2,560,000 2.436
6 100 3.318 1 100 13276 132,720 400 40,000 4,000,000 3.281
2802.0 258,472 2,400 120,000 8,800,000
(b) Matrices
_| 2400 120,000 _| 1310X% 1009 —1.786 X 107%
120,000 8,800,00 -1.786 X 107% 3571 x 107"

B =[2,802 258,472] a=[—0947 0.0423]

Note The umiform uncertainty in V was assumed to be 0 05 mV as 1n Example 7.1 The columns labeled B, and a,;,
etc. correspond to the individual contributions by each measured coordinate pair to the summed values of 8 and a
The value of x? for the fit was 9.1 for 4 degrees of freedom corresponding to a probability of 5 5%

Program 7.2. FITFUNC7 (Appendix E) Fitting functions and x? calculation.

In general, every fitting problem requires such a routine. The function
POWERFUNC calculates the individual terms in a power function of any order in
x for Example 7.2, or Legendre polynomials for Example 7.3.

Program 7.3. MAKEAB7 (Appendix E) Form the arrays for the matrices o and 3.

Program B.1. MATRIX (Appendix E) Matrix products and inversion.

When we use the matrix method to fit a polynomial function to a data sample,
the resulting parameters must be identical to those calculated by the determinant
method, but we also obtain the full error matrix. The error matrix obtained by fitting
a second-degree polynomial to the complete data sample of Example 7.1 is listed in
Table 7.3.

The error matrix can be used to estimate the uncertainty in a calculated result,
including the effects of the correlations of the errors. As an example, let us suppose
that we wish to find the predicted value of the voltage V and its uncertainty for a
temperature of exactly 80°C. We should calculate

V=a,+a,T+ a;T? (7.26)

using the parameters determined by the fit to the data. The uncertainty in the calcu-
lated value of V, which results from the uncertainty in the parameters, is given by
Equation (3.13),
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TABLE 7.3
Error matrix from a fit by the matrix method to the data of Table 7.1

8.907 X 10~% —3.473 X 107% 2.823 X 1077
—3.473 X 107% 1.913 X 107% —1.783 X 1078
2.823 X 10777 —1.783 X 107%® 1.783 x 10710

Note: The table gives the variances and covanances of the fitted parameters. The values of the parame-
ters and of x? are listed in Table 7.1.

oV \? AV \? aV \?
1 (9oY 24 (g2 4+ (22 2
§ (6a1> I (aaz) 91 (8a3) 73

L o R S IS S

da, da,
=1‘€“+T2‘€22+T4‘€33+2(T'€12+T2'€]3+T3'€23)

where €, and so on are the covariant terms in the symmetric error matrix. If we
used only the diagonal terms in the error matrix, our result would be V = (2.45
+ 0.14) V. However, the off-diagonal terms are mainly negative, and including
them reduces the uncertainty by almost a factor of 10 to 0.015, so that we should
quote V = (2.45 = 0.02) V.

Linear Least-Squares Fitting with a Spreadsheet

Table 7.4 illustrates the use of a spreadsheet (without taking advantage of the
spreadsheet’s built-in least-squares fitting routine) to fit a straight line to the data of
Example 7.2 by the matrix method. We entered the data in columns labeled 7, V,
and o, and calculated component terms to be summed for 8, B,, and «y;, ®;,, and
Q,, in the labeled columns using the indicated equations. We summed each a col-
umn to form the elements of the square matrix e, and the 8 columns to form the lin-
ear matrix (3. The spreadsheet’s matrix-handling routines were applied to invert the
a-matrix to form the e-matrix, and to multiply € by B to find the parameter matrix
a. Uncertainties in the parameters were calculated from the square roots of the di-
agonal terms in the e-matrix. Although we used absolute cell addresses to illustrate
the procedure, we could have simplified the calculation by naming the arrays of
cells and using the array-handling capabilities of the spreadsheet.

It may seem inefficient to write a program to solve such a simple problem,
which most spreadsheets can handle with ease. However, there are advantages.
First, it would be relatively easy to expand the program to fit more parameters, or to
fit a series of functions more complicated than simple powers of the independent
variable. A second advantage is that the solution provides the full error matrix.
While most fitting programs should provide the uncertainties in the fitted parame-
ters, the covariances may not be available. In some problems, they are essential.

We used Quatro Pro for this example, but the procedure with Excel is similar.
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TABLE 7.4
Matrix solution by spreadsheet calculation for linear fit to data of
Example 7.2

(a) Data and components of the matrix elements and sums

TCC) V(mV) o,(mV) B, B, au. Qp =0y O Yeae X

Column Equations ~ V*l/o? V*T/o? 1*1/o? 1*T/o? T*T/o? a, + a*T [(Y — Yeo)/oP?

0 -0849 0.050 -339.6 0 400 0 0 -0947 3.81

20 -0.196 0050 -784 -—1568 400 8,000 160,000 —0.101 3.61
40 0.734  0.050 293.6 11,744 400 16,000 640,000 0.745 0.04
60 1.541  0.050 6164 36,984 400 24,000 1,440,000 1.590 0.97
80 2.456 0.050 9824 78592 400 32,000 2,560,000 2436 0.16
100 3.318 0050 13272 132,720 400 40,000 4,000,000  3.281 0.54
SUMS 2801.6 258,472 2400 120,000 8,800,000 9.13

(b) Matrices and fitted coefficients with uncertainties
(Quatro Pro matrix algebra used to calculate € and a)

[+ €

[ 2400 120000 1.310E-03 — 1.786E-05
120000 8800000 —1.786E-05  3.571E-07
B a
|2801.6 258472 | [—0.947 0.0423]
UE
X2 = 9.13 0.036_0.006

7.3 INDEPENDENT PARAMETERS

Suppose we take the data of Example 6.1 or Example 6.2 and fit to them the qua-
dratic polynomial function y = a; + a,x + a;x* as we did for Example 7.1. We
should expect to find a rather small and possibly meaningless result for the coeffi-
cient a; of the quadratic term, but, because a; was not set equal to zero by definition,
as in the analysis of Chapter 6, we might also find that the values of a; and a, have
changed, sometimes considerably, from the values obtained in the linear fit. In gen-
eral, the polynomial fitting procedure that we have considered will yield values for
the coefficients that depend on the degree of the polynomial fitted to the data.

This interdependence arises from the fact that we have specified our coordi-
nate system without regard to the region of parameter space from which our data
points are extracted. The value of a, represents the intercept on the ordinal axis, the
coefficient a, represents the slope at this same point, and other coefficients repre-
sent higher orders of curvature at this same intercept point. If the data are not clus-
tered about this intercept point, its location might be highly dependent on the
polynomial used to fit the data.

We might be able to extract more meaningful information about the data if we
were to determine instead coefficients aj, a5, aj, and so forth, which represent the
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average value, the average slope, the average curvature, and so forth, of the data.
Such coefficients would be independent of our choice of coordinate system and
would represent physical characteristics of the data that are independent of the de-
gree of the fitted polynomial.

Orthogonal Polynomials

We want to fit the data to a function that is similar to that of Equation (7.1) but that
yields the desired independence of the coefficients. The appropriate function to use
is the sum of orthogonal polynomials,' which has the form

yx)=a; +ax(x — B)+ as(x — v1)(x — v) (7.28)
+a,(x—d)(x—3)(x—d3)+ -

Following the development of Section 7.1, we must minimize X ? to determine the co-
efficients a,, a,, a3, a,, and so on, with the further criterion that the addition of higher-
order terms to the polynomial will not affect the evaluation of lower-order terms. This
criterion will be used to determine the extra parameters 3, vy, ¥, and so on.

The goodness-of-fit parameter x? is defined as

=3 [ﬂ}z =3 [iz [y = y(x.)]z} (7.29)

g, g,

Setting the derivatives of x? with respect to each of the m coefficients a,, a,, and so
forth to 0 yields m simultaneous equations

>y, =Na; + a,2(x, — B) + asZ(x; — 1) (x, — v2)

(7.30)
+ a42(xl - 81) (x, - 82)(“‘71 - 83) +-e
2 Xy = alzxz + azle(x: - B) + a32xl(xl - Yl) (x, - ‘Y2)
(7.31)
+a32x, (x, — 8)(x, = d) (x, — d3) + - -
Exlzyl = allez + aZExtz('xt - B) + aBExlz(xt - Y])(‘xl - ‘YZ)
(1.32)
+ a42x,2(x, - 81)(x1 - 82) (xl - 83) +--
Ex?yl = alzx? + azEx?(x, - B) + (132.1?(}?, - Yl) (xl - 72) 3
(7.33)

+a,Zx)(x —8;)(x, — ) (x, — ;) + - -

where we have omitted a factor of o? in the denominator for clarity.

Any polynomial such as that of Equation (7.1) can be rewritten as a sum of orthogonal polynomials
y=a+ 2[5 (x)
=
with the orthogonal property that Z[f/(x,)fi(x)] = O forj # k.
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Additional Parameters

Let us examine Equation (7.30). If we restrict ourselves to a zeroth-degree polyno-
mial, that is, to only one coefficient a,, all the other coefficients are equal to O by de-
finition. The coefficient a,, therefore, is specified completely by the first term on the
right-hand side of Equation (7.30):

1 _
a, = NEy, =y (7.34)

If we restrict ourselves to a first-degree polynomial, the coefficient a, of the second
term of Equation (7.30) is not 0. However, if a, is to be independent of the value of
a,, the second term itself must be 0. Hence, the requirement that

2 (x, - B) =0
leads to the value for 3,
= % >x =X (7.35)

and a, can be determined directly from Equation (7.31) by substituting the values of
a,; and B with higher-order coefficients (as, a,, etc.) set to 0.

Similarly, if we consider a quadratic function, the third term of Equation
(7.30) must be 0 even when the coefficient as is not 0. This constraint leads to a qua-
dratic equation in vy, and vy, that is not sufficient to specify either parameter. We
have the additional constraint, however, that the coefficient a, must be specified
completely by Equations (7.30) and (7.31). Thus, the third term in both Equations
(7.30) and (7.31) must be O regardless of the value of the coefficient a;, and we have
two simultaneous quadratic equations for the parameters vy, and vy,

SE—v)x—v)=0 and > xx—vy)x—v)=0 (7.36)

Similarly, the coefficient a; must be determined completely by Equation (7.32) (and
the predetermined values of a, and a,), and this constraint yields three simultaneous
equations for the parameters 8,, d,, and &5:

> = =8y (x,—83)=0
> x(x - —8)(x—8;)=0 (7.37)
Exiz ('xl - 81)(-":: - 82) (‘xl - 83) = O

The extrapolation to higher order is straightforward. (Note that these additional pa-
rameters are functions only of the independent variable x,.)
Estimates of the Coefficients

Once the parameters f3, v, 8, and so on have been determined by the constraint equa-
tions, estimates of the coefficients a,, a,, and so on can be found from the resulting
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n + 1 simultaneous equations. The value for the first coefficient g, is specified com-
pletely by minimizing x? with respect to a, in Equation (7.30) and is given in Equa-
tion (7.34). The value of the second coefficient a, is determined by minimizing x?
with respect to both a; and a, in Equations (7.30) and (7.31) and substituting the
value of g, from Equation (7.34) into Equation (7.31). Similarly, the value of a; can
be determined from Equation (7.32) after substituting the values of @, and a, deter-
mined from Equations (7.30) and (7.31). Each succeeding equation yields a value for
the next higher-order coefficient.

Note that the value determined for any coefficient is thus independent of the
value specified for any higher-order coefficient, but is not independent of the value
of lower-order coefficients. The parameters, representing our best estimates of the
coefficients, are given by

a1:%2y1=j’
L Sx—B)
TS - By

(7.38)

G = 2 yl(xl - ‘Yl) (‘xl - 72)
> [0 = v) (k= v2)P

_ >y = 8) (x, — 35) (x, — 33)
>0 = 8) (x, — 35) (x, — &)

a,

and so forth.

Simplification

For the general case of arbitrarily chosen data points (x,, y,), this procedure is cum-
bersome even with computer techniques because it requires the solution of coupled,
nonlinear equations. There is, however, a special type of data for which the calcula-
tions can be considerably simplified, namely, data that meet the following two cri-
teria: (1) the independent variables x, are equally spaced, and (2) the uncertainties
are constant, o, = o, and can therefore be ignored.

Consider the experiments of Examples 6.1 (measurement of temperature ver-
sus position) and 7.1 (voltage versus temperature). Those data satisfy the required
conditions and, therefore, we could use a simplified method of independent para-
meters to obtain a fit. The resulting values of the coefficients for these particular ex-
periments might not have any great physical significance (that is, a; = T the
average temperature of the data points in Example 6.1 is not a particularly useful
number), but by using this technique of fitting orthogonal polynomials we could try
fitting higher-degree polynomials without changing the values of the coefficients al-
ready calculated for a straight-line or quadratic fit. The experiment of Example 6.2
(the decay of a radioactive state) fulfills only the first of the two criteria, because the
x data points are equally spaced but the uncertainties are statistical, so that we can-
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not ignore the factor of o ?that belongs in the denominators of the fitting Equations
(7.30) through (7.33).

For an experiment similar to that of Example 7.1, where we have made N
measurements of equally spaced values of the independent variable x ranging from
X to xy in steps of A,

A=x1+1 +xl

and the uncertainties are due to instrumental errors with a common standard devia-
tion o, = o, Equations (7.35) through (7.37) reduce to

B=xSn=%=2 (5~ x)

1 1
v=B% [y -BP=BA [N~ 1) (7.39)

> [x.(x, — BY]
2 [xl (x, - B)]

3=B,B= =B, BA 2—10(3N2—7)

A more comprehensive list of parameters for orthogonal polynomials can be found
in Anderson and Houseman (1942).

Table 7.5 shows coefficients a;, a,, a3, and a, as well as the values of x* and
the x2-probability obtained when we fit the data of Example 7.1, by the standard
least-squares method and by the independent parameter method of Equation (7.39).
We have made separate fits with first-, second-, and third-degree polynomials
(m = 2, 3, and 4). As expected, adding extra terms does not change the values of the
lower-order coefficients obtained by the independent parameter method and there-
fore we display them only once in Table 7.5. There is a marked improvement in x>
in going from the two-parameter (linear) fits to three-parameter (quadratic) fits.
Unless a theoretical reason dictates that our data should follow a cubic distribu-
tion, there is no justification in making a four-parameter (cubic) fit to these data, be-
cause the value of x* for m = 3 is satisfactory (26.6 for 18 degrees of freedom,

TABLE 7.5

Values of x> and parameters obtained by fitting the data of Example 7.1 by
the standard least-squares method and by the method of independent
parameters, as a function of the number of parameters m of the fit

Standard least squares

Independent
m 2 3 4 parameters
X2 43.5 (0.12%) 26.6(8.8%) 24.9(9.4%)
a, —-101 =0.02 (—0.92 = 0.03) (—0.89 = 0.03) 1.15
a, (4.31 £ 0.04)1072 (3.8 £ 0.1)1072 (3.4 £0.3)107? 4.31 X 1072
a, (5.5 1.3)1073 (1.5 = 0.8)10™4 5.49 X 1073
a, (—6.5 + 5.1)1077 6.51 X 1077

Note* The values of x? are the same for both methods. The numbers 1n parentheses correspond to the x2 probability
for the fit with 21-m degrees of freedom.
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corresponding to P = 8.8%), and adding more terms does not improve the fit. If a
cubic function had been predicted by theoretical considerations, we should be ob-
ligated to say that our data are not sensitive to the presence of a cubic term.

Legendre Polynomials

Although the method of fitting to orthogonal polynomials outlined in the previous
section can be tedious, there are predefined sets of orthogonal polynomials that are
often useful in fitting data. One important set is the Legendre polynomials

)= () + ayP(x) + - =" [, Ax) (7.40)

where x = cos 6 and the terms P;(x) in the function are given by
Py(x)=1 Py(x)=%(Bx*— 1)

741
P@=x  B(x)= (5 -39 4
and higher-order terms can be determined from the recursion relation
1
Py(x)= I [((2L = D)xB_y(x) = (L — 1)P—o(x)] (7.42)

Legendre polynomials are orthogonal when averaged over all values of x = cos 0:

1 _J2/2L+1) forL=M
LI[PL(x)PM(x)dx— [0 A (7.43)

Example 7.3. Let us consider an experiment in which 3C is bombarded by 4.5-MeV
protons. In the subsequent reaction, some of the protons are captured by the 3C nu-
cleus, which then decays by gamma emission, producing gamma rays with energies up
to 11 MeV. A measurement of the angular distribution of the emitted gamma rays gives
information about the angular momentum states of the energy levels in the residual nu-
cleus !“N.

Table 7.6 lists simulated data for this experiment. Gamma ray counts were
recorded at 17 angles from 0 to 160°, Columns 1 through 4 list the angles at which the
measurements were made, the cosine of the angle (x = cos 0), the measured number
of counts (C,), and the uncertainties o'¢ in the counts. The uncertainties are assumed to
be purely statistical. These data are plotted in Figure 7.2 as a function of the angle 6.
There appears to be symmetry around 6 = 90°, and consideration of the reaction
process predicts that the data should be described by a fourth-order Legendre polyno-
mial with only even terms:

C = ayRy(x) + a,Py(x) + a4 Py(x) withx = cos 6 (7.44)

Let us apply the matrix method of least squares of Section 7.2 to this problem to
fit the series of Legendre polynomials of Equation (7.41) to these data. We shall first
fit a fourth-order Legendre polynomial that includes both odd and even terms. The fit-
ting function is of the form

y(x) = aofolx) + aifilx) + - + ap_y fu i (¥) (7.45)

which is linear in the fitting parameters, the coefficients a,.
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FIGURE 7.2

Angular distribution of gamma rays emitted from the simulated reaction '*C(p, 7y)'*N produced by
incident protons at E, = 4.5 MeV (Example 7.3). The calculated curve represents a fit to the data of a
series of even Legendre polynomals up to L = 4, Statistical uncertainties were assumed.

TABLE 7.6
Angular distribution of gamma rays emitted in the reaction 13C(p, vy)!“N
produced by incident protons at E, = 4.5 MeV

0 C, Y, Y,
(degrees) X =cos 0 counts o, all terms even term

0 1.000 1400 374 1365.8 1361.3
10 0.985 1386 37.2 1325.2 1321.1
20 0.940 1130 33.6 1217.0 1213.9
30 0.866 1045 323 1075.8 1074.5
40 0.766 971 31.2 943.5 944.4
50 0.643 862 29.4 852.5 855.6
60 0.500 819 28.6 8139 818.6
70 0.342 808 28.4 816.9 8219
80 0.174 862 29.4 836.5 840.2
90 0.000 829 28.2 848.6 849.6
100 -0.174 824 287 842.8 840.2
110 —0.342 839 29.0 827.5 8219
120 —0.500 819 286 825.4 818.6
130 —0.643 901 30.0 861.0 855.6
140 —0.766 925 30.4 945.7 944 4
150 —0.866 1044 323 1069.8 1074.5
160 —0.940 1224 35.0 1202.9 12139

Note The calculated numbers of counts were obtained from least-squares Legendre polynomuals fits to the data of
the form Y(x) = ) a, P;_,(x,), for separate fits with all terms and w1th even terms only.
=1
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Computer fits Routines used for fitting a series of Legendre polynomials to these data
are included in Program 7.1. The procedure LEGPOLY in the program unit
FITFUNC7 calculates the terms of the Legendre polynomials through tenth order.
The procedure is selected through a branch on the variable PAE in the function Funct
with PAE = ‘A’ for all terms to ordern = m — 1, or PAE = ‘E’ to fit with just the
even terms. Note that the index k of the term in the fitting function, in general, does
not correspond to the order L of the Legendre polynomial.

The efficiency of the calculation (and therefore the speed of the linear regression
calculation) could be improved in a number of ways. The simplest change would be
to calculate the functions once at each value of the independent variable and store
the calculated values in an array.

Parameters obtained by fitting a series in Legendre polynomials for terms up
to L = 4 are listed in Table 7.7. Separate fits were made with all terms and with only
the even terms in the series. As expected, the coefficients of terms involving odd or-
ders are comparable to their uncertainties and negligible compared to those involv-
ing even poynomials. The full error matrix for the fit with even terms is listed in
Table 7.8.

In view of the strong theoretical argument that only even Legendre polynomi-
als are required for this reaction, it would be appropriate to fit a series that includes
only the even terms. The parameters obtained in this fit are also displayed in Table
7.7, and the numbers of counts calculated from these parameters are listed. The func-
tion calculated with even terms is illustrated as a curve on the data of Figure 7.2.

Because we are fitting with orthogonal functions, we might have expected to
obtain identical values for the coefficient a, from both fits. (We expect the higher-
order even coefficients to change because the presence or absence of lower-order
coefficients must affect the higher coefficients.) The fact that there is some depen-
dence of a, on higher-order terms is a result of the fact that a given experiment does
not sample uniformly the entire range of the Legendre polynomial, so the orthogo-
nality relation Equation (7.43) is not satisfied by a finite data set. This is in contrast
to the situation in the previous section, where we set up orthogonal functions based
on the data themselves. Nevertheless, it is generally good practice to use orthogonal

TABLE 7.7
Coefficients and x2 from least-squares fit to Legendre polynomial series
X2 ay a, a as a,
All terms 17.2(14%) 9374 £ 7.6 0.7 =128 259 * 14 10 = 17 158 + 18
Even terms 17.6(22%) 938175 261 + 14 161 = 16
TABLE 7.8
Error matrix for a least-squares fit to even Legendre polynomials
56.24 —5.256 —6.272
—5.256 1865  —26.90

—6.272 —26.90 279.8
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fitting functions whenever possible to minimize both the correlations between co-
efficients and the dependence of higher coefficients on the presence of lower ones.

The values of x? and the x2-probability for the two fits are also given in Table
7.7. We note that x? for the three-parameter fit is necessarily higher than that for the
five-parameter fit, but x> per degree of freedom is smaller and the x2-probability is
higher.

7.4 NONLINEAR FUNCTIONS

In all the procedures developed so far we have assumed that the fitting function was
linear in the coefficients. By that we mean that the function can be expressed as a
sum of separate terms each multiplied by a single coefficient. How can we fit data
with a function that is not linear in the coefficients? For example, suppose we have
measured the distribution of decay times of an unstable state and that the distribu-
tion can be represented by the normalized function P(z) = (1/1)e """, where T is the
mean lifetime of the state. Can we find the parameter T by the least-squares method?
The method of least squares does not yield a straightforward analytical solution for
such functions. In Chapter 8 we investigate methods of searching parameter space
for values of the coefficients that will minimize the goodness-of-fit criterion x2.
Here we consider approximate solutions to such problems using linear-regression
techniques.

Linearization

It is possible to transform some functions into linear functions. For example, if we
were to fit an exponential decay problem of the form

y = ae”b* (7.46)

where a and b are the unknown parameters, it would seem reasonable to take loga-
rithms of both sides and to fit the resulting straight line equation

Iny=Ina— bx (7.47)

The method of least squares minimizes the value of x? with respect to each of
the coefficients In a and In b where x? is given by

1

= [0,2 (Iny +1lna— bx,]zl (7.48)

where we must use weighted uncertainties o, instead of o, to account for the trans-

formation of the dependent variable:
,_d(ny)

1
SN =2

o, (7.49)

ody Ty,
The importance of weighting the uncertainties is illustrated in Figure 7.3, which
shows the function of Equation (7.46) graphed both on a linear and on a logarithmic
scale. (For plotting, we use logarithms to base 10 rather than natural logarithms.)
The uncertainties are given by o, = \/)_z, and therefore increase with increasing y,.



136 Data Reduction and Error Analysis for the Physical Sciences

1000 | — 1000
800 i
- 100
600 3
y i
400 T
200 N
0 1
0 2 4 6 8 10
X
FIGURE 7.3

Graph of the function y = ae~?* calculated on a linear and a logarithmic scale. The error bars are
given by o, = \/y_, The curved line corresponds to the linear scale on the left, and the straight line to
the logarithmic scale on the right.

However, on the logarithmic scale, they appear to decrease with increasing y, and
are very large for very small In y,. If we were to ignore this effect in fitting Equation
(7.47), we would overemphasize the uncertainties for small values of y,.
In general, if we fit the function f (y) rather than y, the uncertainties o, in the
measured quantities must be modified by
df(y)

g, = d_y, g, (7-50)

Errors in the Parameters

If we modify the fitting function so that instead of fitting the data points y, with
the coefficient a, b, . . ., we fit modified data points y; = f(y,) with coefficients a’,

b', ..., then our estimates of the errors in the coefficients will pertain to the uncer-

tainties in the modified coefficients a’, b’, . . . , rather than to the desired coefficients

a, b, . ... If the relationship between the two sets of coefficients is defined to be
a=f@ b =£0b (7.51)

then the correspondence between the uncertainties o, 0, . . . in the modified coef-
ficients and the uncertainties o, 0, . . . in the desired coefficients is obtained in a
manner similar to that for o, and o, in Equation (7.50):

_dh@ L _dh®)

g, da ¢ g, = b g, (7.52)
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Thus, if the modified coefficient is a’ = In a, the estimated error in a is deter-

mined from the estimated error in a’, according to Equation (7.52) with f, = In a:
o = d(ina) o, =2« (7.53)
da a

Values of x? for testing the goodness of fit should be determined from the
original uncertainties of the data o, and from the unmodified equation, although
Equation (7.48) should give approximately equivalent results when weighted with
the modified uncertainties o,.

In Example 6.2, we considered an experiment to check the decrease in the
number of counts C as a function of distance r from a radiative source. We expected
a relation of the form

C(r)=b/r? (1.54)

and therefore changed the independent variable to x = 1/r? and fitted a straight line
to the C versus x data. Because uncertainties were assigned only to the dependent
variable C, the fit was not distorted by that transformation.

Suppose, instead, that our objective had been to determine the exponent a in
the expression for C:

C(r)=br— (7.55)
Taking logarithms of both sides, we obtain the linear equation
In(C)=In(b)—alnr
or
C,=b —ar (7.56)

withC' =InC,r = Inr,and b’ = In b. The uncertainties ¢’ in C’' would be given
by Equation (7.49) as

o' =0/C

and we could find the exponent a by fitting a straight line to Equation (7.56) using
these weighted uncertainties.

Although the method of taking logarithms of an exponential or a power func-
tion to produce a function that is linear in the parameters may be convenient for
quick estimates, with fast computers it is generally better to solve such problems by
one of the approximation methods developed for fitting nonlinear functions. These
methods will be explored in Chapter 8.

SUMMARY

Linear function: Function that is linear in its parameter a,:

y(x) = 2 afilx)
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Least-squares fit to a function that is linear in its parameters:

Eﬁ@M,)Eﬁxmx)EﬁxMW)

Eﬁ@M@)Eﬁ,m&)Eﬁxm,%“

a= o?
a=x Ey,fzx> Efz(xz)fzx) Efz(x,)fa(x,)

2, .)Eﬁ.MX)Eﬁ@m0)~

For the jth coefficient, g, is found by replacing the jth column in the expres-
sion for A with the first column in the expression for a;.
Chi square:

2

N1 m 2
== ﬂﬂ 2 Yo~ X auk
=1L0 k=1
Sample variance o*:
221 &
o= S N e T

Matrix solution: a = Be = Ba~! where a is a linear matrix of the coefficients and

Bk = 2 |:0L_2 yzﬁc (x,)]

oy = 2 Lilzﬁ(x:)fk(xz)]

Error or variance matrix: The diagonal elements of the square matrix € = a™!
are the variances of the parameters a, and the off-diagonal elements are the
covariances:

0'¢21, =~ € Oa, — €k
Orthogonal polynomials:

y(x) = a; + ay(x — B) + as(x — v;) (x = v,)
tax—3)(x—3)x—3)+ -
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_ - 4 = 22— B)

“ > 7 3 - By
da = Eyz(xz _ Yl) (xl — 'Y2) ar = Eyl(xl — 8l) (xl — 82) (xz — 83)
’ E[(xz =) (x, — )P ! 2[ X, — 8p) (x, = 8,) (x, — 3y)

For equally spaced values of x, x, . | — x, = A,

B="h(x, +xy) Yy=B*AV(N*—1)
3=B,B=AV%(3N*—-1T)

Legendre polynomials:

%) ="S [a, A)

R()=1 BR@)=x

B(x)= %[(2L —1)xP,_{(x) — (L — 1)P,_,(x)] (recursion relation)

Nonlinear functions:
If y; = f(»,), then

and ifa’ = f,(a) and b’ = f,(b), then

, _df,(a) , _dfy(b)
9= "gq % T g, O

EXERCISES

139

7.1. Show by direct calculation using the data of Example 7.2 listed in Table 7.2 that

ae = 1 where 1 is the unity matrix.

7.2. The tabulated data represent the lower bin limit x and the bin contents y of a histogram

of data that fall into two peaks.

i 1 2 3 4 5 6 7 8 9 10
x, 50 60 70 80 90 100 110 120 130 140
¥, 5 7 11 13 21 43 30 16 15 10
t 11 12 13 14 15 16 17 18 19 20
X, 150 160 170 180 190 200 210 220 230 240
Y, 13 42 90 75 29 13 8 4 6 3

Use the method of least squares to find the amplitudes a, and a, and their uncertain-

ties by fitting to the data the function

y) = a,L(x; wy, T'y) + ayL(x; po, T)
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7.3.

74.

7.5.
7.6.
7.7.

7.8.

7.9.

7.10.
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with w, = 102.1, T"; = 30, p, = 177.9, and I';, = 20. The function L(x; p, I') is the
Lorentzian function of Equation (2.32). Assume statistical uncertainties (o, = \/)_J,).
Find x? for the fit and the full error matrix.
From the parameters listed in Table 7.7 for the fit of even terms to the data of Exam-
ple 7.3, determine the predicted value of the cross section for 8 = 90° and its uncer-
tainty. Calculate the uncertainty from the diagonal errors, listed in Table 7.7 and from
the full error matrix listed in Table 7.8 and compare the two results.
Fit fourth-degree power series polynomials instead of Legendre polynomials to the
data of Example 7.3. Let x = cos 6 and fit a polynomial with all terms to x* and an-
other polynomial with only the even terms. Compare your results to those obtained
from the fit to Legendre polynomials displayed in Table 7.7.
Derive the expression for -y, and -y, of Equation (7.36).
Derive an expression for P4(cos 0). [See Equation (7.42).]
Show by direct integration that Py(x), P,(x), and P,(x) are orthogonal and obey Equa-
tion (7.43).
In an experiment to measure the angular distribution of elastically scattered particles,
a beam of particles strikes a liquid hydrogen target and counts are recorded at selected
angles to the direction of the incident beam. Measurements are made both with the tar-
get filled with liquid hydrogen (full target) and with an empty target (empty target).
The empty-target measurements were made with one-half the number of incident par-
ticles used for the full-target signal. By subtracting the suitably scaled empty-target
signal from the full-target signal, the angular distribution of scattering on pure hydro-
gen can be determined.

Assume that the following data were obtained in such an experiment. Uncer-
tainties in the numbers of counts are statistical.

cos 0 (lower limit) -10 -08 -06 -04 -02 00 02 04 06 08
cos 0 (upper limit) -08 -06 -04 -02 00 02 04 06 08 10
Counts, full target 184 128 99 49 53 55 70 81 136 216
Counts, empty target 5 4 4 1 3 1 4 9 8 7

(a) Scale the empty-target data to the same number of incident antiprotons used in
recording the full-target data and make a subtraction to obtain the number of in-
teractions on the hydrogen. Pay particular attention to the uncertainties in the dif-
ference.

(b) Use the least-squares method to fit the function

¥(x) = a| R(x) + a,R(x) + a; B(x)

to the subtracted data, to obtain the coefficients a;, a,, and a3, where the functions
P, (x) are the Legendre polynomials defined in Equation (7.41).
Follow the procedure outlined in Section 7.4 to find the exponent a in Equation (7.55),
using the data of Example 6.2 (Table 6.2).
A 1-m-long plastic plate with rulings at 10-cm intervals is dropped through a photo-
gate to measure the acceleration of gravity g in an undergraduate laboratory experi-
ment. The time is recorded as each ruling passes through the gate. The passage of the
first ruling starts the timer. Data from such an experiment are tabulated. The recorded
time is related to the distance that the ruler has fallen by y = y, — vyt — 1/2g2. Note
that neither the initial height y, nor the initial speed v, are known.
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Ruling# | 0 1 2 3 4 5 6 1 8 9 10
Time(s) | 0.000 0079 0.132 0174 0212 0244 0271 0301 0325 0.349 0373

Use the least-squares method with a second-degree polynomial to find g and its
uncertainty. Measure y from the photogate so that you can set y = 0 when ruling #0
passes the gate, y = 1 when ruling #1 passes, and so forth. Choose ¢ as the indepen-
dent and y as the dependent variable. Assume a uniform uncertainty in ¢ of 0.001 s and
a negligible uncertainty in y. Because the uncertainty is in the independent variable, it
must be transformed to the dependent variable by the method discussed in Section 6.1.
This will require initial estimates of g and v,. After the fit has been made you may
wish to repeat the fit using estimates of g and v, from the previous fit to improve the
results.



CHAPTER

LEAST-SQUARES
FIT TO AN
ARBITRARY
FUNCTION

8.1 NONLINEAR FITTING

The methods of least squares and multiple regression developed in the previous
chapters are restricted to fitting functions that are linear in the parameters as in
Equation (7.3):

y(x) = i [, f,(x) (8.1)

This limitation is imposed by the fact that, in general, minimizing x? can yield a set
of coupled equations that are linear in the m unknown parameters only if the fitting
functions y(x) are themselves linear in the parameters. We shall distinguish between
the two types of problems by referring to linear fitting for problems that involve
equations that are linear in the parameters, such as those discussed in Chapters 6 and
7, and nonlinear fitting for those problems that are nonlinear in the parameters.

Example 8.1. In a popular undergraduate physics laboratory experiment, a real sil-
ver quarter is irradiated with thermal neutrons to create two short-lived isotopes of
silver, 4,Ag!% and ,,Ag!'%, that subsequently decay by beta emission. Students count
the emitted beta particles in 15-s intervals for about 4 min to obtain a decay curve.
Data collected from such an experiment are listed in Table 8.1 and plotted on a semi-
logarithmic graph in Figure 8.1. The data are reported at the end of each 15-s inter-
val, just as they were recorded by a scaler. The data points do not fall on a straight

142
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FIGURE 8.1

Number of counts detected from the decay of two excited states of silver as a function of time
(Example 8.1). Time 1s reported at the end of each interval. Statistical uncertainties are assumed. The
curve was obtained by a nonlinear least-squares fit of Equation (8.2) to the data.

line because the probability function that describes the process is the sum of two ex-
ponential functions plus a constant background. We can represent the decay by the
fitting function

y(x)=a, + ae”’* + aze~"/s (8.2)

where the parameter g, corresponds to the background radiation and a, and a; corre-
spond to the amplitudes of the two excited states with mean lives a, and as, respec-
tively. Clearly, Equation (8.2) is not linear in the parameters a, and as, although it is
linear in the parameters a,, a,, and a;.

We can use a graphical analysis method to find the two mean lifetimes by plot-
ting the data on semilogarithmic paper after first subtracting from each data point the
constant background contribution, which has been measured separately. (Note that the
background counts have not been subtracted in Figure 8.1.) We then consider two re-
gions of the plot: region a, at small values of T (e.g., T < 120 s) in which the short-
lived state dominates the plot, and region b, at large values of T (e.g., T > 200 s) in
which only the long-lived state contributes to the data. We can estimate the mean life-
time of the long-lived state by finding the slope of our best estimate of the straight line
that passes through the data points in region b. From this result we can estimate the
contribution of the long-lived component to region a and subtract that contribution
from each of the data points, and thus make a new plot of the number of counts in re-
gion a, which we attribute to the short-lived state alone. The slope of the line through
the corrected points gives us the mean lifetime of the short-lived state. Linear regres-
sion techniques discussed in Section 7.4 could be used to find the slope of the graph in
each region.
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TABLE 8.1
Geiger counter data from an irradiated silver piece, recorded in 15-s intervals
Point Measured Calculated Point Measured Calculated
number Time counts counts number Time counts counts
1 15 775 748.3 31 465 24 24.0
2 30 479 519.8 32 480 30 23.0
3 45 380 370.4 33 495 26 22.1
4 60 302 272.0 34 510 28 213
5 75 185 206.7 35 525 21 20.5
6 90 157 162.7 36 540 18 19.8
7 105 137 132.5 37 555 20 19.2
8 120 119 111.5 38 570 27 18.5
9 135 110 96.3 39 585 17 18.0
10 150 89 85.0 40 600 17 17.4
11 165 74 76.5 41 615 14 16.9
12 180 61 69.7 42 630 17 16.5
13 195 66 64.2 43 645 24 16.0
14 210 68 59.5 44 660 11 15.6
15 225 48 55.5 45 675 22 15.2
16 240 54 51.9 46 690 17 14.9
17 255 51 48.8 47 705 12 14.6
18 270 46 459 48 720 10 143
19 285 55 433 49 735 13 14.0
20 300 29 40.9 50 750 16 13.8
21 315 28 38.7 51 765 9 13.5
22 330 37 36.7 52 780 9 13.3
23 345 49 34.8 53 795 14 13.1
24 360 26 33.1 54 810 21 12.9
25 375 35 31.5 55 825 17 12.7
26 390 29 30.0 56 840 13 12.6
27 405 31 28.6 57 855 12 12.4
28 420 24 27.3 58 870 18 12.3
29 435 25 26.1 59 885 10 12.1
30 450 35 25.0

Nore: The time is reported at the end of each interval. The calculated number of counts was found by method 4.

Because analytic methods of least-squares fitting cannot be used for nonlinear
fitting problems, we must consider approximation methods and make searches of
parameter space. In the following sections we discuss four nonlinear fitting meth-
ods: a simple grid-search method in which we simply calculate x? at trial values of
the parameters, and search for those values of the parameters that yield a minimum
value of x? a gradient-search method that uses the slope of the function to improve
the efficiency of the search, and two semianalytic methods that make use of the ma-
trix method developed in Chapter 7, with a linear approximation to the nonlinear
functions. As examples, we shall determine the parameters (aq; . . . as) by fitting
Equation (8.2) to the data of Example 8.1 using each of the four methods. The curve
on Figure 8.1 is the result of such a fit.
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FIGURE 8.2
Chi-square hypersurface as a function of two parameters.

Method of Least Squares

We can generalize the probability function, or likelihood function, of Equation (6.7)
to any number of parameters,

Pla, ay....an)= ] [01\;5;] exp [—%2 [%(x_l_)]z] (8.3)

and, as in the previous chapters, maximize the likelihood with respect to the para-
meters by minimizing the exponent, or the goodness-of-fit parameter x*:

xX*=> [iz [y — y(x,)]Z] (8.4)

o

where x, and y, are the measured variables, g, is the uncertainty in y,, and y(x,) are
values of the function calculated at x,. According to the method of least squares, the
optimum values of the parameters g, are obtained by minimizing x* simultaneously
with respect to each parameter,

W _d il =
] 8.5)

J

1 ay(x
- 23| L0 - s 22
Taking partial derivatives of x* with respect to each of the m parameters a, will yield
m coupled equations in the m unknown parameters g, as in Section 7.1. If these equa-
tions are not linear in all the parameters, we must, in general, treat x2 as a continuous
function of the m parameters, describing a hypersurface in an m-dimensional space,
as expressed by Equation (8.4), and search that space for the appropriate minimum
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value of x2. Figure 8.2 illustrates such a hyperspace for a function of two parameters.
Alternatively, we may apply to the m equations obtained from Equations (8.5) ap-
proximation methods developed for finding roots of coupled, nonlinear equations. A
combination of both methods is often used.

Variation of x> Near a Minimum

For a sufficiently large event sample, the likelihood function becomes a Gaussian
function of each parameter centered on those values a, that minimize x*:

P(a) = Ae~@a)/2 (8.6)

where A is a function of the other parameters, but not of a,. Comparing Equation
(8.3) for the likelihood function with Equation (8.4) for x2, we observe that we can
express X2 as

x*=—2In[P(a;, a,,...,a,)]+ 2 In(c,\/2m) 8.7
Then, from Equation (8.6), we can write
(@—a)
X' =" (8.8)
(o}

J

to show the variation of x* with any single parameter g, in the vicinity of a mini-
mum with respect to that parameter. The constant C is a function of the uncertain-
ties o, and the parameters a, for k # j. Thus x? varies as the square of distance from
a minimum, and an increase of 1 standard deviation (o) in the parameter from the
value g, at the minimum increases x> by 1. For a more general proof, see Arndt and
MacGregor (1966), appendix I1.

We can see that this result is consistent with that obtained from a second-order
Taylor expansion of x* about the values a,, where the values of x? and its deriva-
tives at a = a’ are written as x§, dx§/da,, and so forth:

X2::X2+ i %(a ﬁn: i[aXO al)(a_al) (89)
0" < |da 24~ l9ada S '

Because the condition for minimizing x?2 is that the first partial derivative with re-
spect to each parameter vanish (i.e., 9x*/da, = 0), we can expect that near a local
minimum in any parameter a,, x* will be a quadratic function of that parameter.
We can obtain another useful relation from Equation (8.8) by taking the sec-
ond derivative of x* with respect to the parameter a, to obtain
2,2
Ix _2 (8.10)

2
aa, g,

We obtain the following expression for the uncertainty in the parameter in terms of
the curvature of the x? function in the region of the minimum:

a2y
o} = 2( 20’ ) (8.11)
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FIGURE 8.3

Plot of x? versus a single parameter a in the region of a local minimum. The location of the minimum
is calculated by fitting a parabola through the three indicated data points.

We note that for uncorrelated parameters, Equation (8.11) is equivalent to Equation
(7.22) with Equation (7.25) for obtaining the uncertainties from the curvature matrix.
We can also use the quadratic relation to find the approximate location of a x2
minimum by considering the equation of a parabola that passes through three points
that straddle the minimum, and solving for the value of the parameter at the mini-
mum, as illustrated in Figure 8.3. If we have calculated three values of X2,
X% = Xz(aﬂ), X% = Xz(aj2)’ and X3= Xz(aﬂ), where ap = a4, + Aa/ and a3 = ap +
Aa,, then the value g, of the parameter at the minimum of the parabola is given by

2 2
, X3 — X2 1
a =a3—Aa[ +-—] (8.12)
Ixt—-2x3+x3 2

In addition, we can estimate the errors in the fitting parameters g, by varying each
parameter about its minimum to increase x* by 1 from the minimum value. The
variation g, in the parameter a,, which will increase x* by 1 from its value at the
minimum of the parabola, is given by

0,=Aa,V2(x7—2x3 + x3)™' (8.13)

Alternatively, we can attempt to calculate the second derivative of x? at the mini-
mum and find the standard deviation from Equation (8.11).

If the parameters are correlated, the method summarized in Equation (8.13) for
determining uncertainties in the parameters is valid only under the condition that,
with a, = a, * g,, x? be minimized with respect to all other parameters. This condi-
tion severely limits the usefulness of this procedure for determining the uncertainties.
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We provide a more detailed discussion in Section 11.5. When the covariant terms in
the error matrix are important, it is best to obtain the full error matrix by the method
described in Section 7.2.

8.2 SEARCHING PARAMETER SPACE

The method of least squares consists of determining the values of the parameters q,
of the function y(x) that yield a minimum for the function x2 given in Equation
(8.4). For nonlinear fitting problems, there are several ways of finding this mini-
mum value. In Sections 8.3 and 8.4 we discuss approximation methods for finding
solutions to the m coupled nonlinear equations in m unknowns that result from the
minimization procedure of Equation (8.5).

Starting Values and Local Minima

Fitting nonlinear functions to data samples sometimes seems to be more of an art
than a science. In part, this is in the nature of the approximation process, where the
speed of convergence toward a solution may depend upon the choice of the method
for finding solutions, the choice of starting values for the parameters, and possibly
the choice of the step size. To use any of these methods, we must first determine
starting values, estimates to be used by the fitting routine for initial calculations of
the function and of chi square. For the pure search methods we must also define step
sizes, the initial variations of the parameters. Neither starting values nor step sizes,
of course, are needed in linear fitting.

Another problem in nonlinear fitting is the existence of multiple solutions or
local minima. For an arbitrary function there may be more than one minimum of the
x? function within a reasonable range of values for the parameters, and thus, more
than one set of solutions of the m coupled equations. An unfortunate choice of start-
ing point may “drive” the solution toward a local minimum rather than to the ab-
solute minimum that we seek. Before attempting a nonlinear least-squares fit,
therefore, it is useful to search the parameter space to locate the main minima and
identify the desired range of parameters over which to refine the search.

The first step is to find starting values for the parameters. A convenient ap-
proach, for which a computer graphics program is very useful, is to make plots of the
data with curves calculated from trial values of the parameters. By visual inspection,
one can often determine acceptable starting values with little or no further calcula-
tions. A basic requirement is that the area under the plotted curve be approximately
the same as that under the data.

Another approach is to map the parameter space and search for values of the
parameters that approximately minimize x2. In the simplest brute-force mapping
procedure, the permissible range of each parameter g, is divided into p equal incre-
ments Aa, so that the m-parameter space is divided into IT)-, P, hypercubes. The
value of x? is then evaluated at the vertices of each hypercube. This procedure
yields a coarse map of the behavior of x* as a function of all the parameters a,. At
the vertex for which x? has its lowest value, the size of the grid can be reduced to
obtain more precise values of the parameters. For a simple two- or three-parameter
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fit, the parameters obtained by this procedure may be sufficiently precise that no
further searching is required. For more than three parameters, the mapping is rather
tedious and displaying the grid map is difficult.

A variation on the regular lattice method is a Monte Carlo search of the
m-dimensional space. Trial values of the parameters are generated randomly from
uniform distributions of the parameters, selected within predefined ranges, and a
value of x? determined for each trial. After several trials, the set of trial values that
gives the lowest value of x? can be used as starting values. The general Monte Carlo
method was discussed in Chapter 5.

A more sophisticated method of locating the various minima of the x? hyper-
surface involves traversing the surface from minimum to minimum by the path of
lowest value in 2, as a river follows a ravine in travelling from lake to ocean. Start-
ing at a point in the m-dimensional space, the search traverses the length of the lo-
cal minimum, then continues in the same general direction but in a direction that
minimizes the new values of x2. When a new local minimum is discovered, the
search repeats the process until all local minimum have been located in the speci-
fied region of the space.

For relatively straightforward fitting problems, it should be sufficient to plot
the data, make a reasonable estimate of the parameters to be used as starting values
in the search procedure, and perform the fit by one or more of the methods de-
scribed in the following sections. As a precaution, one should vary the starting val-
ues of the parameters to test whether or not the various fits converge to the same
values of the parameters, within the expected uncertainties. If the dimensionality of
the space is low enough, a grid of starting points may be used. For higher dimen-
sionality, a Monte Carlo method may be used to select random starting points.

Bounds on the Parameters

From a particular set of starting values for the parameters, the search may converge
toward solutions that are physically unreasonable. In Example 8.1 negative values
for the parameters are not acceptable, and the current trial value of one of the para-
meters a,, or a;, may limit the possibility of determining values of the others. For
example, if a, becomes very small or 0, a4 cannot be determined at all. If it is not
possible to find starting values for the parameters that prevent the search from wan-
dering into these illegal regions, it may be necessary to place limits on them in the
search procedure to keep them within physically allowable ranges. Simple if then
statements in the routines may be sufficient. Care should be taken that the final
value of any parameter is not at one of these artificially imposed limits.

Selection and Adjustment of Step Sizes

There are no hard and fast rules for selecting step sizes for the search methods.
Clearly the steps will be different for different parameters and should be related to
the slope of the x? function. Very small step sizes result in slow convergence,
whereas step sizes that are too large will overshoot the local minima and require
constant readjustment to bracket the valleys. In the sample routines in Section 8.7,
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we choose initial step sizes to be proportional to the starting values of the parame-
ters and readjust them if necessary after each local minimum is found. In the simple
grid-search calculation, we adjust the step sizes to be those values that increase x?
by approximately 2 from its value at the local minimum.

Condition for Convergence

A change in x? per degree of freedom (x?/dof) of less than about 1% from one trial
set of parameters to the next is probably not significant. However, because of the
problems of local minima and very flat valleys in the parameter space, it may not be
sufficient to set an arbitrary condition for convergence, start a search, and let it run
to completion. If the starting parameters are not chosen very carefully, the search
may stop in a flat valley with an inappropriately large value of x> If this happens,
there are several possible ways to proceed. We can choose different starting values
and retry the fit, as suggested in the previous sections, or we can set tighter conver-
gence requirements (e.g., Ax%/dof < 0.1%) and rerun the search in the hope that the
program will escape from the valley and reach the appropriate minimum. A conve-
nient approach for small problems is to observe the process of the search and to cut
it off manually when it appears that a stable minimum has been found. If a suitable
minimum cannot be found, then different starting values should be tried. When fit-
ting curves to several similar samples of data, we may find it satisfactory to estab-
lish suitable starting parameters, step sizes, and a cutoff criterion for the first set,
and employ an automatic method for the remaining sets.

Computer Illustration of Nonlinear Fitting
Methods

In the following sections we discuss and illustrate with computer routines four
methods of fitting Equation (8.2) to the data of Example 8.1.

Program 8.0. NONLINFT (Appendix E) Common calling routine to test the
four different fitting methods. Repeats the calculations until a x2>-minimum is found.
Variables are defined in the program until FITVARS and data input and output are
handled in the program unit FITUTIL as in the fitting programs of Chapters 6 and 7.
FITFUNCS calculates the fitting function.

Step sizes for the fit are set initially in the routine FETCHPARAMETERS
to be a fraction of the starting values of the parameters. (The step sizes must not be
scaled to the parameters throughout the calculation, however, lest they become 0 when
a parameter is 0, which would halt the search in that parameter.)

Tables 8.2, 8.3, 8.4, and 8.5 show values of x2 and the parameters a, through a;
for several stages of the calculation at the beginning, middle, and end of each of the
four types of search. The tables include the time to find the solution relative to the time
for the fastest procedure.

Program 8.1. GRIDSEAR (Appendix E) Routine GRIDLS illustrates the grid-
search method.

Program 8.2. GRADSEAR (Appendix E) Routine GRADLS illustrates the
gradient-search method.
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Program 8.3. EXPNDFIT (Appendix E) Routine CHIFIT illustrates fitting by
expansion of the fitting function.

Program 8.4. MARQFIT (Appendix E) Routine MARQUARDT illustrates fit-
ting by the gradient-expansion algorithm.

Program 8.5. FITFUNS8 (Appendix E) Fitting function and x 2-calculation for all
fits called from Program 8.0.

Program 8.6. MAKEABBS8 (Appendix E) Matrix set-up for non-linear fits.
Program 8.7. NUMDERIV (Website) Numerical derivatives.

Program B.1. MATRIX (Appendix E) Matrix products and inversion.

8.3 GRID-SEARCH METHOD

If the variation of x > with each parameter a, is not very sensitive to the values of the
other parameters, then the optimum parameter values can be obtained most simply
by minimizing x? with respect to each of the parameters separately. This is the grid-
search method. The procedure is simply to select starting values of the parameters,
find the value of one of the parameters that minimizes x ? with respect to that para-
meter, set the parameter to that value, and repeat the procedure for each parameter
in turn, The entire process is then repeated until a stable x? minimum is obtained.

Grid search. The procedure for a grid search may be summarized as follows:

1.  Select starting values g, and step or increment sizes Aa, for each parameter and
calculate x2 with the starting parameters.

2. Increment one parameter a, by *+Aa, and calculate x %, where the sign is chosen
so that x 2 decreases.

3. Repeat step 2 until x 2 stops decreasing and begins to increase. The increase in
x 2 indicates that the search has crossed a ravine and started up the other side.

4.  Use the last three values of g, (which bracket the minimum) and the associated
values of x? to determine the minimum of the parabola, which passes through
the three points as illustrated in Figure 8.3. [See Equation (8.12).]

5. Repeat to minimize x2 with respect to each parameter in turn,

6. Continue to repeat the procedure until the last iteration yields a predefined neg-
ligibly small decrease in x 2

The main advantage of the grid-search method is its simplicity. With succes-
sive iterations of the search, the absolute minimum of the x? function in parameter
space can be located to any desired precision.

The main disadvantage is that, if the variations of x? with the parameters are
strongly correlated, then the approach to the minimum may be very slow. Consider,
for example, the contour plot of x? as a function of two parameters in Figure 8.4.
The x2 contours are generally approximately elliptical near the minimum. The
degree of correlation of the parameters is indicated by the tilt of the ellipse. If two
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a

FIGURE 84
Contour plot of x? as a function of two highly correlated variables The zigzag line represents the
search path approach to a local minimum by the grid-search method.

parameters are not correlated, so that the variation of x? with each parameter is in-
dependent of the variation with the other, then the axes of the ellipse will be paral-
lel to the coordinate axes. Thus, if a grid search is initiated near one end of a tilted
ellipse, the search may follow a zigzag path as indicated by the solid line in Figure
8.4 and the search will be very inefficient. Nevertheless, the simplicity of the calcu-
lations involved in a grid search often compensates for this inefficiency.

Program 8.1. GRIDSEAR (Appendix E) Routine GRIDLS illustrates the grid-
search method.

The main search routine, GRIDLS, is entered with the value of x?
(CHISQR) as argument. In a loop over each of the m parameters in turn, the value of
the parameter is varied until x? has passed through a local minimum in the parameter.
The three most recent values of x? that bracket the minimum are stored in the variables
CHISQ1, CHISQ2, and CHISQ3. The best estimate of the parameter at this
stage of the calculation is determined from the minimum of the parabola that passes
through the three points. The step size (DELTAA (J)) is then adjusted to be that
value that increases x2 by 2 from its value at the local minimum.

One pass through GRIDLS corresponds to a single zigzag along the path of
Figure 8.4. The search is repeated until x2 does not change by more than the preset
level, CHICUT.

A call to the function SIGPARAB in the program unit FITUTI L at the end
of the search returns an estimate of the uncertainty in each parameters in turn from a
calculation of the independent variation needed to increase x2 by 1 from its minimum
value.
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TABLE 8.2
Two exponentials plus constant background: grid-search method
Trial x> a, a, a; a, as
0 406.6 10.0 9000 80.0 270 225.0
1 1430 145 1332.3 106.8 21.7 207 2
2 96.9 12.6 1233.9 127.9 28.2 198.4
3 79.4 11.6 1155.1 140.2 28 8 192.2
4 729 112 1100.3 147.0 29.3 1892
16 66.7 11.3 963.5 148.8 323 185.3
17 66.7 11.3 9625 148.2 32.4 185.8
39 66.3 10.9 959.3 139.1 33.3 195.4
40 66.2 108 959.2 138.9 33.3 1957
Uncertainties 0.6 28.3 4.5 0.8 5.0

x%/dof = 1.23; probability = 12.1%; relative ime = 9.1

Note Stages 1n the fit to counts from the decay of excited states of silver The values of x? and the parameters are
listed at the beginning, middle, and end of the search The uncertainties 1n the parameters correspond to a change of
1 in x? from 1ts value at the end of the search

Table 8.2 shows values of x? and the parameters a, through a, for several
stages of the calculation at the beginning, middle, and end of the search. The search
is relatively slow, but eventually a satisfactory solution is found. Note that the cal-
culated uncertainties correspond to the diagonal terms in the error matrix for uncor-
related parameters. If correlations are considered to be important, the matrix
inversion methods discussed in the following sections could be used to find better
approximations to the uncertainties.

8.4 GRADIENT-SEARCH METHOD

The search could be improved if the zigzagging direction of travel in Figure 8.4
were replaced by a more direct vector toward the appropriate minimum. In the gra-
dient-search method of least squares, all the parameters g, are incremented simulta-
neously, with relative magnitudes adjusted so that the resultant direction of travel in
parameter space is along the gradient (or direction of maximum variation) of x2.

The gradient V2 is a vector that points in the direction in which x? increases
most rapidly and has components in parameter space equal to the rate of change of
x? along each axis:

n axz
2 =3 12X 14
VX ,Zl[aa, “f} &1

where 4, indicates a unit vector in the direction of the g, coordinate axis. In order to
determine the gradient, we estimate the partial derivatives numerically as discussed
in Appendix A:
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x> _xXa, +fba)—x*a)
VX =- ="~ :
a, fAa,

where fis a fraction of the step size Ag, by which a, is changed in order to determine
the derivative.

The gradient has both magnitude and dimensions and, if the dimensions of the
various parameters a, are not all the same (which is usually the case), the compo-
nents of the gradient do not even have the same dimensions. Let us define dimen-
sionless parameters b, by rescaling each of the parameters g, to a size that
characterizes the variation of x> with a, rather roughly. We shall use the step sizes
Aaj as the scaling constants, so that

(8.15)

a

b, =—- 8.16
v (8.16)
The derivative with respect to b, then becomes
Ix® _9x’
—-=—=-A 1
ab,  da, (8.17)
which may be calculated numerically as
axzzx%%+iﬁ%)-x%%hhh=x%%+fﬁ%)—x%%) (8.18)
ab, fAa, f
We can then define a dimensionless gradient -y, with unit magnitude and components
ax?*/ob
X/9b, (8.19)

"\ axab)
In the numerical calculation of Equation (8.18), the quantities Aa, and f occur only
in the argument of x? and not as scale factors.

The direction that the gradient-search method follows is the direction of steep-
est descent, which is opposite of the gradient . The search begins by incrementing
all parameters simultaneously by an amount Ag,, with relative value given by the
corresponding component vy, of the dimensionless gradient and absolute magnitude
given by the size constant Aa,:

da, = —v,Aq, (8.20)

J

The minus sign ensures that the value of x* decreases. The size constant Ag, of
Equation (8.20) is the same as that of Equation (8.16).

There are several possible methods of continuing the gradient search after a
first step. The most straightforward is to recompute the gradient after each change
in the parameters. One disadvantage of this method is that it is difficult to approach
the bottom of the minimum asymptotically because the gradient tends to O at the
minimum. Another disadvantage is that recomputation of the gradient at each step
for small step sizes results in an inefficient search, but the use of larger step sizes
makes location of the minimum less precise.

A reasonable variation on the method is to search along one direction of the
original gradient in small steps, calculating only the value of x? until x2 begins to
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rise again. At this point, the gradient is recomputed and the search continues in the
new direction. Whenever the search straddles a minimum, a parabolic interpretation
of x? is used to improve the determination of the minimum.

A more sophisticated approach would be to use second partial derivatives of
x° to determine changes in the gradient along the search path:

m [ 92y? )
5 +k§1(aa]aak day (8.21)
If the search is already fairly near the minimum, this method does decrease
the number of steps needed, but at the expense of more elaborate computation. If the
search is not near enough to the minimum, this method can actually increase
the number of steps required when first-order perturbations on the gradient are
not valid.

The efficiency of the gradient search decreases markedly as the search ap-
proaches a minimum because the evaluation of the derivative according to the
method of Equation (8.18) involves taking differences between nearly equal num-
bers. In fact, at the minimum of 2, these differences should vanish. For this reason,
one of the methods discussed in the following sections may be used to locate the ac-
tual minimum once the gradient search has approached it fairly closely.

-9

a,+3a, aa]

X
aa,

Program 8.2. GRADSEAR (Appendix E) Routine GRADLS illustrates the
gradient-search method.

On each entry to the main search routine, GRADLS, the components of the
gradient GRADLS (J) are calculated numerically from Equation (8.18) in the proce-
dure CALCGRAD. The argument FRACT of this routine, corresponding to the
variable f of Equation (8.18), determines the fraction of the step size (DELTAA)
used in the numerical calculation of the partial derivative. Each parameter A(J) is
then changed by the amount STEPDOWN*DELTAA(J)*GRAD(J), where
STEPDOWN is a scaling factor that is set initially in the main program and read-
justed after each stage to the size needed to locate the minimum.

The initial values of DELTAA (J) determines to some extent the execution
speed of each pass through the routine GRADLS, and the value of CHICUT deter-
mines when the search will stop. Because of the small gradient near the x? minimum,
it may take many steps to reach a reasonable value of x?2, and the cutoff, CHICUT,
may have to be set to a very low value. For such cases, user intervention can be pro-
vided as an alternate method of stopping the search.

At the conclusion of the search, the uncertainties in the parameters are estimated
in the function SIGPARAB as in the routine GRADLS.

Table 8.3 shows values of x? and the parameters a, through as for several
stages of the calculation at the beginning, middle, and end of the search. For Exam-
ple 8.1, the gradient search is considerably faster than the grid-search approach
because all the parameters are varied together at each step. However, the gradient-
search method has one disadvantage that is not illustrated. If the starting values of
the parameters are too far from the final values, the grid search has a good chance
of plodding along until it reaches the correct solution. The gradient search, on the
other hand, may tend to get bogged down in local minima that correspond to a long,
flat valley in the parameter space.
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TABLE 8.3
Two exponentials plus constant background: gradient-search method
Trial X2 a, a, a, a, as
0 406.6 10.0 900.0 80.0 27.0 225.0
1 82.3 10.6 1061.0 94.0 344 254.2
2 72.6 9.8 984.0 98.8 36.8 237.4
3 69.8 9.9 966.9 100.9 36.8 244.6
4 69.3 9.8 953.7 101.6 36.7 242.1
19 66.6 89 952.2 114.7 35.5 233.6
20 66.5 8.9 954.8 114.9 35.6 2339
Uncertainties 0.6 26.5 38 0.8 7.0

x%/dof = 1.23; probability = 11.8%; relative time = 4.0

Note: Stages in the fit to counts from the decay of excited states of silver. The values of x? and the parameters are
listed at the beginning, middle, and end of the search. The uncertainties 1n the parameters corresponding to a change
of 1 1n x? from 1ts value at the end of the search.

8.5 EXPANSION METHODS

Instead of searching the x 2 hypersurface to map the variation of x? with parameters,
we should be able to find an approximate analytical function that describes the x?
hypersurface and use this function to locate the minimum, with methods developed
for linear least-squares fitting. The approximations will introduce errors into the cal-
culated values of the parameters, but successive iterations of the analytical method
should approach the x? minimum with increasing accuracy. The main advantage of
such an approach is that the number of points on the x? hypersurface at which com-
putations must be made will be fewer than for a grid or gradient search. This ad-
vantage is somewhat offset by the fact that the computations at each point are
considerably more complicated. However, the analytical solution essentially
chooses its own step size and, thus, the user is spared the problem of trying to opti-
mize the step size for speed and precision.

Parabolic Expansion of x?
In Equation (8.9) we expanded x? to second order in the parameters about a local
minimum x§ where a, = a;:

m | 9X3
2~y 4 -9
X X0 ]Zl[aa] a]

11331 06 5,5, (8.22)
2 da,da, ' ° ’
which is equivalent to approximating the x* hypersurface by a parabolic surface.

Here we define 8a, = a, — a,, and X§ is given by

xa=z[a%[y, —y’(x,>]2] 8.23)

]

where y’(x,) is the value of the function when da, = 0.
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Applying the method of least squares, we minimize x? as expressed in Equa-
tion (8.22) with respect to the increments (da,) in the parameters, and solve for the
optimum values of these increments to obtain

x> _9x§, o] 9°x3
=_ZA0 = k=1 8.24
3da,) day ,21 dada 0a,[ =0 o (8.24)

The result is a set of m linear equations in da, that we can write as

Be — f‘, (®q,a,,)=0 k=1,m (8.25)
J=1
with
_ _19x¢ _1_9x§
€= "7 3a, and o =7 3a 0, (8.26)

The factors * are included for agreement with the conventional definitions of
these quantities.
As in Chapter 7, we can treat Equation (8.25) as a matrix equation:

B=0%0aa (8.27)

where 8 and da are row matrices and a is a symmetric matrix of order m. We shall
find that a is the curvature matrix discussed in Section 7.2, so named because it
measures the curvature of the x* hypersurface.

Method of Computation

The solution of Equation (8.27) can be obtained by matrix inversion as in Sec-
tion 7.2:

m

da = Be da, =Y (€4, B) (8.28)
J=1
where the error matrix € = a~! is the inverse of the curvature matrix.

If the parameters are independent of one another, that is, if the variation of x?
with respect to each parameter is independent of the values of the other parameters,
then the cross-partial derivatives a,, (j # k) will be 0 in the limit of a very large data
sample and the matrix a will be diagonal. The inverse matrix € will also be diago-
nal and Equation (8.27) will degenerate into m separate equations:

B dx§ 9%xj

da, =— = :
da?

J
a, aa,

(8.29)

Computation of the matrix elements by Equation (8.26) requires knowledge of
the first and second derivatives of x? evaluated at the current values of the parame-
ters. Analytic forms of the derivatives are generally quickest to compute, but may be
difficult or cumbersome to derive. If it is not convenient or possible to provide ana-
lytic forms of the derivatives, then they can be computed by the method of finite dif-
ferences (see Appendix A). In the following expressions, we use forward differences
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for efficient calculations. The intervals A a, should be chosen to be large enough to
avoid roundoff errors but small enough to furnish reasonably accurate values of the
derivatives near the minimum:

03 _ xla,+ Aa, ) — X¥(a, @)

da, Aa,
0™x8 _ 4| Xb(@, @) — 2x8(a, + 3a,/2, a)) + x¥(a, + A, @)
azal (Aa})z
x5
=[xd(a), a 8.30
9a,9a, [X5(a,, ai) (8.30)

- X(%(a} + Aap ak) - X(%(aj’ a;+ Aak)
+ x3(a, + Aa,, a; + Aay))/[AaAay]

In actual practice, calculations are faster and, in general, more accurate if the ele-
ments of the matrix o are determined from the first-order expansion (to be dis-
cussed in the following text), which involves only first derivatives of y(x) with
respect to the parameters, rather than the second derivatives of x? as expressed in
Equation (8.30).

Fitting Procedure

Within the limits of the approximation of the x? hypersurface by a parabolic ex-
trapolation, we can solve Equation (8.27) directly to yield parameter increments da,
such that x* should be minimized for a; + 3a,. If the starting point is close enough
to the minimum so that higher-order terms in the expansion can be neglected, this
becomes an accurate and precise method. But if the starting point is not near
enough, the parabolic approximation of the x> hypersurface is not valid and the re-
sults will be in error. In fact, if the starting point is so far from the minimum that the
curvature of x? is negative, the solution will tend toward a maximum rather than a
minimum. During computation, therefore, the diagonal elements o, of the matrix «
must be set positive whether they are or not. The resulting magnitude for da, will be
incorrect, but the sign will be correct.

Expansion of the Fitting Function

An alternative to expanding the x? function to develop an analytic description for the
hypersurface is to expand the fitting function y(x) in the parameters a, and to use the
method of linear least squares to determine the optimum value for the parameter in-
crements da,. If we carry out the derivation rigorously and drop higher-order terms,
we should achieve the same result as for the expansion of x? to first and second order.

First-Order Expansion

Let us expand the fitting function y(x) in a Taylor series about the point a,, to first
order in the parameter increments da, = a, — a,:
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y(x) = y(x)+2[ () g } (8.31)

J

where y’(x) is the value of the fitting function when the parameters have starting
point values a, and the derivatives are evaluated at the starting point. The resultis a
linear function in the parameter increments da, to which we can apply the method
of linear least squares developed in Chapter 7.

In this approximation, x 2 can be expressed explicitly as a function of the pa-
rameter increments da,:

=3 (é [y, 2 [ay (a) H2> (8.32)

Following the method of least squares, we minimize 2 with respect to each
of the parameter increments 3q, by setting the derivatives equal to 0:

X _ o y'(x) 9y'(x)
980, 2( [ Y= 2[ > ” oa, )70 G
As before, this yields the set of m simultaneous Equatlons (8.25), which can be ex-
pressed as the matrix Equation (8.27):
B=0%6a«a (8.34)

where [, is defined as in Equation (8.26) and a, is given by

(o 22[-I_MM} (8.35)

0',2 an aak

Second-Order Expansion

Suppose we make a Taylor expansion of the fitting function y(x) to second order in
the parameter increments da,:

2 [o%()
13810000 63

If we include the last term of Equation (8.36) in the expression for x? of Equa-
tion (8.32) and again minimize x? by setting to O the derivatives with respect to the
increments da,, we again obtain Equation (8.25), this time with

b= 3 | Sl -y 28 - 126

yw>whz[“%

J

o} 2 da,
= WYX Y'(x) o e 02Y(x)
oy, = 20’2[ o, day = [y =y 9,90, (8.37)
_1.9%°x§

2 aa_’aak
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The resulting definitions for B, and a,, are identical to those of Equation (8.26) ob-
tained by expanding the x2 function, and the y2-expansion method is therefore
equivalent to a second-order expansion of the fitting function.

Let us compare Equations (8.37) with the analogous Equations (7.14) and
(7.15) for linear least-squares fitting. The definitions of a, in Equations (8.37) and
(7.15) are equivalent in the linear approximation [See Equation (7.22)] and thus a
corresponds to the curvature matrix. The definition of B, in Equation (8.37) is
equivalent, in the linear approximation, to the definition of 8, in Equations (7.14)
except for the substitution of y, — y’(x,) for y,. We can justify this substitution by
noting that the solutions of Equation (8.34) are the parameter increments da,,
whereas those of Equation (7.14) are the parameters themselves. In essence, we are
applying linear least-squares methods to fit the parameter increments to difference
data Ay, between the actual data and the starting values of the fitting y'(x,):

Ay, =y, —y'(x) (8.38)

Thus, the expression given in Equation (8.35) for o, is a first-order approxi-
mation to the curvature matrix that is given to second order in Equation (8.37). For
linear functions, the second-order term vanishes. It is convenient to use the first-
order approximation for fitting nonlinear functions and thus avoid the necessity of
calculating the second derivatives in Equation (8.37). We note that this procedure
can be somewhat justified on the grounds that, in the vicinity of the x> minimum,
we should expect the factor of y, — y’(x,) in the expression for a of Equation (8.37)
to be close to 0 so that the first term in the expression will dominate.'

Program 8.3. EXPNDFIT (Appendix E) Routine CH I FIT illustrates non-linear
fitting by expansion of the fitting function. The program is called repeatedly from the
main program NONLINFIT, until x? passes through a minimum. EXPNDFIT
calls the following routines to set up and manipulate the matrices.

Program 8.6. MAKEABS8 (Appendix E) Sets up the & and B matrices.

The routine uses the first-order approximation of Equation (8.35) to calculate the com-
ponents oy, of the curvature matrix. This is equivalent to neglecting terms in the sec-
ond derivatives of the fitting function y(x) in the expression for o, in Equation (8.37).
The routines in this program unit use numerical derivatives and therefore differ from
those with the same names in Chapter 7, which use analytic derivatives.

Program 8.7. NUMDERIV (website) Numerical derivatives.

Derivatives of x? (X1SQ) are calculated numerically by the functions DX1SQ_DA,
D2X1SQ_DAZ2,and D2XISQ_DAUJK in this program unit. To avoid repetitive cal-
culations, the values of the derivatives at each value of x and for the variation of each
of the m parameters are calculated once for each trial and stored in arrays. If available,
analytic expressions for the derivatives could be substituted directly for the functions
to increase the speed and accuracy of the calculation.

Program B.1. MATRIX (Appendix E) Matrix multiplication and inversion.

ISee Press et al. (1986), page 523.
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TABLE 8.4

Two exponentials plus constant background: x2 expansion method

Trial x? a, a, a, a, as
0 406.6 10.0 900.0 80.0 27.0 225.0
1 86.2 1.1 933.8 140.4 33.8 1705
2 66.6 108 861.2 128.9 33.9 201.7
3 66.1 10.4 958.2 131.2 34.0 205.4

Uncertainties 1.8 49.9 217 2.5 30.5

x2/dof = 1.22; probability = 12.4%; relative time = 1.0

Note All stages 1n the fit to counts from the decay of excited states of silver The uncertainties 1n the parameters cor-
respond to the square roots of the diagonal terms 1n the error matrix

At the conclusion of the search, the inverse € of the final value of the curva-
ture matrix « is treated as the error matrix, and the errors in the parameters are ob-
tained from the square roots of the diagonal terms by calls to the function
SIGMATRX in the unit FitFunc8. Table 8.4 shows values of x? and the parameters
a, through as for all stages of the calculation.

8.6 THE MARQUARDT METHOD

Convergence

One disadvantage inherent in the analytical methods of expanding either the fitting
function y(x) or x? is that although they converge quite rapidly to the point of min-
imum x? from points nearby, they cannot be relied on to approach the minimum
with any accuracy from a point outside the region where the x? hypersurface is ap-
proximately parabolic. In particular, if the curvature of the x2 hypersurface is used,
as in Equation (8.37) or (8.26), the analytical solution is clearly unreliable whenever
the curvature becomes negative. Symptomatic of this problem is the need to set pos-
itive the diagonal elements o, of the matrix a so that all curvatures are treated as if
they were positive.

In contrast, the gradient search of Section 8.4 is ideally suited for approaching
the minimum from far away, but does not converge rapidly near the minimum.
Therefore, we need an algorithm that behaves like a gradient search for the first por-
tion of a search and behaves more like an analytical solution as the search con-
verges. In fact, it can be shown (see Marquardt 1963) that the path directions for
gradient and analytical searches are nearly perpendicular to each other, and that the
optimum direction is somewhere between these two vectors.

One advantage of combining these two methods into one algorithm is that the
simpler first-order expansion of the analytical method will certainly suffice because
the expansion need only be valid in the immediate neighborhood of the minimum.
Thus, to calculate the curvature matrix o, we can use the approximation of Equation
(8.35) and ignore the second derivatives of Equation (8.37).
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Gradient-Expansion Algorithm

A convenient algorithm (see Marquardt 1963), which combines the best features of
the gradient search with the method of linearizing the fitting function, can be ob-
tained by increasing the diagonal terms of the curvature matrix & by a factor 1 + A\
that controls the interpolation of the algorithm between the two extremes. Equation
(8.34) becomes

a}k(l + }\.) forj =k

Qe forj #k

B=0%aa' with a) = (8.39)
If X is very small, Equations (8.39) are similar to the solution of Equation (8.34) de-
veloped from the Taylor expansion. If \ is very large, the diagonal terms of the cur-
vature matrix dominate and the matrix equation degenerates into m separate
equations

B,=\3a,a,, (8.40)

which yield the vector increment a in the same direction as the vector 8 of Equa-
tion (8.37) (or opposite to the gradient of x?).

The solution for the parameter increments 8a, follows from Equations (8.39)
after matrix inversion

da, = ;’:‘1 (Beek) (8.41)

where the 3, are given by Equation (8.37) and the matrix €’ is the inverse of the ma-
trix &’ with elements given by Equations (8.39).

The initial value of the constant factor A should be chosen small enough to
take advantage of the analytical solution, but large enough that x* decreases. Be-
cause this algorithm approaches the gradient-search method with small steps for
large \, there should exist a value of \ such that x*(a + 8a) < x*(a). The recipe
given by Marquardt is:

1. Compute x2(a).

2. Start initially with A = 0.001.

3. Compute da and x*(a + da) with this choice of \.

4. If x*(a + da) > x*(a), increase \ by a factor of 10 and repeat step 3.

5. If x*(a + 3a) < x%(a), decrease \ by a factor of 10, considera’ = a + da to be

the new startingpoint, and return to step 3, substituting a’ for a.

For each iteration it may be necessary to recompute the parameter increments
da, from Equation (8.41), and the elements o, and B, of the matrices, several times
to optimize \. As the solution approaches the minimum, the value of \ will decrease
and the program should locate the minimum with a few iterations. A lower limit
may be set for the value \, but in practice this limit will seldom be reached.
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TABLE 8.5

Two exponentials plus constant background: Marquardt method

Trial X2 a, a, a, a, as
0 406.6 10.0 900.0 80.0 27.0 225.0
1 82.9 11.0 933.5 1393 33.9 173.9
2 66.4 10.8 960.1 130.6 33.8 201.2
3 66.1 10.4 958 3 131.4 33.9 205.0

Uncertainties 1.8 49.9 21.7 2.5 30.5

x2/dof = 1.22; probability = 12.4%; relative tme = 1.0

Note All stages 1n the fit to counts from the decay of excited states of silver. The uncertainties 1n the parameters cor-
respond to the square roots of the diagonal terms 1n the error matrix.

TABLE 8.6
Elements of the error matrix (Marquardt method)

1k 1 2 3 4 5

1 3.38 —3.69 27.98 -2.34 —49.24
2 -3.69 2492.26 81.89 —-69.21 -3.90
3 27.98 81.89 468.99 —44.22 —615.44
4 -2.34 -69.21 —4422 6.39 53.80
5 —49.24 -3.90 —615.44 53.80 929.45

Note Error matnx from a fit to the radioactive silver data. The diagonal terms are the variances o} and the off-
diagonal terms are the covariances o2, of the parameters a,.

Program 8.4. MARQFIT (Appendix E) Routine MARQUARDT illustrates fit-
ting by the gradient-expansion algorithm.

The procedure uses the same program units as those in Program 8.3, and is identical to
that program except for the adjustment of the diagonal elements a,, of the matrix & by
the variable LAMBDA according to Equation (8.39).

At the conclusion of the search, the inverse € of the final value of the curva-
ture matrix o is treated as the error matrix, and the errors in the parameters are ob-
tained from the square roots of the diagonal terms by calls to the function
SIGMATRX in the unit FitFunc8. Table 8.5 shows values of x? and the parameters
a, through a; for all stages of the calculation. Table 8.6 shows the error matrix from
the fit.

8.7 COMMENTS

Although the Marquardt method is the most complex of the four fitting routines, it
is also the clear winner for finding fits most directly and efficiently. It has the strong
advantage of being reasonably insensitive to the starting values of the parameters,
although in a peak-over-background example (Chapter 9), it does have difficulty
when the starting parameters of the function for the peak are outside reasonable
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ranges. The Marquardt method also has the advantage over the grid- and gradient-
search methods of providing an estimate of the full error matrix and better calcula-
tion of the diagonal errors.

The routines of Programs 8.3 and 8.4 were tested with both numerical and an-
alytical derivatives. Typical search paths with numerical derivatives are shown in
Tables 8.4 and 8.5. For the sample problem with the assumed starting conditions,
the minimum 2 was found in only a few steps by either method with essentially no
time difference. Both methods are reasonably insensitive to starting values of para-
meters in which the fit is linear, but can be sensitive to starting values of the non-
linear parameters. Program 8.4 had remarkable success over a broad range of
starting values, whereas Program 8.3 required better definition of the starting values
of the parameters and generally required many more iterations.

The uncertainties in the parameters for these fits were calculated from the di-
agonal terms in the error matrices and are, in general, considerably larger than the
uncertainties obtained in the grid- and gradient-search methods. Because the latter
errors were obtained by finding the change in each parameter to produce as change
of x? of 1 from the minimum values, without reoptimizing the fit, there is a strong
suggestion that correlations among the parameters play an important role in fitting
Figure 8.1. This point of view is supported by examination of the error matrix from
the method 4 fit (Table 8.6), which shows large off-diagonal elements.

With poorly selected starting values, the searches may terminate in local min-
ima with unacceptably high values of x* and, therefore, with unacceptable final val-
ues for the parameters. Termination in the sample programs is controlled simply by
considering the reduction in x? from one iteration to the next and stopping at a pre-
selected difference. With this method, it is essential to check the results carefully to
be sure that the absolute minimum has indeed been found.

SUMMARY

Nonlinear function: One that cannot be expressed as a sum of terms with the coef-
ficients of the terms.
Minimum of x* (parabolic approximation):

: Xi = X5 1
= —_ + —
44— A4 [x% —2x3+ X3 2}

Estimate of standard deviation from Ax* = 1:
a,=A8a, V2(x} — 23 + X3!

Grid search: Vary each parameter in turn, minimizing x* with respect to each para-
meter independently. Many successive iterations are required to locate the minimum
of x? unless the parameters are independent; that is, unless the variation of x2 with
respect to one parameter is independent of the values of the other parameters.
Gradient search: Vary all the parameters simultaneously, adjusting relative magni-
tudes of the variations so that the direction of propagation in parameter space is
along the direction of steepest descent of x>
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Direction of steepest descent: Opposite the gradient V x%

(sz), — sz . Xz(aj +anj) B x(a])
a fAa

) ]
_ —((axz/aa;)Aaf)
da, = S :

\/2;":1((ax /aaj)Aa,)

Parabolic expansion of xX*

oa = Pe 8ak=i(ek1[31)

with

Linearization of the fitting function:
= s ilry o @Gl - _19x5
Bk_ 2[0_'2[}’1 y(‘xl)] aak ]_ 2 da
_ < L)aye)ay(x) o 9%y(x)
a_,k_ 20’2[ aa] aak [yl y(‘xl)aa]aak
1 a2x2

2 da,9a,

Gradient-expansion algorithm—the Marquardt method: Make \ just large enough
to insure that x? decreases:
o = a,(l+\) forj=k

ke Jk forj # k

aa_l = i(Bkel’(

. o 2
Uncertainty in parameter a,: a,, = e,, corresponds to Ax* = 1.

EXERCISES

8.1. Use an interpolation method (see Appendix A) to find the equation of the parabola that
passes through the three points (x,, y,), (x3, ¥»), and (xs, y3). Find the value of x at the
minimum of the parabola and thus verify Equation (8.12).

8.2. From the results of Exercise 8.1, venfy Equation (8.13).
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8.3.

84.

8.5.

8.6.

8.7.

The following data represent histogram bin counts across a Lorentzian peak:

x, | 1824 1828 1832 1836 1840 1844 1848 1852 1856 1860
y | 558 679 696 736 834 812 899 817 767 657

(a) Use the grid-search method to fit the equation y(x) = AP.(x; w, I') to the data and
find the maximum-likelihood value of w, where P;(x; w, I') is the Lorentzian func-
tion of Equation (2.32) and the known parameters are A = 75 and I" = 0.055. As-
sume that x is given at the lower edge of each histogram bin and that the errors in y
are statistical. Find the uncertainty in .

Suggested procedure: (i) Calculate x? at the peak of the distribution and at a value
on each side. (ii) Find the minimum of a parabola that passes through the three
points. (iii) Repeat the procedure with three points centered on the minimum x? un-
til the value of w has been determined to *=0.001.
(b) Repeat the procedure for a two-parameter fit, with I" as the second unknown.
Consider the histogram of measured time intervals displayed in Figure 1.2. The num-
bers of events in the bins bounded by ¢ = 0.59 to 0.70s.
2,2,11,6,12,8,4,3,1,1,0
Fit a Gaussian curve [Equation (2.23)] to these data by the least-squares method to find
1, 0, and the amplitude of the curve A. Bins with fewer than seven events should be
merged to improve the reliance on Gaussian statistics. Compare the parameters ob-
tained from the fit with those determined by taking the mean and standard deviation of
the data.
The following data correspond to counts recorded in Example 6.2 with the addition of
an unknown randomly fluctuating background term a,;. Use the Marquardt method to fit
the equation C = a; + a,/d? to these data to find the parameters g, and a, and the full
error matrix. Assume statistical uncertainties.

; | 1 2 3 4 5 6 7 8 9 10
d,(m) 020 025 030 035 040 045 050 060 075 100
C 944 688 467 366 316 317 264 251 214 184

Use the method of least squares to fit the five-parameter equation y(x) = a; + a,x +
a;G(x; ay, as) to the following data where a, = w, as = o, and G(x; ., o) 1s the Gauss-
ian curve of Equation (2.23).

: 1 2 3 4 5 6 7 8 9 10
x, 10 11 12 13 14 15 16 17 18 19
Y, 31 25 24 30 34 37 31 30 64 54
: nm 12 13 14 15 16 17 18 19 20
x, 20 21 22 23 24 25 26 27 28 29
y, 95 94 78 79 43 54 58 52 46 4l

Use the Marquardt method and find an estimate of the error matrix. The value of x 1s
given at the lower edge of each bin. Assume statistical uncertainties.

To check the inverse-square relationship expressed 1n Coulomb’s law,

F=kQ1Q2/"2
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Students in an undergraduate laboratory measured the force of electrostatic repulsion
between two charged conducting spheres as a function of the distance between the cen-
ters of the spheres.

They applied the same potential to each sphere so that each carried the same charge.
Because of the mutual repulsion of the charges on the conducting spheres, the effective
separation of the two charge distributions is not simply the separation of the centers of
the spheres. The resulting reduction 1n the repulsive force 1s a function of the separation
r of the spheres and their radi1 a, given approximately by the correction factor

f=1-4(a/r)?

where a = 1.9 cm 1n this experiment. Thus, the relation between the mutual force on the
spheres and their separation, including the correction factor, can be expressed as

a \*| kQvQ:
= — 4| — —_—
qulumb l:l <r> jl r2

The students used a torsion balance to study the varation of the repulsive force, so that
the force was proportional to the measured torsion angle. The relation between the tor-
sion angle 6 and the separation r of the centers of the spheres, including the correction
factor, can be rewnitten as a “fitting equation”

0 = A[l — 4(a/r)°]

with unknown parameters, the scale factor A and the exponent e.

The students obtained the following measurements of the torsion angle (6 1n de-
grees) as a function of the separation between the centers of the spheres (r in cm).

rr 50 60 70 80 90 100 120 140 160 180 200
6, 264 233 179 136 111 84 63 53 33 30 27

Assume that the uncertainty in the angle is *+1°.

(a) Use one of the nonlinear fitting methods to determine the two parameters e and A
of the fitting equation, and their uncertainties.

(b) Make a better estimate of the uncertainty 1n 6 by considering the uncertainty re-
quired to give x2 = number of degrees of freedom.

(c) What effect does this change have on the uncertainties 1n the fitted parameters?



CHAPTER

FITTING
COMPOSITE
CURVES

9.1 LORENTZIAN PEAK ON QUADRATIC
BACKGROUND

Many fitting problems involve determining the parameters of a resonant peak or
peaks, superimposed upon a background signal. Examples may be found in various
types of spectroscopic studies where the objective is to determine the properties of
one Or more resonant states.

EXAMPLE 9.1 We consider a problem from nuclear or particle physics 1llustrated
by the 4000-event histogram of Figure 9.1, which shows a large peak on a smoothly
varying background. We shall assume that the data have been drawn from a distribu-
tion that includes a resonant state described by the Lorentzian distribution, and that the
background can be described by a second-degree polynomial 1n the energy E.! We
shall attempt to fit Equation (9.1) to the data to determine the amplitude A, the reso-
nant energy E,, and the full width at half maximum I'.

T'/(27)
E=Ey) +(T/2

Y(E)=a,; + a,E+ az;E* + A, 9.1)

We note that Equation (9.1) 1s linear 1n the parameters a,, a,, and a;, but not 1n the
parameters E and I'.

IThese “data” were actually generated by the Monte Carlo method described in Chapter 5 The para-
meters used 1n the generation are hsted 1n the second column of Table 9 1

168
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FIGURE 9.1

Histogram data 1n bins of 0 10 GeV of the 4000 simulated events generated from Equation (9.13) with
parameters listed in column 2 of Table 9.1. The sohd curve 1illustrates a fit of Equation (9.1) to the
data The dashed curve indicates the polynommal background.

We used the Marquardt method with numerical derivatives to fit Equation (9.1)
to the histogram of Figure 9.1, because this is clearly the most flexible and convenient
of the four methods considered in Chapter 8. The amplitudes of the polynomial func-
tion (a, through as), the amplitude of the Lorentzian peak (a, = A,), and the mean E,
and half-width I' of the Lorentzian function (a5 and a4) were treated as free parameters
of the fit. Starting values for a and a4 were obtained by inspecting the histogram of
Figure 9.1; starting values for the other parameters, the coefficients of the various
terms, were obtained by trial and error. Because the Marquardt method is exact for a
function that is linear in the parameters, convergence of the fit is relatively insensitive
to starting values of a, through a,. The method is more sensitive to starting values for
the Lorentzian parameters (E; and I'). If starting values were too far from the obvious
parameters of the peak, the program would coast to a halt in a shallow local minimum
with obviously incorrect values for the parameters, and with a higher than expected
value of x2. Starting values for all fits are listed in column 3 of Table 9.1.

Results of this six-parameter fit to the distribution in Figure 9.1 are summarized
in column 4 of Table 9.1 and the curve calculated from Equation (9.1) with the para-
meters found in the fit is plotted on the histogram of Figure 9.1. The dashed curve
shows the contribution of background under the peak. The x? probability of the fit
(7.9%) is low, but acceptable.

Because one of the objectives of the analysis of Example 9.1 is to determine
E,, the mean of the peak function of Equation (9.1), we must be careful in the
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TABLE 9.1
Results of least-squares fits of Equations (9.1) and (9.13) to data displayed in
Figures 9.1 and 9.2

Values
used to Starting Six-parameter Six-parameter Nine-parameter
generate values fit fit fit
data for fit (Figure 9.1) (Figure 9.2-inset) (Figure 9.2)
dof 24 54 51
x? 343 729 56.0
Py, 7.9% 44% 294
Num 4000 3944 3927 3994
a, 1.0 1 22 * 26 -22*13 —-21=1.1
a, 45.0 1 136.0 = 8.1 73.9 = 3.7 737*36
a -10. 1 -31.6 * 3.1 -18.0 = 1.4 -180+14
Peak 1
a, (Ag) 20.0 1 798 7.0 339=+27 288 30
as (Ey) 1.0 1 0.9838 = 0.0068 0.9912 = 0.0050  0.9968 =+ 0.0044
ag (Ip) 0.1 0.1 0.197 = 0.024 0.139 = 0.015 0.108 = 0.017
Peak 2
a; (A)) 35 1 — — 5322
ag (E)) 0.8 0.825 — — 0.824 = 0.017
aq (I')) 0.12 0.05 — — 0.083 * 0.034

choice of the value of the independent variable that we use in the fit. On the his-
togram of Figure 9.1, the value of E, at the left-hand edge of selected bins is indi-
cated, but for the fit we used the value of E at the center of each bin. If we had used
values of E, from the left-hand edge of the histogram bins, the value for £, from the
fit would have been too low by half a bin width. For wide bins and a rapidly vary-
ing fitting function, it might be advisable to select the value of E, for each bin by
weighting according to the steepness of the function.

Note that the problem of selecting the absolute value of the abscissa corre-
sponding to the ordinate value was not important in the determination of the mean
lifetimes in Example 8.1 because lifetimes are determined effectively from differ-
ences, rather than absolute values, of the independent variable. We must, however,
always take care when we plot results of a fit that the curve is not displaced half a
bin width from the data.

Program 9.1 LORINFIT (Appendix E) illustrates use of the Marquardt method
to fit a Lorentzian peak on a quadratic background.

9.2 AREA DETERMINATION

When dealing with problems of peaks and backgrounds, we may wish to determine
not only the position and width of a peak in a spectrum, but also the number of
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events or area of the peak, which may measure the intensity of a transition or the
strength of a reaction. When peaks are not well separated, or when the contribution
from background is substantial, least-squares fitting can provide a consistent
method of extracting such information from the data.

The importance of consistency should not be underestimated. Whether or
not the method chosen is the best possible method, as long as it involves a well-
understood and clearly specified procedure, other experimenters will be able to
check and compare the results safe in the knowledge that their comparisons are
justified and meaningful. The method of least squares is considered to be an unbiased
estimator of the fitting parameters and all parameters are presumed to be estimated
as well as possible. This assumption is based on the validity of both the fitting func-
tion in describing the data and the least-squares method. If we try to fit the data with
an incorrect fitting function, or try to fit data with uncertainties that do not follow the
Gaussian distribution, then the fitting procedure may not yield optimum results.

Although we refer to the number of events as the area of a peak or plot, the
true area is, of course, the number of events multiplied by the data interval or his-
togram bin width. Thus, to find the area A, of the peak from the results of the fit in
Example 9.1, we calculate

([ T'/(2m)
Ap= Lﬁ‘" (E — Ep)? + (T/2)?

Because we used the normalized form of the Lorentzian function, the integral is just
the coefficient a, obtained in the search A, = A, = a,. The area of the peak on the
histogram is the product of the number of events N, in the peak and the width AE of
the histogram bin

9.2)

Ap=Np X AE,
so the number of events in the peak is given by
Np=Ap/AE (9.3)
The result from Example 9.1 is N, = (79.8 * 7.0)/0.1 = (798 * 70) events.
Alternatively, we might plot the background curve on the graph
y(E)=a, + a,E + a;E? 9.9

and count the number of events in the peak above the background in a selected
range encompassing the peak. We have indicated such a range by vertical dotted
lines at E, — 2I" and E,, + 2I" in Figure 9.1. With this method we should be obliged
to estimate and correct for events outside the selected region.

Uncertainties in Areas under Peaks

If we calculate the area of the peak from Equations (9.2) and (9.3), then the un-
certainty should be estimated from the uncertainties in the parameters by the er-
ror propagation equation. We have used this method to obtain the uncertainty in
the number of events of the peak of Figure 9.1 in the calculation that follows
Equation (9.3).
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The uncertainty o, in the area under a peak can also be estimated by consid-
ering the uncertainty in the parent distribution. If the data are distributed according
to the Poisson distribution, the uncertainty in the area A, is given by o7 = A,,. If we
obtain the area by counting the number of events above background, then the vari-
ance of the difference will be the sum (not the difference) of the variance of the to-
tal area under the peak and the variance of the subtracted background A,:

oi=c?+0i=A,+A,

where the subscripts p, b, and ¢ correspond to peak, background, and total (= peak
+ background). In order to keep s, = A, as small as possible, we should count
events only in that region where the peak-to-background ratio is large and make
corrections for the tails of the distribution.

Area under a Curve with Poisson Statistics

Curiously enough, if the data are distributed around each data point according to the
Poisson distribution, as in a counting experiment, the method of least squares con-
sistently underestimates the area under a fitted curve by an amount approximately
equal to the value of x2. To show this, let us consider fitting such data with an ar-
bitrary peak, represented by bf,(x; w, o) plus a polynomial background similar to
Example 9.1:

y(x) = a + bf(x; p, 0) 9.5)

where we have simplified the background to a single term a for clarity.
Using the method of least squares, we define x? to be the weighted sum of the
squares of deviations of the data from the fitted curve

x> = EL%(y, —a— bf(x; w, 0))2} (9.6)

and obtain the solution by minimizing x? simultaneously with respect to each of the
parameters. The required derivatives with respect to the two parameters a and b, in
which the function is linear, are

L —22[&@ ~a = bf(x w, NI 0)} =0
.7
X —zz[;(y, —a=bf(xiw, o»} =0

{

We can write x? in terms of the derivatives of Equation (9.7) as
2 — pa — g — . + _1_ Q‘E + Q‘E
X ZL? (¥, — a = bf(x; ., 0))] 1 Gar ey (9.8)
and setting the derivatives to 0 gives

X = 2[%0:, —a - bf(x; r))] ©99)

{
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If the data represent the number of counts per unit time in a detector, then they are
distributed according to the Poisson distribution and we can approximate o2 = y,.
Equation (9.9) becomes

Xan =2[y(a + bf (x; ., T))]

= area(data) — area(fit) (10

Thus, we observe that the area under the total fit is underestimated by an amount
equal to x2,,.

For this derivation we require only that the fitting function consist of a sum of
terms, each one of which is multiplied by a coefficient

y(x)= ga,fj(x) (9.11)

The function f/(x) can contain any number of other parameters in nonlinear form,
but may not contain any of the coefficients a,. Even reparameterizing the function
of Equation (9.5) [or Equation (9.1)] and minimizing x? with respect to the area ex-
plicitly would not affect the discrepancy between the actual and estimated areas.

Note that for data that are distributed with a constant uncertainty o, = o, the
second equation of Equations (9.7) is sufficient to ensure that 2y(x,) = Zy,. It is the
assumption of a Poisson distribution for the data o2 = y, that yields the discrepancy
between the actual and estimated areas.

If the agreement between the fit and the data should be exact, x> = 0, then the
estimated and actual areas would be equal. For a fitting function that is a good rep-
resentation of the data, the value of x? will approximately equal the number of de-
grees of freedom, so that if there are many bins and a few parameters to be
determined, the average discrepancy will be about 1 per bin. Thus, the correction
may be negligible for distributions with large numbers of events.

We would like to find ways to reduce the discrepancy. The fact that we know
the approximate value of the discrepancy in the total histogram is, in itself, not very
helpful because we do not know how to allocate the discrepancy between peak and
background. We might find the ratio of the integral A, of the peak [Equation (9.2)]
to the integral A of the complete function Equation (9.1) and scale to the total num-
ber of events in the plot to estimate the number of events in the peak. This method
assumes that the correction is proportional to the area. Another possibility is to
make separate fits to the peak and background regions of the plot, so that we can try
to assign the estimated correction separately to the two regions of the plot.

One obvious way of reducing the discrepancy between the area of the mea-
sured and fitted data is to reduce the value of x? at the minimum so that the correc-
tion is small. A method of accomplishing this reduction, which is not universally
accepted but which can be justified by practical considerations, is the technique of
smoothing the data, averaging in some mathematically acceptable way over adja-
cent bins. (See Appendix A.5). Under any smoothing process there can be no over-
all gain in information, and a net improvement of the fit to the area must be offset
by an increased uncertainty in the estimation of other parameters, such as the width
and position of the peak. But smoothing will decrease the value of x? at the mini-
mum and thereby reduce the bias in the estimation of the area.
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Referring to Table 9.1, we observe that the areas under the three fitted curves
differ from the area under the data sample (4000 events), although the differences
do not agree with the predicted values (x?2,,), perhaps because of the complexity of
the nonlinear fitting process. Linear least squares polynomial fits to appropriate
data, such as the background distributions in Example 9.1, yield the expected dif-
ferences between the area of the data and the fitted curves. See Exercise 9.1.

9.3 COMPOSITE PLOTS

Single Peak and Background

For a fitting function y(x) that is separable into a peak y,(x) plus a background y,(x),
such as Equation (9.1), it may be convenient to consider at least some facets of the
fitting procedure separately. The least-squares procedure for minimizing x? with re-
spect to each of the parameters a,,

a3 1 =0
a, ;;[y, — yp(x) ~ yp(x,)]2] (9.12)
can be considered equally well in terms of fitting the sum of the curves y(x) to the to-
tal yield y, or of fitting one function y,(x) to the difference spectrum y; = y, — y,(x)).
The only provision is that the uncertainties in the data points of o; = o, must be the
same in both calculations.

If the background curve can be assumed to be a slowly varying function un-
der the peak, as in Figure 9.1, and may reasonably be interpolated under the peak
from fitting on both sides, it may be preferable to fit the background curve y,(x)
outside the region of the peak and to fit the peak function y,(x) only in the region
of the peak.

Such a procedure might help isolate special problems that result from fitting
with an incorrect peak or background. The x? function measures not only the devi-
ations of the parameters from an ideal fit, but also the discrepancy between the form
chosen for the shape of the fitting function y(x) and the parent distribution of the
data. If the shape of the fitting function does not represent that of the parent distrib-
ution exactly, the value of x*> may have large contributions from local data regions.
By fitting separate regions of a plot, it may be possible to discover whether the dis-
agreement is in the background or the peak region. In the histogram of Figure 9.1,
our interest is in the properties of the peak function, and not in the background,
which we parameterize with a simple power series in E. However, the value of x?
for the fit is calculated for the entire plot and includes contributions from discrep-
ancies between the background and the fitted curve, as well as between the peak and
curve. We may be able to isolate problems to one or the other region by separating
the fit into two parts.

Another reason for making separate fits to regions of a plot is to search for start-
ing values for an overall fit. For example, when fitting a function that consists of peak
functions plus background function, it may be useful first to fit the regions outside the
peaks to get starting values for the background parameters and then to fit separately
the region close to each peak, to find starting values for the peak parameters.
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As an example, assume that we wish to find starting values for the fit of Equa-
tion (9.1) to the data of Figure 9.1. The following procedure could be used:

1. Separate the curve into three regions (a), (b), and (c) as indicated by the two
vertical lines on Figure 9.1.

2. Fit the background polynomial y;(x) = a, + a,E + a;E? simultaneously to re-
gions below and above the peak to obtain provisional values for the parameters
a, through a,.

3. Fit the entire function of Equation (9.1) to the central region, with the fixed val-
ues of a, through a; obtained in step 2 to obtain values for the parameters ay, as,
and a,.

4. Fit the entire function of Equation (9.1) simultaneously to regions (a) and (c),
with the starting values of the parameters a, through a4 set to the values ob-
tained in steps 2 and 3 to obtain new values of the parameters a, through as.

If the parameters continue to change significantly on each iteration, the
process can be repeated from step 2 as required. Alternatively, it may be sufficient
to skip step 3 and to fit for all parameters after step 2.

In fitting the peak and background functions over different parts of the spec-
trum, it is important to note that the complete function y(E) of Equation (9.1) must
be fitted to both regions; that is, in the region outside the peak where the back-
ground is being fitted, the calculation of the tail of the peak must be included, and
underneath the peak, the background terms must be included.

Multiple Peaks

Separation of closely spaced peaks is an important problem in many research fields.
Although we should not attempt to extract information from our data by sorting in
bins that are smaller than the uncertainties in our measurements, and should not use
bin widths that are so narrow that the numbers of events in the bins are too small to
satisfy Gaussian statistics, we also should not err in the other direction and risk sup-
pressing important details. Selecting optimum bin sizes is critical. For some data sam-
ples, different bin widths for different regions of the data sample may be appropriate.

EXAMPLE 9.2 We have noted that, although the 4.4% probability for the fit to the
data of Example 9.1 is rather low, it could be acceptable. However, because the data
were plotted in rather coarse bins (AE = 0.1 GeV), some information may have been
suppressed. To check this possibility, we plotted the data in smaller bins (AE = 0.05
GeV) as illustrated in Figure 9.2. (Note that in plotting Figure 9.2 we have eliminated
some bins from the lower and upper edges of the histogram in order to enhance the
display; all 60 bins are included in the fits.)

Plotted in smaller bins, the large peak near E = 1.00 GeV appears to be consid-
erably narrower than indicated in Figure 9.1. There is also a suggestion of a possible
excess of events in the bin centered at E = 0.825 GeV on the low-energy side of the
main peak. As illustrated by the curve on Figure 9.2, a fit of the two-peak Equation
(9.13) to the narrow-bin data, seems to confirm the existence of a second peak. To
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FIGURE 9.2

Histogram data in bins of 0.05 GeV of the 4000 simulated events shown in Figure 9.1. The solid
curve illustrates a fit of Equation (9.13) to the data. The inset illustrates, in the region of the smaller
peak, a fit of the single-peak Equation (9.1) to the entire data sample.

obtain this fit, we chose as starting values for the mass and width of the second peak,
0.825 and 0.05 GeV, respectively,

I, /(27)
(E - Eo)2 + (F0/2)2

y(E)_——al +azE+a3E2+A0

r/2m) (9.13)

A (E — E\)* + (I'/2)?

suggested by examination of Figure 9.2.

Results of the fit are listed in column 6 of Table 9.1. The 29.4% chi-squared
probability for this fit is a marked improvement from 4.4% for the single-peak fit. The
inset on Figure 9.2 shows the region of the smaller peak with a curve calculated by fit-
ting the single-peak Equation (9.1) to the entire data sample of Figure 9.2. Parameters
determined in this fit are listed in column 5 of Table 9.1.

We can estimate the statistical significance of the smaller peak in Example
9.2 by counting the total number of events above the single-peak background
(shown in the inset) and considering whether or not the excess is consistent with a
statistical fluctuation. There are 102 events in the peak bin over a background of
69.5 events, corresponding to a fluctuation of (102 — 69.5)\'\/69.5 = 3.9 standard
deviations in the background signal. Referring to Table C.2, we infer that there is
a (1 —0.99990) = 0.00010, or 0.01% probability that we should obtain a result
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this large, or larger, from a statistical fluctuation. Thus, the smaller peak appears to
be very well established.

But we should wait before rushing into publication; our analysis is not fin-
ished. We calculated the probability of finding a 3.9 standard deviation fluctuation
in a particular bin. However, there are 60 bins in this data sample, and the fluctua-
tion could have appeared in any of them. The probability that a 3.9 standard devia-
tion would rnot appear in any of the 60 pairs is 0.9999%, so the probability of
observing the fluctuation in any of the bin pairs is 1 — 0.9999% ~ 0.6%. This prob-
ability is low enough to give us considerable confidence that the smaller peak is not
a fluctuation. If we had some a priori reason, such as a theoretical prediction or ev-
idence from another experiment, to believe that the smaller peak should be located
in the particular energy region where it appears, then the argument against a statis-
tical fluctuation would be even more compelling.

While there appears to be firm statistical support for a second peak in the data
of Example 9.2, that support depends strongly on our understanding of the contri-
butions in the region of the second peak from the smooth background distribution
and the tail of the large peak. If, for example, background counts were 10% higher,
decreasing the excess by 10%, the fluctuation would decrease from 3.9 to 2.9 stan-
dard deviations and the probability of a fluctuation of this magnitude in any bin
would increase from about 1% to 20%, a considerably less compelling number.

Are there further tests we can make on our data sample to help us understand
the significance of our result? For problems such as this, where the statistical sig-
nificance of a result may be in question, the Monte Carlo method (Chapter 5) pro-
vides a powerful tool for more detailed examination. We shall use this technique in
Chapter 11 to make a simple statistical test of these data. A full Monte Carlo pro-
gram, which incorporates all the known or estimated details involved in the cre-
ation of the data sample, is invaluable in the planning and analysis of a serious
experiment.

SUMMARY

Background subtraction:
yp(x) = y(x) = ys(x)  (yp—> peak; y, —> background)
Uncertainty in area of peak:
o5, =05+ 035, (= A + Ag for Poisson statistics)

Area under fitted peak curve:

+
e [ ntoi

Discrepancy in area under a curve with Poisson statistics:

Xon =3 L{— (3.~ y(x,»] ~ area(data) — area(fi)
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EXERCISES

9.1

9.2

9.3

9.4

The following data are drawn from the background distribution illustrated by the
dashed curve in Figure 9.1 The data points correspond to the numbers of counts in 15
histogram bins, which are 0.2 GeV wide, each centered on the indicated value of E.

E 01 03 05 07 09 1.1 13 1.5 1.7 19 21 23 25 27
N 4 30 49 71 87 91 120 136 147 133 130 118 142 122

Plot a of the data.

Use a linear-fitting technique, such as those described in Chapter 7, to fit a second-order

polynomial to these data. Assume statistical uncertainties in the counts. Compare the

number of events in the histogram to the number determined by the fit. Is the difference

consistent with the prediction of Equation (9.10)?

Find the area of the peak in Figure 9.1 by counting the area between the vertical dotted

lines and subtracting the estimated background. Refer to the data in Exercise 9.4. Esti-

mate the correction for the tails. Estimate the uncertainty in your determination of
the area.

Refer to the data of Exercise 8.6. Fit the histogram by the method outlined in Section

9.3 with separate fits of the background second-order polynomial to the regions outside

the peak and of the Gaussian function to the region of the peak.

The accompanying table lists the numbers of events in the histogram bins of Example

9.1 from E = 0.0 to 3.0 GeV in steps of 0.05 GeV.

(a) Fit Equation (9.1) to the data to obtain the parameters for this distribution. Compare
to the values of the parameters listed in column 5 of Table 9.1.

(b) Repeat the fit with adjacent bins merged (i.e., combine bins 1 and 2, bins 3 and 4,
etc.) and observe the effect on the value of x2, the determination of the area of the
peak, and the determination of the mean and half-width of the peak. Assume statis-
tical uncertainties.

7 2 6 12 15 18 31 29 27 27 41 35 37 37 63 71 102 95 115 202
190 113 86 68 74 79 75 79 68 62 69 81 79 8 87 68 70 8 77 70
71 62 85 62 73 70 59 61 77 61 62 73 67 71 75 66 73 71 T1 49



CHAPTER

10

DIRECT
APPLICATION
OF THE
MAXIMUM-
LIKELIHOOD
METHOD

he least-squares method is a powerful tool for extracting parameters from ex-

perimental data. However, before a least-squares fit can be made to a data set
that consists of individual measurements or events, the events must be sorted into a
histogram, which may obscure some detailed structure in the data. Because the
least-squares method was derived from the principle of maximum likelihood, it
might be better in some instances to use the maximum-likelihood method directly
to compare experimental data to theoretical predictions, without the necessity of
binning data into histograms with the corresponding loss of information.

We have already used the method in Chapter 4 to find estimates for the mean
and standard deviation of data obtained in repeated measurements of a single vari-
able, where we have assumed that the measurements were distributed according to
Gaussian probability. Now, we extend the method to other distribution functions
and to multiparameter fits. Maximum-likelihood methods can be applied directly to
many ‘“‘curve fitting” problems, and such fitting is almost as easy to use as the least-
squares method, and considerably more flexible. However, the direct maximum-
likelihood method requires computations for each measured event, rather than for
each histogram bin as in least-squares fitting, and therefore the technique may be
too slow for very large data samples.

Direct maximum-likelihood calculations have an advantage over the least-
squares method for two particular types of problems: (1) low-statistics experiments

179
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with insufficient data to satisfy the requirement of Gaussian statistics for individual
histogram bins and (2) experiments in which the fitting function corresponds to a
different probability density function for each measured event so that binning the
data leads to a reduction in information and a loss of sensitivity in determining the
parameters. If the data set is sufficiently large, then the least-squares method can be
applied to problems of either type, and that method is generally preferred in view of
its smaller computing requirement. At any rate, it is not possible to extract more
than minimal information from a very small data set, so we should expect the direct
maximum-likelihood method to be most useful for intermediate problems with
modest data samples.

10.1 INTRODUCTION TO MAXIMUM
LIKELIHOOD

The basic maximum-likelihood procedure is relatively simple. Assume that we have
a collection of N events corresponding to the measurement of an independent vari-
able x, and a dependent variable y,, where i runs from 1 to N. We wish to obtain the
parameters, a;, a,, . . . , a,, of a fitting function y(x,) = y(x; a, a,, . . ., a,,) from
these data. For each event, we convert y(x,) to a normalized probability density
function

P,=P(x;a,a,...,a,) (10.1)

evaluated at the observed value x,. The likelihood function .£(a,, a,, . . ., a,,) is the
product of the individual probability densities

N
Lay,a,,...,a,)=]IP (10.2)
=1

and the maximum-likelihood values of the parameters are obtained by maximizing
£(ay, a,, . . ., a,) with respect to the parameters.

In many experiments, the probability density function P, will be made up of
two components: a theoretical factor corresponding to the underlying principle be-
ing tested and an experimental factor corresponding to the biases introduced by ex-
perimental conditions.

EXAMPLE 10.1 In Example 5.7 we presented a Monte Carlo program for studying
biases that could arise in an experiment to measure the mean life of the short-lived K
meson (or kaon). The example includes details of the experiment and Figure 5.4 illus-
trates schematically the experimental apparatus.

In brief, the experiment involves measuring the distance between the point of
production and point of decay of the kaon, determining the meson’s velocity, and cal-
culating the meson’s time of flight from production to decay. After correction for bias
introduced by the finite size of the experimental apparatus, the mean life of the kaon
could be determined from measurements of many such events.

The dashed rectangle on Figure 5.4 indicates the region in which events are col-
lected, the fiducial region for the experiment. We select decay vertices only within this
region to assure precise measurements of both the separation of the two vertices and the
trajectories of secondary particles from decay of the kaon. These latter measurements
determine the momentum, and thus the velocity, of the kaon. Loss of events that do not
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FIGURE 10.1

Frequency distribution of times of flight for 23,565 events that survived fiducial cuts in a 40,000-
event Monte Carlo generation, as a function of the proper time (in units of 100 5). The exponential
curve was calculated from the nominal value T = 0.894 X 10x~'s to represent the expected
distribution of the 40,000 generated events.

fall within the fiducial region bias the final calculation of the mean life and therefore
we must understand the biases and make corrections.

In the following examples, we assume that the coordinates of the two vertices
and the magnitude of the momentum of the decaying kaon have been determined.

We used the Monte Carlo program of Example 5.7, with the mean life of the
kaon set to its nominal value of ¢ = 0.894 X 1010, to generate 40,000 events in or-
der to study the efficiency of the detector with reasonably high precision. It is impor-
tant that the statistical uncertainties introduced in the determination of the efficiency
function be negligible compared to the statistical and other uncertainties in the actual
experiment. The distribution of the 23,565 generated events that survived fiducial cuts
is shown as crosses in Figure 10.1 with the expected exponential distribution of the to-
tal 40,000-event sample shown as a smooth curve.

In Figure 10.2 we have plotted the resulting efficiency as a function of the times
of flight of the kaons (the proper time) in their individual rest frames, with the effi-
ciency function defined as the ratio of observed to expected events [or the point-
by-point ratio €(T) = N'(T)/N(T)] from Equation (5.31). The dotted line in Figure
10.2 illustrates the region over which the efficiency reasonably may be assumed to
be 100%.
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FIGURE 10.2

Efficiency function €(T) = N(T)/N(T), calculated from the ratio of observed events (crosses) to
expected events (smooth curve in Figure 10.1). The dotted line illustrates the region over which the
efficiency reasonably may be assumed to be 100%.

We also used the Monte Carlo program, with different random-number seeds
and the same nominal value of Tk, to generate a small “data set” of 1000 events, of
which 598 survived the fiducial cut, to use in testing our analysis procedures.

We shall discuss several aspects of the analysis of such data in the following
examples.

EXAMPLE 10.1a: Least-squares Method Figure 10.3 shows on a semilogarith-
mic plot the distribution, as crosses (x), of the 598 events that survived the fiducial
cuts from the total sample of 1000 events generated in Example 10.1. The straight line
shows the expected distribution if there had been no efficiency losses. In order to ex-
tract the mean life of the kaon from these data, we apply the efficiency function illus-
trated in Figure 10.2 to correct for losses. The corrected data points are plotted in
Figure 10.3 as data points with vertical error bars corresponding to the statistical un-
certainties in the data, scaled by the efficiency factor. (Uncertainties in the correction
factor were negligible.) The efficiency was assumed to be 100% in the region indi-
cated by the horizontal dotted line in Figure 10.2. The very large error bars on “cor-
rected” points at the two ends of the plot result from scaling low-statistics data points
and illustrate the problem of using data in regions of low efficiency. Generally, it is
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FIGURE 10.3

Semilogarithmic plot of the frequency distribution of 598 events that survived fiducial cuts from a
1000-event (Monte Carlo) data sample. The uncorrected data are shown as crosses; the data corrected
for efficiency losses are shown as data points with error bars. The straight line shows the result of a
linear least-squares fit to the corrected semilogarithmic data.

wise to eliminate points that require such large corrections from the sample, because
they contribute little to the overall result and depend heavily on the corrections.

From the linear slope of the logarithmic plot, illustrated by the straight line
through the data points, we obtain an “experimental” mean life T = (0.925 = 0.058).
Alternatively, we could have used a nonlinear least-squares fitting technique to deter-
mine T directly from a linear plot of the data.

Direct Maximum Likelihood

Most actual experiments are more complex and have efficiency functions that are
considerably more complicated than the one illustrated by our example. For such
problems, application of direct maximum likelihood may be the preferable method
for finding the best estimate of the parameters. To apply this method, we must
define a probability function for each recorded event.

The probability of observing a single event that survives for a time 7, is

P.=A;p(t; 7) (10.3)
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The first factor A; represents the detection efficiency, or probability that the particle
will decay within a predefined fiducial volume within our apparatus, so that a satis-
factory measurement can be made of its flight time. This factor depends upon the co-
ordinates of the production and decay vertices of the decaying particle, its momentum
vector, and the geometry of the fiducial volume. The second factor p(z;; ) is propor-
tional to the probability that a particle of mean lifetime T will decay between time ¢,
and ¢, + dt and is therefore proportional to e~*/". Equation (10.3) becomes

P=Ae"" (10.4)

It might appear that the two factors in Equation (10.3) are independent, so that
the detection efficiency factor is independent of the decay probability, but, as we
have observed in the previous example, this is not generally true. Because of the fi-
nite size of our measuring apparatus, we may preferentially lose events that survive
for very short times so that we can’t make precise measurements of their flight
paths, as well as those that survive for very long times and therefore decay outside
the acceptable limits of our detectors. Losses of both types depend upon the mean
life that we are attempting to determine, the “7” in the second factor of Equation
(10.3). For each particle that is observed to decay within the apparatus, we can de-
fine a potential path length as the distance it would travel if it had not decayed. Be-
cause each decaying particle has a different potential path length, we must calculate
geometric factors to correct for those particles that decay outside the detector. The
correction factors will depend on the parameters and will be a function of the pro-
duction and decay coordinates and the momentum vectors of each decaying parti-
cle. Clearly, one element of good experiment design should be to minimize the
dependence of these geometric correction factors on the parameters sought in the
experiment.

Normalization for Maximum Likelihood

The factor A; in Equation (10.4) corresponds to a normalization for each measure-
ment to assure unit probability for observing in this experiment any event that has
the mean life, coordinates, and kinematics of the observed decaying particle. To de-
termine the normalizing factor A; we refer to Figure 5.4 and consider the fiducial
volume of our apparatus, indicated by the dashed rectangle. From each particle’s
production coordinates and momentum vector, we can determine the minimum dis-
tance d, that the particle must travel to enter the region and the maximum distance
d, it can travel before leaving the region. (We can, of course, observe some events
outside the fiducial volume, but we reject them because they cannot be measured
precisely.) These minimum and maximum distances d; and d, must be converted to
times of flight 7, and ¢, in the rest frame of the decaying particles, and the normaliz-
ing factors A; can then be determined from the condition

I, t;
J Pdr, = A,J etidr, = 1 (10.5)
\ t

t 1

With this normalization, the individual event probability P, of Equation (10.4)
becomes the probability density for observing a single event. The normalized joint
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probability or the likelihood function for observing N such events in our experiment
is just the product of the individual probability functions:

N N
L) =[IP.=[IAe"" (10.6)
i=1 =1

Parameter Search

Our object is to find the value of the parameter T that maximizes this likelihood
function. Because the probability of observing any particular event is less than 1,
the product of a large number of such probabilities (one for each measured event)
may be a very small number, and may, in fact, be too small for the computer to han-
dle. To avoid problems, it is usually preferable to maximize the logarithm of the
likelihood function

M=In £ (10.7)

rather than the likelihood function itself, so that the product of Equation (10.6) be-
comes a sum. The logarithms should be reasonable, negative numbers. For our partic-
ular example, the logarithm of the likelihood function of Equation (10.6) is given by

M(7) = In[ £ (1)) = E[m A - g] (10.8)

with A, defined by Equation (10.5). Note that A, is a function of the unknown
parameter T, as well as of the production coordinates, momentum vector, and fidu-
cial volume, and must be calculated separately for each event, and for every trial
value of .

In general, this problem, like the corresponding nonlinear least-squares fitting
problem, cannot be solved in closed form. However, either the grid- or gradient-
search method of minimizing the x? function discussed in Chapter 8 can be adopted
directly. It is only necessary to search for a maximum of M (or a minimum value of
— M) with the same routines we used in Chapter 8 to find a minimum of x2

We may note a correspondence between the quantity M(t), determined in
Equation (10.7) from the likelihood function for individual events, and the good-
ness-of-fit parameter x?, determined by Equation (8.7) from the likelihood function
P(a) for binned data:

x? = —2In[ £ ()] + constant (10.9)

In the limit of a large number of events, the two methods must yield the same value
7’ for the maximum-likelihood estimate of the parameter 7. In both cases the likeli-
hood function will be a Gaussian function of the parameter near the optimum value

202

so we can expect M(7), like x*(7), to vary quadratically with the parameter T in the
vicinity of 7’.

£(7) % exp (—(T — T')z) (10.10)
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EXAMPLE 10.1b Let us consider the simplest form of this problem. Assume that
the unknown mean lifetime is sufficiently short so that our apparatus is large enough
to include many lifetimes and, therefore, the loss of particles that decay at very long
times is negligible. Let us also assume that our equipment can detect particles at very
short as well as very long times. Then the limits on the normalization integral of Equa-
tion (10.5) become ¢, = 0 and #, =  and A, is the same for every event and is given
by A, = 1/t. The likelihood function becomes

e—t,/-r

L) =[JAe "= (10.11)

T
with logarithm

M(r) = In[ £ (7)] = —%2:,—1\/1117 (10.12)

We can obtain the maximum of Equation (10.12) by taking the derivative of
M(7) with respect to 7 and setting it to O:

dM(ty d | 1
_dT=E[_;Et" _NIHT]
(10.13)
1 3 N

The solution is T = 2¢/N;; that is, the maximum-likelihood estimate of the mean life is
just the mean of the individual lifetime measurements. We should have reached the
same result if we had found the maximum of -Z(¢) from Equation (10.11).

EXAMPLE 10.1¢ Suppose that we repeat the experiment, but with poorer experi-
mental resolution so that we cannot distinguish the decay vertex (x,, y,, Z,) from the
creation vertex (xy, y, z;) unless they are separated by a distance d,. For simplicity, we
assume that the decaying particles are all produced with the same velocity, so that the
lower cutoff distance d, translates into the same lower cutoff in time #, for all events.
(In an actual experiment, of course, the decaying particles would be produced with
various velocities, so that the calculated lower cutoff time #, would vary from event to
event,)

For this example, the normalization integral of Equation (10.5) becomes

A,.re-'-/*dt,- =1 (10.14)
L
which gives
/7
A,=% (10.15)
T

The likelihood function becomes

J(T)=ﬁA,e""/" =11 (10.16)
i=1 i
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so that
M=l /= 2["%’"]—21m (10.17)
Setting
(@) _ (10.18)
dr
gives
d [tl_ti] ] {tl_ti] N
S N S i O SRR P S| S 10.19
dTE[T‘” D) e e (10.19)
or
2t -1t Et;
T=—[—l—]=——t1 (10.20)
N N

As we should expect, the lifetime T would have been overestimated if we had
neglected to take account of the cutoff at short times.

EXAMPLE 10.1d Let us consider a more realistic problem in which we have both
short and long cutoffs on the observable path. We also assume that the unstable parti-
cles are produced at various locations within the target and with various momentum
vectors p.

For this example, we must calculate the normalization integral, Equation
(10.5), separately for each event with individual values for ¢; and ¢, determined from
the minimum and maximum distance cutoffs, d; and d,, respectively. The resulting
expression for the likelihood function is

N y N e—l,/'r
2 — -t,/1 —
’Z(T) - i]':ll:A[e = ]._[ T[e—t,/'r — e—tz/'r] (1021)

=1

with
M(7) = In[.£(7)]

Setting to zero the derivative of M(t) with respect to T gives us the equation
for the maximum-likelihood value of T. However, the resulting equation cannot be
solved analytically for T although it could be solved by interpolation (see Appendix
A). We choose, rather, to maximize M(t) by a one-dimensional grid-search method

because search methods are more generally applicable to maximum-likelihood
problems and can readily be extended to multiple parameter problems.

10.2 COMPUTER EXAMPLE

Sample Maximum Likelihood Fit

We use the program MAXLIKE to select and analyze the 598 events that survived
the fiducial area cuts, from the 1000-event uncorrected data sample generated in
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Example 10.1a. The events were generated with 7, = 0.894 X 107! s and the dis-
tribution of the selected events is illustrated by the crosses in Figure 10.3.

Program 10.1 MAXLIKE (Appendix E) A grid-search method to maximize the
logarithm of the likelihood function of Equation (10.21). The routines have been writ-
ten specifically for Example 10.1d.

STARTUP sets the range of the parameter TAU for the search.

FETCHDATA assigns the input data file, reads the limits of the fiducial region
(d, and d,), reads data for individual events.

S EARCH sets and increments TAU and calls LOGLIKE, which returns the loga-
rithm of the likelihood function M. Compares each calculated value of M to the pre-
ceding value. Terminates the search when M stops increasing and starts to decrease,
indicating that M has passed through a local maximum. At termination, fits a parabola
to the last three points to find a better estimate of TAU at the maximum.

LOGLIKE calls LOGPROB to find the logarithm of the probability density for
each event; sums to calculate the logarithm of the likelihood function.

LOGPROB calculates the logarithm of the probability density for an event.
ERROR calculates the uncertainty SIGTAU in TAUATMI N, the maximum like-
lihood value of the parameter TAU, by finding the change in TAU needed to decrease
Mby AM = 1/2.

PLOTLIKECURVE (Not listed) calculates and plots the shape of the likelihood
function in the region of the maximum. Plots a Gaussian curve with mean and stan-
dard deviation equal to TAUMIN and DTAU.

Grid-Search Solution

At each step the program increments 7 by a preset amount At and repeats the cal-
culation until M(7) has passed through a maximum and has started to decrease. The
program fits a parabola to the three points that bracket the maximum to find the
value 7’ at the maximum of M(7). For a more detailed problem, the program could
be written to repeat the calculation with smaller values of AT to find a better esti-
mate of 7', as in the fitting examples in Chapter 8. Either the grid- or gradient-
search method of Chapter 8 could be adapted to solve multiparameter problems.

Results of the Fit

We analyzed the data set twice: first with data selected in the nominal fiducial region
(10 cm to 40 cm), which gave 7 = (0.943 = 0.059) X 10~ '% for the 598 events that
survived the cut, and then, to test the sensitivity of the calculation to our choice of
fiducial region, with data selected in the less-appropriate fiducial region with d; = 10
cm and d, = 20 cm, which gave ' = (0.78 = 0.14) X 10~ % for the 373 events that
survived this cut. Plots of the relative values of the likelihood function versus trial
values of the parameter T are shown as crosses in Figure 10.4a for the data selected
in the nominal fiducial region and in Figure 10.4b for data selected in the less-
appropriate fiducial region. As expected, the incorrect fiducial region clearly selects
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Relative values of the likelihood function versus trial values of the parameter for events that passed
the fiducial cuts for the decay vertex. The data points are indicated by crosses; the smooth Gaussian
curves were calculated from Equation (10.10) with the values of the means and standard deviations
obtained in the two fits. (@) Nominal fiducial cuts: 10 — 40 cm; 598 events survived; ' = 0.943 X
107195, 0 = 0.059 X 107195, (b) Incorrect fiducial cuts: 10 — 20 cm; 373 events survived; 7' = 0.78
X 10710%s,0 =0.14 X 10710,

fewer events and, therefore, gives a less-precise result. In an actual experiment, we
should have to consider a trade-off between the number of surviving events in the
sample, and the precision with which those surviving events could be measured, and
choose our fiducial region to maximize the overall quality of the result.

We observed that, for a sufficiently large event sample, the likelihood function
should become Gaussian in the parameters in the vicinity of a x? minimum (or a
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maximum of the likelihood function) according to Equation (10.10), where 7’ is the
value of the parameter T that maximizes the likelihood function. We show on Fig-
ures 10.4a and 10.4b Gaussian curves calculated from Equation (10.10), with 7" and
o determined by the respective fits. Both the data points and the Gaussian curves
have been scaled to unit height at T = 1’. The data points of Figure 10.4a closely
follow the curve; in the lower statistics example in Figure 10.4b, the data points de-
part from the curve considerably.

Uncertainties

To estimate the uncertainty o in our determination of t', we found the change in 7
necessary to decrease M by AM = 1/2 from its value at the maximum 7’ (corre-
sponding to an increase of x? by 1 or a change of e~ 2 in the likelihood function .£).
Because the likelihood function for the larger sample (Figure 10.4a) closely fol-
lowed the Gaussian form, our estimate of the uncertainty should be satisfactory.
However, the smaller sample (Figure 10.4b) was skewed from the Gaussian, so that
our estimate of the standard deviation might be somewhat low. For multiparameter
fits it is often useful to plot contours of x? (or of M) as a function of pairs of the pa-
rameters to study the uncertainties. (See Chapter 11.)

There are several other ways to estimate the uncertainty in a parameter after
performing a maximum-likelihood fit. If the distribution of the likelihood function
is sufficiently close to a Gaussian, we can find o, from Equation (8.11):

ot = (%)-1 (10.22)

a2

If it is not possible to calculate Equation (10.22) exactly (although it is possible for
our example), we can find the second derivative by taking finite differences as dis-
cussed in Appendix A.

If the likelihood function does not follow the Gaussian distribution, we can try
a numerical integration of the likelihood function to find limiting values that include
~68.3% of the total area, corresponding to the 1 standard deviation limit. Alterna-
tively, we may use a method suggested by Orear (1958) who points out that, for small
event samples, where the likelihood function may not be very Gaussianlike, it may be
preferable to calculate an average value of the second derivative through the equation

d’M _ [[9°M/da?] £ (a)da
oa® [ £ (a) da

(10.23)

where a is the unknown parameter and the integrals are over the allowable range of
the parameter. This procedure has the advantage over the method of Equation
(10.22) of giving more weight to the tails of the distribution in cases where they
drop off more slowly than those of a Gaussian curve.

Another method of determining the uncertainties in the parameters is to use a
Monte Carlo calculation to produce simulated data sets, comparable to our measured
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data, and to use the method outlined in Chapter 11 for determining confidence levels
for our results. This method has the advantage that it depends only on the assump-
tions made in the Monte Carlo generation, and not on any statistical expectations
about the shape of the likelihood function. In many experiments, especially those
with low statistics, it provides the most reliable estimate of parameter uncertainties.

Goodness of Fit

One disadvantage of the direct maximum-likelihood method is that it does not pro-
vide a convenient test of the quality of the fit. The value at the peak of the likelihood
function itself is not useful because it represents only the maximized probability for
obtaining our particular experimental result and we have no way of predicting the
expected probability.

An estimate of the goodness of fit can be obtained by making a histogram of
the data and comparing it to a prediction based on our best estimate of the parame-
ters. A Monte Carlo simulation of the experiment may be required to calculate the
predicted distribution, with a x? test to compare the data to the prediction.

It is not always clear just which data variable should be histogrammed for this
purpose. We would like to find that variable on which the parameters depend most
strongly. For our sample problem, the lifetime 7 in the rest frames of the particles is
an obvious choice, because that is the variable we would choose if we were to solve
the problem by the least-squares method. However, it might be wise to try plots of
several variables to be sure that the fit is satisfactory. To test, we could generate with
our Monte Carlo program a large sample of events based on the parameters discov-
ered in each search, apply the fiducial cuts, and calculate x* from the agreement be-
tween the Monte Carlo results and our data sample. We should be aware that,
because we did not actually minimize ¥ for the experimental distribution with re-
spect to the parameters, a satisfactory value of x?> may be at best an indication that
nothing is drastically wrong with the solution.

SUMMARY
Normalized probability density function:
P=P(x,a,a,,...,a,)

Likelihood function:

N
L(ay,ay,...,a,)=[IP
=1
Single-event probability density: P, = A, -p(x,; a) where A; is the detection efficiency
and p(x,; a) is proportional to the interaction probability
Logarithm of likelihood function: M =In £ =2 In P,
Maximization of £ orof M: d £/da, = 0 or dM/da, = O for all g,
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Gaussian form of likelihood function for large data sample:

Z(a;) = exp (—(_—aj — a})2>

20?

,_ M)\
9] da?
J

’M _ [[9°M/3a?] £(a) da
da® [-£ (a) da

Uncertainties in parameters:

Method for low statistics:

EXERCISES

10.1. In a scattering experiment, the angles of the scattered particles are measured and the
cosines of the angles in the center-of-mass rest frame of the incident and target parti-
cles are calculated and recorded. Fifty such measurements, drawn from the distribu-
tion y(x) = a; + a, cos?, are listed in the table. Use the direct maximum-likelihood
method to determine the values of the parameters a; and a, Note that it is necessary to
convert the distribution function y(x,) to a normalized probability function and that the
normalization constant will be different for each pair of trial values of a, and a,.

—0.999 —0.983 -0.956  —0.946 —0.933 -0.925 -0.916 -0.910

—0.881 —0.739 -0.734  -0.717 —0.715 —0.675 —0.665 —0.649

—-0.621 —0.537 -0.522  —0.508 —0.499 —0.471 —0.460 —0.419

—0.403 —0.311 —-0.305 —0.281 —0.170 -0.162  —0.063 0.214
0.438 0.444 0.508 0.586 0.638 0.677 0.721 0.730
0.768 0.785 0.790 0.793 0.877 0.896 0.931 0.938
0.948 0.993

Because of the small amount of data, the uncertainties in the parameters a, and a, are
so large that the values of the parameters are not very meaningful. Therefore, to com-
plete the problem, you should use the Monte Carlo program written for Exercise 5.8
to generate 500 events and use your calculation to find the parameters from those data.

10.2. Students in an undergraduate physics laboratory determined the mass of the A hyperon
by measuring graphically the energies and the momentum vectors of the proton and
7t meson into which the A hyperons decayed. Because of the large uncertainties in the
measurements, the calculated square of the masses of the decaying particles forms a
truncated Gaussian distribution that is limited on the low-mass side by (M,, + M )2 =
1.1617 (GeV/c?)?, but is not limited on the high-mass side. The following 50 numbers
represent squares of the calculated masses in units of (GeV/c?)2.

1.2981 1.2618 1.2145 1.2539 1.4230 13963 13701 1.2303 1.3655 1.2042
1.3190 1.2086 1.2118 1.2078 1.2726 1.2438 1.1838 1.1666 1.1908 1.1922
1.2525 1.3615 1.1855 1.2697 1.2044 1.3397 1.4317 1.2713 1.2203 1.2817
1.2046 1.2856 1.1980 1.2595 1.1721 1.2608 1.1689 1.4838 1.1743 1.2954
1.2586 1.2655 1.2316 1.2372 12969 1.2015 1.2000 1.1677 1.2080 1.1893
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Use the direct maximum-likelihood method to fit a truncated Gaussian to these data to

determine the maximum-likelihood value of the mass of the squared particle. A search

in two-parameter space will be required since neither the mean nor the width of the
distribution is known.

Note that it is necessary to calculate numerically the normalization of the trun-
cated Gaussian for each pair of trial values of the mean and standard deviation of the
Gaussian function. It is advisable to set up a table of the integral of the standard
Gaussian and to use interpolation to find the desired normalizations. A simple auto-
matic or manual grid search will suffice for maximizing the likelihood function.

Use Program 5.4 (available on the website) to generate 1000 sample kaon decay

events with nominal mean life T = 0.894 X 10710,

(a) Plot a histogram of the times of flight of all the generated kaons in their own rest
frames (proper times).

(b) Use Program 10.1 (available on the website), with nominal fiducial cuts on your
data (d; = 10.0 cm and d, = 40 cm) to repeat the analysis of Example 10.1d to
find the maximum likelihood solution 7’ for the kaon mean life. Plot a histogram
of the events that survive the cuts.

(c) With the value of 7', which you determined in part (b), and random number seeds
that are different from those used in part (a), generate 20,000 events to serve as
your estimate of the parent distribution. Apply the nominal fiducial cuts to these
data and plot a histogram of the data in the same bins as you used in part (b).

(d) Calculate x? for the agreement between your “experimental” histogram and the
surviving events from the “parent” distribution. If the numbers of events in your
bins of the parent distribution are large enough, their uncertainties can be ignored
in this calculation. If they are not, you must use the combined statistical errors of
the two distributions when calculating x2.



CHAPTER

11

TESTING
THE FIT

11.1 x2TEST FOR GOODNESS OF FIT

The method of least squares is based on the hypothesis that the optimum descrip-
tion of a set of data is one that minimizes the weighted sum of the squares of the
deviation of the data y, from the fitting function y(x,). The sum is characterized by
the variance of the fit s>, which is an estimate of the variance of the data o%. For a
function y(x,), which is linear in m parameters and is fitted to N data points, we
have

where the factor v = N — m is the number of degrees of freedom for fitting N data
points (implied in the unlabeled sums) with m parameters and the weighting factor
for each measurement is given by

= 1/0?
" (1/N)Z(1/0?)
the inverse of the variance o? that describes the uncertainties in each point, normal-
ized to the average of all the weighting factors.

The variance of the fit s? is also characterized by the statistic x*> defined in
Equation (7.5) for polynomials:

X EE[%[)& - y(x,)]Z] (11.3)

(11.2)

194
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with
y(x) = z acfi(x)

The relationship between s? and x? can be seen most easily by comparing s2
with the reduced chi-square x2,

2 2

21X _ 5
Xv =7 = (11.4)
where (o2) is the weighted average of the individual variances
o _(WUNE(1/eted) _[1 1] S
o?) (1/N)Z(1/c?) 1\/2 o2 (11.5)

and is equivalent to o ? if the uncertainties are all equal, o, = o.

The parent variance of the data ¢? is a characteristic of the dispersion of the
data about the parent distribution and is not descriptive of the fit. The estimated
variance of the fit s2, however, is characteristic of both the spread of the data and the
accuracy of the fit. The definition of x2, as the ratio of the estimated variance s to
the parent variance o2 times the number of degrees of freedom v, makes it a conve-
nient measure of the goodness of fit.

If the fitting function is a good approximation to the parent function, then the
estimated variance s? should agree well with the parent variance o2, and the value
of the reduced chi-square should be approximately unity, x2 = 1. If the fitting func-
tion is not appropriate for describing the data, the deviations will be larger and the
estimated variance will be too large, yielding a value of x?2 greater than 1. A value
of x2 less than 1 does not necessarily indicate a better fit, however; it is simply a
consequence of the fact that there exists an uncertainty in the determination of s2,
and the observed values of x? will fluctuate from experiment to experiment. A value
of x?2 that is very small may indicate an error in the assignment of the uncertainties
in the measured variables.

Distribution of x 2
The probability distribution function for x* with v degrees of freedom is given by
2 (xz)l/z(v—Z)e—x2/2
Py(x% ) 22T (v/2)
The chi-square distribution of Equation (11.6) is derived in many texts on statistics!
but we shall simply quote the results here.
The gamma function I'(z) is equivalent to the factorial function n! extended to

nonintegral arguments. It is defined for integral and half-integral arguments by the
values at arguments of 1 and %2 and a recursion relation:

(11.6)

!See Pugh and Winslow (1966), Section 12-5.
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rM=1 TW)=Vw Tr-1)=nT(n )
For integral values of »

I'(n+ 1)=n! n=0,1,... g
((11.7)

For half-integral values of »

Tn+ D=n(n-1)n-2)C~)(~LVw)
n=Y23,%,...

Calculating factorial functions can lead to computer overflow problems. For
computational purposes it is convenient to replace the factorial form of the gamma
function by a form of Stirling’s approximation?;

I[n]= V2me"n®~1/2(1 + 0.0833/n) (11.8)

This approximation, which is accurate to ~0.1% for all » = V2, avoids both the
problems of overflow in calculating factorials and the necessity of testing and
choosing the appropriate form for integral or half-integral argument. The trade-off
is computer speed. Calculating exponentials may be slower than calculating facto-
rials, but high speed usually is not required for nonrepetitive calculations.

If the function of the parent population is denoted by y,(x), the value of x3
determined from the parameters of the parent function

x%=2[$[y, —yo(x,)]Z] (11.9)
is distributed according to Equation (11.6) with v = N degrees of freedom. If the
function y(x) used in the determination of x? contains m parameters, the value of
x? calculated from Equation (11.3) is distributed according to Equation (11.6) with
v = N — m degrees of freedom.

More useful for our purposes than the probability density distribution p,(x?2; v)
of Equation (11.6) is the integral probability P(x?; v) between x2 = x? and y? = :

P(x*v)= f P(x?; v) dx? (11.10)
x2
Equation (11.10) describes the probability that a random set of » data points drawn
from the parent distribution would yield a value of x? equal to or greater than the
tabulated value.

Program 11.1. CHI2PROB (Appendix E) x>-probability.

CHIPROBDENS computation of the function p,(x?; v) [Equation (11.6)] using
function GAMMA to approximate the gamma function.

CHIPROB Numerical calculation of the integral, Equation (11.10), by Simpson’s
rule. If variable overflow is a problem, double-precision variables could be employed.

2“Review of Particle Properties” (1986), p. 53.
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The calculation returns the integral to an accuracy of about +0.1%. The trade-
off on accuracy versus speed of computation is controlled by the value of the constant
DX, the integration step.

For the special case of 1 degree of freedom, v = 1, the x?-probability density
function of Equation (11.6) takes the form

Px(x2: V)= e—x2/2/(2,.n.x2)1/2

which is difficult to integrate numerically near x = 0. However, the integral is finite,
and the function can be expanded in a Taylor series about x = 0 and integrated ana-
lytically. We use that technique for v = 1 and x? < 2.

Similarly, for v = 2, where the function takes the form

py (X% v) = e */2/2

the analytic form of the integral is used.

For a fitting function that is a good approximation to the parent function, the
experimental value of x2 should be close to one and the probability from Equation
(11.10) should be approximately 0.5. For poorer fits, the values of x2 will be larger
and the associated probability will be smaller. There is an ambiguity in interpreting
the probability because x2 is a function of the quality of the data as well as the
choice of parent function, so that even correct fitting functions occasionally yield
large values of x2. However, the probability of Equation (11.10) is generally either
reasonably close to 0.5, indicating a reasonable fit, or unreasonably small, indicat-
ing a bad fit. In fact, for most purposes, the reduced chi-square x?2 is an adequate
measure of the probability directly. The probability will be reasonably close to 0.5
so long as x2 is reasonably close to 1; that is, less than about 1.5.

Example 11.1. Consider the solution of the problem of fitting two exponential
curves plus a linear background to the data from the radioactive silver decay of
Example 8.1. The fit (see Table 8.5) gave x2 = 66.1 for 54 degrees of freedom, or
x? = 1.22, with P (x* v) = 12.4%. We can interpret this result in the following way.
Assume that the parameters we found are, indeed, the parameters of the parent distri-
bution. Then, suppose that we were to repeat our experiment many times, drawing
many different data samples from that parent distribution. Our result indicates that in
12.4% of those experiments we should expect to obtain fits that are no better than that
listed in Table 8.5.

11.2 LINEAR-CORRELATION
COEFFICIENT

Let us assume that we have made measurements of pairs of quantities x, and y,. We
know from the previous chapters how to fit a function to these data by the least-
squares method, but we should stop and ask whether the fitting procedure is justi-
fied and whether, indeed, there exists a physical relationship between the variables
x and y. What we are asking here is whether or not the variations in the observed
values of one quantity y are correlated with the variations in the measured values of
the other quantity x.
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For example, if, as in Example 6.1, we were to measure the potential differ-
ence across segments of a current-carrying wire as a function of the segment length,
we should find a definite and reproducible correlation between the two quantities.
But if we were to measure the potential of the wire as a function of time, even
though there might be fluctuations in the observations, we should not find any sig-
nificant reproducible long-term relationship between the pairs of measurements.

On the basis of our discussion in Chapter 6, we can develop a quantitative
measure of the degree of correlation or the probability that a linear relationship
exists between two observed quantities. We can construct a linear-correlation
coefficient r that will indicate quantitatively whether or not we are justified in de-
termining even the simplest linear correspondence between the two quantities.

Reciprocity in Fitting x Versus y

Our data consist of pairs of measurements (x,, y,). If we consider the quantity y to be
the dependent variable, then we want to know if the data correspond to a straight
line of the form

y=a-+ bx (11.11)

We have already developed the analytical solution for the coefficient b, which rep-
resents the slope of the fitted line given in Equation (6.12):

— Nleyl — lezyl

b= NZx?—(Zx,)?

(11.12)

where the weighting factors in o, have been omitted for clarity. If there is no corre-
lation between the quantities x and y, then there will be no tendency for the values
of y to increase or decrease with increasing x, and, therefore, the least-squares fit
must yield a horizontal straight line with a slope » = 0. But the value of b by itself
cannot be a good measure of the degree of correlation because a relationship might
exist that included a very small slope.

Because we are discussing the interrelationship between the variables x and y,
we can equally well consider x as a function of y and ask if the data correspond to a
straight-line form

x=a +b'y (11.13)

The values of the coefficients a’ and b’ will be different from the values of the co-
efficients a and b in Equation (11.11), but they are related if the variables x and y are
correlated.

The analytical solution for the inverse slope b’ is similar to that for b in Equa-
tion (11.12):

_N2xy —Zx2y,
NZy?—(Zy,)?

If there is no correlation between the quantities x and y, then the least-squares fit
must yield a horizontal straight line with a slope b’ = 0.

b’ (11.14)
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If there is a complete correlation between x and y, then there exists a relation-
ship between the coefficients a and b of Equation (11.11) and between a’ and b’ of
Equation (11.13). To see what this relationship is, we rewrite Equation (11.13):

a 1

y i rTa bx (11.15)
and equate coefficients
a' 1
= —— =— 11.16
a bl b bl ( )

We see from Equation (11.16) that bb’ = 1 for complete correlation. If there
is no correlation, both b and b’ are 0 and Equations (11.16) do not apply. We. there-
fore define, as a measure of the degree of linear correlation, the experimental linear-
correlation coefficient r = \/b'b’:

NZxy, — 2x,2y,
[NZx? = (2x)Y2[NZy? — (Zy, ]/

The value of r ranges from 0, when there is no correlation, to =1, when there is
complete correlation. The sign of r is the same as that of b (and "), but only the ab-
solute magnitude is important.

The correlation coefficient r cannot be used directly to indicate the degree of
correlation. A probability distribution for r can be derived from the two-dimensional
Gaussian distribution, but its evaluation requires a knowledge of the correlation co-
efficient p of the parent population. A more common test of r is to compare its value
with the probability distribution for the parent population that is completely uncorre-
lated; that is, for which p = 0. Such a comparison will indicate whether or not it is
probable that the data points could represent a sample derived from an uncorrelated
parent population. If this probability is small, then it is more probable that the data
points represent a sample from a parent population where the variables are correlated.

For a parent population with p = 0, the probability that any random sample of
uncorrelated experimental data points would yield an experimental linear-correla-
tion coefficient equal to r is given by3

1 T[(v+1)/2]
pr(r9 v) \/:IT— F(V/Z)
where v = N — 2 is the number of degrees of freedom for an experimental sample

of N data points. The gamma function for integral and half-integral values was de-
fined in Equation (11.7).

(11.17)

r

(1 — r2)v=2/2 (11.18)

Integral Probability

A more useful distribution than that of Equation (11.18) is the probability P.(r; N)
that a random sample of N uncorrelated experimental data points would yield an

3For a derivation see Pugh and Winslow (1966), Section 12-8.
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experimental linear-correlation coefficient as large as or larger than the observed
value of | 7|. This probability is the integral of p,(r; v) forv =N — 2:

R(r;N)=2I1px(r; v)dx v=N-—-2 (11.19)
Irl

With this definition, P,(r; N) indicates the probability that the observed data
could have come from an uncorrelated (p = 0) parent population. A small value
of P(r; N) implies that the observed variables are probably correlated.

Because Equation (11.19) cannot be integrated analytically, the function must
be integrated either by making a series expansion of the argument and integrating
term by term or by performing a numerical integration. With fast computers, the lat-
ter method is more convenient and generally applicable to such problems.

Program 11.2 LCORLATE (Appendix E) Correlation probability computations.
LCORPROB computes the probability of Equation (11.19) by numerical integra-
tion. Input variables RCORR and NOBSERYV correspond to the value of the ex-
perimental linear-correlation coefficient and the number of observations, respectively.
(The number of degrees of freedom is the number of observations minus 2.) The pro-
gram uses the following routines: LI NCORREL computes the function p,(r; v) of
Equation (11.18) using the approximation of Equation (11.8) for the gamma function
(calculated by the function GAMMA in the program unit GENUTIL). Because
LINCORREL is intended to be used as an argument to the integration routine
SIMPSON, it can have only one argument. The parameter v is passed in the global
variable PS1MPS by the calling routine.

LINCORPROB computes P (r; v) of Equation (11.19) by numerically integrating
LINCORREL by Simpson’s rule. The calculation returns the integral to an accuracy
of about £0.01. The trade-off on accuracy versus speed of computation is controlled
by the value of the constant DX, the integration step.

Example 11.2. For the data of Example 6.1, the linear-correlation coefficient r can
be calculated from Equation (11.17) with the data of Table 6.1:

- 9 X 779.3 — 450.0 X 12.44
V(9 X 28,500 — 450.0%) X (9 X 21.32 — 12.442)
= 0.9998

The probability for determining, from an uncorrelated population with 9 — 2 = 7
degrees of freedom, a value of r equal to or larger than the observed value, can be cal-
culated from Equation (11.19) (see Table C.3). The result P.(r; N) < 0.001% indicates
that it is extremely improbable that the variables x and V are linearly uncorrelated. Thus,
the probability is high that the variables are correlated and the linear fit is justified.

Similarly, in the experiment of Example 6.2, the linear-correlation coefficient
can be calculated from Equation (11.17) by including the weighting factors a? = y, as
in Table 6.2, so that, for example, N is replaced by 2w, and 2x, is replaced by 2w, x,,
and so forth:

0.03570 X 81.02 — 0.1868 X 10

"~ V[0.03570 X 1.912 — 0.18682) X (0.03570 X 3693 — 10%)
= 0.9939
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Again, the probability P, (r; N) for r = +0.9938 with v = 10 — 2 = 8 degrees
of freedom is very small (< 0.001%), indicating that the change in counting rate C is
linearly correlated to a high degree of probability with x = 1/r2, the inverse square of
the distance between the source and counter.

11.3 MULTIVARIABLE CORRELATIONS
If the dependent variable y, is a function of more than one variable,
y=a+bx,,+byx,+bx,+--- (11.20)

we might investigate the correlation between y, and each of the independent vari-
ables x, or we might also enquire into the possibility of correlation between differ-
ent variables x,. Here, we use the first subscript i to represent the observation, as in
the previous discussions, and the second subscript j to represent the particular vari-
able under investigation. The variables x, could be different variables, or they could
be functions of x,, f(x,), as in Chapter 7. We shall rewrite Equation (11.17) for the
linear-correlation coefficient r in terms of another quantity s7.
We define the sample covariance s}:

1 _ _
she= =1 200 = %) (e — %) (11.21)
where the means X, and X, are given by
_ 1 _ 1
x1=ﬁ2xu and xk=ﬁ2x,k (11.22)

and the sums are taken over the range of the subscript { from 1 to N. The weights have
been omitted for clarity. With this definition, the sample variance for one variable 5?2,

J 12]=N_ IE(le_-fj)z (1123)
is analogous to the sample variance s* defined in Equation (1.9):
1
= - x) 1.
sSt=g T 20— X) (11.24)

It is important to note that the sample variances s? defined by Equation (11.23) are
measures of the ranges of variation of the variables and not of the uncertainties in
the variables.

Equation (11.21) can be rewritten for comparison with Equation (11.17) by
substituting the definitions of Equation (11.22):

slzk = I_V_l__l 2 [(xu - ‘_x-j) (‘xlk - xk)]

1

N-—1 z(xu-x:k - )_Cj)_ck) (1 125)

1 1
= I_V___l 2 (xlj‘xlk - IT/ Equxtk)
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If we substitute x,, for x, and x,, for y, in Equation (11.17), we can define the sample
linear-correlation coefficient between any two variables x, and x, as
S2
rye=—% (11.26)
SJ Sk
with the covariances and variances s}, s7, and s} given by Equations (11.23) and
(11.25). Thus, the linear-correlation coefficient between the jth variable x, and the
dependent variable y is given by
S2
r,=—"> (11.27)
SJ SY
Similarly, the linear-correlation coefficient of the parent population of which
the data are a sample is defined as
2
Ok
P = —4 (11.28)

T) Ot
where o, o7, and a7, are the true variances and covariances of the parent popula-
tion. These linear-correlation coefficients are also known as product-moment corre-
lation coefficients.
With these definitions we can consider either the correlation between the de-

pendent variable and any other variable r,, or the correlation between any two vari-
ables ry,.

Polynomials

In Chapter 7 we investigated functional relationships between y and x of the form
y=ag+tax+ax*+ax’+--- (11.29)

In a sense, this is a variation on the linear relationship of Equation (11.20) where the
powers of the single independent variable x are considered to be various variables
x, = x’. The correlation between the independent variable y and the mth term in the
power series of Equation (11.29), therefore, can be expressed in terms of Equations
(11.23) through (11.27):

™5, s

m3y
S2 =__1__ 2x2m_l(2xm)2
m N_IL [ N [

(11.30)
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Weighted Fit

If the uncertainties in the data points are not all equal (o, # o), we must include the
individual standard deviations o, as weighting factors in the definition of variances,
covariances, and correlation coefficients. From Chapter 6 the prescription for intro-
ducing weighting is to multiply each term in the sum by 1/c2.

The formula for the correlation remains the same as Equations (11.26) and
(11.27), but the formulas of Equations (11.21) and (11.23) for calculating the vari-
ances and covariances must be modified:

/(N - DE[(1/0?) (x, — X)) (e — %))

2 —

e (1/N)S(1/0?)
., VIN=1DZ[(1/0)(x, — %) (11.31)
TS T T /M /e

where the means X, and X, are also weighted means

Zx,w, _ 2(x,/0?)

X, =

N 2(1/a?)
The weighting factors
1/0?
= 1.
YT /N (1/0?) (1132

for each data point are the inverse of the variances o? that describe the uncertainties
in each point, normalized to the average of all the weighting factors.

Multiple-Correlation Coefficient

We can extrapolate the concept of the linear-correlation coefficient, which charac-
terizes the correlation between two variables at a time, to include multiple correla-
tions between groups of variables taken simultaneously. The linear-correlation
coefficient r of Equation (11.17) between y and x can be expressed in terms of the
variances and covariances of Equation (11.31) and the slope b of a straight-line fit
given in Equation (11.12):
4 2
P2 o (11.33)
5385 s,
In analogy with this definition of the linear-correlation coefficient, we define the
multiple-correlation coefficient R to be the sum over similar terms for the variables
of Equation (11.20):

2 : SJZ.Y — : SJ
em (o) -5 (52,) o

J=1 y J=1 5
The linear-correlation coefficient r is useful for testing whether one particular
variable should be included in the theoretical function that is fitted to the data. The
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multiple-correlation coefficient R characterizes the fit of the data to the entire func-
tion. A comparison of the multiple-correlation coefficient for different functions is
therefore useful in optimizing the theoretical functional form.

We shall discuss in the following sections how to use these correlation coeffi-
cients to determine the validity of including each term in the polynomial of Equa-
tion (11.29) or the series of arbitrary functions of Equation (11.20).

11.4 F TEST

As noted in Section 11.1, the x? test is somewhat ambiguous unless the form of the
parent function is known, because the statistic x?> measures not only the discrepancy
between the estimated function and the parent function, but also the deviations be-
tween the data and the parent function simultaneously. We would prefer a test that
separates these two types of information so that we can concentrate on the former
type. One such test is the F test, which combines two different methods of deter-
mining a x? statistic and compares the results to see if their relation is reasonable.

F Distribution

If two statistic x? and x3, which follow the x? distribution, have been determined,
the ratio of the reduced chi-squareds, x2 and x2,, is distributed according to the
F distribution*

2
f= % (11.35)
with probability density function
T[(v; +v;)/2] (v, n/2 F1/2n-2)
T(vi/2)T(v,/2) (_) (1 + fv,/v,) 201+ v) (11.36)

V2
where v, and v, are the numbers of degrees of freedom corresponding to x# and x3.
By the definition of x2 [see Equation (11.4)], a ratio of ratios of variances

Pf(f§ Vi, Vp) =

2 2 2
Xy, _ Si/0i

2 2 /2
X, 52/02

(11.37)

is also distributed as F, where s, and s, are experimental estimates of standard devia-
tions o; and o, pertaining to some characteristic of the same or different distributions.

As with our tests of x* and the linear-correlation coefficient r, we shall be
more interested in the integral probability

Pe(F; vy, Vvy) = I:Pf(f, vy, Vo) df (11.38)

which describes the probability of observing such a large value of F from a random
set of data when compared to the correct fitting function. The integral function
PH(F, v,, v,) is tabulated and graphed in Table C.5 for a wide range of F, v, and v,.

4See Pugh and Winslow (1966), Section 12-7, for a derivation
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A word of caution is in order concerning the use of these tables. Because the sta-
tistic F in Equation (11.35) is defined as the ratio of two determinations of x? without
specifying which must be in the numerator, we can define two statistics F, and Fy,,

_Xn _ 2(_5_2 _
Fi Xi2 Fa Xn Fn (11.39)
which must both be distributed according to the F distribution.

If in some experiment our calculations yield a particular value of F,, we can
use Table C.5 to determine whether such a large value is less than 5% probable
(Table C.6 and Figure C.6) or less than 1% probable (Table C.7 and Figure C.7). If
the test value is less than the tabulated values, we must also make sure that it is not
too small. To do this, we compare the value

Fy = 1/Fy, (11.40)

to the same tables and graphs, noting that the values of v, and v, are reversed. The
values of v; and v, specified in Table C.5 correspond to the degrees of freedom for
the numerator and denominator of Equation (11.39), respectively.

Example 11.3. Suppose that F;, = 0.2 with v; = 2 and v, = 10. For Table C.6, the
observed value of F, may be as high as 4.10 and still be exceeded by about 5% of ran-
dom observations. Similarly, we compare F,; = 1/F;, = 5.0 with the 5% point for
v, = 10 and v, = 2, which has a value of 19.4. Because the values of F}, and F), are
well within the 5% limits, we can have confidence in the fit.

What we are estimating in this example is the probability Pp(F;; v;, v,) that
F, is not too large and the probability Pp(1/F,,; v,, v) that F, is not too small. It
is tempting to simplify this procedure by assuming that

Pe(1/F 135 vy, v1) = Pe(F 25 vy, v2) (11.41)
so that our test consists of determining F such that
Pe(F; vy, v,) = 0.05
with the requirement that
F>F,>1/F

This approximation is valid for reasonably large values of v, and v, but not for small
values of either, as in the preceding example, where we have 4.10 > F, > 1/19.4,

Multiple-Correlation Coefficient

There are two types of F tests that are normally performed on least-squares fitting
procedures. One is designed to test the entire fit and can be related to the multiple-
correlation coefficient R. The other, to be discussed later, tests the inclusion of an
additional term in the fitting function.

If we consider the sum of squares of deviations S associated with the spread
of the data points around their mean (omitting factors of 1/o2 for clarity),
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S:=3(y,—y)* (11.42)

this is a statistic that follows the x? distribution with N — 1 degrees of freedom
(only one parameter y must be determined from the N data points). It is a character-
istic of quantities that follow the x? distribution that they may be expressed as the
sum of other quantities that also follow the x 2 distribution such that the number of
degrees of freedom of the original statistic is the sum of the numbers of degrees of
freedom of the terms in the sum.

By suitable manipulation and rearrangement, it can be shown that S can be
expressed as the sum of the two terms,

m

sz=2(y.—y>2=§”;l (y,—y)ga,(f;—fs) +3 0, - Sa f)

J=1

. (11.43)
,=21 a, X[y = 3 (f = I+ 2y —yx)P
where the fitting function is of the form
y(x,) =j=ila, £ (x) (11.44)
and we have
f= 1%,2;3 (x) (11.45)

The left-hand side of Equation (11.43) is distributed as x? with N — 1 degrees
of freedom. The right-hand term is our definition of x 2 from the Equation (11.3) and
has N — m degrees of freedom. Consequently, the middle term must be distributed
according to the x? distribution with m — 1 degrees of freedom.

By comparison with our definition of the multiple-correlation coefficient R in
Equation (11.34), we can express this middle tern as a fraction R? of the statistic S

2 LS (v == F)=R* 2y, — ) (11.46)

Equation (11.43) becomes

2=y =R(y.—y) + (A - R)X(y — ) (11.47)

or
§2=R2S2 + (1 — R?)S? (11.48)

where, as before, both terms on the right-hand side are distributed as x?2, the first
with m — 1 degrees of freedom and the second with N — m degrees of freedom.
Thus, the physical meaning of the multiple-correlation coefficient becomes
evident. It divides the total sum of squares of deviations S? into two parts. The first
fraction R2S? is a measure of the spread of the dependent and independent variable
data space. The second fraction, (1 — R?)S?2, is the sum of squares of the deviations
about the regression and represents the agreement between the fit and the data.
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From the definition of Equation (11.35), we can define a ratio Fj of the two
terms in the right-hand side of Equation (11.47) that follow the F distribution with
vi = m — 1 and with v, = N — m degrees of freedom,

RY/m-1) _ R’ ><(N—m)
(1-R?)/N—m) (1—R?Y» (m-—1)

From this definition of Fy in terms of the multiple-correlation coefficient R, it is
clear that a large value of F corresponds to a good fit, where the multiple correla-
tion is good and R = 1. The F test for this statistic is actually a test that the coeffi-
cients are 0 (a, = 0). So long as Fj exceeds the test value for F, we can be fairly
confident that our coefficients are nonzero. If, on the other hand, Fr < F, we may
conclude that at least one of the terms in the fitting function is not valid, is decreas-
ing the multiple correlation by its inclusion, and should have a coefficient of 0.

Fp= (11.49)

Test of Additional Term

Because of the additive nature of functions that obey the x? statistics, we can form
a new x? statistic by taking the difference of two other statistics that are distributed
as x2 In particular, if we fit a set of data with a fitting function with m terms, the re-
sulting value of chi-square associated with the deviations about the regression x%(m)
has N — m degrees of freedom. If we add another term to the fitting function, the
corresponding value of chi-square x?(m + 1) has N — m — 1 degrees of freedom.
The difference between these two must follow the x? distribution for 1 degree of
freedom.

If we form the ratio of the difference x*(m) — x*(m + 1) to the new value
Xi(m + 1), we can form a statistic F, that follows the F distribution with v; = 1 and
vw=N-—-m-—1:

__Xm—x}m+1l) _AX
X XYm+ 1)/ N—m—1) x?

This ratio is a measure of how much the additional term has improved the value of
the reduced chi-square and should be small when the function with m + 1 terms does
not significantly improve the fit over the function with m terms. Thus, we can be con-
fident in the relative merit of the new terms if the value of F, is large. As for Fpg, this
is really a test of whether the coefficient for the new term is 0 (a,, . | = 0). If F,
exceeds the test value for F, we can be fairly confident that the coefficient should not
be 0 and the term, therefore, should be included. Table C.5 and Figure C.5 are useful
for testing F,. They give the value of F corresponding to various values of the prob-
ability Pr(F; 1, v,) and various values of v, for the case where v; = 1. Thus, rather
than evaluating F for critical values of the probability (for example, 5% or 1%), we
can evaluate the probability corresponding to the observed value of F,.

A calculation of F, could be built into a linear regression program and the re-
sulting value compared to a supplied test value F, to indicate whether or not the last
term in the series is justified, and therefore, to determine how many terms in the se-
ries should be included in the fit. However, it is probably safer, except possibly in a
large, well debugged production run involving fitting polynomials to many similar
data sets, to examine the individual values of x* along with F, and to adjust the

(11.50)
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number of terms in the calculation manually. One should, however, be aware that
the important figure of merit for added terms is the difference of the two values of
x 2 divided by the new value x? of the reduced chi-square.

11.5 CONFIDENCE INTERVALS

The object of data fitting is to obtain values for the parameters of the fitted function,
and the uncertainties in the parameters. The quality of the fit is indicated by x 2 and its
associated probability, and the uncertainties give the probabilities that our values of
the fitted parameters are good estimates of the parent parameters. Whether we esti-
mate our parameters by the least-squares method or by direct application of the max-
imum-likelihood method, as discussed in Chapter 10, we must always estimate the
uncertainty in our parameters to indicate numerically our confidence in our results.

Generally, we assume Gaussian statistics and quote the standard deviation o
in a result, where o appears in the Gaussian probability density function

ARSI S I 2 2}
ps(x; 1, 0) U\/%exp[ 2( > ) (11.51)

and determines the width of the distribution. As noted in Chapter 2, approximately
68.3% of the events of the Gaussian distribution fall within *o of the mean w and
approximately 95.4% fall within *+2¢.

Confidence Level for One-Parameter Fit

One way of looking at the 1 standard deviation limit is to consider that, in a series of
repeated experiments, there is approximately a 68% chance of obtaining values within
*+ o of the mean . Of course, we usually do not know ., and perhaps not o either, but
have determined experimentally only X and s, our estimate of the parameters. How-
ever, as long as our experimental estimates X and s are reasonably close to the true val-
ues u and o, we can state that there is approximately a 68% probability that the true
value of the measured parameter lies between X — s and X + s, or that at the 68.3%
confidence level, the true value of the parameter lies between these two limits.

We may wish to quote results in terms of other confidence levels. For exam-
ple, we refer to the =2¢ limit as the 95.4% confidence interval, or we may quote a
99% or 99.9% confidence level for a high-precision experiment. The conventional
lo and 20 limits are based on the Gaussian distribution, which may or may not ap-
ply to the data in question, and even an experimental distribution that nominally fol-
lows Gaussian statistics is apt to deviate in the tails.

For any distribution, represented by the normalized probability density func-
tion, p,(x; ), we determine the probability that a measurement of the parameter will
fall between X — a and X + b by the integral

x+b
p=| " pEas (11.52)

and could quote a confidence level of P, that the “true” value of the measured para-
meter is between these two values. Note that we have not specified a region that is
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FIGURE 11.1

Relative values of the likelihood function versus trial values of the parameter for the 373-event
sample of Example 10.1d. The data points (from Figure 10.4b) are indicated by crosses; the solid and
dashed curves represent the results of fitting Gaussian curves separately to the two sides of the
distribution. Parameters determined in the two fits are indicated on the graph. All measurements are in
units of 1071%s.

symmetrical about the mean. The uncertainties in our measurements may not be
symmetrical, although the asymmetry may be hidden if we assume Gaussian statis-
tics in our calculations. For example, the routines for finding uncertainties in para-
meters found by least-squares fitting (Chapters 7 and 8) generally assume a
Gaussian distribution of the parameters and hence produce a single number for the
uncertainties.

Example 11.4. As an example of an asymmetrical probability distribution, consider
the 373-event data sample of Example 10.1d. In Figure 10.4b we plot as crosses the
scaled values of the likelihood function for these data as a function of trial values of the
parameter 7. The data points exhibit a marked asymmetry about the mean 7’. The dashed
curve was calculated from Equation (10.10) with parameters obtained from the fit.

To make a better determination of o from this curve, we considered the re-
gions on each side of the mean separately and estimated two separate standard de-
viations, o; and o, with the aid of Equation (1.11). To reduce the effect of the
right-hand side tail on the value of o, we imposed a cutoff at T = 1.6 and used only
those data points below the cutoff in this calculation.

A composite curve formed of two Gaussians with the same mean T but differ-
ent values of ¢ is shown as the solid curve in Figure 11.1. It would be reasonable
to consider the two values of o obtained in this way as appropriate estimates of
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the uncertainty in 7, so that we could report 7" = 0.78*9 13, as indicated by the ar-
rows on Figure 11.1 rather than v’ = 0.78 = 0.14 as we did in Chapter 10. This is
equivalent to finding the two positions at which the logarithm of the likelihood
function has decreased by AM = V2 as discussed in Section 10.2. Clearly this result
is somewhat subjective if either side of the curve does not follow the Gaussian
form. For this example, the value of o depends on how much of the tail is included
in the calculation.

Confidence Levels for Multiparameter Fits

The definition of the confidence level in a one-parameter experiment is generally
straightforward. We can plot our data and observe if the distribution is Gaussian and
estimate directly from the distribution of the probability that the true result lies be-
tween two specified values. When two or more variables have been determined and
those variables exhibit some correlation, the definition of the confidence level be-
comes a little more difficult. Consider, for example, the determination of the mean
lifetimes 7, and 1, of two unstable silver isotopes of Example 8.1. The problem was
treated in Chapter 8 as a five-parameter problem, with parameters a, and a5 corre-
sponding to the two mean lifetimes, T, and T,, respectively, and parameters a,, a,,
and a; corresponding to the amplitudes of a uniform background and the two
decaying states. The parameters of most interest in the experiment are a, and as, and
we want to define a joint confidence interval for those two variables.

Figure 11.2 shows two sets of contours for the variation of x? as, a function of
a, and a; from the least-squares fit by the Marquardt method discussed in Chapter 8.
The small contours, drawn with solid lines, were calculated by holding the parame-
ters a,, a,, and a; fixed at their optimum values (see Table 8.5) and varying a, and a;
to obtain increases in x* of 1, 2, and 3 from the minimum value. The large contours,
shown as dashed lines, were calculated by allowing a,, a,, and a, to vary to minimize
x? for each pair of values of a, and as. The contour plots cover very different ranges
because of the correlations of the displayed parameters, a, and a,, with the remain-
ing parameters a, through as. The tilt of the closed figures on each plot indicates the
degree of correlation of parameters a, and a5 with each other. In an ideal experiment,
the contours are ellipses in the region of the x> minimum and if a, and a5 are not cor-
related, then, with suitable scaling of the axes, the ellipses are circles.

Which plot should we use? Additionally, how do we determine a confidence
interval; that is, a region of the a,-as space in which we estimate there is, for exam-
ple, a ~68% probability of finding the true values of the two parameters?

First, we should note that, because the fitting function, Equation (8.2), is not
linear in the parameters, the methods of testing described in the previous sections
strictly do not apply. However, we are much more likely to run into nonlinear fitting
problems than the easier linear problems, so we shall continue with this example. At
any rate, the function is linear in parameters a, through a,, and we could make a lin-
ear expansion of it, over a limited region, in the parameters a, and as. In fact, this
was the basis of a method of fitting nonlinear functions in Chapter 8.

Then, we should use the larger of the two contour diagrams to define our con-
fidence intervals. That implies that if we wish to find the standard deviation of a,
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FIGURE 11.2

Two sets of contours for the variation of x? with parameters a, and as in the region of the x?
minimum. Data are from the least-squares fit by the Marquardt method discussed in Chapter 8. The
small contours, drawn with solid lines, were calculated by holding parameters a, through a, fixed at
their optimum while varying a, and as to obtain increases in x? of 1, 2, and 3 from the minimum
values. The large contours, shown as dashed lines, were calculated by allowing a,, a,, and a; to vary
to minimize x 2 for each pair of values of a, and as.

from the contour plot, we should consider the full range of the outer limit of the
Ax? = 1 contour, and not the intersection of that contour with the a, axis. This is
equivalent to allowing as to assume its best values for each chosen value of a,, as we
have already assumed for the parameters a, through a;. The two dashed vertical lines
indicate the two limits on a4 that include the 1 standard deviation, or 68.3% of the
probability, and the two horizontal lines indicate the 1 standard deviation limits for as.

How do we know that the vertical lines enclose 68.3% of the probability? By
allowing the four parameters a,, a,, a;, and as to find their optimum values for each
chosen value of a, and varying a,, we have separated our x? fitting problem into two
parts: a fit of N data points to m — 1 parameters with N — m — 1 degrees of free-
dom and a variation of Ax? with a, about the minimum x?, with 1 degree of free-
dom. As we observed in the previous section, the two variations separately must
follow their appropriate x? distributions, so our variation of Ax? obeys the x? prob-
ability distribution for 1 degree of freedom. If we look at the integrated probability
distribution P, for 1 degree of freedom [Table C.4, or calculated from Equation
(11.10)], we see that x> = 1 corresponds to 31.7% of the probability, or Ax? < 1
corresponds to 68.3%. Similarly, if we wish to find the limits for 2 standard devia-
tions, we should find the limits of a, on the Ax? = 4 contour, with all other para-
meters optimized.



212 Data Reduction and Error Analysis for the Physical Sciences

To find the 1 standard deviation region encompassed by the joint variation of
two parameters, a, and as, with all other parameters optimized, we must draw the
contour corresponding to that value of Ax? for 2 degrees of freedom that includes
68.3% of the probability. Referring again to Table C.4 or Equation (11.10), we find
that we should draw the contour for Ax? = 2.30, and for the 2 standard deviation
contour, we should choose Ax? = 6.14. Joint confidence intervals with more than
two parameters are often of interest, but are difficult to display and are represented
best by two-dimensional projections of contours for pairs of variables.

Confidence Level for a Predicted Value

Suppose the predicted value of a physical quantity is p = 1000.0, and we have
made a measurement and obtained the value x = 999.4 + 2.0. At what confidence
level is the predicted value consistent with our measurement? The question could be
rephrased as, “What is the probability of obtaining from the predicted parent distri-
bution a distribution that is as bad as the one we got, or worse?” Because the shape
of the parent distribution was not predicted, but only the value of the mean, we must
use our value of the standard deviation, o = 2.0, as an estimate of that of the parent
distribution. If the distribution is known to follow Gaussian statistics, then the re-
quired confidence is twice the integral of the standard Gaussian probability function
from x = 3 to ®, where 8 = | — x|/ o =|1000.0 — 999.4|/ 2.0.

Now, suppose that the predicted value was necessarily positive—an intensity,
for example. Then, we might again assume a Gaussian distribution, but only for
positive values of the variable x, and therefore our confidence integral becomes the
integral of the standard Gaussian from § to . However, because the total probabil-
ity must be normalized to 1, we again multiply the integral by 2 so that the proba-
bility or confidence level is the same for both problems.

The method of determining the confidence level thus depends on the type
of problem as well as the probability function that is applicable to the problem.
For distributions that are symmetrical about their means, such as the Gaussian dis-
tribution, we generally consider the probability of obtaining a result that is the
specified number of standard deviations from the mean, without regard to sign,
unless a particular sign is excluded by the physical problem. For distributions
such as the chi-square and Poisson distributions, which are only defined for posi-
tive values of their arguments, it is conventional to find a “one-sided” probability
as in the case of the x? distribution where we quote the probability of obtaining
a value as large as or larger than the value we obtained for a given number of
degrees of freedom.

11.6 MONTE CARLO TESTS

A Monte Carlo calculation can help us understand the statistical significance of our
results and possibly obtain a better estimate of some of the parameters of the exper-
iment. As a by-product, the Monte Carlo program may also help us identify biases
in our analysis procedure.

Suppose, for example, that we have measured a quantity x that is predicted to
have a value w.. From our experiment we obtain the value x for our estimate of .
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We want to find the probability of obtaining from a series of similar experiments a
value X that differs from the predicted value p by

Ax =y — x| (11.53)

We can set up a Monte Carlo program to simulate our experiment and to gen-
erate events with the parameters predicted by the theoretical principle that we are
testing and with the same cuts as those imposed by our experimental apparatus.
Such a program can be quite complex, but it may already exist at the time of analy-
sis, if, for example, a Monte Carlo program was written to help plan the experiment.
Or it might be possible to use some geometric and kinematic quantities from the ac-
tual experiment and only generate those parts of each event that are affected by the
parameters in question.

After the Monte Carlo program has been written and debugged, we can simu-
late repeated experiments with the same parent parameters and the same number of
final measurements as in our real experiment. The data from each of these simulated
experiments can be processed by our regular analysis program to obtain a group of
“experimental” values of x, and from the distribution of these values we can esti-
mate the required probability.

Example 11.5. Let us use the Monte Carlo method to try to learn more about the sig-
nificance of the small peak in our data of Example 9.2. Examination of Figure 9.2
leaves no doubt about the existence of a large peak at ~1.0 GeV. Without the fitted
curve, the smaller peak near 0.8 GeV would be considerably less striking and further
analysis might be helpful. (We note that, if the small peak were indeed spurious, we
should have to refit the large peak to obtain a better estimate of its mean energy and
width.) In Chapter 9, we estimated the probability to be about 0.01% that the smaller
peak is just a fluctuation in a single bin above the single-peak background, with a
probability of about 0.6% of such a fluctuation occurring in any one of the 60 bins into
which the data were sorted. These are quite compelling numbers. Can we support them
with a more detailed calculation by the Monte Carlo method?

We adapted to the study of this problem the Monte Carlo program and the least-
squares fitting program, which were used to generate and analyze the data in Chapter
9. With the Monte Carlo program, we simulated the experiment according to Equation
(9.1) to generate 4000 single-peak events in each of 1000 trial “experiments.” The
mean energy (E;), half-width (T"), and amplitude of the larger peak, and the amplitudes
(a, through a,) of the quadratic background, were set to the values obtained in the six-
parameter fit, listed in Table 9.1.

To each set of trial data we fitted Equation (9.13), using identical procedures to
those used in Chapter 9, with the exception that, starting values for the parameters of
the smaller peak (a;, ag, and ay) were set to the values obtained in the nine-parameter
fits of Chapter 9, listed in column 6 of Table 9.1. We selected those fits that yielded pa-
rameters of the lower peak consistent with the values determined in Chapter 9 by im-
posing the following conditions: (1) We required that both the chi-square probability
and the amplitude of the smaller peak (a,) be equal to or greater than the correspond-
ing fitted values listed for the nine-parameter fit in Table 9.1; (2) We required that the
central energy of that peak be within plus or minus one histogram bin (0.05 GeV) of
the values obtained in that fit.

From the 1000 generated experiments, 5 survived these cuts, or 0.5% of the to-
tal trials. This number considerably exceeds the rough estimate of 0.01% made in
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TABLE 11.1

Results of generating 4000-event ‘“‘experiments’ from
Equations (9.1) and (9.13) with parameters from fits listed
in Table 9.1. We used several values of the amplitude A, of
the smaller peak to test the sensitivities of our analysis to
small and possibly spurious peaks.

A, Equation Number of experiments Number of successes
3.50 9.13 100 61
1.75 9.13 100 18
0.875 9.13 100 5
0.000 9.1 1000 ~5

Chapter 9 for a single bin fluctuation. Tests made with other starting values and cuts
for the smaller peak yielded similar numbers of survivors.

To check our procedure, we also generated and analyzed 100 two-peak trial “ex-
periments” from Equation (9.13), with the parameters of the smaller peak set to the
values from the nine-parameter fit listed in Table 9.1. From these 100 trials, 61, or
61%, survived the cuts. When we repeated the analysis with the amplitude of the
smaller peak reduced by a factor of 2 (i.e., a,/2), the success rate dropped to 18%, and
a further reduction by another factor of 2 (a,/4) reduced the success rate to 5%. The re-
sults of analyses are summarized in Table 11.1.

These results offer strong support for the existence of the smaller peak, and in-
dicate that in a 4000-event experiment we might detect with reasonable probability
a peak with only one-fourth the amplitude of the current smaller peak. Clearly, a
Monte Carlo simulation should play an important role in planning this type of ex-
periment. A carefully planned Monte Carlo program may be much better (and eas-
ier) than a detailed theoretical analysis for finding an answer to the question “How
much data will be needed to establish (or disprove) the existence of a specified fea-
ture in a distribution.”

We offer a final word of caution on using the Monte Carlo technique to
study the statistical significance of experimental results. For Examples 9.2 and
11.5, we used a very simple problem to illustrate this technique. Yet, there are
many opportunities for errors, which can lead to erroneous conclusions about the
significance of our Chapter 9 data. In a larger study, it would be very easy to make
a simple mistake that might lie undetected in the program and have a subtle effect
on the results. It is important to test the program under a variety of conditions, and
to examine results at intermediate stages before drawing conclusions from the re-
sult. In particular, if the results of the program lead to conclusions that violate in-
tuition about the experiment, we should check and recheck the calculation. The
Monte Carlo method is very powerful, and can enable us to solve very difficult
statistical problems in a straightforward manner, but like all powerful tools, it
must be used with care.
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SUMMARY
Variance of the fit:
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Probability P,(x* v) that any random set of N data points will yield a value of
chi-square as large as or larger than x*:
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F test:

>
<N
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F

F test for multiple-correlation coefficient R (forv = N — m):
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=0/ —m TR (m=1)

F test for X° validity of adding (m + 1)th term:

Foo_Xm-x(m+1) _ A
X x(m+1)/(N-m—1) x?

Confidence limits: 10 —> 68.3%; 20 —> 95.4%; 30 —> 99.7%

EXERCISES

11.1.

11.2.

11.3.

114.

11.5.

11.6.

11.7.

11.8.

11.9.

11.10.

Discuss the meaning of x2 and justify the relationship between it and the sample
variance s? = x2.

Compare the exact calculation of the gamma function I'(n) of Equation (11.7) with
the approximate calculation of Equation (11.8) forn = 3, 1, %, 4, %,10.

From Equation (11.6), show that the x2-probability density for 1 degree of freedom
can be written as
e ¥/2
x*) =
P(¥) ==

Calculate to 1% the probability of obtaining a value of x? that is less than 2.00 by
expanding the function in a Taylor series and integrating term by term.

For a typical number of degrees of freedom (v = 10), find, by numerically integrat-
ing Equation (11.6), the range of probability P, (x2, v) for finding x 2 as small as 0.5
or as large as 1.5. Use the approximation for the gamma function of Equation (11.8).
By numerically integrating Equation (11.6), find the probability of finding a value of
x2 = 1.5 with v = 100 degrees of freedom. (Note that double-precision variables
must be used.) Would you consider this to be a reasonably good fit?

Express the linear-correlation probability density of Equation (11.18) in terms of the
approximation for the gamma function of Equation (11.8).

Work out the details of the calculation of the linear-correlation coefficients r for Ex-
amples 6.1 and 6.2.

If a set of data yields a zero slope b = 0 when fitted with Equation (11.11), what can
you say about the linear-correlation coefficient r? Justify this value in terms of the
correlation between x, and y,.

Find the linear-correlation coefficient r, between the independent variable 7, and the
dependent variable V, for the data of Example 7.1.

Find the correlation coefficient r, between T2 and V, for the data of Example 7.1.
Does the correlation justify the use of a quadratic term?
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11.12.
11.13.
11.14.

11.15.
11.16.

11.17.
11.18.
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Express the multiple correlation R in terms of x,, y,, and their averages.

Evaluate the multiple-correlation coefficient R for the data of Example 7.1.

Is a large value of F good or bad? Explain.

If we wish to set as an arbitrary criterion a probability of 0.01 for the F, test, what
would be the reasonable average value for F test?

What different aspects of a fit do the Fy and F, tests represent?

Apply the F, test for the quadratic term to the data of Example 7.1 and state your
conclusions. (Refer to Table 7.4.)

Show the intermediate steps in the derivation of Equation (11.43).

Estimate from Figure 11.2 the 90% confidence limit for each of the two mean life-
times (a4 and as) of Example 8.1 when all variables are allowed to find their opti-
mum values.
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here are several reasons why we might want to fit a function to a data sample,

and several different techniques that we might use. If we wish to estimate para-
meters that describe the parent population from which the data are drawn, then the
maximum-likelihood or least-squares method is best. If we wish to interpolate be-
tween entries in data tables to find values at intermediate points or to find numeri-
cally derivatives or integrals of tabulated data, then an interpolation technique will
be more useful. Additionally, if we wish to obtain intermediate values between cal-
culated coordinate pairs in order to plot a smooth curve on a graph, then we may
wish to use a spline fitting method. In this appendix we shall summarize some stan-
dard methods for treating the latter two types of problems, as well as some methods
of finding the roots of nonlinear functions, a different sort of interpolation problem.

A.1 POLYNOMIAL INTERPOLATION

With modern fast computers, the need for interpolating within tables to find inter-
mediate values of tabulated functions has reduced markedly. Nevertheless, there are
situations in which it may be convenient to represent a complicated function by a
simple approximation over a limited range. For example, in a large Monte Carlo
calculation, where computing time is a significant consideration, we may approxi-
mate a complex function by a simpler polynomial that can be calculated quickly. Al-
ternatively, we may save time by creating a probability integral once at the
beginning of the program. and interpolating to find values of x corresponding to the
randomly chosen values of y.

For many purposes a linear or quadratic interpolation is satisfactory; that is,
we fit a straight line to two coordinate pairs, or a parabola to three, and use the
equation of the fitted polynomial to find values of y at nearby values of x. Higher
orders may be necessary for functions that have strong variations, but in general, it

218
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is better and more convenient to represent a function over a limited region by a se-
ries of low-order approximations.

Lagrange’s Interpolation Method

Here is a method that is easy to remember and can be used to expand a function to
any order. We know it works because of the theorem that states that if you can find
any nth-degree polynomial that passes exactly through » + 1 points, then you have
found the one and only nth-degree polynomial that passes through those points.
Think about it. It is obvious for » = 1 (2 points).

Let us start with an easy problem. Suppose we have two coordinate pairs
(%0, Yo) and (x,, ¥,), and we want to find the straight line that passes through both of
them. We write a function of the form

P(x) = yA(x) + y,A,(x) (A.1)

and search for a function Ay(x) that is 1 when x = x; and 0 when x = x;, and a func-
tion A,(x) that is 1 when x = x; and 0 when x = x;,. We can guess the form. If we
write Ay(x) as a fraction and set its numerator to (x — x,), then Ay(x) will be O for
x = x; and will be (x, — x;) for x = x,. But we want Ay(x) = 1 for x = x,, so the
denominator of A, must be (x, — x,). We can make similar arguments for A,(x) and
thus write as our interpolation equation

) = (x —x) (x — xo)
PO =00 =) o (A2

Suppose we want a parabola that passes through three points. Then we simply
write

P(x) = yoAo(x) + y1A,(x) + y2A,(x) (A.3)
and, following the previous arguments, write
_ . X)) —x) (x = x0) (x—x,)
P(x) =
B0 b =) o3 Y = x0) (1~ )
L %) =) A

’ (x2 = %) (x, — %))
The expansion to higher orders should be obvious. The kth term in an nth order ex-
pansion is given by the following product in which the j = k term must be omitted:
E) ((;Ck _);’])) ¥ (excludingj = k) (A.5)
Note that the intervals in x need not be equally spaced. The interpolation for a
well-behaved function y = f(x) is completely general.

Newton’s Divided Differences

Although the Lagrange interpolation method is especially easy to derive and pro-
vides a convenient way of interpolating between points in a function or table, it is
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not very convenient for repetitive calculations. It is not very convenient as an ex-
pansion either, because increasing the order of the expansion requires adding an-
other factor to each term as well as adding another term. What we require is a more
familiar form—a discrete analog of the Taylor expansion. For this we turn to New-
ton’s method of divided differences.

There are several forms of the divided differences expansion, roughly charac-
terized by the method we choose to define the differences, forward, backward, or
about a central point. We shall restrict ourselves here to forward differences; that is,
we calculate the variation of y with respect to x by taking increments in the positive
x direction.

Again, consider a set of data points, (xg, Yo). (X1, ;) (X2, Y1), « « . Let us
assume that we wish to make a linear interpolation from x, to some point x with a
first-degree polynomial. We define the zeroth divided difference as the function
itself f(x) evaluated at x = x:

flxe]=1(x) = yo (A.6)
The first divided difference is defined to be
flxi] = flx)]
Xy, X, | = —— (A7
f [ 0 l] ( X = xO) )
which is the slope of a linear function. Then, for a linear function,
flx %] =flxo. x] (A.8)
or
f[x0] _f[x] — f[xl] _f[xO] (A.9)
(%0 — x) (%1 — xp)
which, on rearrangement of the terms, gives the first-order expansion
i) =)+ (x = v L=
0
= flxo] + (x — x0)f [xo, x,] (A.10)

where we have written P,(x) instead of f(x) to indicate that the expansion is a poly-
nomial approximation to the function f(x).
To find the second-order expansion, we consider the second divided differences

Sxa )] = fx1, %)
(%2 = x1) (x; — xo)

which corresponds to the slope of the slope, or the second derivative. This must be
constant for a second-order function, so we have

fx %o, 1] = fx0, %1, X, (A.12)

which leads to the second-order expansion

Py(x) = f[xo] + (x = x0)f [x0, X)) + (x = X0) (x — x1)f[xo, X1, %] (A.13)
The general form for the nth-order expansion should again be obvious.

[ xo. %1, 3] = (A.11)
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Remainders

The extrapolation formula for an nth-order expansion is only exact when the func-
tion itself is an nth-degree polynomial. Otherwise, the remainder at x after n terms
R,(x), defined as the difference between the original function f(x) and the expansion
P,(x), is given by

R, (x) =f(x) — Fi(x)
=@ —x)@x—x) (= x)f[x X0, X X

Calculation of the remainder requires the value of the function f(x) at x, which is
generally not available. (If it were, we might not be doing this expansion.) However,
it may be possible to make an estimate of f,(x), or to use a nearby value, and thus
find an estimate of R,(x). An expression for the remainder can also be obtained in
terms of the (» + 1)th derivative of the function.!

(A.14)

Uniform Spacing

The divided difference expressions have a particular convenient form when the in-
tervals in x are uniform; that is, if x, — x;, = x3 — x, = x, — x,_, = h. The divided
difference of the previous discussion can be written

fla] = flx) _ Af(x)

flxo. 1)= (x1 = o) h
or
Af(xo) =f(x) = f(xo) and h=x, —x, (A.15)
and higher-order differences become
A’f(xo) = A[Af(x0)] = Af(x1) — Af(xo). ete. (A.16)
If we define the relative distance along the interval by
a = (x —x)/h (A.17)

we can write for the nth-order expansion,

E(x) = f(xo) + aAf(x0) + ot(a = 1)A%f(xp)/2! + - - -
+af@—1)- (@ —n— 1)A"(x)/n! (A.18)
Equation (A.18) is a finite difference analog of the familiar Taylor expansion with
the important difference that the factors multiplying the coefficients A¥f(x,)/n! are
not successive powers of the relative distance from the starting point, but rather the

product of relative distances from successive points used in the expansion, because
(¢ — 1) = (x — xy — h)/h = (x — x;)/h, and so forth.

Extrapolation

Equations (A.15) through (A.18) are perfectly general for fitting exactly » sequen-
tial equally spaced data points with a polynomial of degree » — 1. In principle, the

ISee Hildebrand (1956) for a derivation.
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TABLE A.1
Uniform differences for cos 0
)
(degrees) y A, A, A, Ay A
0 1.0000 —0.0489 -0.0931 0.0139 0.0078 —0.0021
18 0.9511 -0.1420 —-0.0792 0.0217 0.0056
36 0.8090 —-0.2212 —-0.0575 0.0273
54 0.5878 —-0.2788 -0.0302
72 0.3090 —-0.3090
90 —0.0000
TABLE A.2
Extrapolation from 0 to 10° and from 0 to 75° in various orders
Order
)
(degrees) cos 6 1 2 3 4 5
10 0.9848 0.9728 0.9843 0.9851 0.9848 0.9848
75 0.2588 0.7961 0.1819 0.2481 0.2589 0.2588

position of the first data point (x,, y,) can be anywhere, but for optimum interpola-
tion, the values of x, and x, should straddle the interpolation point x and be approx-
imately equidistant from it.

The same formula can be used for extrapolating to values beyond the region
of data, but the uncertainties in the validity of the approximation increase as x gets
farther from the average of x, and x,. The approximation is limited by both the de-
gree of the interpolating polynomial and by uncertainties in the coefficients of the
polynomial resulting from fluctuations in the data.

Example A.1. Table A.1 shows a uniform divided difference table for the cosine
function for a range of the argument 6 between 0 and 90°. Table A.2 shows values of
cos 6 for 6 = 10 and 75° calculated from the divided difference table in orders 1
through 5. The interpolation starts at 0° so that only the top row of Table A.1 is used and
thus, 6 > 18°, the calculation is an extrapolation. The true value of cos 6 is also listed.
As we should expect, the large extrapolation to 75° is very poor in low order. Usually,
an approximation can be improved by increasing the number of terms in the expansion.
However, the better method would be to drop to a different line of the table; that is, to
ensure that the calculation is an interpolation rather than an extrapolation.

A.2. BASIC CALCULLUS:
DIFFERENTIATION AND INTEGRATION

Let us review some basic principles of differential calculus before considering dis-
crete methods that are applicable to computer calculations.
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Differentiation

Let f(x) be a function of the variable x. If x increases by an amount Ax, the function
varies by an amount Af = f(x + Ax) — f(x). The ratio Af/Ax is a measure of the
relative variation of f{x) with x. In the limit, as Ax becomes infinitesimally small,
the ratio A f/Ax for a continuous function f(x) approaches an asymptotic value, the
derivative dffdx of the function f{x) with respect to x.

+ J—
P iy L 897 fx) (A.19)
dx  ax—0 Ax
The derivative of f(x) at x = x, is written %’w and corresponds to the slope of the

function evaluated at x, or the tangent to the curve at that point.

Example A.2 To find the derivative of f(x) = x", we can expand the function
f(x + Ax) to first order in a Taylor series.
Thus, with n = 4, we have f(x) = x* and dfldx = 4r>.

ae") _ lim (x" + nx"'Ax) — x*

dx Ax—0 Ax
nx""1Ax -
= = nx"
Ax

Example A.3 For f{x) = sin x, we can write
sin (x + Ax) = (sin x) (cos Ax) + (sin Ax) (cos x)

and again expand f{x) to obtain

d(sinx) _ im sin (x + Ax) — sin x

dx Ax—0 Ax
- lim (sin x) (cos Ax) + (sin Ax)(cos x) — sin x
Ax—>0 Ax
- .
_sinx (Ax)A((;os x)—sinx _ cos x

Similarly, for f(x) = cos x, we find df/dx = —sin x.

SUMS AND PRODUCTS The derivative of a sum of functions is equal to the sum of
the derivatives of the individual functions. Consider the function

f(x) = g(x) + h(x)
The derivative of this function is the sum of the derivatives of the individual terms.
df(x) _ dg(x) , dh(x)
dx dx dx

The derivative of a product of functions, however, is not equal to the product of the
derivatives. Consider the function
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fx) = g(x) X h(x)

We can rewrite Equation (A.19) as

_ df(x)]
Allmof(x + Ax) = 11m0 [f(x) Ax Ix (A.20)
and show that

dg(x) X h(x)] _ lim g(x + Ax)h(x + Ax) — g(x)h(x)

dx Ax—>0 Ax
- Ath)OAng(x) ; Axdfi—ix)” h(x) + Ax d’;&")] (x)h(x)]
- ™)yt

FUNCTIONS OF FUNCTIONS If the function f(x) can be expressed as a function
of a function g(x) of x,
f&x)=11gx)

the derivative of f{x) with respect to x can be expressed in terms of the derivative of
g(x) with respect to x. If we expand the definition of Equation (A.19) for the deriv-
ative, we can make use of the relationship of Equation (A.20) to expand still further.

[(ﬂ+Ax “1 ~ fle()]

dx - Aliﬂo Ax
dg(x) df(x)
flex)]+ Ax —fle()]
= lim_ dAxdg(x) (A21)
_ df(x) dg(x)
dg(x) dx

Example A4 If f(x) = (a — bx?)?, define g(x) = a + bx? so that f(x) = [g(x)]>.
The first factor in Equation (A.21) is the derivative of a square, and the second factor
is the derivative of a cubic polynomial.

af(x) _ 3 9e(x) _ o, o
dg(x )— 2g(x) =2(a + bx?) ix = 3bx

%{JQ = 2(a + bx*)3bx? = 6bx*(a + bx?)

HIGHER-ORDER DERIVATIVES Higher-order derivatives are defined as deriva-
tives of derivatives. For example, the second derivative of a function f(x) is just the
derivative of the first derivative.
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Pfx)_ d [ﬂ_)]
dx* dx| dx

For the nth-order derivative d"f(x)/dx", we simply take the derivative n times in
succession. For example, if f(x) = x* as in Example A.2, the second derivative is
12x2. Similarly, the fourth derivative of either sin x or cos x is equal to itself.

PARTIAL DERIVATIVES If the function f(x, y) is dependent on two variables x and
v, we must define derivatives of the function with respect to each of the independent
variables. To determine the partial derivative of f with respect to x, df/dx, we con-
sider that y is a constant and proceed as we would for an ordinary derivative. Simi-
larly, to determine the partial derivative df/dy we consider that x is constant.

fxy) oy LT AXY) = f(xy) _ dflx)
ax Ax—>0 Ax dx

f ) o oy fy+8Y) = f(x.3) _ dfly)
dy Ay—>0 Ay dy

Higher-order partial derivatives include not only higher-order derivatives with
respect to one variable, but also cross-partial derivatives with respect to two or more
variables simultaneously.

(x,y) _ @ [af(x, y)]

dx? ox| ox
Pfxy)_ 0 [M] _0 [af(x, y)] _ %(x.)
dx dy dx ady dy dx dy dx

MINIMA AND MAXIMA A function f(x) is said to have a local minimum at x = x
if the values of f(x,, = Ax) are larger than the value of f(x,,) for infinitesimal
changes Ax about x .. Similarly, the function has a local maximum if the values of
f(xnax &= Ax)are smaller than f(x ,,,). At either a minimum or a maximum of a func-
tion, the derivative of the function is zero,

df(xm) _
dx 0

corresponding to a tangent that is parallel to the x-axis.

The question of whether the function is a minimum or a maximum at x,, can
be resolved by examining the second derivative. If the second derivative is positive,
the curvature of the function is upward and f(x,, ) is a minimum. If the second de-
rivative is negative, the f(x,,) is a maximum.

FUNCTIONS OF MORE THAN ONE VARIABLE With functions of more than one
variable, for example f(x, y), we can still consider the function to have a minimum
in parameter space, but we must be careful to assure that the function has a mini-
mum simultaneously with respect to all parameters.
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Integration

Integration is the inverse of differentiation. To find the integral F(x) of the func-

tion f(x),
F(x) = [f(x)dx

. dF
we must find a function F(x) such that % = f(x).
However, this definition is not unique. An undetermined constant must be added to

the solution to allow for the fact that the derivative of a constant is zero.

Example A.5 Consider the integral of the function f(x) = x3. We observe that
F(x) = x%/4 is a solution:

However, F(x) = x*4 + C is also a solution, where C is any quantity that is not
a function of x. Thus, the solution to an indefinite integral must include an added
constant.

A definite integral is the integral of a function between two specific values of
the independent variable, and is written

I= jbf(x)dx

a

To find the definite integral of a function, we integrate it, calculate the value of the
integral at x = b and at x = q, and find the difference between the two values. This
is equivalent to calculating the area under the function f(x) between the two limits
aand b.

Example A.6 Consider the integral of the function f(x) = x? between the limits
x=1.0andx = 2.0.

20 20 20
I= I fx)dx = J xdx =x“/4‘]0 =[2¢—14]/4=15/4
10 10
Note that a definite integral is not a function of variable of integration x.

From the results of Example A.3,

fsinxdx=—cosx+C and [cos xdx=sinx+ C

A.3. NUMERICAL DIFFERENTIATION
AND INTEGRATION

With the interpolation expressions discussed in Section A.1, it is relatively straight-
forward to obtain expressions for derivatives and integrals in terms of expansions to
order n.
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Differentiation

We can differentiate Equation (A.18) to find approximations for the derivatives of
the function f(x). We obtain
dF,(x) _ 1 dR(x) _ (
dx h do

Af(xo) + (2a — 1)A%f(xy)/2!

(A.22)
+ (3a? — 6a + 2)A3f(xy)/3! + - )/h

and
d’h(x) _ 1 d |dF(x)
dx? h’da| da

We should note that the use of forward differences introduces an asymmetry in the
calculation. For a general solution, we could replace the forward differences by cen-
tral differences, which are taken symmetrically about a central starting point. For a
particular problem, we can usually arrange the expansion to provide reasonable
symmetry of the differences about the point of interest. Thus, we can replace Equa-
tions (A.22) and (A.23) by

dh () _

] =[A2f(xg) + (o0 — 1)A3f(xo) + - - -]/h?  (A.23)

fx+h/2)— f(x — h/2)

&= = Af(x)/h = P (A-24)
and
d2dP£x) N2 f(xg)/h2 = LEF 1) = Zﬁx) +flx— ) (A.25)
Integration

Integrating Equation (A.18) leads to expressions for calculating the numerical integral

in various orders, depending on the number of terms in the polynomial approxima-

tion. There are various forms for each order, depending on how we choose the limits

of integration. We quote three of the most useful forms with the remainder estimates.
First-order, endpoint trapezoidal

"9 = 211000 + 7)) - 15720

(first-order closed-end trapezoidal)

f xzf(x) dx = 2hf(x)) + %3 f@(§) (first-order open end)

Xo

X5 h
[ #00dx =500 + 4£x) + )]~ g5 £
(second-order closed-end Slmpson s rule)

The factors f™(§) in the remainder estimates represent the nth derivative of
the function evaluated at some (unknown) value of x in the range of the integral.
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Note the large reduction on the error estimate in going from either of the first-order
approximations to the second-order approximation.

For an integral over an extended range of x, it is usually advisable to employ
a series of first- or second-order integrals over sections of the function, rather than
to attempt to fit a large region with a higher-order function. In fact, it can be shown
that the gain in accuracy in going from a second- to a third-order numerical integral
is relatively small, and, for the same number of calculations of the ordinate y,, the
second-order Simpson rule may be more accurate than the third-order form. This re-
lation applies in general to even and odd orders, so that, to make a significant im-
provement in the numerical integration of a function, one should advance to the
next higher even order.

Thus, to find the integral by Simpson’s rule of f(x) over an extended range
between x = x, and x = x,, we divide the region into » equal intervals in x, with
nh = (x,, — x,), to obtain

[ dx = 5L x0) + 41(x) + 2fC0) + 1) + -+

X
nh’

Haf(x) = flx) = Tos F9®) (A26)

where £ is the value of x somewhere in the range of integration.

Program A.1 SIMPSON (Appendix E) calculates an extended integral by the
second-order approximation of Equation (A.26). See Programs 11.1 and 11.2 for ex-
amples of the use of this routine.

The user supplies four arguments:
1. FUNCT: the name of the function to be integrated. The function must have one
real argument. If other arguments are required, they must be made accessible to the
function as global variables.
2. NINT: the number of double intervals. The interval is calculated as DX =
(HILIM-LOLIM)\(2*NINT);
3. LOLIM and
4. HILIM: the integration limits.

A.4 CUBIC SPLINES

If we attempt to represent by an nth-degree polynomial a function that is tabulated
at n + 1 points, we are apt to obtain disappointing results if » is large. The poly-
nomial will necessarily coincide with the data points, but may exhibit large oscilla-
tions between points. In addition, if there are many data points, the calculations can
become rather cumbersome. It is often better to make several low-order polynomial
fits to separate regions of the function, and this procedure is usually satisfactory for
simple interpolation in tables. However, if we want a smooth function, which passes
through the data points, the results may not be satisfactory.

Suppose we have calculated a function at n + 1 points, and want to represent
the function as a smooth curve on a graph. The nth-order polynomial is out—too
wiggly. Breaking the curve up into small sections produces disjointed segments on
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the plot. It is unlikely that they will combine to form a smooth curve. What do we
do now? Reach for our pencil and trusty drafting spline? No, we call up our spline
fitting subroutine and let it join up the separate fits for us.

Spline fitting procedures have other uses besides plotting pretty curves on
graphs, but the plotting function is of interest to us and is easily illustrated. Suppose
we choose to make a series of cubic fits to successive groups of data points. What
conditions do we need to produce a smooth curve that passes through the data
points? We want the first and second derivatives, as well as the function itself, to be
continuous at the data points. Suppose we consider a separate cubic polynomial for
each interval on the graph, or a total of » polynomials for the » + 1 points. Then we
write the polynomial equation, take derivatives, and, at each data point, equate the
first and second derivatives of the left-side polynomial to those of the right-side
polynomial.

Following the method discussed in Thompson (1984), we begin by writing the
Taylor series for the cubic polynomial for interval i, expanded about the point x,

y(x)=y(x)+(x— x,)M (x - L) d2y(x) Y

A.27)
( 1)3 d(3 l) 3' (

where the function and derivatives are evaluated at x,. This can be written in a more
concise form as

y(x) =yt (x - x,)yf + (x - x,)2y;’/2

+(x = x) (yls1 — ¥7)/6h
where y, and y’ stand for the first and second derivatives evaluated at x = x, and
the third derivative has been replaced by its divided difference form, which is ex-

act for a cubic function. At x = x,, we have y = y, as required. We can also set
X = Xx,,; = x, + h and solve the equation

y('xl+l)=yl ( Xi+1 _x)yl’ (‘xl+l _x’)2y7/2
( X+l ™ t) (yl+l +y’l’)/6h

(A.28)

(A.29)

to obtain
Yes1 =YV =hy, + h2[2y7+ y!,,)/6 (A.30)

We repeat the calculation, using the equation for y(x) in interval i — 1 [i.e., we
replace i by i — 1 in Equation (A.29)],

YE) =y +x—x )y e—x o Pylo/2 (A.31)
+(x X - l) ( yl l)/6h
and again require that y(x) = y(x,) at the ith data point and obtain
Yo~ Yoy =hyio + R2[2y +y71/6 (A.32)

To establish the continuity conditions at the data points, we need the first de-
rivative in the interval i,
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Y@ =y +(x—x)yl+ (x —x (¥l — ¥0)/2h (A.33)

which we equate to the first derivative in the interval i — 1 at the position x = x,, to
obtain

Yi—Yi-i = hlyi+y[\]/2 (A.34)
Similarly, equating the derivatives at the boundary x = x, . , gives
Yier = ¥i=h[yly7)/2 (A.35)

(Repeating the procedure with the second derivative leads to an identity, because
our use of the divided difference form for the third derivative assures continuity of
the second derivative across the boundaries.) Eliminating the first derivatives from
Equations (A.30), (A.32), (A.34), and (A.35) gives us the spline equation

Yi-i H4y/+y/.1 =D, (A.36)
with
Dl=y[yl+l _2yl+yl—l]/h2 (A37)

Note that the D, are proportional to the second differences of the tabulated data and
are all known. We can write Equation (A.36) as a set of linear equations relating the
unknown variables y”, beginning with i = 2 and ending withi = n — 1.

Yi+4y3+ y5 =D, (A.38a)
ya+4y5+y; =D, (A.38b)

Yn-3 T4y, o+ yi_y =D, , (A.38¢)

Yn2t 4y, +y.=D,_, (A.38d)

These equations can be solved for the second derivatives y/, as long as we
know the values of y| and y . One possibility is to set the second derivatives to 0 to
obtain natural splines. Alternatively, we may use the true second derivatives, if they
are known, or a numerical approximation.

For example, suppose we have only four points to consider. Then, if we know
v and y, we can solve the simultaneous Equations (A.38a) and (A.38b) for y, and
y3. Similarly, if we have a full set of n equations, we can rewrite Equation (A.38a)
to express y; = (D, — y| — ¥3)/4, and substitute this expression into Equation
(A.38b) to eliminate y%. Then, we repeat the procedure to eliminate y3 from the next
equation. We continue this procedure until we reach the last equation, which will

n

contain only terms in y’, y, _ ;, and y,. Because y| and y , are known, we can solve
this equation for y, _ ,, and then work back down the chain determining succes-
sively y% _,, ¥y’ _ 3, and so forth, until we reach Equation (A.38a) from which we
determine the last unknown y5. Once we have found the values of the y/, we can
find the y, from Equation (A.30) or (A.32), and use Equation (A.28) to interpolate
in each interval.

The solution of Equation (A.38) is discussed in several textbooks. Essentially,
one sets up recursion relations to build a table of the second derivatives y”. The

method is illustrated by the computer routines SPLIN EMAKE listed in Appendix E.
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An interesting alternative method of solving the set of simultaneous equa-
tions, Equations (A.38), is to set them up in a spreadsheet program. Then, when the
boundary values y', and y', are supplied, the program will readjust the variables un-
til they stabilize at the solutions to Equations (A.38). Although this method is not
very practical for graphical applications where we want to build the solution into
our plotting program, it does provide a quick way of finding the second derivatives
and an interesting illustration of the solution.

As with all techniques, a certain amount of care must be exercised in using
spline routines. The choice of a second derivative at the boundary may have an im-
portant effect on the interpolation at the ends of the function, and a wrong choice,
for example, can produce undesirable shapes at the edges of a plot. Then too, al-
though the spline routine assures a smooth variation between the data points, with
continuity of the function and first and second derivative across the points, it cannot
guarantee that there will be no peculiar oscillation between the points.

ProgramA.2 SPLINE INTERPOLATION (Appendix E)
SPLINEMAKE numerically calculates a table of second derivatives for a spline in-
terpolation by the method discussed in the previous paragraphs.
SPLINEINT performs the interpolation. For simplicity, we have chosen to store
only the second derivatives and to calculate the first and third derivatives as needed in
functions D1YDX 1 and D3YDX3. If speed is important, the derivatives could be
computed and stored in arrays.

A spline interpolation routine is especially useful for plotting curves on graphs.
The routine has been used to produce many of the graphs in this book.

A.5 ROOTS OF NONLINEAR EQUATIONS

Finding roots of nonlinear equations is essentially the reverse of an interpolation
problem. When we interpolate a function, our object is to find a value of the depen-
dent variable y at a specific value of the independent variable x. When we are
searching for the root of a function, we are trying to find the value of x at a particu-
lar value, usually 0, of y. However, interchanging the variables completely changes
the nature of the problem. Interpolation involves straightforward application of
well-defined equations that are independent of the form of the original function:
Finding roots of nonlinear equations may require different equations for different
problems and almost always requires some sort of a search and iteration procedure.

The diffraction of light by a single slit provides an interesting example of a
nonlinear equation. It is well known that the position of the interference maxima
and minima from double slits and diffraction gratings can be determined analyti-
cally from consideration of the phase difference between the rays that pass
through each slit, but only the minima of the diffraction pattern of a single slit can
be found in this way. To find the position of a maximum, with the exception of the
central one, we must differentiate the expression for the intensity with respect to
the phase o

3 2
=1, (S";“) with = “T“ sin 0 (A.39)
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In Equation (A.39), ], is the intensity of the light at the central maximum (6 = 0), /
is the intensity at angle 0, \ is the wavelength of the light, and a is the slit width.
The position of the maximum is given by solving

dl sin o . _
do 21, ( 0 )(a cosa —sina)=0 (A.40)

to obtain the value a, at the root of the equation
fla)=a,—tana,=0 (A.41)

The first root is at o, = 0. The other roots cannot be calculated analytically and
must be found by an iterative method. An approximate solution can be obtained by
rewriting Equation (A.41) as

o, =tan o, (A.42)

and plotting separately the left and right sides to find the intersection of the straight
line and the tangent curves. There are several mathematical ways to solve the prob-
lem, but making a plot of the function is always a good starting procedure.

Trial-and-Error: The Half-Interval Method

With a personal computer, trial-and-error may be a suitable method for solving the
occasional root finding problem. An orderly approach is advisable and the half-
interval method is convenient. The procedure is to write a little program that re-
quests a trial value of the root and calculates the function and displays its value. The
initial trial value might be obtained from a graph, or perhaps by mapping the func-
tion for various values of the independent variable x, until a reasonable estimate of
the root has been obtained. Then, a second trial x is submitted, which produces a
value of y on the other side of the root. The half-interval method begins at this point.
The procedure is to select a third trial value that is midway between the two that
bracket the root. For the fourth trial value, we use the mean of the most recent value,
and whichever of the two previous trials was on the other side of the root. The
process continues until the root is found to the desired accuracy.

This rather primitive method of root finding could be improved with a little
programming to let the program decide which root to choose, to calculate the mean,
and perform the next trial. The program could proceed in a loop until the root had
been found to a predefined degree of accuracy, or the calculation could be stopped
manually. However, if we are willing to program that little bit of logic, slightly more
effort will produce a much faster root-finding program.

Secant Methods

The gain in speed comes from using the slope of the function in the calculation. We
begin with two trial estimates of the root, x, and x, . ,, preferably, but not necessar-
ily, on either side of the root. Then we write an expression for a linear interpolation
between the two points. Equation (A.10) gives
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F) = yi + (x — ) et 2 (A43)

(xk+l = X)

where we have written y, = f(x,) and so forth. Setting f{x) = 0 and solving for x
gives us an approximation to the value of x at the root:

kxk+1_xk=xkyk+l_xk+lyk (A.44)
Ye+r1 = Vi Y1 = Yk

For the next trial, we replace x,,, or x,, by the value x found in Equation (A.44)
and repeat the calculation. The process can be repeated until the root is approxi-
mated as closely as desired. This is the first-order secant method.

There are various ways of choosing which of the previous values of x (x; or
X + 1) to keep for the next iteration. The simplest is to keep the most recent value
and discard the older value. Another way is to choose whichever is closer to the root
[i.e., gives a smaller value of f{x)]. A third is to start the process with two values that
straddle the root (i.e., give opposite signs for y, and y,) and to continue to choose
values that straddle the root after each iteration. This is the Regulo-Falsi method.

Clearly any method will find the root most quickly if the starting values are
close to the root, but, in principle, the secant methods will almost always find a root
of the function, eventually. With some functions, such as those that are antisym-
metric about the root, there is the possibility that the search by the Regulo-Falsi
method, for example, will jump back and forth across the root and never approach
it. Additionally, for functions with several roots, we may not always find the one we
want. Problems may also arise if two roots are very close together.

X=X =)

Newton-Raphson Method

Instead of calculating the slope by finite differences, as in the secant method, we
could use the tangent, or derivative of the function, if it can be calculated. Then, we
can replace Equation (A.43) by

7= o+ (x = x) L8 (a45)

where x, and y, are the values of x and f(x) after the kth iteration. We find the next es-
timate x, ., for the root, as before, by setting f(x) in Equation (A.45) to zero to obtain

Xge )l =X — Y~ %xk) (A.46)

Example A.7 Table A.3 shows steps in an iterative calculation of the second and
third roots of Equation (A.41) by the secant and Newton-Raphson methods. Starting
values were chosen by examining a plot of tan x versus x.

Simultaneous Nonlinear Equations

In the examples of alternate fitting methods in Section 6.6, we obtained two pairs
of coupled, nonlinear equations, Equations (6.24) and (6.27), which we wished to
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TABLE A.3
Determination of the first two nonzero roots of @ = tan o
First root Second root
Trial X y x y
(a) Newton’s Method}
0 4.40000 1.30368 7.70000 1.25713
1 4.53598 —-1.07376 7.73028 -0.31270
2 4.50186 -0.17769 7.72545 —0.01188
3 4.49375 —0.00679 7.72525 —0.00002
4 4.49341 —0.00001 7.72525 —0.00000
5 4.49341 —0.00000
(b) Secant Methodi

0 4.40000 1.30368 7.80000 —10.70682
0 4.50000 —0.13733 7.70000 1.25713
1 4.49047 0.05854 7.71051 0.78849
2 4.49332 0.00184 7.72819 —-0.17931
3 4.49341 —000003 7.72491 0.02025
4 4.49341 0.00000 7.72524 0.00047
5 7.72525 —0.00000

+The calculation continues without assistance after the initial trial value has been selected

$Two x, y pairs are required for each stage of the calculation. After the first trial, the most recently calculated x, y pair
was used with whichever of the two previous pairs was closer to the root.

solve for the parameters a and b. We used the secant method to solve these
equations.
Consider the two equations

fou,v)=0 and f,(u,v)=0 (A.47)
which we wish to solve for u and v. We define the first parrial divided differences,

_ Ja(u, vo) — fu(ug, vo)

Jau =fa[“0’ Vos Uy, Vo] =

U — U
Jov = falto: voi uo, vi] = Lt ‘;ll) :J;‘;(“O’ . A.48
SFou=Foluo, vo; 11, vo] = Ll ‘;31) :ibo(uo, = o
fov =Folthos Vo3 g, v, = fo(uo. v\:,) :J:)i;(“Oa Vo)

and, following Equation (A.43), write for a first-order expansion

and Sa(u, v) = fo(ug, vo) + (1 — uo)fow + (v — volfaw (A.49)

Solu, v) = fo(ug, vo) + (4 — ug)fpu + (v — vo)fis
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If we assume that f, and f, are linear in 4 and v, we can find a first approximation to
the roots by setting f,(u, v) and f,(u, v) to zero in Equation (A.49) and solving the
two coupled linear equations for u and v:

uf;zu + vf;lv - uOf;zu - vOf;w +.ﬂz(u0’ vO) =0

A.50
Ufpu + Vi = Yo fou = VoSow + [ (o, vo) = 0 ( )
Solution by the determinant method gives
u, =u=(Af,, — Bf,,)/D
and 2T (@i = Bfo) (A.51)
v, =v = (Bfoy = Afou)/D
with

D =f;zu.ﬁ)v _f;zv bu
A = —ugfo, — Vofar T fu(tho, Vo) (A.52)
B = —ug fpu = VoS + fo(o, vo)

We then repeat the procedure with coordinate pairs (&, v,) and (u,, v,), to obtain the
next approximation, until the roots have been found to the desired degree of accuracy.

A.6 DATA SMOOTHING

The concept of smoothing is not one that meets with universal approval. The dis-
cussion that follows should be considered with one caveat: For rigorously valid
least-squares fitting, smoothing is neither desirable nor permissible; however, there
are cases where smoothing can be beneficial, and, therefore, the techniques are
introduced.

Consider, for example, the discussion of Section 9.2 of the determination of
the area under a peak from a least-squares fit to a histogram of the data. Least-
squares fitting techniques applied to data that are distributed according to Poisson
distributions, rather than Gaussian distributions, underestimate the area of a peak by
an amount equal to the value of x2. We have seen that we can improve the result by
decreasing the value of ? at its minimum. Similarly, if the shape of the fitting func-
tion does not exactly simulate that of the parent distribution, a better fit to the data
by decreasing x? can yield an improved estimate of the area under a peak.

Another example that might benefit from application of a smoothing algo-
rithm is the parameterization of data for use in a Monte Carlo or other program. In
preparing experimental proposals, it is often necessary to estimate yields and distri-
butions based on currently available data. Such data are often sparse and generally
must be expressed in parametric form for ease and speed of use in the Monte Carlo
simulation program. Smoothing can be useful to average out fluctuations and allow
the data to be expressed with a few parameters by a least-squares fit or an interpo-
lation procedure.

In other words, if rigorously valid results are not required, but rather an aver-
aged estimate of the distribution, smoothing may help obtain more reliable esti-
mates. The improvement in the estimate of one parameter must, of course, be
accompanied by a decrease in information of some other parameter or parameters.
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For example, an improved estimate of the area under a peak would be accompanied
by an increased uncertainty in the estimates of the width and position of the peak.

Whatever smoothing or other manipulation is done must conserve the infor-
mation pertaining to the desired parameters. The averaging techniques that we shall
discuss, for example, conserve the area under a peak but not the width of the peak
Similarly, this method would be useful for improving the estimate of the constant
term of a polynomial but not the coefficients of the other terms.

Data smoothing is similar to the data “smearing” introduced in Chapter 5 to
simulate measuring uncertainties in “measurements” generated by a Monte Carlo
program. In the Monte Carlo program we used Gaussian smearing; that is, we al-
lowed each event a Gaussian probability distribution about its mean.

In this section, we are dealing with binned data, and thus, for Gaussian
smoothing, could consider a Gaussian integration that spreads each event over ad-
jacent bins. Because our object here is to smooth the data, we are at liberty to
choose the width of the smearing function to produce the desired degree of unifor-
mity in the data, limited by the requirement that we do not damage the very variable
we are trying to study.

The binomial distribution is a useful smoothing function. Suppose we want to
smooth low statistics experimental data that follow a Gaussian peak in a way that
preserves the area under the peak. Let us assume that the background slope is gen-
tle enough that smoothing will not affect its determination drastically.

We can approximate the Gaussian peak with a binomial distribution with p = %2

(see Section 2.1):
1 x—wy (1) n!
-1/2 ~ =] —
oV2m ¢ ( o ) <2) X!(n — X)! (A-53)

We can relate the widths o and the means of the two distributions

c3=np(l —p)=n/d=c> X=np=n/2 x=pu (A54)

y(x)=

to find the relationships among the parameters
n=40? X=x—w+n/2=x—pn+20? (A.55)

We can then express the binomial distribution of Equation (A.53) as

1Y n!
yx) = (5) (n/2 + x — wW)(n/2 —x + ) (A-56)

Let us smooth the data by averaging over adjacent channels with a binomial
distribution spanning three channels:

y'(x)=1/4y(x — 1)+ 1/2y(x) + 1 /4y(x + 1) (A.57)

If we fold this averaging into the distribution of Equation (A.53), the result is also

binomial:
L [1\n2 (n+2)!
Y= (2) (n/2+1+x—p)(n/2+1—x+ ) (A.58)
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The new distribution has the same mean x = w but a larger width 6’2 = n'/4 =
(n + 2)/4 with the variance increased by V4:

g?2=¢%+ 12 (A.59)

Similarly, we could smooth over five channels by using a formula similar to
Equation (A.57) but with five terms with coefficients given by the binomial expansion

y"(x) = 1/16y(x — 2) + 1/4y(x — 1) + 3/8y(x)

+ 1/4y(x + 1)+ 1/16y(x + 2) (A.60)

A five-channel smoothing is identical to two successive smoothings over three
channels and yields a variance that is increased accordingly, ¢”? = o2 + 1. Any
such smoothings over 2n + 1 adjacent channels is equivalent to » smoothings over
three channels.

If we apply the smoothing of Equation (A.57) to a Gaussian distribution, the
resulting distribution will also be nearly Gaussian because the shapes of the bino-
mial and Gaussian distributions are nearly alike. In fact, if we are applying the
smoothing because the original shape is not Gaussian enough, the averaging may
make the shape more nearly Gaussian. If we apply binomial smoothing to a distrib-
ution that is not Gaussian, we should be aware that we are distorting the shape of the
peak and making it more Gaussian.

If the width of the original Gaussian is not too small (o > 1), the increase of
Equation (A.59) should not be drastic because the addition is in quadrature. For a
width o = 2, for example, the new width o’ = 2 is only 5% larger. If the original
width is very small (o < 1), the approximation of Equation (A.53) is not valid be-
cause the Gaussian and binomial distributions are only similar in the limits of large
n. A Gaussian fit to the data without smoothing would not be valid either, however,
because the parameters of the fit are only meaningful if o = 1. Because the averag-
ing itself is a binomial distribution, the result is still expected to be a better approx-
imation to a Gaussian distribution than the original data. For a smoothing over three
channels, a Gaussian fit requires o = \/1/2 for the original data.
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B

MATRICES

B.1 DETERMINANTS

In applying the method of least squares to both linear and nonlinear functions, we
required the solution of a set of » simultaneous equations in » unknowns g, similar
to the following:

i=a Xy taX,taXg;
Y2=a,Xy ta, Xy +a3Xn (B.1)
y3=a; X3 +a, X5 + a3 Xs;

where the constants y, and X, are known quantities calculated from the data.

The symmetry of the right-hand side suggests that we write elements of the
equations in a two-dimensional array

X X X
a=|Xy Xpn Xn (B.2)
Xy X3 Xy

and separate the other terms and coefficients into one-dimensional arrays.

a; i
a=|a, and B=|y (B.3)
as; Y3

Such arrays are called matrices, and we can write Equations (B.1) in matrix
form as

B=a-a (B.4)
238
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Alternatively, because in our problems the matrix « is always symmetric, that is, the
element o, is equal to the element o, we can write the matrices a and B as row
matrices

a=[a; a, a] and  b=[y; ¥, yi] (B.5)
and express Equation (B.1) as
B=a « (B.6)

We shall be concerned primarily with linear one-dimensional matrices and
with symmetric square two-dimensional matrices that have the same number of
rows and columns and are mirror-symmetric about the diagonal. Consider a square
matrix A:

- -
Ay Ay o Ay o Ay,
Ay Ay - Ay o Ay

n

A= . : : : . . B.7
A ®7)

n

Anl An2 Ank o A

- nn_|

The degree of the matrix A is the number » of rows and columns; the jkth el-
ement (or component) of the matrix is A; the diagonal terms are A,,. If the matrix is
diagonally symmetric, Ay = A,, and there are n? elements but only n(n + 1)/2 dif-
ferent elements.

Matrix Algebra

If A and B are two square symmetric matrices of degree n, then their sum S is a
square symmetric matrix of degree » with elements that are the sums of the corre-
sponding elements of the two matrices

A + B = S Slk =Ajk + B_]k (B8)

The product P of the matrices A and B is a square matrix of degree n, with el-
ements determined in the following way:

AB=P P,=>(A,,B.) (B.9)
m=1

The elements of the jth row of A are multiplied by the elements of the kth column
of B and the products are summed to obtain the jkth element of P. In general, the
matrix P will not be symmetric.

If a is a linear one-dimensional matrix, the product of A and a is only well de-
fined if the product is taken in a particular order. If a is a column matrix, it must be
multiplied on the left by the square matrix to yield another column matrix c:
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Ay oo AlnT alT C:I
Ajl e Ajk e Ajn ak = Ck Cj :kE (Ajkak) (B.IO)
: : : : : =1
L14'11 ves e Ann_ Lan_ Lcn—

If a is a row matrix, it must multiply the square matrix on the left to yield another
row matrix r.

A AL
[al oa an] A!l A/k 14;”1
LAnl ‘e Ann_

J=1
The product of two linear matrices depends on the order of multiplication. The
product of a row matrix a times a column matrix b is a scalar. If the order is re-
versed, the result is a square matrix that is diagonal; that is, for which only the di-
agonal terms are nonzero:

b, .
[al an] =2(ajbj)
b,| 7!
[ ab, 0 0|
b, : Do :
s lle; o oa))={ 0O - ab - 0 (B.12)
bn . :
0 0 a,b,

Determinants

The determinant of a square matrix is defined in terms of its algebra. The order of
the determinant of a square matrix is equal to the degree » of the matrix. In this sec-
tion, we shall mainly use determinants of order 3 as examples, although, unless oth-
erwise specified, the comments apply to matrices of all orders. Manipulation of the
rows may be substituted for columns throughout.

1. The determinant of the uniry matrix is 1 where the unity matrix is defined as the
diagonal matrix with all diagonal elements equal to 1:

100
|1|=[0 1 o|=1 (B.13)
001
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. If a column matrix of degree n is added to one column of a square matrix of de-
gree n, the determinant of the result is the sum of the determinant of the origi-
nal square matrix plus that of another square matrix obtained by substituting the
column matrix for the modified column:

Ay ta Ap Ap Ay Ap A a; Ap Ap
Ay tay, Ay Ap|=|(Ay Ay Apltlay Ay Aj (B.14)
Ay tay Ay Ayl |Ay Ay Ayl |as Ay Ass

. If one column of a square matrix is multiplied by a scalar, the determinant of
the result is the product of the scalar and the determinant of the original matrix:

CA;p A Ap Ay Ap Ap
CAy; Ay Ap|=clAy Ap Ap (B.15)
CA3; Ay Aj Ay Aj Aj

. If two columns of a square matrix are interchanged, the determinant retains the
same magnitude but changes sign:

Ap Ay Ap Ay Ap Ap
Ay Ay An|=—|Ay Ap An (B.16)
Ay Ay Ay A3 Ay As
. The minor A’* of an element A 1« Of @ square matrix of degree » is defined as the

determinant of the square matrix of degree n — 1 formed by removing the jth
row and the kth column:

All A12 A13 A A
A=|A, A, Ap|l AV = A“ A” (B.17)
Ay Ay Ay S

. The cofactor cof(A,) of an element A, of a square matrix of degree # is defined
as the product of the minor and a phase factor:

cOf(A,) = (— 1)/ +kAsk (B.18)

. With the preceding definitions 5 and 6, the determinant of a square matrix of
degree n can be expressed in terms of cofactors of minors:

n

A= 3 [Acof (A,0]= 3 [(— 144, A% (B.19)
k I k=1

Equation (B.19) is an iterative definition, because the cofactor is itself a deter-

minant. The determinant of a matrix of degree 1, however, is equal to the single

element of that matrix. The determinant of a square matrix of degree 2 is en-

countered often enough to make its explicit formula useful:

a b
c d

and we can evaluate the determinant of a third-order matrix with the help of
Equation (B.19):

=ad — bc (B.20)
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All A12 Al3
Ay A Ay A
Ay Ay Anl=A4,2 " PI-Ap A A +Ap[ 2 P B21)
A31 A32 A33 A32 A33 A3l A33 A31 A32
Computation

Matrix computation is generally simpler if we can manipulate matrices into diago-
nal form in which only the diagonal elements A, are nonzero. The determinant of a
diagonal matrix is equal to the product of all the diagonal elements and the rrace is
their sum:

|Auw|= 1 4, (B.22)

If we combine rules 2, 3, and 4 of the algebra for determinants, we can show
that the determinant of a matrix is unchanged if the elements of any column, multi-
plied by an arbitrary scalar, are added to the elements of any other column. The de-
terminant of the sum is equal to the sum of the two determinants, but one of these
determinants has two identical columns except for a scalar factor that may be ex-
tracted, and is therefore equal to 0:

Ap+cAp Ap Al |An A Ap A, Ap Ap
Ay + Ay Ay Ap|= Ay Ay Ap|tclAy Ay Aj (B.23)
Ay + CAs, Ay Ayl Ay Ap Agy Ay Ay Ajp
=|A|
Thus, it is possible to eliminate all elements except one from a row by suc-

cessively subtracting one column, appropriately scaled, from each of the others. For
example, if we perform the subtraction

A

A=A —A, A—“ (B.24)
11

on each row except the first, we eliminate all elements of the first column except A,
to obtain

AlI AIZ AI3
A=|0 A, A, (B.25)
0 Ay Ay

Similarly, if we subsequently start with element A3, and subtract an appropri-
ately scaled second row from the rest of the rows,

','k = ;k - '2kA,'k/A'22 (B.26)
all the elements of the second column vanish except A;,:
Ay 0 Aj
A"=10 Ay AL (B.27)

0 0 A%
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Note that A7, is not the original value A,,, but is modified as a result of the first
subtraction.

By successively subtracting rows (or columns) scaled to their diagonal ele-
ments, we can produce a matrix that is diagonal. In practice, it is sufficient to elim-
inate only half of the nondiagonal elements so that all elements on one side of a
diagonal are O:

Ay 00 Ay Ap Ap|l |[Ap 00
A=Ay Ap 0[=|0 Ay Aj|=|0 Ap 0
Ay Ay As 0 0 Ay 0 0 Ay

B.28
= A1 ApAi; ( )

B.2 SOLUTION OF SIMULTANEOUS
EQUATIONS BY DETERMINANTS

Consider the following set of three equations in three coefficients a,, a,, and a;. We
shall consider the y, and X, to be known quantities; that is, constants:

i=a X+ aX;, +azXps
Y2 = a1 Xy + a, Xz + a3 Xy (B.29)
V3= a1X3; + a, X5, + a3 X33

Let us consider the set of equations as if they were one matrix equation as in
Equation (B.10):

bA X X X || a
2 |=| X Xn Xn||a (B.30)
V3 X3 X3 Xl as

with a and y represented by linear matrices and X represented by a square matrix. If
we multiply the first equation of Equations (B.29) by the cofactor of X;; in the ma-
trix of Equation (B.30), multiply the second equation by the cofactor of X,;, and
multiply the third by the cofactor of X;,, then the sum of the three equations is an
equation involving determinants according to Equation (B.18):

yi X Xi3 X X X3 X2 Xip X3
Y2 Xpn Xp|=a;|Xy Xy Xn|tay|Xy Xn Xxn
Y3 X3 Xn X31 X3 Xi X X Xy
X3 Xip X3
+a3| Xy Xy Xos (B.31)
X33 X3 Xi

The determinants in the two rightmost terms of Equation (B.31) both vanish
because they have two columns that are identical. Thus, the solution for the coeffi-
cient g, is the ratio of the two determinants:
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yi X Xi3
Y2 Xp Xn
y3 X3 X337
X X X
Xn Xn X
X3 X3 Xi;

(B.32)

The denominator is the determinant of the square matrix X of Equation (B.30) and
the numerator is the determinant of a matrix that is formed by substituting the col-
umn matrix y for the first column of the X matrix.

Similarly, Cramér’s rule gives the solution for the jth coefficient a, of a set of
n simultaneous equations as the ratio of two determinants:

g =" (B.33)

The denominator is the determinant of the X matrix. The numerator |X’( j)| is the
determinant of the matrix formed by substituting the y matrix for the jth column.

A matrix is singular if its determinant is 0. If the X matrix is singular, there is
no solution for Equation (B.33). For example, if two of the » simultaneous equa-
tions are identical, except for a scale factor, there are really only » — 1 independent
simultaneous equations, and therefore no solution for the » unknowns. In this case,
the X matrix has two identical rows and therefore a 0 determinant.

Solution by Matrix Equations

Let us consider Equation (B.33) as if it were a matrix equation as in Equation
(B.30). If the X matrix is square, we can consider the y and a linear matrices as ei-
ther column matrices as in Equation (B.10) or row matrices as in Equation (B.11):

[y = [a,][Xy] (B.34)

If we could multiply this matrix by another matrix X’ such that the right-hand side
becomes just the linear matrix a, then we will have our solution for the coefficients
a, directly. The multiplication of matrices is associative; that is,

A(BC) = (AB)C (B.35)

Therefore, we require a matrix X' such that if it is multiplied by the matrix X, the
result is the unity matrix:

[Xyl[X]=1 (B.36)

The matrix X' that satisfies Equation (B.36) is called the inverse matrix X!
of X. Equation (B.34) multiplied from the right by X! gives the coefficients a, ex-
plicitly, because any matrix is unchanged when multiplied by the unity matrix:
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[yk] [Xjk]_l = [a]]l = [aj] (B37)

We can express Equation (B.37) in more conventional form to give the solution for
each of the coefficients a;:

2 (X3, (B.38)

Thus, the solution for the » unknowns with » simultaneous equations is reduced to
evaluating the elements of the inverse matrix X!

B.3 MATRIX INVERSION

The adjoint A" of a matrix A is defined as the matrix obtained by substituting for
each element A, the cofactor of the transposed element A,;:

A;k = COf(Ak]) (B.39)

For a square symmetric matrix, the transposition makes no difference.
The inverse matrix A~' defined in Equation (B.36) may be evaluated by di-
viding the adjoint matrix A" by the determinant of A:
Ay = (B.40)
F Tl '
|Tolshow that this equality holds, we multiply both sides of Equation (B.40) by
AlA.

|A|[AA™T =|A|1 = AA! (BA41)

Diagonal terms of the matrices in Equation (B.41) are equivalent to the formula of
Equation (B.19) for evaluating the determinant:

n

|A| >j:4 JkAJk 2[ 1.COf ( ]k) (B.42)

Off-diagonal elements can be shown to vanish like those of the determinants of
Equation (B.31). If the matrix A is singular (that is, if |A| = (), the inverse matrix
A~! does not exist and there is no solution to the matrix equation of Equation
(B.34).

Gauss-Jordan Elimination

The formula of Equation (B.40) is generally too cumbersome for use in computing
the inverse of a matrix. Instead, the Gauss-Jordan method of elimination is used to
invert a matrix by building up the inverse matrix from a unity matrix while reduc-
ing the original matrix to unity.

Consider the inverse matrix A~! as the ratio of the unity matrix divided by the
original matrix, A~! = 1/A. If we manipulate the numerator and denominator of this
ratio in the same manner (multiplying rows or columns by the same constant factor
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and adding the same rows scaled to the same constants), the ratio remains unchanged.
If we perform the proper manipulation, we can change the denominator into the unity
matrix; the numerator must then become equal to the inverse matrix A~

Let us write the 3 X 3 matrix A and the 3 X 3 unity matrix side by side and
manipulate both to reduce the matrix A to the unity matrix. We start by using the
formula of Equation (B.24) to eliminate the two off-diagonal elements of the first
column:

Ay Ay Ay 010
A, Ap As | [ 1 o o]
A A A
Ap—A, 2 Apy—A,-2 —=2 .
0 Ap g AnT A a, 10 (B.43)
A31 A31 A2I
Ay —Ap =2 Ay —A,=2 —=a
O 32 12A“ 33 13A11 i A” 0 1
Now, we divide the first row by A, to get a diagonal element of
1 Ap A | 1 0o
All All All
A A, Anl| Ay
0 Ay A12A” Ay ABA” A, 1 0 (B.44)
A31 A31 A2|
— 21 A — 21 —_—!
0 A3 Alen 33 A13All A, 01

The left matrix now has the proper first column. Let us relabel the matrices B
(on the left) and B’ (on the right) and perform the corresponding manipulations to
obtain zeros in place of B;, and Bs,, and then divide the second row by B,,:

By, B, Bn .|
B 1 ? — ? 1 e V'
1 O Bl3 23B22 11 B2l B22 B22 0
By, B, 1
0 —= —= — 0 (B.45)
B22 322 BZZ
B B B
0 0 By—Byp”||By—Bug> —p° |

After similar manipulation of the third column, the matrix on the left becomes the
unity matrix and that on the right, therefore, must be the inverse matrix.

For computational purposes, even this method is somewhat inefficient in that
two matrices must be manipulated throughout. Note, however, that at each stage of
the reduction, there are only n (or three) useful columns of information in the two
matrices. As each column is eliminated from the left matrix, the corresponding col-
umn is accumulated on the right.

Therefore, we can combine the manipulation into the range of a single matrix.
We start with the matrix A and use the formula of Equation (B.24) as for Equation
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(B.43), but instead of applying this formula to the first column, we divide the first
column by —A,, to get the first column on the right of Equation (B.43); the diago-
nal element must be divided twice to become 1/A;;. Divide the rest of the first row
by A,; to get the composite of the two matrices of Equation (B.44):

R A
A” A“ A“
AZI A3l A31
—= A Ap,— A A—=
L A” 32 12 A” 33 13 A“_

A corresponding manipulation of the second column yields a matrix with the
first two columns identical to those of the right side of Equation (B.45) whereas the
last column is identical to that of the left side of Equation (B.45). Thus the inverse
matrix is accumulated in the space vacated by the original matrix.

Computer Routine PROGRAM B.1 MATRIX (WEBSITE) includes two
routines, MATINV and LINEARBYSQUARE. MATINYV inverts a square ma-
trix and calculates its determinant, substituting the inverted matrix into the same array
as the original matrix.! Input variables are ARRAY, the matrix to be inverted, and
NORDER, the order of its determinant.

The initial program loop iterates through the n columns of the matrix, reorga-
nizing the matrix to get the largest element in the diagonal in order to reduce rounding
errors and improve computational precision. The inversion procedure discussed above
is then carried out and the determinant D ET of the matrix is calculated from the diag-
onalized matrix. After inversion, the inverted matrix is stored back in ARRAY and the
variable DET, the value of the determinant of the original matrix, is returned.

LINEARBYSQUARE multiplies a linear matrix (on the right) by a square
matrix (on the left). For example, see Equation (B.30).

'The subroutine MATI NV follows the procedure of the subroutine MINV of the IBM System/360 Sci-
entific Subroutine Package.



APPENDIX

C

GRAPHS
AND
TABLES

he tables and graphs in this appendix are provided for easy reference. Computer

routines for calculating several of the distributions and probability functions are
listed in Appendix E. Routines are also available on the website for calculating
probabilities.

C.1 GAUSSIAN PROBABILITY
DISTRIBUTION

The probability density function p;(x; ., o) for the Gaussian or normal error distri-
bution is given by

pe(x; p, 0)= 0\}% exp [__;_ <x ; M)z]

If measurements of a quantity x are distributed in this manner around a mean p. with
standard deviation o, the probability dP; (x; w, o) for observing a value of x, within
an infinitesimally small interval dx, in a random sample measurement is given by

dPs(x: w, @) = pg(x; W, 0) dx

Values of the probability density function pg (x; w, o) are tabulated in Table
C.1 as a function of the dimensionless deviation

z=|x—nl|/o
248



TABLE C.1
Gaussian probability density distribution. The Gaussian or normal error
distribution p;(x; p, o) versusz = Ix — pl/o

Po(%,44,0)

5 Rpm—m—-—

F4 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 039894 039892 039886 039876 039862 039844 039822 039797 039767 039733
01 039695 039654 039608 039559 039505 039448 039387 039322 039253 039181
02 039104 039024 038940 038853 038762 038667 038568 038466 038361 038251
03 038139 038023 037903 0.37780 037654 037524 037391 037255 037115 036973
0.4 036827 036678 036526 036371 0.36213 036053 035889 035723 035553 035381
05 035207 035029 034849 034667 034482 034294 034105 033912 033718 033521
06 033322 033121 0.32918 032713 032506 032297 032086 031874 031659 031443
07 031225 031006 030785 030563 030339 030114 029887 0.29659 029431 029200
08 028969 028737 028504 028269 0.28034 0.27799 027562 027324 027086 026848
09 026609 026369 026129 025888 025647 025406 025164 024923 024681 024439
10 024197 023995 023713 023471 023230 022988 022747 022506 022266 022025
11 021785 021546 021307 021069 020831 020594 0.20357 020122 019887 019652
12 019419 019186 0.18955 018724 018494 018265 018038 017811 017585 017361
13 017137 016915 016694 016475 016256 016039 015823 015609 015395 015184
14 014973 014764 014557 014351 014147 013944 013742 013543 013344 013148
15 012952 0.12759 0.12567 012377 012189 012002 011816 0.11633 011451 0.11271
16 011093 010916 010741 010568 010397 0.10227 010059 009893 009729 009567
17 009406 0.09247 00990 008934 008780 008629 008478 008330 008184 008039
18 00789 007755 007615 007477 007342 007207 007075 006944 0.06815 006688
1.9 006562 006439 006316 006196 006077 005960 005845 005731 005619 005509
20 005400 005293 005187 005083 004981 004880 0.04781 004683 004587 004492
21 004399 004307 004217 0041290 004041 003956 003871 003788 003707 003627
22 003548 003471 003395 003320 003247 003175 003104 003034 002966 002899
23 002833 002769 002705 0.02643 0.02582 002522 002464 002406 002350 002294
24 002240 002187 0.02135 002083 002033 001984 001936 001889 001843 001798
25 001753 001710 001667 001626 001585 001545 001506 001468 001431 001394
26 001359 001324 001290 001256 001224 001192 001160 001130 001100 001071
27 001042 001015 000987 000961 000935 000910 000885 000861 000837 000814
28 000792 000770 000749 000728 000707 000688 000668 000649 000631 000613
29 000595 000578 0.00562 000546 000530 000514 000500 000485 000471 000457

0.00 0.10 0.20 0.30 0.40
30 00044318 00032668 00023841 00017226 00012322
35 000087269 000061191 000042479 0.00029195 000019866
40 000013383 0 000089264 0000058945 0000038536 0000024943
45 0000015984 0000010141 0.0000063701 00000039615 00000024391
50 00000014868 0 00000089730 0 00000053614 000000031716 0 00000018575
55 000000010771 0 00000006183 0 00000003514 000000001978 000000001102

249



250 Data Reduction and Error Analysis for the Physical Sciences

0.4 = = =

T

1T

Il
I

02

01

il

1

Probability p_ (+;, i, )

002

001

T
1l

Il

il

| === —— o —F 1 ;= ¥ T t
1 —+ 1 % o 1 I = ; o I
=1 = —— = S+ =% —— =

0.005 E==
0.0 1.0 20

FIGURE C.1
Gaussian probability density distribution, p;(x; w, o) versus z = lx — pl/o

for z ranging from 0.0 to 3.0 in increments of 0.01 and up to 5.9 in increments
of 0.1. This function is graphed on a semi-logarithmic scale as a function of z in

Figure C.1.

C.2 INTEGRAL OF GAUSSIAN
DISTRIBUTION

The integral Pg(x; w, o) of the probability density function ps(x; w, o) for the
Gaussian or normal error distribution is given by

1 (wtw 1fx—pV
Ps(x; p,0)= . 211.L_wexp [—-2-( . l‘*) ]dx

with

_|x—n
ag

Z



TABLE C.2

|
' pe(x.u0)

U-20 p p+z0

X

Integral of Gaussian distribution. The integral of the Gaussian probability
density distribution. P;(x; p, o) versusz = |x — pl/o

b4 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
00 0.0 0.00798 0.01596 0.02393 0.03191 0.03988 0.04784 0.05581 0.06376 0.07171
0.1 0.07966 0.08759 0.09552 0.10343 0.11134 0.11924 0.12712 0.13499 0.14285 0.15069
02 0.15852 0.16633 0.17413 0.18191 0.18967 0.19741 0.20514 0.21284 0.22052 0.22818
03 023582 0.24344 0.25103 0.25860 0.26614 0.27366 0.28115 0.28862 0.29605 0.30346
04 031084 0.31819 0.32551 0.33280 0.34006 0.34729 0.35448 036164 0.36877 0.37587
0.5 0.38292 0.38995 0.39694 0.40389 0.41080 0.41768 0.42452 0.43132 0.43809 0.44481
0.6 045149 045814 0.46474 047131 0.47783 0.48431 0.49075 0.49714 0.50350 0.50981
0.7 051607 0.52230 0.52847 0.53461 0.54070 0.54674 0.55274 0.55870 0.56461 0.57047
08 0.57629 0.58206 0.58778 0.59346 0.59909 0.60467 0.61021 0.61570 0.62114 0.62653
09 0.63188 0.63718 0.64243 0.64763 0.65278 0.65789 0.66294 0.66795 0.67291 0.67783
1.0 0.68269 0.68750 0.69227 0.69699 0.70166 0.70628 0.71085 0.71538 0.71985 0.72428
1.1 0.72866 0.73300 0.73728 0.74152 0.74571 0.74985 0.75395 0.75799 0.76199 0.76595
1.2 0.76985 0.77371 0.77753 0.78130 0.78502 0.78869 0.79232 0.79591 0.79945 0.80294
1.3 0.80639 0.80980 0.81316 0.81647 0.81975 0.82298 0.82616 0.82930 0.83240 0.83546
1.4 0.83848 0.84145 0.84438 0.84727 0.85012 0.85293 0.85570 0.85843 0.86112 0.86377
1.5 0.86638 0.86805 0.87148 0.87397 0.87643 0.87885 0.88123 0.88358 0.88588 0.88816
1.6 0.89039 0.89259 0.89476 0.89689 0.89898 0.90105 0.90308 0.90507 0.90703 0.90896
1.7 0.91086 0.91272 0.91456 0.91636 091813 0.91987 0.92158 0.92326 0.92491 0.92654
1.8 092813 0.92969 0.93123 0.93274 0.93422 0.93568 0.93711 0.93851 0.93988 0.94123
1.9 0.94256 0.94386 0.94513 0.94638 0.94761 0.94882 0.95000 0.95115 0.95229 0.95340
2.0 0.95449 0.95556 0.95661 0.95764 0.95864 0.95963 0.96059 0.96154 0.96247 0.96338
2.1 096426 096513 0.96599 0.96682 0.96764 0.96844 0.96922 0.96999 0.97074 0.97147
22 097219 0.97289 0.97358 0.97425 0.97490 0.97555 0.97617 0.97679 0.97739 0.97797
23 0.97855 097911 0.97965 0.98019 0.98071 0.98122 0.98172 0.98221 0.98268 0.98315
2.4 098360 098404 0.98448 0.98490 0.98531 0.98571 0.98610 0.98648 0.98686 0.98722
2.5 0.98758 0.98792 0.98826 0.98859 0.98891 0.98922 0.98953 0.98983 0.99012 0.99040
2.6 0.99067 0.99094 0.99120 0.99146 0.99171 0.99195 0.99218 0.99241 0.99264 0.99285
27 099306 099327 0.99347 0.99366 0.99385 0.99404 0.99422 0.99439 0.99456 0.99473
2.8 0.99489 0.99504 0.99520 0.99534 0.99549 0.99563 0.99576 0.99589 0.99602 0.99615
29 0.99627 0.99638 0.99650 0.99661 0.99672 0.99682 0.99692 0.99702 0.99712 0.99721

0.00 0.10 0.20 0.30 0.40
3.0 0.9973002 0.9980648 0.9986257 0.99903315 0.99932614
35 0.99953474 0.99968178 0.99978440 0.99985530 0.999903805
4.0 0.999936656 0.999958684 0.999973308 0.999982920 0.999989174
4.5 0.9999932043 0.9999957748 0.9999973982 0.9999984132 0.99999904149
5.0 0.99999942657 0.99999966024 0.99999980061 0.99999988410 0.99999993327
5.5 0.99999996193 0.99999997847 0.99999998793 0.99999999328 0.99999999627
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FIGURE C.2

Integral of the Gaussian probability density distribution, ps(x; W, o) versus z = lx — ul/o

If measurements of the quantity x are distributed according to the Gaussian distrib-
ution around a mean p with standard deviation o, Pg(x; w, o) is equal to the prob-
ability for observing a value of x in a random sample measurement that is between
m — zo and p + zo; that is, it is the probability that Ix — pl < zo.

Values of the integral Ps(x; u, o) are tabulated in Table C.2 as a function of z,
for z ranging from 0.0 to 3.0 in increments of 0.01 and up to 5.9 in increments of
0.1. This function is graphed on a probability scale as a function of z in Figure C.2.

A related function is the error function erf Z:

1 (2
erf Z= 7—;[_ e ¥dz= R;(z\/i; 0, 1)

z

The function that is tabulated and graphed is the shaded area between the limits
i * zo as indicated.

C.3 LINEAR-CORRELATION
COEFFICIENT

The probability distribution p,(r, v) for the linear-correlation coefficient r for v
degrees of freedom is given by
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1 T[v+1)2)
pr(r’ v) - \/; F(v/2)

1- rz)(v—z)/z

The probability of observing a value of the correlation coefficient larger than r for
a random sample of N observations with v degrees of freedom is the integral of this
probability P.(r; N):

1
(1 -x2)0~D2g  y=N-2

rl

B(r:N)=

1 T[v+ 1)/2]J
\/; F(V/Z) |

If two variables of a parent population are uncorrelated, the probability that a
random sample of N observations will yield a correlation coefficient for those two
variables greater in magnitude than |7 is given by P (r; N).

Values of the coefficient |rIcorresponding to various values of the probability
P.(r; N) are tabulated in Table C.3 for N ranging from 3 to 100, and values of
P (r; N) ranging from 0.001 to 0.5. The functional dependence of r corresponding
to representative values of P.(r, N) is graphed on a semi-logarithmic scale as a
smooth variation with the number of observations N in Figure C.3.

The function that is tabulated and graphed is the shaded area under the tails of
the probability curve for values larger than |7 as indicated.

C.4 x2DISTRIBUTION
The probability density distribution p,(x?; v) for x* is given by

1

20 )Y = ——— (2)(v-2)/2,-x¥/2
PX(X s v) ZV/ZF(V/Z) (X ) e

The probability of observing a value of x? that is larger than a particular value for a
random sample of N observations with v degrees of freedom is the integral of this
probability P,(x?; v):

1 oo
20 )\ = — 2\(v=-2)/2 ,-x¥/2 2
PX(X ’ V) ZV/ZF(V/Z)JXZ(X ) e d(x )

Values of the reduced chi-square x2 = x*/v corresponding to various values of
the integral probability P,(x?; v) of exceeding x? in a measurement with v degrees
of freedom are tabulated in Table C.4 for v ranging from 1 to 200. The functional
dependence of P,(x? v) corresponding to representative values of v is graphed in
Figure C.4 as a smooth variation with the reduced chi-square x2.

The function that is tabulated and graphed is the shaded area under the tail of
the probability curve for values larger than x? as indicated.



TABLE C.3

p(x,v)

—r

% Of—ec—e—e=}—

Linear-correlation coefficient. The linear-correlation coefficient r versus the

number of observations N and the corresponding probability P.(r; N) of

exceeding r in a random sample of observations taken from an uncorrelated
parent population (p = 0)

P

N 0.50 0.20 0.10 0.050 0.020 0.010 0.005 0.002 0.001
30707 0.951 0.988 0.997 1.000 1.000 1.000 1.000 1.000
4 0.500 0.800 0.900 0.950 0.980 0.990 0.995 0.998 0.999
5 0.404 0.687 0.805 0.878 0934 0.959 0.974 0.986 0.991
6 0347 0.608 0.729 0.811 0.882 0.917 0.942 0.963 0.974
7 0309 0.551 0.669 0.754 0.833 0.875 0.906 0.935 0.951
8 0.281 0.507 0.621 0.707 0.789 0.834 0.870 0.905 0.925
9 0260 0.472 0.582 0.666 0.750 0.798 0.836 0.875 0.898
10 0.242 0.443 0.549 0.632 0.715 0.765 0.805 0.847 0.872
11 0.228 0419 0.521 0.602 0.685 0.735 0.776 0.820 0.847
12 0216 0.398 0.497 0.576 0.658 0.708 0.750 0.795 0.823
13 0.206 0.380 0.476 0.553 0.634 0.684 0.726 0.772 0.801
14 0.197 0.365 0.458 0.532 0.612 0.661 0.703 0.750 0.780
15 0.189 0.351 0.441 0.514 0.592 0.641 0.683 0.730 0.760
16  0.182 0.338 0.426 0.497 0.574 0.623 0.664 0.711 0.742
17 0.176 0.327 0412 0.482 0.558 0.606 0.647 0.694 0.725
18 0.170 0.317 0.400 0.468 0.543 0.590 0.631 0.678 0.708
19  0.165 0.308 0.389 0.456 0.529 0.575 0.616 0.662 0.693
20 0.160 0.299 0.378 0.444 0.516 0.561 0.602 0.648 0.679
22 0.152 0.284 0.360 0.423 0.492 0.537 0.576 0.622 0.652
24 0.145 0.271 0.344 0.404 0472 0.515 0.554 0.599 0.629
26 0.138 0.260 0.330 0.388 0.453 0.496 0.534 0.578 0.607
28 0.133 0.250 0.317 0.374 0.437 0.479 0.515 0.559 0.588
30 0.128 0.241 0.306 0.361 0.423 0.463 0.499 0.541 0.570
32 0.124 0.233 0.296 0.349 0.409 0.449 0.484 0.526 0.554
34 0120 0.225 0.287 0.339 0.397 0.436 0.470 0.511 0.539
36 0.116 0.219 0.279 0.329 0.386 0.424 0.458 0.498 0.525
38 0.113 0.213 0.271 0.320 0.376 0.413 0.446 0.486 0.513
40 0110 0.207 0.264 0.312 0.367 0.403 0.435 0474 0.501
42 0.107 0.202 0.257 0.304 0.358 0.393 0.425 0.463 0.490
4  0.104 0.197 0.251 0.297 0.350 0.384 0416 0.453 0.479
46  0.102 0.192 0.246 0.291 0.342 0.376 0.407 0.444 0.469
48 0.100 0.188 0.240 0.285 0.335 0.368 0.399 0.435 0.460
50  0.098 0.184 0.235 0.279 0.328 0.361 0.391 0.427 0.451
60  0.089 0.168 0.214 0.254 0.300 0.330 0.358 0.391 0.414
70  0.082 0.155 0.198 0.235 0.278 0.306 0.332 0.363 0.385
80  0.077 0.145 0.185 0.220 0.260 0.286 0.311 0.340 0.361
90  0.072 0.136 0.174 0.207 0.245 0.270 0.293 0.322 0.341
100 0.068 0.129 0.165 0.197 0.232 0.256 0.279 0.305 0.324




"Pa1e[21100 10U ATE SO[qBLIBA a3 1By}
(N “4)’d Anpiqeqoid Zuipuodsaiiod ayi pue A/ SUOIIEAISSQO JO 1I9QUINU 3} SNSISA L JUSIDIJA0D UOTIE[21109-TeaUT| dY ],

€0 JANDIA
N SUONBAI3SQO JO Jaquinn
001 0 3 0z o1 S €
00
il
; h T0
~ AEH T _
. ! I L -
i = 4 it M
g N =
sl SO K 0 8
! a
i UL i 8
100 OFFHH 10°0 S0'0 TN HFNRF 1o [ = o 3
_ g 8
N @
i 90 =
N 1 Q.
[¢]
i N 3
9 ~
N N
. : 80
I Il :
H | | i ™ N N
| L I [N , | | [ ™ N N
| LT [INENI NN NN | I [ o N

255



TABLE C.4
x2 distribution. Values of the reduced chi-square x2 = x%» corresponding to

the probability Px(xz; v) of exceeding x2 versus the number of degrees of

p V)

/

|

0

v

x?
x2

freedom v
P

v 0.99 0.98 0.95 0.90 0.80 0.70 0.60 0.50
1 0.00016 0.00063 0.00393 0.0158 0.0642 0.148 0.275 0.455
2 0.0100 0.0202 0.0515 0.105 0.223 0.357 0.511 0.693
3 0.0383 0.0617 0.117 0.195 0.335 0.475 0.623 0.789
4 0.0742 0.107 0.178 0.266 0.412 0.549 0.688 0.839
5 0.111 0.150 0.229 0322 0.469 0.600 0.731 0.870
6 0.145 0.189 0.273 0.367 0.512 0.638 0.762 0.891
7 0.177 0.223 0.310 0.405 0.546 0.667 0.785 0.907
8 0.206 0.254 0.342 0.436 0.574 0.691 0.803 0.918
9 0.232 0.281 0.369 0.463 0.598 0.710 0.817 0.927
10 0.256 0.306 0.394 0.487 0.618 0.727 0.830 0.934
11 0.278 0.328 0.416 0.507 0.635 0.741 0.840 0.940
12 0.298 0.348 0.436 0.525 0.651 0.753 0.848 0.945
13 0316 0.367 0.453 0.542 0.664 0.764 0.856 0.949
14 0.333 0.383 0.469 0.556 0.676 0.773 0.863 0.953
15 0.349 0.399 0.484 0.570 0.687 0.781 0.869 0.956
16 0.363 0.413 0.498 0.582 0.697 0.789 0.874 0.959
17 0.377 0.427 0.510 0.593 0.706 0.796 0.879 0.961
18 0.390 0.439 0.522 0.604 0.714 0.802 0.883 0.963
19 0.402 0.451 0.532 0.613 0.722 0.808 0.887 0.965
20 0.413 0.462 0.543 0.622 0.729 0.813 0.890 0.967
22 0.434 0.482 0.561 0.638 0.742 0.823 0.897 0.970
24 0.452 0.500 0.577 0.652 0.753 0.831 0.902 0.972
26 0.469 0.516 0.592 0.665 0.762 0.838 0.907 0.974
28 0.484 0.530 0.605 0.676 0.771 0.845 0911 0.976
30 0.498 0.544 0.616 0.687 0.779 0.850 0915 0.978
32 0.511 0.556 0.627 0.696 0.786 0.855 0918 0.979
34 0.523 0.567 0.637 0.704 0.792 0.860 0.921 0.980
36 0.534 0.577 0.646 0.712 0.798 0.864 0.924 0.982
38 0.545 0.587 0.655 0.720 0.804 0.868 0.926 0.983
40 0.554 0.596 0.663 0.726 0.809 0.872 0.928 0.983
42 0.563 0.604 0.670 0.733 0.813 0.875 0.930 0.984
44 0.572 0.612 0.677 0.738 0.818 0.878 0.932 0.985
46 0.580 0.620 0.683 0.744 0.822 0.881 0.934 0.986
48 0.587 0.627 0.690 0.749 0.825 0.884 0.936 0.986
50 0.594 0.633 0.695 0.754 0.829 0.886 0.937 0.987
60 0.625 0.662 0.720 0.774 0.844 0.897 0.944 0.989
70 0.649 0.684 0.739 0.790 0.856 0.905 0.949 0.990
80 0.669 0.703 0.755 0.803 0.865 0911 0.952 0.992
90 0.686 0.718 0.768 0.814 0.873 0.917 0.955 0.993
100 0.701 0.731 0.779 0.824 0.879 0.921 0.958 0.993
120 0.724 0.753 0.798 0.839 0.890 0.928 0.962 0.994
140 0.743 0.770 0.812 0.850 0.898 0.934 0.965 0.995
160 0.758 0.784 0.823 0.860 0.905 0.938 0.968 0.996
180 0.771 0.796 0.833 0.868 0.910 0.942 0.970 0.996
200 0.782 0.806 0.841 0.874 0915 0.945 0.972 0.997
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TABLE C4

(continued)
v 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.001
1 0.708 1.074 1.642 2.706 3.841 5.412 6.635 10.827
2 0916 1.204 1.609 2303 2.996 3.912 4.605 6.908
3 0.982 1.222 1.547 2.084 2.605 3.279 3.780 5.423
4 1.011 1.220 1.497 1.945 2372 2917 3319 4.617
5 1.026 1213 1.458 1.847 2214 2,678 3.017 4.102
6 1.035 1.205 1.426 1.774 2.099 2.506 2.802 3.743
7 1.040 1.198 1.400 1.717 2.010 2.375 2.639 3.475
8 1.044 1.191 1379 1.670 1.938 2.271 2.511 3.266
9 1.046 1.184 1.360 1.632 1.880 2.187 2.407 3.097
10 1.047 1.178 1.344 1.599 1.831 2.116 2321 2959
11 1.048 1.173 1.330 1.570 1.789 2,056 2.248 2.842
12 1.049 1.168 1318 1.546 1.752 2.004 2.185 2.742
13 1.049 1.163 1.307 1.524 1.720 1.959 2.130 2.656
14 1.049 1.159 1.296 1.505 1.692 1.919 2.082 2.580
15 1.049 1.155 1.287 1.487 1.666 1.884 2.039 2513
16 1.049 1151 1.279 1471 1.644 1.852 2.000 2.453
17 1.048 1.148 1.271 1.457 1.623 1.823 1.965 2399
18 1.048 1.145 1.264 1.444 1.604 1.797 1.934 2351
19 1.048 1.142 1.258 1.432 1.586 1.773 1.905 2307
20 1.048 1.139 1.252 1.421 1.571 1.751 1.878 2266
22 1.047 1.134 1.241 1.401 1.542 1.712 1.831 2.194
24 1.046 1.129 1.231 1.383 1.517 1.678 1.791 2,132
26 1.045 1.125 1.223 1.368 1.496 1.648 1.755 2.079
28 1.045 1121 1215 1.354 1.476 1.622 1.724 2.032
30 1.044 1118 1.208 1.342 1.459 1.599 1.696 1.990
32 1.043 L115 1.202 1.331 1.444 1.578 1.671 1.953
34 1.042 1112 1.196 1.321 1.429 1.559 1.649 1.919
36 1.042 1.109 1.191 1.311 1.417 1.541 1.628 1.888
38 1.041 1.106 1.186 1.303 1.405 1.525 1.610 1.861
40 1.041 1.104 1.182 1.295 1.394 1511 1.592 1.835
42 1.040 1.102 1.178 1.288 1.384 1.497 1.576 1.812
44 1.039 1.100 1.174 1.281 1375 1.485 1.562 1.790
46 1.039 1.098 1.170 1.275 1.366 1.473 1.548 1.770
48 1.038 1.096 1.167 1.269 1.358 1.462 1.535 1.751
50 1.038 1.094 1.163 1.263 1.350 1.452 1.523 1.733
60 1.036 1.087 1.150 1.240 1318 1.410 1.473 1.660
70 1.034 1.081 1.139 1.222 1.293 1377 1.435 1.605
80 1.032 1.076 1.130 1.207 1.273 1351 1.404 1.560
90 1.031 1.072 1.123 1.195 1.257 1.329 1.379 1.525
100 1.029 1.069 1.117 1.185 1.243 1311 1.358 1.494
120 1.027 1.063 1.107 1.169 1.221 1.283 1.325 1.446
140 1.026 1.059 1.099 1.156 1.204 1.261 1.299 1.410
160 1.024 1.055 1.093 1.146 1.191 1.243 1.278 1.381
180 1.023 1.052 1.087 1.137 1.179 1.228 1.261 1.358
200 1.022 1.050 1.083 1.130 1.170 1.216 1.247 1.338
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C.5 F DISTRIBUTION
The probability distribution for F is given by

_ T(v; +v,)/2] v v,/2 =22
pi(fivi,vy) = F(vl/IZ)F(fzz/Z) (v;) (1 + fv, /v, V201 +7)

The probability of observing a value of F that is larger than a particular value
for a random sample with v, and v, degrees of freedom is the integral of this
probability:

Pe(Fyvi,vp) = J:Pf(f; vi, vo) df

Values of F corresponding to various values of the integral probability
Pr(F, v, v;) of exceeding F in a measurement are tabulated in Table C.5 for v, = 1
and graphed in Figure C.5 as a smooth variation with the probability. Values of F
corresponding to various values of v; and v, ranging from 1 to % are listed in Table
C.6 and graphed in Figure C.6 for P(F; v, v,) = 0.05 and in Table C.7 and Figure
C.7 for P(F; v;, v;) = 0.01. These values were adapted by permission from Dixon
and Massey (1969).

The function that is tabulated and graphed is the shaded area under the tail of
the probability curve for values larger than F as indicated.

C.6 STUDENT’S ¢t DISTRIBUTION
The probability distribution for Student’s ¢ is given by!

__ 1 Tv+1)/2] £2\-er 12
)= Jom To) (” )

v

Student’s ¢ distribution describes, as a function of the number of degrees of freedom
v, the distribution of the parameter r = |x — x|/s,, where ¢ is the number of standard
deviations s, of the sample distribution by which x differs from x. This distribution
takes account of the fact that the sample standard deviation s, is an estimate of the
parent standard error o, and, as such, will vary for different samples drawn from the
same parent distribution, just as the sample means vary. If x represents the mean of
N numbers and x is not derived from the data, then v = N — 1. If both x and x are
means, s, must be the joint standard deviation of both x and X, and v must be the to-
tal number of degrees of freedom. In the limit of large numbers of degrees of free-
dom, Student’s r and Gaussian probability distributions agree; for small v, that is,
low-statistics experiments, the Gaussian distribution overestimates the probability
and Student’s ¢ is preferred.

Table C.8 lists probabilities obtained by integrating Student’s ¢ distribution
from x = x — 5, tox = X + ts, where t = |x — xl/s,. The integrals are listed as
functions of ¢ and of the number of degrees of freedom v. The values corresponding
to Gaussian probability (which are independent of v) are listed in the last column.

1“Review of Particle Physics” The European Physical Journal C, vol. 15 (2000), p. 193.
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TABLE C.5

pr(fivpv)

F

f

F distribution, v = 1. Values of F corresponding to the probability P.(F;1, v,)
of exceeding F (with v, = 1 degrees of freedom) versus the larger number of

degrees of freedom v,.

Degrees
£ of Probability (P) of exceeding F
reedom
v, 0.50 0.25 0.10 0.05 0.025 0.01 0.005 0.001

1 1.000 5.83 3990 161.00 648.00 4050.00  16200.00 406000.0

2 0.667 2.57 8.53 18.50 38.50 98.50 198.00 998.0

3 0.585 2.02 5.54 10.10 17.40 34.10 55.60 167.0

4 0.549 1.81 4.54 7.71 12.20 21.20 31.30 74.1

5 0.528 1.69 4.06 6.61 10.00 16.30 22.80 47.2

6 0.515 1.62 3.78 5.99 8.81 13.70 18.60 35.5

7 0.506 1.57 3.59 5.59 8.07 12.20 16.20 29.2

8 0.499 1.54 3.46 5.32 7.57 11.30 14.70 25.4

9 0.494 1.51 3.36 5.12 7.21 10.60 13.60 229

10 0.490 1.49 3.28 4.96 6.94 10.00 12.80 21.0

11 0.486 1.47 3.23 4.84 6.72 9.65 12.20 19.7

12 0.484 1.46 3.18 475 6.55 9.33 11.80 18.6

15 0.478 1.43 3.07 4.54 6.20 8.68 10.80 16.6
20 0.472 1.40 2.97 4.35 5.87 8.10 9.94 14.8
24 0.469 1.39 2.93 426 5.72 7.82 9.55 14.0
30 0.466 1.38 2.88 4.17 5.57 7.56 9.18 13.3
40 0.463 1.36 2.84 4.08 5.42 7.31 8.83 12.6
60 0.461 1.35 2.79 4.00 5.29 7.08 8.49 12.0
120 0.458 1.34 2.75 3.92 5.15 6.85 8.18 11.4
e 0.455 1.32 2.71 3.84 5.02 6.63 7.88 10.8

Note: For larger values of the probability P, the value of F is approximately F = [1.25(1 — P)}*
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TABLE C.6
F distribution, 5%. Values of F corresponding to the probability
P(F; vy, v,) = 0.05 of exceeding F for v, versus v, degrees of freedom

Degrees
of Degrees of freedom v,
freedom
v, 2 4 6 8 10 15 20 100
1 200.00  225.00 234.00 239.00 242.00 246.00  248.00 253.00
2 19.00 19.20 19.30 19.40 19.40 19.40 19.40 19.50
3 9.55 9.12 8.94 8.85 8.79 8.70 8.66 8.55
4 6.94 6.39 6.16 6.04 5.96 5.86 5.80 5.66
5 5.79 5.19 495 4.82 473 4.62 4.56 441
6 5.14 4.53 4.28 4.15 4.60 3.94 3.87 371
7 474 4.12 3.87 3.73 3.64 3.51 3.44 3.27
8 4.46 3.84 3.58 3.44 3.35 3.22 3.15 2.97
9 4.26 3.63 3.37 323 3.14 3.01 2.94 2.76
10 4.10 3.48 3.22 3.07 2.98 2.85 2.77 2.59
11 3.98 3.36 3.09 2.95 2.85 2.72 2.65 2.46
12 3.89 3.26 3.00 2.85 2.75 2.62 2.54 2.35
15 3.68 3.06 2.79 2.64 2.54 2.40 2.33 2.12
20 3.49 2.87 2.60 2.45 2.35 2.20 2.12 1.91
24 3.40 2.78 2.51 2.36 2.25 2.11 2.03 1.80
30 3.32 2.69 2.42 2.27 2.16 2.01 1.93 1.70
40 3.23 2.61 2.34 2.18 1.08 1.92 1.84 1.59
60 3.15 2.53 2.25 2.10 1.99 1.84 1.75 1.48
120 3.07 2.45 2.18 2.02 1.91 1.75 1.66 1.37

0 3.00 2.37 2.10 1.94 1.83 1.67 1.57 1.24
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TABLE C.7
F distribution, 1%. Values of F corresponding to the probability
Prp(F; v, vy) = 0.01 of exceeding F for v, versus v, degrees of freedom

Degrees
of Degrees of freedom v,
freedom
v 2 4 6 8 10 15 20 100
1 5000.00 5620.00 5860.00 5980.00 6060.00 6160.00 6210.00 6330.00
2 99.00 99.20 99.30 99.40 99.40 99.40 99.40 99.50
3 30.80  28.70 27.90 27.50 27.20 2690  26.70 26.20
4 18.00 16.00 15.20 14.80 14.50 14.20 14.00 13.60
5 13.30 11.40 10.70 10.30 10.10 9.72 9.55 9.13
6 10.90 9.15 8.47 8.10 7.87 7.56 7.40 6.99
7 9.55 7.85 7.19 6.84 6.62 6.31 6.16 5.75
8 8.65 7.01 6.37 6.03 5.81 5.52 5.36 4.96
9 8.02 6.42 5.80 5.47 5.26 4.96 4.81 442
10 7.56 5.99 5.39 5.06 4.85 4.56 4.4]1 4.01
11 7.21 5.67 5.07 4.74 4.54 4.25 4.10 3.71
12 6.93 5.41 4.82 4.50 4.30 4.01 3.86 3.47
15 6.36 4.89 432 4.00 3.80 3.52 3.37 2.98
20 5.85 4.43 3.87 3.56 3.37 3.09 2.94 2.54
24 5.61 4.22 3.67 3.36 3.17 2.89 274 2.33
30 5.39 4.02 3.47 3.17 2.98 2.0 2.55 2.13
40 5.18 3.83 3.29 2.99 2.80 2.52 2.37 1.94
60 4.98 3.65 3.12 2.82 2.63 2.35 2.20 1.75
120 4.79 3.48 2.96 2.66 2.47 2.19 2.03 1.56

%0 4.61 3.32 2.80 2.51 2.32 2.04 1.88 1.36




00T

265

* SuIpaadxa jo 00 = (Cala‘y)yg
Aunqeqoid e 1oy %a pue '4 wiopaaiy jo soa13ap Jo sioquinu Ay SnSIdA (%4 “14),7 JO sanfeA 153,

LD ENOdIA

1a wopaaly jo saa18a(]

0s 0t 0c o1 9 £ [4 I

T T ol
| | |
P nn“ H
By o _
¥ : pE g 0¢
HH == Ho 2 oo = N> H 2ass =
= mw- o
i : T B . iii 0¢
i b it =
A T T —_
= i HE H_u
£ = i & | =
H 2 i sae SRS SEE S 5 . 1]
: =14 0s o~
HHE (4]} £ *
m Sas —— N
1 T 1T -
m 1 N T H_WM
w L= 2 e
T i == it i H H : = O.O—
! g="a L T
il _~ ] -
] s
I}
p=Ca} astame JiH
e Eaas! T O.ON
E i




266 Data Reduction and Error Analysis for the Physical Sciences

TABLE C.8
Pr(x; p, o) versust = lx — pl/o; Integral of Student’s ¢ distribution between
x =X — s, and X + 15, expressed in percent.

v=N-—1

Gaussian
t 2 3 4 5 6 8 10 12 16 20 25 30 35 40 50 probability

0.6 | 39.1 40.9 41.9 42.5 43.0 435 43.8 44.0 443 445 446 447 448 448 449 451
0.7 | 444 46.6 47.8 485 49.0 49.6 50.0 503 50.6 508 51.0 51.1 51.1 512 513 51.6
08 | 493 51.8 532 54.0 54.6 55.3 55.8 S6.1 56.5 56.7 569 57.0 57.1 572 573 57.6
09 | 53.7 56.6 58.1 59.1 59.7 60.6 61.1 614 61.9 62.1 623 625 62.6 627 628 632
1.0 | 57.8 60.9 62.6 637 644 653 65.9 66.3 668 67.1 673 675 67.6 67.7 678 68.3

1.1 [ 614 64.8 667 67.9 68.7 69.7 70.3 70.7 71.2 71.6 71.8 720 721 722 723 729
12 |1 647 684 704 71.6 72.5 73.6 742 74.7 752 756 759 760 762 763 764 770
1.3 1677 716 73.7 75.0 75.9 77.0 77.7 78.2 78.8 792 795 797 79.8 79.9 80.0 80.6
1.4 1704 744 766 78.0 78.9 80.1 80.8 81.3 81.9 823 82.6 828 83.0 831 832 838
15728 77.0 79.2 80.6 81.6 82.8 83.6 84.1 847 851 854 856 857 859 86.0 86 6

1.6 | 75.0 79.2 815 830 839 852 859 864 87.1 875 87.8 88.0 831 883 884 89.0
1.7 | 76.9 81.3 83.6 85.0 86.0 873 88.0 88.5 89.2 895 899 90.1 902 903 90.5 911
1.8 1787 831 854 86.8 87.8 89.1 89.8 90.3 909 91.3 91.6 91.8 920 921 922 92.8
1.9 | 80.2 84.7 87.0 88.4 894 90.6 91.3 91.8 924 928 93.1 933 934 935 937 94.3
20 (817 861 884 89.8 90.8 92.0 92.7 93.1 93.7 94.1 944 945 947 948 949 954

2.1 (830 874 89.7 91.0 92.0 931 93.8 943 948 951 954 956 95.7 958 959 96.4
22 [ 84.1 885 90.8 92.1 93.0 94.1 94.8 952 95.7 960 96.3 964 96.6 96.6 96.8 97.2
2.3 1 85.2 89.5 91.7 93.0 939 95.0 95.6 96.0 96.5 96.8 97.0 97.1 973 973 974 979
24182 904 92.6 939 947 957 963 967 97.1 974 976 97.7 97.8 979 980 98.4
2.5 ) 87.1 91.3 933 946 954 96.3 96.9 97.2 97.6 979 98.1 982 983 983 984 98.8

2.6 | 879 92.0 940 95.2 959 96.8 974 97.7 98.1 983 98.5 986 98.6 98.7 98.8 991
27 886 926 946 957 96.5 97.3 97.8 98.1 984 98.6 98.8 989 989 990 991 993
2.8 | 89.3 932 95.1 96.2 96.9 97.7 98.1 984 987 98.9 99.0 991 99.2 992 993 99.5
29 1899 93.8 95.6 96.6 97.3 98.0 984 98.7 99.0 99.1 992 993 994 994 99.5 99.6
30905 943 960 970 97.6 98.3 98.7 989 99.2 99.3 994 995 995 99.5 996 997

32 (915 95.1 96.7 97.6 98.2 987 99.1 99.2 994 99.6 99.6 997 997 99.7 99.8 99.9
341924 958 97.3 98.1 98.6 99.1 99.3 99.5 99.6 99.7 998 99.8 99.8 99.9 99.9 99.9
3.6 1 93.1 96.3 97.7 98.5 98.9 99.3 99.5 99.6 99.8 99.8 999 999 99.9 99.9 999 1000
3.8 1937 96.8 981 988 99.1 99.5 997 99.8 99.8 999 999 999 99.9 100.0 100.0 100.0
40 | 943 97.2 984 99.0 99.3 99.6 99.8 99.8 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0

Note. The Gaussian probability for each value of ¢ is listed in the last column.



APPENDIX

D

HISTOGRAMS
AND
GRAPHS

Graphs of experimental data and of theoretical predictions have always been im-
portant tools for scientists, in both the actual performance of research and in
presentations of results. In recent years we have seen a proliferation of graphics dis-
plays as fast inexpensive computers and printers have facilitated the display-making
process. Scientists have benefited from the new techniques and equipment, with
many excellent commercial programs available for creating high-quality scientific
graphics suitable for publication.

In science, the object is to present results in a straightforward manner so that
relevant points are illustrated clearly and without bias. Graphs with suppressed ze-
ros, which are common in advertisements, are not often seen in scientific papers.
Bar graphs tend to be simple histograms rather than the multibar, brightly colored
displays of magazines and newspapers. In fact, although the use of color is growing,
especially in direct publication on the Internet, few scientific preprints and papers
are printed in color, although discrete use can clarify graphical presentations signif-
icantly. Error bars, which are rare indeed in advertisements, are essential in a scien-
tific presentation. Exaggerated perspective and distorted scales have very limited
use in scientific work whereas semilogarithmic plots that are often used in science
are not often seen in business publications.

It is often convenient to have graphics routines that are part of a simulation or
an analysis program, rather than to use a separate graphing program. For example,
in a Monte Carlo simulation, it is essential to be able to produce histograms and data
graphs quickly at each stage of the study. Generations of scientists have made sim-
ple histograms on monitors or printers to make preliminary studies of their data. We
provide some simple routines of this type in the source files associated with this
book.
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More elegant and detailed graphs can be created by using the graphics features
of particular programming languages, and those provided by data analysis programs
and spreadsheets. Such programs can produce high-quality graphs and charts suitable
for presentations and publications. Many of the graphs in this book, such as those in
Chapter 2, were created by programs written in Fortran and Pascal. Others, such as
those in Chapter 11, were created in Origin, a very powerful data analysis program
with strong graphing features.

D.1 MAKING A GRAPH

Whether a scientific graph is produced by hand or by computer, there are several ba-
sic principles that should be followed. The graph should be large enough to be read
and understood easily, with appropriately proportioned abscissa and ordinate. Axes
should be labeled with large, clean letters, and the axes scales should be clearly in-
dicated. If more than a single function is displayed, or if both data and curves are
displayed, a box, or legend, may be superimposed on the graph to indicate the
meaning of different symbols. In scientific journals, a description of the graph is
generally included as text below the abscissa label. In internal papers and preprints,
these descriptions are often collected in a separate section of the paper. For visual
presentation, some descriptive material may be included in a box on the graph, but
it is important that text be large enough to be clearly legible. One should avoid scat-
tering too much material over any graph, which gives a busy appearance. A properly
made graph should not require many words of explanation.

It is generally advisable to plot the independent variable as the abscissa and
the dependent variable as the ordinate. However, if the independent data have a high
degree of uncertainty while the corresponding measurements of the dependent data
can be made with high precision, then it might be wise to interchange the two axes
to simplify least-squares fitting.

Reasonable, convenient values and intervals should be chosen for the scale
marks on the two axes. For example, if abscissa values range from 0 to 400, it might
be reasonable to divide the x-axis into eight parts and thus to mark the abscissa with
major, labeled ticks at 0, 100, 200, 300, and 400, with minor ticks half-way be-
tween. Dividing the axis into six parts and putting ticks at 66.7, 133.3, and so forth,
would make it very difficult for a reader to interpret.

In general, error bars should be included for ordinate variables except for sim-
ple histograms where the text clearly specifies that the uncertainties are statistical
and therefore given by the square root of the value of the coordinate. Unless other-
wise noted, error bars generally indicate the standard deviation. Error bars usually
are not necessary for abscissa variables. However, if appropriate, they may be
drawn to indicate the resolution of the measurement or setting, or they may simply
indicate the range of the variable over which data have been collected or grouped,
as in the case of the width of a histogram bin. The text must explain the meaning of
such error bars. If no error bar is shown for the abscissa, then it is useful to draw a
circle or other symbol at each data point to indicate the position of the central val-
ues of each coordinate pair.
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D.2 GRAPHICAL ESTIMATION OF
PARAMETERS

A graph of y versus x often provides a convenient way of estimating parameters of
the relation y = y(x). The simplest example is the straight line

y=A+ Bx (D.1)

where the slope and the intercept can be estimated by making a graph and drawing
a straight line that relates y to x. Clearly the better way to handle this problem is by
a least-squares fitting technique, but the graphical method can be useful in both re-
search and instructional laboratories for obtaining quick preliminary estimates of
experimental results.

If we wish to find from the graph the uncertainty in our estimate of the slope,
then we should attempt to draw two lines through the data, corresponding to esti-
mates of the largest and smallest reasonable slopes, s, and s,. We should take ac-
count in the uncertainties in the data points, if they are available, and, because we
are trying to estimate the uncertainty as a standard deviation, we should attempt to
draw these two lines to bracket about two-thirds of the data points—not all the
points. Making this estimate is often difficult and subjective, especially if there are
few points and they exhibit a lot of scatter. The mean slope s is just the average of
our two slopes,

s=(s; + 5,)/2 (D.2)
and an approximate estimate of the uncertainty is the magnitude of half the difference
o =|s —s5,|/2 (D.3)

To gain practice in determining parameters from a graph, it is a worthwhile
exercise to estimate the parameters from the graph and to compare those estimates
with the results of a least-squares fit to the data. We should note that the two lines
selected to give a reasonable estimate of the uncertainty in the slope may not be the
same two lines we might draw to obtain a reasonable estimate of the uncertainty in
the intercept. Figure D.1 displays the data of Figure 1.1b, with lines bracketing the
points to show (a) reasonable ranges for estimating the intercept, and (b) reasonable
ranges for estimating the slope. These lines were actually calculated from the results
of a least-squares fit of the equation Y = A + Bx to the data, which yielded the pa-
rameters A and B and their uncertainties o, and o We calculated the two lines in
Figure D.1a from the equations Y = (A * ¢,) + Bx and those in Figure D.1b from
the equations Y = A + (B = o)x. We note that these lines are just particular exam-
ples of an infinite number of such lines corresponding to all combinations of the
slope and intercept within one standard deviation ranges, and in any given graph, a
decision must be made on which lines to draw. In particular, allowing the lines to in-
tersect at the intercept as in Figure D.1b may not give the best solution, although it
can be a good starting point.
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Semilogarithmic Graphs

When dealing with an exponential decay function, it is convenient to display the ac-
tivity as a function of time on a semilogarithmic graph. That is, if the relation is

y(t) = yoe ™ (D.4)

we plot a graph of log(y) versus x. Fortunately semilogarithmic graph paper is read-
ily available so that it is not necessary actually to calculate any logarithms to make
this plot. We merely have to select paper with the appropriate number of powers of
10 for our plot, label the axes, and plot y versus x on the graph. Such a graph is il-
lustrated in Figure 8.1 for Example 8.1.

Semilogarithmic graph paper comes in various cycles, corresponding to the
number of decades or powers of 10 that can be plotted on a single sheet. Thus, for
example, on three-cycle paper we can plot y values that range from 1 to 1000 (or
from 0.01 to 10.0, etc.). Note that we can never plot y values that are zero or nega-
tive on semilogarithmic paper. This is a problem when dealing with subtracted dis-
tributions, such as the counting experiment of Example 8.1, where, if we wish to
plot the number of counts remaining after we have subtracted the average back-
ground from cosmic rays, we discover that, at large times, some bins have negative
net counts. Those points, of course, cannot be displayed on a semilogarithmic
graph. A full, least-squares fit to the total, unsubtracted data sample is clearly the
right way to solve this problem, but if we are to attempt a graphical solution, we
should be aware of this limitation.

We can determine from our data the parameter a in Equation (D.4) by finding
the slope of the straight line on the semilogarithmic graph just as we found the slope
on ordinary graph paper for a simple linear plot. Note that when calculating the
slope we must compute the logarithms of the y values. Thus, if the two ends of the
straight line have coordinates (x;, y;) and (x,, y,), the slope is given by

szln(yZ)_an)I)zln(yZ/yl) (DS)

Xy T X Xy = X

The uncertainty in the slope can again be determined by drawing two straight
lines that bracket the mean slope, although the logarithmic form of the plot de-
creases the accuracy in this determination.

Full-Logarithmic Graphs

If we wish to display a power relation of the form y = Ax”", we may make a plot of
y versus x on full-logarithmic paper or log-log paper. The result will be a straight
line with slope » and we can obtain the slope, and therefore the exponent », from the
graph. This technique could be used, for example, to check the 1/r? law for radia-
tion intensity as a function of distance, by plotting a graph of intensity versus dis-
tance on log-log paper.

In Section 7.4 we discuss variable transformation as a method of converting
a nonlinear fitting problem to a linear problem, and the distortions that may be
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introduced into the uncertainties in the process. Plotting on semilogarithmic or
full-logarithmic paper is equivalent to such a variable change and we should at-
tempt to compensate for these distortions, if necessary.

D.3 HISTOGRAMS AND FREQUENCY
PLOTS

If we wish to display the frequency distribution of a measured variable x, then a his-
togram is generally the simplest and clearest form of presentation. For example, we
may have observed particles emitted in the decay of an unstable state and wish to
present the number detected in successive time intervals as in Example 2.4. Alter-
natively, we may have measured secondary particles in a scattering experiment and
wish to display the distribution of their energies. In such cases, we can display the
frequency distribution of the individual measurements, or events, as a histogram of
fx) versus x, where f(x,) is the number of events that have values of x between x, and
x, + Ax, and Ax is the histogram interval or bin width.

An alternate procedure for displaying binned data, which is especially useful
for distributions with large numbers of bins, or for data with nonstatistical uncer-
tainties, is to make a regular graph of frequency versus the measured variable, a fre-
quency plot, with the data points indicated by crosses and uncertainties by error
bars. This procedure is especially convenient when there are many bins or when er-
ror bars must be displayed, as illustrated in Figure 8.1.

A convenient procedure for finding the frequency distribution of (or binning)
a continuous variable x is to label a bin with a tick mark at the lower limit x, of the
bin and to count within a bin those events for which x, = x < x, + Ax. This is suit-
able for most, but not all, data sets. Choice of the bin width depends on a number of
factors. In the ideal situation with a large quantity of high-precision data, the bin
width could be chosen to be very small. However, in real experiments, the number
of events may not be very large and each x coordinate will have some uncertainty.
As a general rule, the bin width should not be less than the uncertainty in the mea-
sured variable x and one should be very wary of any data structure that is narrower
than the uncertainty in x. If the number of events is relatively small, then even wider
binning may be necessary. With such data, the competition between statistical sig-
nificance and resolution of narrow effects in the histogram may become important,
A histogram with less than ten events in its highest bin is not generally very infor-
mative, considering that the uncertainty in that bin will be over 30%.

A problem arises when the bin width of a histogram is close to or equal to the
least count of the data. This can happen when the data are integral numbers or with
data that have been collected by a digital device. The previous suggestions that
the histogram bins be labeled with the lower limit at the left of the bin may not be
reasonable for such data, and it may be better to place tick marks at the center
of the bins.

EXAMPLE D.1 A student in an introductory physics laboratory attempts to mea-
sure the value of the acceleration of gravity by timing a ball that she drops 50 times
from a height of 3 m. She uses an electronic timer with a least count of 0.01 s. The
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FIGURE D.2

Histogram of measured times plotted with the bin width equal to the least count of a digital clock. The
numbers on the abscissa correspond to the lower time limit of the bin. The dashed Gaussian curve was
calculated from the mean and standard deviation of the measurements. The solid curve was calculated
with the mean increased by half the bin width to correct for the truncation of the data.

timer starts when the ball is released and stops when it hits the floor. Uncertainties in
the measurements come mainly from variations in the starting and stopping times.

The student’s measurements have been plotted in the histogram of Figure D.2
where the bin width is equal to the least count (0.01ts). We assume that the digital
clock truncates the measured times so each time measurement corresponds to the left-
hand edge of a bin and the actual value of the time is somewhere within the bin limits.
Thus, in this case it is appropriate to indicate the lower value of the bin limit at the left-
hand edge of the bin.

The dashed Gaussian curve was calculated from the mean (# = 0.431 s) and
standard deviation (s = 0.0184) of the measurements. The curve clearly is shifted to
the left relative to the data. The discrepancy is caused by the fact that we neglected to
correct for the truncation of the data by the digital clock. To correct the mean we must
add to it half the width of a bin to obtain 7 = 0.431 + 0.005 = 0.436 s. The Gaussian
curve, calculated from the corrected mean, is shown as a solid line.

Normalized Curves on Histograms

When superimposing a theoretical curve on a data histogram, we often want to scale
the area of the curve to that of the histogram, or to normalize the curve. The re-
quired scale factor can be determined in the following way. We assume that the
curve has been calculated from a probability distribution function that is normalized
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to unit area, such as the Gaussian probability function of Equation (2.23). The area
of one event on the histogram is equal to the bin width Ax multiplied by a unit in-
terval on the ordinate. Thus, the total area of the histogram is equal to the bin width
multiplied by the total number of events (A = NAx). To scale the curve to the area
of the histogram, we multiply the values p(x,), calculated from the equation of the
probability distribution, by the product of the number of events on the plot and the
bin width, so that the plotted curve becomes

y(x)=p(x) X NAx (D.6)

D.4 GRAPHICS ROUTINES

We include source files on the website for routines which can be used to make sim-
ple graph and histograms. Most of the sample computer routines in this book make
calls to these routines.

Program D.1 QUIKSCRP (website) accepts data that define graphs and

histograms and writes a script file that can be read and interpreted by the executable
program QDISPLAY.EXE (website) to produce displays on the monitor, Details of
the calling procedures can be seen in the routine PLOTIT in the program unit
\CHAPT-6\FITUTIL (website) called from the program \C HAPT-6\FITLINE
(APPENDIX E). For this program QuikScrp writes an output file FITLINE.SCR.

Program D.2 QUIKHIST (website) collects data and presents a character-based
histogram on the monitor. Printed output is also available. PROGRAM 5.2:
\CHAPT-5\POISDCAY illustrates use of this program.

Program D.3 QDISPLAY.EXE (website) is an executable program that reads a
script file written by QU IKSCRP and interprets the file to create a graphics display
on the monitor. The command line instruction for running QDISPLAY with the
script file produced by the program FITLINE is QDISPLAY FITLINE.



APPENDIX

E

COMPUTER
ROUTINES
IN FORTRAN

his appendix lists several routines that illustrate the material of the text. The rou-

tines are listed in Fortran 77, an old, but quite readable version of that ever-
popular programming language. All routines have been tested; however, most of them
requires subsidiary routines and drivers that are not listed. Complete programs and
routines are available on the Web in C++ as well as in Fortran. Readers are urged to
log onto the website at www.mhhe.com/bevington to download these programs.

We have tried to keep the routines simple, trading efficiency for clarity where
necessary. To make explicit which modules are required to form a complete pro-
gram, and to avoid the need for command strings to link the object programs into an
executable program, we have chosen to use the INCLUDE statement to present the
compiler with a single source file from which to compile a single object module in-
corporating all required routines. We also use the INCLUDE statement to copy
blocks of cOMMON and other variable-defining statements into routines.

Because readers may not be familiar with Fortran, we list a few basic princi-
ples that should help in understanding the instructions and following their logic.
This list includes only a selection of language elements that appear in the sample
programs.

STATEMENTS

The format of Fortran statements was defined in terms of the 80-column Hollerith
card:

column 1: blank or with a “C” to indicate that the information on the line
is a “Comment”;
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columns 2-5: statement label (a number);

column 6: reserved for a single digit number to indicate a continuation of
the statement from the previous line;

columns 7-72: program statements;
columns 73-80:  not used.

Although it is not necessary to follow rigorously this scheme with a modern
interactive compiler on a personal computer (for example, “tabs” can be used), the
general order must be followed.

PROGRAM FLOW

Program flow can be controlled by I1F statements, by IF THEN statements (with
ELSEIF and ENDIF), by DO AND DOWHILE statements that may refer to a
termination label (all statements labels are numerical) or to the DO terminator;
ENDDO, and by GOTO statements. Excessive use of the GoTo statement can lead
to very confusing programs. In order to facilitate following the program flow, we
have indented groups of instructions that are accessed through a control statement,
such as IF THEN, or DO.

Examples
DO 100l = 1 TO 20 DOl =1T020 X =1
X =1 X = DO WHILE X .LE. 20
Y(1) = SQRT(X) Y = SQRT(X) Y = SQRT(X)
100 CONTINUE ENDDO X =x+1
ENDDO
VARIABLE DEFINITIONS

Fortran does not require the rigorous variable typing of newer languages. As default
typing, variables with names beginning with I, J, K, L, M, or N are defined as
INTEGER; variable names beginning with other letters are identified as REAL.
However, we have attempted to identify most of the variables in the routines and in
some instances have violated the default typing for program clarity.

Examples

INTEGER S1, 3, N/10/

REAL X, T, TPRIME, SIGMAT/1.0/
LOGICAL NEXTVAR/.FALSE./

Note that the variables N, SIGMAT and, NEXTVAR in the preceding examples
have been initialized to the values 10, 1.0, and FALSE, respectively. The DATA
statement also can be used to initialize variables. DATA SQRTP1/1.7724539/
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Other types include:

CHARACTER
COMPLEX
DOUBLE PRECISION

Variables defined in named COMMON statements are available to any routine
that includes the statement. Local variables can be defined in DIMENSION
STATEMENTS. Array sizes may be defined in PARAMETER statements or di-
rectly in a COMMON or DIMENSION statement.

Examples
PARAMETER(MAXPARAM 10)

COMMON/FITVARS/ NPTS, M, NFREE, MARRAY(MAXPARAM),
ZARRAY(200)

DIMENSION NPLAN(30).

Fortran has several types of subprograms that can be called from another rou-
tine: SUBROUTINE and FUNCTION are the most common. Data types defined
in a subprogram must be consistent with the definitions in the calling routine. A
function name must specify its own data type.

Examples

CALL SETRANDOMDEVIATESEED(S1, s2, s3)
TPRIME = GAUSSSMEAR(T,SIGMAT)

REAL FUNCTION GAUSSSMEAR(X,DX)

SUBROUTINE SETRANDOMDEVIATESEED(SA,SB,SC)

The INCLUDE statement copies the specified file into the body of the
program.

Example
INCLUDE \CHAPT-S5\MONTEINC.FOR’

As well as comment statements that begin with a “C” in column 1, comments
may appear in statement lines, preceded by the exclamation point (!).
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E.1 Routines from Chapter S

C PROGRAM 5.1: \CHAPT-5\HOTROD.FOR

C SIMULATED VARIATION OF TEMPERATURE ALONG A METAL ROD

C 10 CM ROD-TEMPERATURE IS ZERO AT ONE END, 100 DEGREES C AT OTHER.

C USEs MONTELIB
PROGRAM HOTROD
INTEGER S1, Ss2, 83, N/10/ I--- GENERATE 10 POINTS AT 1 CM INTERVALS
REAL X, T, TPRIME, SIGMAT/1.0/ l--- WITH AN UNCERTAINTY OF +-1 DEGREE
REAL GAUSSSMEAR

s1 =1171

s2 = 343

s3 = 1322

CALL SETRANDOMDEVIATESEED(S1, s2, s3)

PRINT *,' HOT ROD TEST DATA, SIGMA=', SIGMAT

X =-0.5

po 1001 =1, N
X =x+1.0 l--- POSITION ALONG ROD
T = 10.0*x [--- CALCULATE MEAN TEMPERATURE AT POINT
TPRIME = GAUSSSMEAR(T,SIGMAT) l--- SMEAR IT

PRINT *,1, X, T, TPRIME
100 CONTINUE
CALL EXIT
END
INCLUDE CACHAPT-5\MONTELIB.FOR

C PROGRAM 5.2: \CHAPT-5\POISDCAY.FOR
C SIMULATED DECAY OF AN UNSTABLE STATE.
C USES QUIKHIST, MONTELIB
PROGRAM PoOISDCAY l--- GENERATE A 200-EVENT POISSON HISTOGRAM
REAL LO/O/, INT/1/, HI/22/
INTEGER NEVENTS/400/, POISSONDEVIATE
REAL MU/8.4/
INTEGER S1, 82, 83, I, K

REAL X

s1 =1171

s2 = 343

s3 = 1322

CALL SETRANDOMDEVIATESEED(S1, S2, S3)

CALL HISTINIT(' ") |---OUTPUT FILE NAME OR '' FOR MONITOR OUTPUT
CALL HISTSETUP(1,LO,INT,HI,'POISSON - COUNTS/10 SEC')
K=POISSONDEVIATE(MU,.TRUE.) l--- INITIALIZE - MAKE THE TABLE

DO 100 | = 1, NEVENTS
K = POISSONDEVIATE(MU,.FALSE.)
X =K
CALL HISTOGRAM(1,X)
100 CONTINUE
CALL HISTDISPLAYALL(.FALSE.) IDUMMY ARG-COMPAT. WITH QUIKSCRP
CALL EXIT
END
INCLUDE \CHAPT-5\MONTELI|B.FOR
INCLUDE \APPEND-D\QUIKHIST.FOR !REPLACE WITH QUIKSCRP FOR GRAPHICS
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C PROGRAM 5.3: \CHAPT-5\MONTELIB.FOR
C MONTE CARLO LIBRARY ROUTINES

SUBROUTINE SETRANDOMDEVIATESEED(SA,SB,SC)
INCLUDE \CHAPT-5\MONTEINC.FOR'
INTEGER SA, SB, SC

SEEDI! = SA
SEED2 = SB
SEED3 = sC
RETURN
END

SUBROUTINE GETRANDOMDEVIATESEED(SA,SB,SC)
INCLUDE \CHAPT-5\MONTEINC.FOR'

INTEGER SA, SB, SC

SA = SEED]1

SB = SEED2

SC = SEED3

RETURN

END

REAL FUNCTION RANDOMDEVIATE() 1--- WICHMANN AND HiILL
INCLUDE \CHAPT-5\MONTEINC.FOR'

REAL TEMP

SEED1 = 171*MOD(SEED1,177) - 2*(SEeD1 / 177)

IF (SEED1 .LT. O) SEeD1 = SEED1 + 30269

SEED2 = 172*MOD(SEED2,176) - 35*(SEED2 / 176)

IF (SEED2 .LT. O ) SEED2 = SEED2 + 30307

SEED3 = 170*MOD(SEED3,178) - 63*(SEED3 / 178)

IF (SEED3 .LT. O ) Seeb3 = seebD3 + 30323

TEMP = SEED1/30269. + SEED2/30307. + SEED3/30323.
RANDOMDEVIATE = TEMP-AINT(TEMP)

RETURN

END

C -FIND A RANDOM VARIABLE DRAWN FROM THE GAUSSIAN DISTRIBUTION-

100

REAL FUNCTION RANDOMGAUSSDEVIATE() 1--- BOX-MUELLER
INCLUDE \CHAPT-5\MONTEINC.FOR'
LOGICAL NEXTVAR/.FALSE./
REAL R, F, Z1, Z2, X1 RANGAUSS, RANDOMDEVIATE
IF (NEXTVAR) THEN

NEXTVAR = .FALSE.

RANDOMGAUSSDEVIATE = X2RANGAUSS
ELSE

Z1 = -1 + 2*RANDOMDEVIATE()

Z2 = -1 + 2*RANDOMDEVIATE()

R =Z1%*Z1 + Z2*z2

IF (R .GE. 1) coTO 100

F = SQRT(-2*ALOG(R)/R)

X1 RANGAUSS = Z1*F

X2RANGAUSS = Z2*F

RANDOMGAUSSDEVIATE = X1 RANGAUSS
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NEXTVAR = .TRUE.
ENDIF
RETURN
END

REAL FUNCTION GAUSSSMEAR(X,DX)

REAL X, DX

REAL RANDOMGAUSSDEVIATE

GAUSSSMEAR = X + RANDOMGAUSSDEVIATE() * DX
RETURN

END

C -RECURSION METHOD FOR POISSON PROBABILITY (P(N,M). TO FIND P(N,M) MUST
C AlLL WITH SUCCESSIVE ARGUMENTS J=0,1,..N. MAX MU=85, NO LIMIT ON X
REAL FUNCTION POISSONRECUR(J, M)
INCLUDE \CHAPT-S5\MONTEINC.FOR'
INTEGER J
REAL M
IF (JLEQ.O ) THEN
POISS = EXP(-M)
ELSE
POISS = (POISS*M)/J I--- POISS = (MAJ)EXP(-MU/J)
ENDIF
POISSONRECUR = POISS
RETURN
END

C -FIND A RANDOM VARIABLE DRAWN FROM THE POISSON DISTRIBUTION
INTEGER FUNCTION POISSONDEVIATE(MU, INIT)
INCLUDE \CHAPT-5\MONTEINC.FOR'
INTEGER I, X, N
REAL MU, P, R, POISSONRECUR
LOGICAL INIT
IF (INIT ) THEN | --- MAKE TABLE OF SUMS ---
N = AINT(MU + 8* SQRT(MU)) | -—-1E., 8*SIGMA
IF (N .GT. MAXBINS ) THEN
PRINT *, 'OVERFLOW ERROR IN ROUTINE POISSON DEVIATE'
CALL EXIT
ENDIF
PTABLE(O) = POISSONRECUR(O,MU)
DO 1001 =1, N-1
P = POISSONRECUR(I,MU)
PTABLE(I) = PTABLE(I-1)+P

100 CONTINUE
PTABLE(N) = 1 | --=- ASSURE UNIT PROBABILITY -~
ELSE | --- GENERATE AN EVENT ---
X = -1

R = RANDOMDEVIATE()

200 X=1+X
IF (PTABLE(X) .LE. R) GOTO 200 |— REPEAT UNTIL PTABLE(X) >= X
POISSONDEVIATE = X



Computer Routines in Fortran 281

ENDIF
RETURN
END

PROGRAM 5.4: \CHAPT-S5\KDECAY.FOR (WEBSITE)
C ILLUSTRATION OF EXAMPLE 5.7

C PROGRAM 5.5: \CHAPT-5\MONTEINC.FOR
C COMMON FOR MONTE CARLO LIBRARY

COMMON/MC/ SEED1, SEED2, SEED3, X2RANGAUSS, Poiss, PTABLE
PARAMETER (MAXBINS = 100)

INTEGER SEED!1, SEED2, SEED3

REAL X2RANGAUSS, PTABLE(O:MAXBINS)

REAL*8 POISS

-------- END MONTEINC

E.2 Routines from Chapter 6

C PROGRAM 6.1: \CHAPT-6 FITLINE.FOR

C LEAST-SQUARES FIT TO A STRAIGHT LINE BY METHOD OF DETERMINANTS
C USES FITUTIL

(]

PROGRAM FITLINE

MAIN ROUTINE

INCLUDE \CHAPT-6 FITVARS.FOR'
CHARACTER*40 TITLE
CHARACTER*1 VORG, READCHAR
INTEGER |
REAL DET, CHI2, CALCCHISQ
M=2 I--- FIND 2 PARAMETERS
PRINT *, '(V)OLTS OR (G)EIGER? '
VORG = READCHAR()
IF (VORG .EQ. 'V') THEN

CALL FETCHDATA(\CHAPT-6\VOLTS.DAT' ,TITLE) I--- EXAMPLE 6.1
ELSEIF ((VORG .EQ. 'G') .OR. (VORG .EQ. 'G')) THEN

CALL FETCHDATA(\CHAPT-6\GEIGER.DAT',TITLE) I--- EXAMPLE 6.2

DO 1001 =1, NPTS

X(1) = 1/X(1)**2 l--- FITTING 1/RA2

100 CONTINUE

ENDIF
CALL LINEFIT(DET)
CALL CALCULATEY I--- FILL ARRAY YCALC FOR CALCCHISQ AND PLOTIT
CHI2 = CALCCHISQ()
CALL OUTPUT(.FALSE. , 'CON!, CHI2, TITLE) |--- FALSE FOR NO ERROR MATRIX
IF (VORG .EQ. 'V') THEN

CALL PLOTIT('FITLINE.SCR',.FALSE.,.FALSE., |---SCRPT FILE,LOG?,SPLINE?

1 'C', ABS(X(2)-x(1))/20, I--- DATA CIRCLE, RAD OF CIRCLE
2 0.0, 0.0, 100.0, 3.0, I-—- x1,Y1,x2,v2
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3 5, 6, I--- # x-DIV, # Y-DIV
4 'X (cM)', 'POTENTIAL DIFF(ERENCE (VOLTS)') l--- AXIS LABELS
ELSEIF (VORG .EQ. 'G') THEN
CALL PLOTIT('FITLINE.SCR',.FALSE. ,.FALSE.,
1 'C', ABS(X(2)-X(1))/50, 0.0, 0.0, 30.0, 1000.0, 6, 5,
2 'SQUARED INVERSE DISTANCE (1/MA2)', 'NUMBER OF COUNTS PER SEC')
ENDIF
READ *
CALL CLOSEGRAPHICS
END

SUBROUTINE CALCULATEY I--- FILLS ARRAY YCALC
INCLUDE \CHAPT-6\FITVARS.FOR'
INTEGER |
DO 100 I= 1 , NPTS
YCALC(I) = A(1) + A(2)*x(1)
100 CONTINUE
RETURN
END

REAL FUNCTION CALCCHISQ() |--- ASSUMES ARRAY YCALC HAS BEEN FILLED

INCLUDE \CHAPT-6\FITVARS.FOR'

INTEGER |

REAL CHI2

CHI2=0.

DO 1001 =1, NPTS

CHI2 = CHI2 + ( (Y(1)-YCALC(1))/SIGY(I))**2

100 CONTINUE

CALCCHISQ = CHI2

RETURN

END

SUBROUTINE LINEFIT(DET)
INCLUDE \CHAPT-6\FITVARS.FOR'

REAL DET
INTEGER |
REAL SUMWT, SUMX, SUMY, SUMX2, SUMY2, SUMXY, WEIGHT
SUMWT =0
SUM =0
suUMyY =0
sSUMX2 =0
sSUMY2 =0
SUMXY =0
C - ACCUMULATE WEIGHTED SUMS ——-----——-
DO 100 1= 1, NPTS
WEIGHT = 1/SIGY(1)**2

SUMWT = SUMWT + WEIGHT
SUMX = SUMX + WEIGHT * X(I)
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SUMY = SUMY + WEIGHT * Y(I)
SUMX2 = SUMX2 + WEIGHT * X(1)**2
SUMY2 = SUMY2 + WEIGHT * Y(I)**2
SUMXY = SUMXY + WEIGHT * X(1)*Y(1)

100 CONTINUE
C ---CALCULATE THE PARAMETERS - CUT OUT IF DETERMINANT IS NOT > O ——-
DET = SUMWT * SUMX2 - SUMX * SUMX
IF (DET .GT. O ) THEN
A(1) = (SUMX2*SUMY - SUMX*SUMXY)/DET
A(2) = (SUMXY*SUMWT - SUMX*SUMY) /DET
SIGA(1) = SQRT(SUMX2/DET)
SIGA(2) = SQRT(SUMWT/DET)
ELSE
CALL ERRORABORT('DETERMINANT < OR = O IN LINEFIT')
ENDIF
RETURN
END
INCLUDE \CHAPT-6\FITUTIL.FOR' | FITUTIL INCLUDES QUIKSCRP.FOR

C PROGRAM 6.2: \CHAPT-B\FITVARS.FOR (WEBSITE)
C INCLUDE FILE OF CONSTANTS, VARIABLES AND ARRAYS FOR LEAST-SQUARES FITS
C ALL GLOBAL TYPES, CONSTANTS AND VARIABLES ARE DECLARED HERE.
C THE ARRAY LIMITS MAXDATA AND MAXPARAM CAN BE SET AS REQUIRED
FOR PARTICULAR PROBLEMS.

C PROGRAM 6.3: \CHAPT-6\FITUTIL.FOR (WEBSITE)
C GENERAL UTILITY ROUTINES

E.3 Routines from Chapter 7

C PROGRAM 7.1: \CHAPT-7Z\MULTREGR.FOR

C LEAST-SQUARES FIT TO A POWER SERIES AND TO LEGENDRE POLYNOMIALS.
C Uses FITFUNC7, MAKEAB7, MATRIX, FITUTIL

PROGRAM MULTREGR
C M = NUM OF PARAMETERS, NPTS=ENUMBER OF DATA PAIRS,
C DATA AND UNCERTAINTIES ARE IN ARRAYS X, Y, DY.

INCLUDE \CHAPT-6\FITVARS.FOR'

COMMON /FITVARS7/PAE

CHARACTER * 1 PAE

REAL DET, CHI2, CALCCHISQ

INTEGER |

LOGICAL SPL

CHARACTER*1 READCHAR

CHARACTER*40 TITLE

PRINT *, '(P)OWER SERIES, (A)LL LEGENDRE TERMS TO L = 4,
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PRINT *, 'OR (E)VEN LEGENDRE TERMS(L = 0,2,4).'

PRINT *, 'TYPE P, AORE'

PAE = READCHAR()

1000 FORMAT(A1)

IF (PAE .EQ. 'P') THEN
CALL FETCHDATA (\CHAPT-7\THERMCOU.DAT', TITLE)
PRINT *, 'TYPE NUMBER OF PARAMETERS '
READ *, M

ELSEIF (PAE .EQ. 'A') THEN
CALL FETCHDATA(\CHAPT-7\LEGENDRE.DAT",TITLE)
M=5

ELSEIF (PAE .EQ. 'E' ) THEN
CALL FETCHDATA(\CHAPT-7\LEGENDRE.DAT',TITLE)

M=3
ENDIF I--- PAE
CALL MAKEBETA I--- SET UP THE LINEAR BETA MATRIX
CALL MAKEALPHA I--- SET UP THE SQUARE ALPHA MATRIX
CALL MATINV(M, ALLPHA, DET) l--== INVERT ALPH TO GET EPSILON MATRIX
CALL LINEARBYSQUARE(M,BETA,ALPHA,A) |--- BETA X EPS = PARAMETER MATRIX

CALL CALCULATEY
CHI2 = CALCCHISQ()
Do 1001 =1, M
SIGA(I) = SQRT(ALPHA(I,I))
100 CONTINUE

CALL OUTPUT(.TRUE., 'CON', CHI2, TITLE) I--- TRUE TO PRINT ERROR MATRIX
IF (M .GT. 2 ) THEN
sPL = .TRUE. l--- PLOT A CURVE
EL.SE
SPL = .FALSE. l--- PLOT A LINE
ENDIF
IF (PAE .EQ. 'P') THEN
CALL PLOTIT('"MULTREGR.SCR', .FALSE,, SPL, I--- FILE,LOG?,SPLINE
1 'C, (X(2)-x(1))/12, |--- DATA CIRCLES, RADIUS OF DATA CIR
2 -10.,-2., 110, 4., I--- x1,Y1, x2,Y2
3 6, 6, l— X,Y GRID MARKS
4 '"TEMPERATURE (DEGREES CELSIUS)','VOLTAGE (MV)")
ELSE IF ((PAE .EQ. 'A') .OR. (PAE .EQ. 'E')) THEN
CALL PLOTIT('"MULTREGR.SCR!', .FALSE., .TRUE,,
1 'C, (x(2)-x(1))/10, 0., 0.,180,, 1500, 6, 6,
2 '"THETA(DEGREES)', 'NUMBER OF COUNTS')
ENDIF I1--- PAE
CALL CLOSEGRAPHICS
END

INCLUDE \CHAPT-7\FITFUNC7.FOR'
INCLUDE \CHAPT-7\MAKEAB7.FOR'
INCLUDE \CHAPT-6\FITUTIL.FOR'
INCLUDE \APPEND-B\MATRIX.FOR'

C PROGRAM 7.2: \CHAPT-7\FITFUNC7.FOR
C FITTING FUNCTIONS FOR CHAPTER 7 EXAMPLES.
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REAL FUNCTION POWERFUNC(K, XX)

INTEGER K

REAL XX

REAL YY

INTEGER |

YY = 1

IF (K.GT. 1) THEN
DO 100 I= 2, K
YY = XX * YY

100 CONTINUE

ENDIF

POWERFUNC = YY

RETURN

END

REAL FUNCTION LEGFUNC(K, XX)
C DEFINE SEPARATE TERMS IN A SERIES, Y = AO*LO(X) + A1*L1(X) + ..
C NOTE K= 1 CORRESPONDS TO ZEROTH ORDER.
C VAR PAE : CHAR 'P'-POWER SERIES,
C 'A'-ALL LEGENDRE TERMS TO ORDER M,
C 'E'-EVEN LEGENDRE TERMS)
C
COMMON /FITVARS7/PAE
CHARACTER *1 PAE
INTEGER K
REAL XX
INTEGER KK, I
REAL C, PI/3.14159/, LEGPOLY(11) |--- I.E., OTH THRU 10TH ORDER
IF (PAE .EQ. 'E') KK = 2*K - 1
IF (PAE .EQ.'A') KK =K
C = COS(PI*XX/180)
LEGPOLY(1) = 1 I--- FOR BETTER EFFICIENCY, COULD CALC ONCE AND SAVE
IF (KK .GT. 1) THEN
LEGPOLf(2) =C
IF (KK .GT. 2 ) THEN
DO 100 | = 3, KK
LEGPOLY(I)=((2*I-1)*C*LEGPOLY(I-1)-(1-1)*LEGPOLY(1-2))/I
100 CONTINUE

ENDIF I--- KK> 2
ENDIF I--—- KK > 1
LEGFUNC = LEGPOLY(KK)
RETURN

END

REAL FUNCTION FUNCT(K, XX)
INTEGER K

REAL XX

REAL LEGFUNC, POWERFUNC
COMMON /FITVARS7/PAE
CHARACTER * 1 PAE
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IF ((PAE .EQ. 'A') .OR. (PAE.EQ.'E")) FUNCT = LEGFUNC(K,XX)
IF (PAE .EQ. 'P') FUNCT = POWERFUNC(K,XX)

RETURN

END

SUBROUTINE CALCULATEY
INTEGER I, K
REAL YY, FUNCT
INCLUDE \CHAPT-6\FITVARS.FOR'
DO 100 I=1, NPTS
Yy=0
DO 200 K=1, M
YY = YY + A(K) * FUNCT(K,X(1))
CONTINUE
YCALC(I) = YY
CONTINUVE
RETURN
END

REAL FUNCTION CALCCHISQ() !--- ASSUMES ARRAY YCALC HAS BEEN FILLED
INTEGER |
REAL CHI2
INCLUDE \CHAPT-6\FITVARS.FOR'
CHI2=0.
DO 1001 = 1, NPTS
CHI2 = CHI2 + ( (Y(1)-YCALC(1)) / SIGY(1))**2

100 CONTINUE

CALCCHISQ = CHI2
RETURN
END

C PROGRAM 7.3: \CHAPT-7\MAKEAB7.FOR
C ROUTINES TO SET UP THE BETA AND ALPHA MATRICES FOR LINEAR REGRESSION
C UsSes MATRIX, FITFUNC?7

C

200

SUBROUTINE MAKEBETA I--- MAKE THE BETA MATRICES
INTEGER I, K
REAL FUNCT
INCLUDE 'C\CHAPT-6\FITVARS.FOR'
DO 100 K=1, M
BETA(K)=0
DO 200 I=1, NPTS
BETA(K)=BETA(K) + Y(I)*FUNCT(K, X(1))/SIGY(1)**2
CONTINUE

100 CONTINUE

RETURN
END

SUBROUTINE MAKEALPHA !--- MAKE THE ALPHA MATRICES
INTEGER I,J,K
REAL FUNCT
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INCLUDE 'C\CHAPT-6\FITVARS.FOR'
DO 100 =1, M
DO 200 K=1, M
ALPHA(J,K)=0
Do 300 i=1, NPTS
ALPHA(J,K) = ALPHA(J,K)+FUNCT(J, X(1))*FUNCT(K, X(1))/SIGY(1)**2
300 CONTINUE
200 CONTINUE
100 CONTINUE
RETURN
END

E.4 Routines from Chapter 8
C PROGRAM 8.0: \CHAPT-8\NONLINFT.FOR
C MAIN CALLING ROUTINE FOR NON-LINEAR FITTING METHODS
C USES GRIDSEAR, GRADSEAR, EXPNDFIT, MARQFIT, FITFUNC8, MAKEABS,
C NUMDERIV, MATRIX, FITUTIL
PROGRAM NONLINFT
INTEGER TRIAL, J, METHOD
REAL STEPDOWN, LAMBDA, CHISQR, CALCCHISQ
CHARACTER*40 TITLE
REAL STEPSCALE(4)/0.49999, 0.99999, 0.001, 0.001/
INCLUDE \CHAPT-6\FITVARS.FOR'
PRINT *' (1)GRID SEARCH, (2)GRADIENT SEARCH'
PRINT *,! (3)CHISQ EXPANSION, (4)FUNCTION EXPANSION'
PRINT *, 'TYPE 1,2,3,0R 4 ---'
READ *, METHOD
CHICUT = 0.01
sSTEPDOWN = 0.1 1--- STEP DOWN THE GRADIENT IN GRADLS
LAMBDA = 0.001 l--- FOR MARQUARDT METHOD ONLY
STEPSIZE = STEPSCALE(METHOD) Il--- SCALES DELTAA(J)
CALL FETCHDATA(\CHAPT-8\RADIODK.HST',TITLE)
CALL FETCHPARAMETERS I--- USES NPTS, MUST FOLLOW FETCHDATA
TRIAL =0
CHISQR = CALCCHISQ()
CHIOLD = CHISQR + CHICUT + 1
DO WHILE (ABS(CHIOLD - CHISQR) .GE. CHICUT)
CHIOLD = CHISQR
PRINT 1000, TRIAL, CHISQR
1000 FORMAT(' TRIAL #', 14, ' CHISQ =', F10.1)
PRINT 1100, (A(J), J = 1,M)
1100 FORMAT(6F12.4)
PRINT *
GOTO (110, 120, 130, 140) , METHOD
110 CALL GRIDLS(CHISQR)
GOTO 150
120 CALL GRADLS(CHISQR, STEPDOWN)
GOTO 150
130 CALL CHIFIT(CHISQR)
GOTO 150
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140
150

151

200

300

PWON -

CALL MARQUARDT(CHISQR, CHICUT, LAMBDA)
TRIAL = TRIAL +1

ENDDO

CALL CALCULATEY

IF ((METHOD .EQ. 1) .OR. (METHOD .EQ. 2)) THEN
po200uJ =1, M

SIGA(J) = SIGPARAB(J) l--- DCHI2 = 1
CONTINUE
CALL OUTPUT(.FALSE., 'CON' ,CHISQR, TITLE) |--- NO ERROR MATRIX

ELSEIF ((METHOD .EQ. 3) .OR. (METHOD .EQ. 4)) THEN
IF (METHOD .EQ. 4 ) THEN

CALL MARQUARDT(CHISQR,CHICUT,0) l--- GET ERROR MATRI
ENDIF
DO300J=1,M
SIGA(J) = SIGMATRX(J) I--- ERROR MATRIX
CONTINUE
CALL OUTPUT(.TRUE., 'CON!', CHISQR, TITLE) |--- WITH ERROR MATRIX
ENDIF
CALL PLOTIT('"NONLIN.SCR', . TRUE., .TRUE., |--- SCRPT FILE, LOG?, SPLINE?
'C', (X(2)-x(1))/5, I--- DATA CIRCLES, RADIUS OF CIRCLES
0., 1., 900., 1000., !--- RANGES-X1,Y1,X2,Y2
6, 6, f-=- NUM X-AXIS DIV, NUM Y-AXIS DIV
'TIME (SEC)', 'NUMBER OF COUNTS') |--- AXIS LABELS
CALL CLOSEGRAPHICS

END

C SAMPLE FITTING FUNCTION FOR NON-LINEAR FITS
C EXAMPLE IS SUM OF 2 EXPONENTIALS ON A CONSTANT BACKGROUND

REAL FUNCTION EXPF(A,X)
REAL A,X

REAL YY, ARG

ARG = ABS(X/A)

IF (ARG .GT, 60 ) THEN

Yy =0
ELSE
YY = EXP(-ARG)
ENDIF
EXPF = YY
RETURN
END
FUNCTION YFUNCTION(XX) |--- REAL

REAL YFUNCTION, XX, EXPF

INCLUDE \CHAPT-6\FITVARS.FOR'

YFUNCTION = A(1) + A(2)*EXPF(A(4),xX) + A(3)*EXPF(A(5),XX)
RETURN

END
INCLUDE \CHAPT-8\GRIDSEAR.FOR' 1--- 1-GRID SEARCH METHOD
INCLUDE \CHAPT-8\GRADSEAR.FOR' 1--- 2-GRADIENT SEARCH METHOD

INCLUDE \CHAPT-8\EXPNDFIT.FOR' I--- 3-FUNCTION EXPANSION METHOD
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INCLUDE \CHAPT-8\MARQFIT.FOR' [--- 4-MARQUARDT METHOD
INCLUDE \CHAPT-6\FITUTIL.FOR'

INCLUDE \CHAPT-8\FITFUNC8.FOR' |--- USED BY ALL METHODS
INCLUDE \CHAPT-8\MAKEABS8.FOR' |--- USED BY METHODS 4 AND 5
INCLUDE \CHAPT-8\NUMDERIV.FOR' |--- USED BY METHODS 4 AND 5
INCLUDE \APPEND-B\MATRIX.FOR' |--- USED BY METHODS 4 AND 5

C PROGRAM 8.1: \CHAPT-8\GRIDSEAR.FOR
C NON-LINEAR FIT BY THE GRID-SEARCH METHOD
C USES FITFUNCS, FITUTIL
SUBROUTINE GRIDLS(CHISQR)
REAL CHISQR
REAL CALCCHISQ
REAL SAVE,DELTA, DELTA1,DEL1,DEL2,AA,BB,CC,DISC,ALPH,X1,X2
INTEGER J
INCLUDE \CHAPT-6\FITVARS.FOR'
CHISQ2 = CALCCHISQ()
C -FIND LOCAL MINIMUM FOR EACH PARAMETER-
DO 100U =1, M
DELTA = DELTAA(J)
A(J) = A(J) + DELTA
CHISQ3 = CALCCHISQ()
IF (CHISQ3 .GT. CHISQ2 ) THEN
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DELTA = -DELTA 1--- STARTED IN WRONG DIRECTION
A(J) = A(J) + DELTA
SAVE = CHISQ2 1--- INTERCHANGE 2 AND 3 SO 3 IS LOWER

CHISQ2 = CHISQ3
CHISQ3 = SAVE
ENDIF 1--- IF (CHISQ3 ...
C -INCREMENT OR DECREMENT A(J) UNTIL CHI SQUARED INCREASES-
110 CONTINUE
CHISQ1 = CHISQ2 1--- MOVE BACK TO PREPARE FOR QUAD FIT
CHISQ2 = CHISQ3
A(J) = A(J) + DELTA
CHISQ3 = CALCCHISQ()
IF (CHISQ3 .LE. CHISQ2) GOTO 110
C -FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS-
DEL1 = CHISQ2 - CHISQ1
DEL2 = CHISQ3 - 2*CHISQ2 + CHISQ1
DELTA1 = DELTA * (DEL1/DEL2 + 1.5)
A(J) = A(J) - DELTAI
CHISQ2 = CALCCHISQ() l--- AT NEW LOCAL MINIMUM
C -ADJUST DELTA FOR CHANGE OF 2 FROM CHISQ AT MINIMUM-

AA = DEL2/2 |--- CHISQ = AA*A(J)**2 + BB*A(J) + CC

BB = DEL1 - DEL2/2

CC = CHISQI1-CHISQ2
DISC = BB**2 -4*AA*(CcC-2) |--- CHISQR DIFF(ERENCE) = 2
IF (DISC .GT. O) THEN l--- IF NOT, THEN PROBABLY NOT PARABOLIC YET

DISC =SQRT(DISC)
ALPH = (-BB - DISC)/(2*AA)
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X1 = ALPH*DELTA + A(1) - 2*DELTA |--- A(J) AT CHISQ MINIMUM+2
DISC = BB**2 - 4*AA*CC
IF (DISC.GT.O ) THEN

DISC = SQRT(DISC)

ELSE
pisc =0 I--- ELIM ROUNDING ERR
ENDIF
ALPH = (-BB - DISC)/(2*AA)
X2 = ALPH*DELTA + A(1) - 2*DELTA |--- A(J) AT CHISQ MINIMUM

DELTA = X1 - x2
DELTAA(J) = DELTA

ENDIF 1--- IF (DISC .GT. O...
100 CONTINUE I--- DO J

CHISQR = CHISQ2

RETURN

END

C PROGRAM 8.2: \CHAPT-8\GRADSEAR.FOR
C NON-LINEAR LEAST-SQUARES FIT BY GRADIENT SEARCH METHOD
C USES FITFUNCS, FITUTIL

SUBROUTINE CALCGRAD

INTEGER J

REAL SUM, DELTA, FRACT/0.001/, CALCCHISQ

INCLUDE \CHAPT-6\FITVARS.FOR'

SUM =0
Do 100J=1, M
CHISQ2 = CALCCHISQ()
DELTA = FRACT * DELTAA(J) |--- DIFF(ERENTIAL ELEMENT FOR GRADENT
A(J) = A(J) + DELTA
CHISQ1 = CALCCHISQ()
A(J) = A(J)-DELTA
GRAD(J) = CHISQ2 - CHISQ1 l--- 2*DELTA*GRAD
SUM = SUM + GRAD(J)**2

100 CONTINUE
Do 200 J=1,M
GRAD(J) = DELTAA(J)*GRAD(J)/SQRT(SUM) I--- STEP * GRAD
200 CONTINUE
RETURN
END

SUBROUTINE GRADLS(CHISQR, STEPDOWN)
REAL CHISQR, STEPDOWN
REAL STEPSUM, STEP1, CALCCHISQ

INTEGER J
INCLUDE \CHAPT-6\FITVARS.FOR'
CALL CALCGRAD |--- CALCULATE THE GRADIENT

C -EVALUATE CHISQR AT NEW POINT AND MAKE SURE CHISQR DECREASES-
CHISQ3 = CHISQ2 + |
DO WHILE (CHISQ3 .GT. CHISQ2)
DoJ=1,M
A(J) = A(J) + STEPDOWN * GRAD(J) | SLIDE DOWN
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ENDDO
CHISQ3 = CALCCHISQ()
IF (CHISQ3 .GE. CHISQ2 ) THEN

DoJ=1,M | MUST HAVE OVERSHOT MINIMUM
A(J) = A(J) - STEPDOWN * GRAD(J) | RESTORE
ENDDO
STEPDOWN = STEPDOWN/2 | DECREASE STEPSIZE
ENDIF
ENDDO

STEPSUM =0
C -INCREMENT PARAMETERS UNTIL CHISQR STARTS TO INCREASE-

DO WHILE (CHISQ3 .L.T. CHISQ2)
STEPSUM = STEPSUM + STEPDOWN | COUNTS TOTAL INCREMENT
CHISQ1 = CHISQ2
CHISQ2 = CHISQ3
DoJ=1, M

A(J) = A(J) + STEPDOWN * GRAD(J)

ENDDO
CHISQ3 = CALCCHISQ()
ENDDO IDOWHILE

C -FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS-
STEP1=STEPDOWN*((CHISQ3-CHISQ2)/(CHISQ1-2*CHISQ2+CHISQ3)+0.5)

DoJ=1,M
A(J) = A(J) - STEP1 * GRAD(J) | MOVE TO MINIMUM
ENDDO
CHISQR = CALCCHISQ()
STEPDOWN = STEPSUM | START WITH THIS NEXT TIME
RETURN
END

C PROGRAM 8.3: \CHAPT-8\EXPNDFIT.FOR
C NON-LINEAR LEAST-SQUARES FIT BY EXPANSION OF THE FITTING FUNCTION
C USEs FITFUNC8, MAKEABS8, MATRIX

SUBROUTINE CHIFIT(CHISQR)

INTEGER J

REAL DET, CALCCHISQ

INCLUDE \CHAPT-6\FITVARS,.FOR'

CALL MAKEBETA

CALL MAKEALPHA

CALL MATINV(M, ALPHA, DET) 1--- INVERT MATRIX
CALL LINEARBYSQUARE(M,BETA,ALPHA,DA) I--- EVALULATE PARAM
INCREMENTS
DO 100 J=1,M
A(J) = A(J) + DA(J) 1--- INCREMENT TO NEXT SOLUTION.

100 CONTINUE
PRINT *,'A',(A(J),J=1,M)
CHISQR = CALCCHISQ()
RETURN
END

291
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C PROGRAM 8.4: \CHAPT-8\MARQFIT.FOR
C NON-LINEAR FIT BY THE GRADIENT-EXPANSION (MARQUARDT) METHOD
C USES FITFUNCY9, MAKEABS8, MATRIX

100

200

300

SUBROUTINE MARQUARDT(CHISQR, XICUT, LAMBDA)
INTEGER J
REAL CHISQR, XICUT, LAMBDA
REAL DET, CALCCHISQ
INCLUDE \CHAPT-6\FITVARS.FOR'
DO

CALL MAKEBETA

CALL MAKEALPHA

DO 100J=1,M

ALPHA(J,J) = (1 + LAMBDA) * ALPHA(J,J)

CONTINUE
CALL MATINV(M, ALPHA, DET) l--- INVERT MATRIX
IF (LAMBDA .LE. O ) RETURN |- FINAL CALL TO GET THE ERROR MATRIX.
CALL LINEARBYSQUARE(M,BETA,ALPHA,DA)!--- EVAL PARAM INCREMENTS
CHISQ1 = CHISQR
DO 200J=1, M
A(J) = A(J) + DA(J) I--- INCR TO NEXT SOLUTION
CONTINUE
CHISQR = CALCCHISQ()
IF ( CHISQR .LE. CHISQ1 + XICUT ) RETURN
Dpo300u=1,M
A(J) = A(J)-DA(J) !--- RETURN TO PREV SOLUTION
CONTINUE
CHISQR = CALCCHISQ()
LAMBDA = 10*LAMBDA !--- AND REPEAT THE CALC, WITH LARGER LAMBDA
END DO
END

C PROGRAM 8.5: \CHAPT-8\FITFUNCB8.FOR
C UsES FITVARS
C -THE FOLLOWING ROUTINES ARE GENERAL FOR FITTING ANY FUNCTION-

100

SUBROUTINE CALCULATEY
REAL YFUNCTION
INCLUDE \CHAPT-6/FITVARS.FOR'
DO 1001 =1, NPTS
YCALC(I) = YFUNCTION(X(1))
CONTINUE
RETURN
END

REAL FUNCTION CALCCHISQ()
REAL CHI2, YFUNCTION
INCLUDE \CHAPT-6/FITVARS.FOR'
CHI2=0,
DO 1001 =1, NPTS
CHI2 = CHI2 4 ( (Y(1)-YFUNCTION(X(I)))/SIGY(1))**2

100 CONTINUE

CALCCHISQ = CHI2
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RETURN
END

C -STANDARD DEVIATION CALC'D FROM CHISQ CHANGE OF 1 (PARABOLA FIT)
REAL FUNCTION SIGPARAB(J)
INTEGER J
REAL CALCCHISQ
INCLUDE \CHAPT-6/FITVARS.FOR'
CHISQ2 = CALCCHISQ()
A(J) = A(J) + DELTAA(J)
CHISQ3 = CALCCHISQ()
A(J) = AQJ) - 2*DELTAA(J)
CHISQ1 = CALCCHISQ()
A(J) = A(J) + DELTAA(J)
SIGPARAB = DELTAA(J)*SQRT(2/(CHISQ1-2*CHISQ2+CHISQ3))
RETURN
END

C -STANDARD DEVIATION CALC'D FROM DIAGONAL TERMS IN ERROR MATRIX
REAL FUNCTION SIGMATRX(J)
INTEGER J
REAL sIG
INCLUDE \CHAPT-6/FITVARS.FOR'
SIG = SQRT(ABS(ALPHA(J,J)))

IF (ALPHA(J,J) .LT. O ) SIG = - SIG |--- NOTE- AN ERROR
SIGMATRX = SIG

RETURN

END

C PROGRAM 8.6: \CHAPT-8\MAKEABS8.FOR
C MATRIX SET-UP FOR NON-LINEAR FITS
C Uses FITFUNC8, NUMDERIV
C
SUBROUTINE MAKEBETA 1---MAKE BETA MATRICES FOR NON-LINEAR FITTING
INTEGER J
INCLUDE \CHAPT-6/FITVARS.FOR'
DO 100U =1, M
BETA(J) = -0.5*DXISQ_DA(J)
100 CONTINUE
RETURN
END

SUBROUTINE MAKEALPHA |--- ALPHA MATRICES FOR NON-LINEAR FITTING
INTEGER J, K
INCLUDE \CHAPT-6\FITVARS.FOR'
Do 100J =1, M

ALPHA(J,J) = 0.5 * p2XISQ_DA2(J)

IF (ALPHA(J,J) .EQ. O) THEN

PRINT *, 'DIAGONAL ELEMENT IS ZERO, J =',J
STOP
ENDIF



294 Data Reduction and Error Analysis for the Physical Sciences

IF (J.GT. 1) THEN
DO 200 K = 1, J-1
ALPHA(J,K) = 0.5*D2XISQ_DAJK(J,K)

ALPHA(K,J) = ALPHA(J,K)

200 CONTINUE {--- DOK

ENDIF l-=- IF J

100 CONTINUE {--- DO J
po300.J=1,M

IF (ALPHA(J,J) .LT. O) THEN
ALPHA(J,J) = -ALPHA(J,J)
IF (J .GT. 1) THEN
DO 400K = 1, J-1
ALPHA(J,K) = O
ALPHA(K,J) = O

400 CONTINUE !--- DOK
ENDIF I--- IFJ
ENDIF |--- IF ALPHA
300 CONTINUE {--- FOR J
RETURN
END

E.S Routines from Chapter 9
C PROGRAM 9.1: \CHAPT-9\LORENFIT.FOR
C MAIN CALLING ROUTINE FOR FIT TO LORENTZIAN + POLYNOMIAL
C Uses FITFUNC9, MARQFIT, MATRIX, NUMDERIV, MAKEABS8, FITUTIL
PROGRAM LORENFIT
CHARACTER*40 TITLE
INTEGER TRIAL, J
REAL XSHIFT, CHISQR, LAMBDA, YFUNCTION
REAL STEPSCALE(4)/ 0.49999, 0.99999, 0.001, 0.001/
INCLUDE 'C:\F\CHAPT-6\FITVARS.FOR'
CHICUT =0.01
LAMBDA 0.001 ! FOR MARQUARDT METHOD ONLY
STEPSIZE = STEPSCALE(4) | SCALES DELTAALJ]
CALL FETCHDATA('\F\CHAPT-O\SINGLE.HST',TITLE)
XSHIFT = (X(2)- x(1))/2
Do J =1, NPTS

X(J) = X(J) + XSHIFT ! MOVE TO BIN CENTER
ENDDO
CALL FETCHPARAMETERS ! USES NPTS, MUST FOLLOW FETCHDATA

TRIAL =0

CHISQR = CALCCHISQ()

CHIOLD = CHISQR + CHICUT +1

DO WHILE (ABS(CHIOLD - CHISQR) .GT. CHICUT)
CHIOLD = CHISQR
PRINT *,'TRIAL #',TRIAL,' CHISQ = '\,CHISQR
PRINT *, (A(J), J =1, M)
CALL MARQUARDT(CHISQR, CHICUT, LAMBDA)
TRIAL = 1 + TRIAL
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ENDDO
CALL CALCULATEY
CALL MARQUARDT(CHISQR,CHICUT,O) | GET ERROR MATRIX
poJ=1,M

SIGA(J) = SIGMATRX(J) ! ERROR MATRIX
ENDDO

CALL OUTPUT(.TRUE., 'CON/', CHISQR,TITLE) ! WITH ERROR MATRIX
poJ =1, NPTS

X(J) = X(J) - XSHIFT | RESTORE TO LEFT EDGE
ENDDO
CALL PLOTIT('LORENFIT.SCR!',.FALSE.,.TRUE.,! SCRIPT FILE, LOG?, SPLINE?
1 'H', 0.0, | HIST, O(NOT USED)
2 0.0, 0.0, 3.0, 220.0, 1 x1, Y1, X2, Y2 FOR PLOT
3 6,6, I NUM GRID MARKS X,Y
4 'E (GEV)', 'NUMBER OF COUNTS') | LABELS
C -PLOT THE BACKGROUND-
A(4) = 0.0
A(7) = 0.0

poJ =1, NPTS
YCALC(J) = YFUNCTION(X(J))
ENDDO
CALL SPLINEMAKE(NPTS,0,0,X,YCALC)
CALL SCURVE(1, 40, 5, 0.025, x) | SPLINE CURVE
CALL CLOSEGRAPHICS
END

C LORENTZIAN PEAK ON A QUADRATIC BACKGROUND
REAL FUNCTION YFUNCTION(XX) | LORENTZIAN ON POLYNOMIAL
REAL XX
REAL YY, PI/3.1415927/
INCLUDE \FACHAPT-6\FITVARS.FOR'
YY = A(1) + A(2)*XX + A(3)*XX**2 + A(4)*A(6)/(2*PI)
1 /((XX-A(5))**2 + A(6)**2/4)
YFUNCTION = YY
RETURN
END
INCLUDE \F\CHAPT-6\FITUTIL.FOR'
INCLUDE \FACHAPT-9\FITFUNC9.FOR'

INCLUDE \F\CHAPT-8\MARQFIT.FOR' ! MARQUARDT METHOD
INCLUDE \F\CHAPT-8\MAKEABS8.FOR' ! USED BY MARQFIT
INCLUDE \F\CHAPT-8\NUMDERIV.FOR' ! USED BY MARQFIT
INCLUDE \F\APPEND-B\MATRIX.FOR' ! USED BY MARQFIT

E.6 Routines from Chapter 10

C PROGRAM 10.1: \CHAPT-IO\MAXLIKE.FOR

C DIRECT MAXIMUM LIKELIHOOD EXAMPLE

C USES FITUTIL, QUIKSCRP
PROGRAM MAXLIKE
REAL  SIGTAU, TAUMAX, MAXM |--- M IS LOG OF LIKELIHOOD FUNCTION
INCLUDE \CHAPT-10\MAXLINCL.FOR'
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CALL GETDATA(\CHAPT-10O\TEST.DAT') 1--- wAs DASBO
CALL SEARCH(TAUMAX, MAXM)

CALL WRITEOUTPUT(SIGTAU, TAUMAX, MAXM)

CALL PLOTLIKECURVE(TAUMAX, SIGTAU, MAXM)

CALL CLOSEGRAPHICS

END

SUBROUTINE GETDATA(INFILE)

INTEGER IEVNUM

CHARACTER*(*) INFILE

CHARACTER TITLE(80)

INCLUDE \CHAPT-1O\MAXLINCL.FOR'

c =3.00

LOSEARCH = 0.50

HISEARCH = 1.5 |--- SEARCH RANGE

TAUSTEP = 0.01

XLO = 0.50 I--- PLOT RANGE

XHi 1.2

YLO 0.0

YHI 1.2

NTRIALS = (HISEARCH - LOSEARCH)/TAUSTEP

OPEN(S, INFILE) |--- INPUT DATA FILE

READ(S5, *) TITLE

PRINT *,' " TITLE

READ(5, *) NEVENTS, MASS, D1, D2

IEVNUM = 1

NEVENTS = O

DO WHILE (IEVNUM .GT.O)

READ(S5, *) IEVNUM, XPRODUCTION, PLAB, XDECAY
IF (IEVNUM .GT.O) THEN
IF ((XDECAY .GE. D1) .AND. (XDECAY .LT. D2)) THEN

NEVENTS = 1 + NEVENTS
LTOTSCALE = MASS/(C*PLAB) |--- = 1/(C*BETA*GAMMA)
TIMES(NEVENTS)=(XDECAY - XPRODUCTION)*LTOTSCALE |---PROPER T

C CONVERT D1 AND D2 TO TIME LIMITS, LOTLIM AND HITLIM,

C I.E., INTEGRATION LIMITS IN PROPER TIME FROM THE PRODUCTION VERTEX.
LOTLIM(NEVENTS) = (D1 - XPRODUCTION)*LTOTSCALE
HITLIM(NEVENTS) = (D2 - XPRODUCTION)*LTOTSCALE

ENDIF
ENDIF
ENDDO
PRINT *, 'END OF FILE - ', IEVNUM, ' EVENTS READ'
PAUSE
RETURN
END

REAL FUNCTION LOGPROB(K, TAU)
INTEGER K

REAL TAU

REAL A, B

INCLUDE \CHAPT-10\MAXLINCL.FOR'
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C D1 AND D2 ARE BEGINNING AND END OF THE FIDUCIAL REGION.

C MUST CVT TO LOTLIM AND HITLIM WHICH ARE INTEGRATION LIMITS IN PROPER
TIME,

C MEASURED FROM PRODUCTION VERTEX.

C NoOw, CALC PROBABILITY-

B = EXP(-HITLIM(K)/TAU)

A = EXP(-LOTLIM(K)/TAU)

PROB = EXP(-TIMES(K)/TAU)/(TAU*(A - B))
LOGPROB = ALOG(PROB)

RETURN

END

REAL FUNCTION LOGLIKE(T)

REAL T, LOGPROB

INTEGER |

REAL M, PROB

INCLUDE \CHAPT-10\MAXLINCL.FOR'

M=0.0

Do 1001 =1, NEVENTS
PROB = LOGPROB(I,T)
M =PROB + M

100 CONTINUE

LOGLIKE = M

RETURN

END

SUBROUTINE SEARCH(TAUATMAX, MAXM)

REAL TAUATMAX, MAXM

INTEGER TRIAL

REAL M1, M2, M3, DEL1, DEL2, DELTA1, TAU, MLIKELI, LOGLIKE
INCLUDE \CHAPT-10\MAXLINCL.FOR!'

M2 = -1000
MAXM = -1.0E20
TAU = |LOSEARCH

DO 100 TRIAL = O, NTRIALS
MLIKELI = LOGLIKE(TAU)
PRINT *,'TRIAL',TRIAL,' TAU=', TAU,' LOG LIKELIHOOD="',MLIKELI
M3 = MLIKELI

IF (M3 .GT. M2 ) THEN !--- REMEMBER, THESE ARE NEGATIVE
M1 = M2
M2 = M3

ELSE I--- LEAVING MAXIMUM

C FIND MAXIMUM OF PARABOLA DEFINED BY LAST THREE POINTS-

DEL1 = M2 - M1
DEL2 = M3 -2*M2 + M1
DELTAl = TAUSTEP * (DEL1/DEL2 + 1.5)
TAU = TAU - DELTAI
TAUATMAX = TAU
MAXM = LOGLIKE(TAU) I--- AT MAXIMUM OF PARABOLA
RETURN

ENDIF
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TAU = TAU + TAUSTEP

100 CONTINVE

RETURN
END

REAL FUNCTION ERROR(T, DT) !--- 1/SQRT(-2ND DERIVATIVE OF LOG(L))
REAL T, DT

REAL T1!,T2, D2YDT2, ERR, LOGLIKE

T =T-0DT

T2 =T + DT

D2YDT2 = (LOGLIKE(T2) - 2*LOGLIKE(T) + LOGLIKE(T1))/DT**2

ERR = 1/SQRT(-D2YDT2)
ERROR = ERR

RETURN

END

C PROGRAM 10.2 \CHAPT-10\MAXLINCL.FOR (WEBSITE)
C INCLUDE FILE FOR MAXLIKE

E.7 Routines from Chapter 11

C PROGRAM 11.1: \CHAPT-11\CHI2PROB.FOR

C CALCULATE CHIA2 PROB. DENS. & THE CHIA2 PROB. INTEGRAL
C UsSeEs CHIPROBDENS AND CHIPROB

1

PROGRAM CHI2PROB

REAL cHI2, CHIPROB

INTEGER NFREE

PRINT *,'CALCULATE CHI2 PROBABILITY DENSITY FUNCTION & INTEGRAL',
' PROBABILITY'

PRINT *, 'TYPE NUM DEG OF FREEDOM AND CHI2. (EXIT ON AC)'

READ *, NFREE, CHI2

PRINT 1000, CHIPROBDENS(CHI2, NFREE), CHIPROB(NFREE, CHI2)

1000 FORMAT(' CHIA2 PROB. DENS. = ',F7.3,', CHI*"2 PROBABILITY=',F7.3)

PRINT *,' ***** NOTE THAT TABLE C.4 REFERS TO CHIA2/NFREE****!
END

C THE FOLLOWING THREE ROUTINES ARE INCLUDED
IN THE PROGRAM UNIT C:\CHAPT-B\FITUTIL.FOR (WEBSITE)

C

—

REAL FUNCTION CHIPROB(NFREE, CHI2) I--- MAX NFREE = 56
EXTERNAL CHIX

COMMON/UTIL/ GLSIMPS

REAL CHIX, SIMPSON, GLSIMPS

INTEGER NFREE

REAL PI, CHI2, CLIM, INTFROMLIM

DATA CLIM /2/, I--- EXPANSION LIMIT FOR NFREE = 1
INTFROMLIM /0.157/, |--- INTEGRAL FROM CLIM TO INFINITY
px0 /0.2/ |--- DETERMINES ACCURACY OF INTEGRATION
PI/3.14159/

INTEGER NINT
IF (CHI2 .GE. 1) THEN

NINT = (CHI2+0.0001)/DXx0
ELSE
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NINT =5
ENDIF
IF (CHI2 .GT. 15*SQRT(NFREE) ) THEN I--- QUICK CUTOUT
CHIPROB = O
ELSE
GLSIMPS = FLOAT(NFREE)/2 l--- GLSIMPS IS GLOBAL FOR CHIX

IF (NFREE .EQ. 1) THEN
IF (CHI2 .LT. CLIM ) THEN

CHIPROB = 1-SQRT(CHI2/2/PI)*
1 (2 - CHI2*(1/3 - CcHI2*(1/20 - CHI2*(1/168 - CHI2/1728))))
ELSE

CHIPROB = INTFROMLIM - SIMPSON(CHIX,NINT,CcLIM,CHI2)
1 /GAMMA(NFREE/2.0)/2.0**(NFREE/2.0)

ENDIF l--- IF (CHIZ2 ...)
ELSE IF (NFREE .EQ. 2 ) THEN
CHIPROB = EXP(-CHI2/2) l--- INTEGRABLE
ELSE
CHIPROB = 1 - SIMPSON(CHIX, NINT, O, CHI2)
1 /GAMMA(NFREE/2.0)/2.0**(NFREE/2.0)
ENDIF I--- IF (NFREE ...)
ENDIF
RETURN I--- IF (NFREE ...)

END

REAL FUNCTION CHIPROBDENS(X,NFREE)
REAL NUM, DEN, H, X

INTEGER NFREE

H = NFREE/2.0

NUM = X**(H-1) * EXP(-X/2)

DEN = 2**H * GAMMA(H)

CHIPROBDENS = NUM/DEN

RETURN

END

C USED BY CHIPROB (FOR SIMPSON WHICH ALLOWS ONLY 1 ARGUMENT.)
REAL FUNCTION CHIX(X)
COMMON/UTIL/ GLSIMPS
REAL GLSIMPS
REAL X
IF (X.EQ.O) THEN
CHIX = 0.0
ELSE
CHIX = X**(GLSIMPS-1)*EXP(-X/2) l--- GLSIMPS = H = NFREE/2
ENDIF
RETURN
END

C THIS FOLLOWING ROUTINE IS INCLUDED
C IN THE PROGRAM UNIT \CHAPT-6\FITUTIL.FOR (WEBSITE)
C APPROXIMATE GAMMA FUNCTION WITH H = NFREE/2

REAL FUNCTION GAMMA(H)
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REAL H, PI1/3.1415927/

GAMMA = SQRT(2.0*P1) * EXP(-H)*(H**(H-0.5)) * (1.0 + 0.0833/H)
RETURN

END

C PROGRAM 11.2:\CHAPT-11\LCORPROB.FOR
C CALCULATE LINEAR CORRELATION PROBABILITY INTEGRAL
C UsSeES LCORLATE
PROGRAM LCORPROB
INTEGER NOBSERYV
REAL LINCORPROB, RCORR
PRINT *, 'TEST INTEGRAL OF LINEAR CORRELATION FUNCTION'
PRINT *, 'TYPE-# OBSERVATIONS, LINEAR CORRELATION COEFFICIENT: '
READ *, NOBSERY, RCORR
PRINT *, 'INTEGRAL CORRELATION FUNCTION= ',
1 LINCORPROB(NOBSERV-2, RCORR)
END
INCLUDE \CHAPT-1 I\LCORLATE.FOR!'

C LINEAR-CORRELATION PROBABILITY FUNCTION AND INTEGRAL
C UsEs FITUTIL
REAL FUNCTION LINCORPROB(NFREE, HILIM)
EXTERNAL LINCORREL l--- FOR USE IN FUNCTION SIMPSON
INTEGER NFREE
REAL HILIM
REAL DX /0.01/, LOLIM/0.0/, LINCORREL, SIMPSON
INTEGER NINT
COMMON/UTIL/GLSIMPS

GLSIMPS = NFREE l--- GLOBAL FOR FUNCTION LINCORREL (FOR SIMPSON)
NINT = INT((HILIM - LOLIM)/DX)

LINCORPROB = 1-2*SIMPSON(LINCORREL, NINT, LOLIM, HILIM)

RETURN

END

REAL FUNCTION LINCORREL(R)

REAL R
COMMON/UTIL/GLSIMPS l--- GLSIMS = NFREE MUST BE GLOBAL FOR
DATA SQRTP1/1.7724539/ | FUNCT "SIMPSONS" WHICH ALLOWS ONLY 1 ARG
LINCORREL = GAMMA((GLSIMPS+1)/2)/GAMMA(GLSIMPS/2)
1 *EXP( (GLSIMPS-2)/2 * ALOG(1 - R**2))/SQRTPI
RETURN
END

E.8 Routines from Appendix A

PROGRAM A.! SIMPSON

C THE FOLLOWING ROUTINE IS INCLUDED

C IN THE PROGRAM UNIT \CHAPT-6\FITUTIL (WEBSITE)

C -SIMPSON'S RULE FOR "FUNCTX(X:REAL):REAL"

C IF FUNCTX HAS OTHER PARAMETERS, THEY MUST BE GLOBAL, E.G., GLSIMPS
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REAL FUNCTION SIMPSON(FUNCTX, NINTS, LOLIM, HILIM) I--- 2 CALCS/INTERVAL
EXTERNAL FUNCTX l--- THIS STATEMENT REQ'D IN CALLING PGM ALSO
REAL FUNCTX, SUM, X, DX, LOLIM, HILIM
INTEGER NINTS, I

X = LOLIM

DX = (HILIM - LOLIM)/(2*NINTS)

SUM=FUNCTX(X)

SUM= SUM - FUNCTX(HILIM)

Do 100 1 = 1, NINTS
X=X+2*DX

SUM=SUM + 4*FUNCTX(X-DX) + 2* FUNCTX(X)

CONTINUE

SUM = SUM

SIMPSON = SUM*DXx/3.0
RETURN
END

PROGRAM A.2 SPLINE INTERPOLATION
C PROGRAM A.1: \APPEND-A\SPLINTST.FOR
C TEST CuBIC SPLINE INTERPOLATION

1000

100

200

PROGRAM SPLINTST

CHARACTER TITLE(80)

REAL D2A, D2B, XS, X(100), Y(100), SPLINEINT

INTEGER N, |

OPEN(5,\APPEND-A\SPLINE.DAT') I--- TEST DATA FILE
READ(5,1000) TITLE

PRINT 1000, ' ", TITLE

FORMAT(80A1)

READ(5,*) N, D2A, D2B |I--- NO. OF POINTS, 2ND DERIVATIVES AT BOUNDARY
PRINT *,'DATA TABLE: N=', N
PRINT *,' X Y!

Do 1001 =1, N

READ(S5,*) x(1), Y(I)

PRINT *, X(1), Y(I)
CONTINUE
CALL SPLINEMAKE(N, D2A, D2B, X, Y)
CLOSE(S)
PRINT *,'TYPE A VALUE OF X (EXIT WITH AC)!
READ *, XS
PRINT *, 'INTERPOLATED Y = ', SPLINEINT(XS)
GOTO 200
END

C ROUTINES FOR CUBIC SPLINE INTERPOLATION.
C CONSTANT INTERVALS IN THE INDEPENDENT VARIABLE ARE ASSUMED.

SUBROUTINE SPLINEMAKE(NN, D2YDX2A, D2YDX2B, XIN, YIN)
INTEGER NN
REAL D2YDX2A, b2ybx2B, xIN(100), YIN(100)

C -COMMON VARIABLES SET IN SPLINEMAKE, USED IN SPLINEINT-

COMMON/SPLINES/N, H, XX(100), YY(100), D2YDx2(100)
INTEGER N
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REAL H, XX, YY, D2YDX2

INTEGER |
REAL A(100), DELTI1(100), DELT2(100), B(100)
N = NN l--- USED BY SPLININT, THROUGH COMMON/SPLINES/

H = (XIN(N) - XIN(1))/(N-1)
Do 1001 =1, N
xx(1) = XIN(I)
YY(I) = YIN(I)
100 CONTINUE

D2YDX2(1) = D2YDX2A l--- END VALUES OF 2ND DERIVATIVES FROM INPUT
D2YDX2(N) = D2YDX2B
A(2) =4
DO 2001 = 3, N-1
A(l) = 4-1/A(1-1) l--- COEFFICIENTS

200 CONTINUE
DOo3001 =2, N

DELTI(I) = YIN(I) - YIN(I-1) ]--- 1ST DIFFERENCES
300 CONTINUE
DO 400 1 = 2, N-1 I--- 2ND DIFFERENCES X 6

DELT2(1) = 6*(DELT1(I+1) - DELT1(1))/(H*H)
400 CONTINUE
B(2) = DELT2(2) - D2YDX2(1) I B COEFFICIENTS
Do 500 I= 3, N-1
B(I) = DELT2(I) - B(I-1)/A(I-1)
500 CONTINUE
B(N-1) = B(N-1) - D2YDX2(N)
D2YDX2(N-1) = B(N-1)/A(N-1)
DO 600 | = N-2, 2, -1
D2YDX2(1) = (B(I) - D2YDX2(I+1))/A(1) I--- 2ND DERIVATIVES
600 CONTINUE
RETURN
END

REAL FUNCTION DYDX(I) I--- FIRST DERIVATIVE (WEBSITE)
INTEGER |

COMMON/SPLINES/N, H, XX(100), YY(100), b2YDx2(100)
INTEGER N

REAL H, XX, YY, D2YDX2

DYDX = (YY(I+1)-YY(1))/H - H*(D2YDX2(1)/3+D2YDX2(1+1)/6)
RETURN

END

REAL FUNCTION D3YDx3(I) I--- THIRD DERIVATIVE (WEBSITE)
INTEGER |

COMMON/SPLINES/N, H, XX(100), YY(100), D2YDX2(100)
INTEGER N

REAL H, XX, YY, D2YDX2

D3YDx3 = (D2YDX2(I+1) - D2YDX2(1))/H

RETURN

END
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REAL FUNCTION SPLINEINT(X) l--- INTERPOLATE IN TABLE (FROM SPLINEMAKE)
REAL X
COMMON/SPLINES/N, H, XX(100), YY(100), D2YDX2(100)
INTEGER N
REAL H, XX, YY, D2YDX2, DYDx, D3YDx3, DX
INTEGER |
I = INT((X-XX(1))/H)+1
IF(.LT. 1) 1=1
IF (1 .GT. N-1) 1 = N-1
DX = X -xx(I)
C -INTERPOLATE
IF (I .EQ. N) THEN
SPLINEINT = YY(I)
ELSE
SPLINEINT = YY(I) + (DYDX(I) + (D2YDX2(1)/2 +D3YDX3(1)/6*DX)*DX)*DX
ENDIF
RETURN
END

E.9 Routines from Appendix B
C PROGRAM B.1: \APPEND-B\MATRIX.FOR
C INVERT A SQUARE MATRIX
C Uses FITVARS
SUBROUTINE MATINV(M, MARRAY, DET)
INTEGER M
REAL MARRAY(10,10), DET
INTEGER IK(10), JK(10)
INTEGER I, J, K, L
REAL AMAX, SAVE
DET=0
C -FIND LARGEST ELEMENT
DO 100 K=1, M
AMAX=0
1500 DC 200 | =K, M
DO300J =K, M
IF ( ABS(MARRAY(I,J)) .GT. ABS(AMAX) ) THEN
AMAX = MARRAY(I,J)

IK(K) =1
JK(K) = J
ENDIF
300 CONTINUE l--- DO J
200 CONTINUE l--- DO I
IF (AMAX .EQ. O ) RETURN Il--- WITH O DETERMINANT AS SIGNAL
DET = 1
C -INTERCHANGE ROWS AND COLUMNS TO PUT AMAX IN MARRAY(K,K)
I = IK(K)
IF (I .LT. K) THEN
GOTO 1500

ELSEIF (I .GT. K) THEN
Do4004=1,M
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SAVE = MARRAY(K,J)
MARRAY(K,J) = MARRAY(I,J)
MARRAY(I,J) = -SAVE
400 CONTINUE l--- DO J
ENDIF I--- IF I
J = JK(K)
IF (J.LT. K) THEN
GOTO 100
ELSEIF (J .GT. K) THEN
DO SOOI =1, M
SAVE = MARRAY(I,K)
MARRAY(I,K) = MARRAY(I,J)
MARRAY(I,J) = -SAVE
500 CONTINUE I--- DO I
ENDIF l--- IF J
C -ACCUMULATE ELEMENTS OF INVERSE MATRIX
DO600 I =1, M

IF (I .NE. K)
1 MARRAY(I,K) = -MARRAY(I,K)/AMAX
600 CONTINUE l--—- DO I

DO7001 =1, M
po800J=1,M
IF ((1 .NE. K) .AND. (J .NE. K))
1 MARRAY(I,J) = MARRAY(I,J) + MARRAY(I,K)* MARRAY(K,J)

800 CONTINUE I--- DO J
700 CONTINUE I--- DO I
DO 900J =1, M
IF (J .NE. K)
1 MARRAY(K,J) = MARRAY(K,J)/AMAX
900 CONTINUE I--- poJ

MARRAY(K,K) = 1/AMAX
DET = DET * AMAX
100 CONTINUE l--- DO K
C -RESTORE ORDERING OF MATRIX
DO 1000 L=1,M

K=M+1-L

J = IK(K)

IF (J .GT. K) THEN

DO 11001 =1, M

SAVE = MARRAY(I,K)
MARRAY(I,K) = -MARRAY(I,J)
MARRAY(I,J) = SAVE

1100 CONTINUE I--- DO I
ENDIF l-— IF J
I = JK(K)

IF (I .GT. K) THEN
DO 12000 =1, M
SAVE = MARRAY(K,J)
MARRAY(K,J) = -MARRAY(I,J)
MARRAY(I,J) = SAVE
1200 CONTINUE I--- DO J
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ENDIF === IF 1
1000 CONTINUE l--- boL
RETURN
END
SUBROUTINE LINEARBYSQUARE(M, A, B, C) I--- MATRIX PRODUCT
INTEGER M

REAL A(10), B(10,10), c(10)
INTEGER I,J
DO 1001 =1, M
c(1)=0
DO 2004 =1, M
c(n=c(1) +A(J)*B(I1,d)
200 CONTINUE
100 CONTINUE
RETURN
END

E.10 Routines from Appendix C
C PROGRAM C.1: \APPEND-C\STUDENTST.FOR
C CALCULATES BOTH THE GAUSSIAN PROBABILITY
C AND THE STUDENT'S T PROBABILITY FOR EXCEEDING A GIVEN VALUE
C OF (MU-X)/SIGMA, WHERE MU IS THE MEAN VALUE OF X AND SIGMA IS
C THE UNCERTAINTY IN THE MEAN.
C FOR SPEED, AND TO REDUCE POSSIBILITY OF OVERFLOW, WE
C CALCULATE THE RATIO OF THE GAMMA FUNCTIONS DIRECTLY
C IN FUNCTION GAMMACONST.
C TO IMPROVE SPEED AND ACCURACY BY USING SIMPSON’S FOR INTEGRATION
C
PROGRAM STUDENTS_T
REAL GP,TP, T
INTEGER NU
PRINT *, 'TYPE NDOF AND T = |MU - X[/SIGMA '
READ *, NU, T
CALL GTPROB(GP, TP, NU, T)
PRINT 1100, 100*TP, 100*(1-TP)
PRINT 1200, 100*GP, 100*(1-GP)
1100 FORMAT(' PROB (STUDENT"S T) = ',F5.2,'%, 1-PROB = ',F5.2, '%")
1200 FORMAT(' PROB (GAUSSIAN) = 'F5.2, '%, 1-PROB = ' F5.2,'%")
END

REAL FUNCTION STUDENTST(NU, T, G) ISTUDENT'S T DISTRIBUTION
INTEGER NU
REAL T, G, X

305

C X = (1/SQRT(NU*PI) * (GAMMA((NU+1)/2)/GAMMA(NU/2))*(1+TA2/NU)A(-(NU+1)/2)

X = G*EXP( (-(NU+1)/2)* ALOG(1+T*T/NU))
STUDENTST = X
END

REAL FUNCTION GAUSS(X)
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REAL PI1/3.14159/,X

GAUSS = EXP(-X*X/2)/SQRT(2*PI)
RETURN

END

C GAUSSIAN AND STUDENT'S T PROBABILITIES

SUBROUTINE GTPROB(GPROB, TPROB, N, T) |INTEGRAL FROM -T TO +T

REAL GPROB, TPROB,T

INTEGER N

REAL GAM, T1, SUMT, SUMG, DT

GAM = GAMMACONST(N) IRATIO OF GAMMAS - FOR SPEED

DT = 0.0001 IINTEGRATION STEP

T =0

SUMT =0

SUMG =0

DOWHILE ((T1 .LT. T) .AND. (SUMT*DT .LT. 0.5)) ISIMPLE INTEGRATION
C REPLACE BY SIMPSON'S RULE FOR BETTER SPEED AND ACCURACY

SUMT = SUMT + STUDENTST(N,T1,GAM)

SUMG = SUMG + GAUSS(TI)
T =T1 + DT

ENDDO

TPROB = 2*SUMT*DT

GPROB = 2*sSUMG*DT

RETURN

END

REAL FUNCTION GAMMACONST(N)
C G = GAMMA((H+1)/2)/GAMMA(H/2)/SQRT(H*PI)
C PRE-CALCULATE RATIO FOR SPEED AND TO AVOID OVERFLOW
INTEGER N
REAL PI1/3.14159/
REAL H, Y1,Y2, G
H=N
Y! = -0.5*(H+1) + O.5*(H) *ALOG(0.5*(H+1))
Y2 = -0.5*H + O0.5*(H-1)*ALOG(0.5*H)
G = EXP(Y1-Y2)*(1+0.0833/(0.5*(H+1)))/((1+0.0833/(0.5*H))
1 *SQRT(H*PI))
GAMMACONST = G
RETURN
END
END

E.11 Routines from Appendix D

C PROGRAM D.1: \APPEND-D\QUIKSCRP.FOR

C CREATE A SCRIPT FILE TO DISPLAY SIMPLE GRAPHS AND HISTOGRAMS
C THE FILE IS READ AND INTERPRETED BY \APPEND-D\QDISPLAY.EXE

C PROGRAM D.2: \APPEND-D\QUIKHIST.FOR
C ASSIGNS DATA TO HISTOGRAM BINS AND PLOTS HISTOGRAM EITHER
C AS SCREEN CHARACTERS OR IN SCREEN GRAPHISC THROUGH QUIKSCRP



REFERENCES

Anderson, R. L. and E. E. Houseman, Tables of Orthogonal Polynomial Values Extended to N = 104,
Research Bulletin 297, Agricultural Experimental Station, Iowa State University (April, 1942).

Arndt, R. A. and M. H. MacGregor, Nucleon-Nucleon Phase Shift Analysis by Chi-Squared
Minimization, in Methods in Computational Physics, vol. 6, pp. 253-296, Academic Press,
New York (1966).

Baird, D. C., Experimentation: An Introduction to Measurement Theory and Experiment Design,
Prentice-Hall, Englewood Cliffs, N.J. (1988).

Bajpai, A. C., I. M. Calus, and J. A. Fairley, Numerical Methods for Engineers and Scientists, Wiley,
Chichester (1977).

Beers, Y., Introduction to the Theory of Error, Addison-Wesley, Reading, Mass. (1957).

Box, G. E. P. and M. E. Miiller, A Note on the Generation of Random Normal Deviates, Ann. Math.
Statist., vol. 29, pp. 610-611 (1958).

David, F. N., Tables of the Correlation Coefficients, Cambridge University Press, London (1938).

Dixon, W. J. and F. J. Massey, Jr., Introduction to Statistical Analysis, McGraw-Hill, New York
(1969).

Eadie, W. T., D. Drijard, F. E. James, M. Roos, and B. Sadoulet, Statistical Methods in Experimental
Physics, North-Holland, Amsterdam (1971).

Hamilton, W. C., Statistics in Physical Science, Ronald Press, New York (1964).

Hamming, R. W., Numerical Methods for Scientists and Engineers, McGraw-Hill, New York (1962).

Handbook of Chemistry and Physics, Chemical Rubber Co., Cleveland, Ohio (1973).

Hildebrand, F. B., Introduction to Numerical Analysis, McGraw-Hill, New York (1956).

Hoel, P. G., Introduction to Mathematical Statistics, Wiley, New York (1954).

IBM, System/360 Scientific Subroutine Package, Programmer's Manual (360A-CM-03X).

Knuth, D. E., Seminumerical Algorithms, in The Art of Computer Programming, vol. 2, pp. 29ff.,
Addison-Wesley, Reading, Mass. (1981).

Marquardt, D. W., An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J. Soc. Ind.
Appl. Math., vol. 1, no. 2, pp. 431441 (1963).

Melkanoff, M. A., T. Sawada, and J. Raynal, Nuclear Optical Model Calculations, in Methods in
Computational Physics, vol. 6, pp. 2-80, Academic Press, New York (1966).

Merrington, M. and C. M. Thompson, Tables of Percentage Points of the Inverted Beta (F)
Distribution, Biometrica, vol. 33, pt. 1, pp. 74-87 (1943).

Orear, J., Notes on Statistics for Physicists, UCRL-8417, University of California Radiation
Laboratory, Berkeley, Calif. (1958).

Ostle, B., Statistics in Research, lowa State College Press, Ames, Iowa (1963).

Pearson, K, Tables for Statisticians and Biometricians, Cambridge University Press, London (1924).

Press, W. H,, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, The Art of
Scientific Computing, Cambridge University Press, New York (1986).

307



308 Data Reduction and Error Analysis for the Physical Sciences

Pugh, E. M. and G. H. Winslow. The Analysis of Physical Measurements, Addison-Wesley, Reading,
Mass. (1966).

“Review of Particle Physics” The European Physical Journal C, vol. 15, p. 193 (2000).

“Review of Particle Properties” Physics Letters, vol. 170B, p. 53 (1986).

Taylor, J. R., An Introduction to Error Analysis, University Science Books, Mill Valley, Calif. (1982).

Thompson, W. J., Computing in Applied Science, Wiley, New York (1984).

Wichmann, B, and D. Hill, Building a Random Number Generator, Byte Magazine, March, p. 127
(1987). Applied Statistics, vol. 31, pp. 188-190 (1982).

Young, H. D., Statistical Treatment of Experimental Data, McGraw-Hill, New York (1962).

Zerby, C. D., Monte Carlo Calculation of the Response of Gamma-Ray Scintillation Counters, in
Methods in Computational Physics, vol. 1, pp. 90-133, Academic Press, New York (1963).



ANSWERS TO SELECTED EXERCISES

Chapter 1

1.1. (a) 5 b) 2 (c) 2 @5 (e) 4
N1 @3 ;W3 63 () 4

1.3. (a) 980. (b) 84,000 (c) 0.0094 (d) 3.0 X 10?
(e) 4.0 (fINA (g) 5300 (h) 4.0 X 10?
(1) 4.0 X 10? (j)3.0 X 10*

1.5. Mean = 73.48; median = 73, most probable value = 70

1.7. Standard deviation = 15.52

Chapter 2

2.2, (a) 20 (b) 6 (c) 120 (d) 270,725

2.3. For p = 1/2,0.015625, 0.093750, 0.234375, 0.31250, 0.234375, 0.093750,
0.015625

2.6. 4.1 for one lemon; 37 for two lemons; 1000 for three lemons

2.9. (a) 2.3 = 2 students (b) 8%

2.13. (a) 0.0011 (b) ~3 X 10720

2.15. Mean number hitting counter in the 200-ns time interval:

x= EXI)[)(X p) = w; mean number recorded = EIIB,(x W) =

l—D(O p) = 1 — e™*; Efficiency = (1 — e *Yp.

217. ¥ = J

oc”P(”)a”’ = 6CR*, JwP(r)dr =1,50 C = 1/(2R%and 7 = 3R
0

0

Chapter 3

3.3. The relative uncertainty in r should be one-half the relative uncertainty in L.
3.5. 1.503 = 0.024

3.7. (a) 15300 = 6700 (b) 165 = 11

39. n=3.61,5s=1.88
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Chapter 4

4.1. s=2.18,0, =044
4.3. Fig. 2.3: x> = 1.39 for 5 bins; x?, = 0.35
Fig. 2.4: x> = 4.88 for 7 bins; x?, = 0.81
4.7. Mean total counts in 1-min interval = 123.2; 0 = 94,0, = 3.0
(a) Background counts in 1-min interval = 11.6; 0 = 1.5
(b) Difference = 111.6 % 3.3 counts per minute from the source
4.9. 32.81 £ 046
4.11. (a) 1.960 =31.00r3.1%
(b) 1.96s = 30.1 or 3.0%.
4.13. (¢) x* = 14.7 (calculated with o)
@ (®)=v=N-1=12

Chapter 5
5.10. For 6 rows: (b) 8, 48, 120, 160, 120, 48, 8 (c) o=122

Chapter 6

6.1. a =1143 = 9.6, = 9.58 + 0.89, x> = 10.1
6.4. b =3.60 £ 0.03; x> =119

Chapter 7

7.2. a; = 512.0 £ 45.9; a, = 3483 + 21.8; x> = 132
o =21.09; o, = ay = —147.1; ay = 476.1
7.4. All terms: x*> = 17.21 for 12 degrees of freedom
Even terms: x2 = 17.59 for 14 degrees of freedom
a; = (849.6 * 15.4) — (335.5 = 85.7)x? + (847.3 = 87.8)x* with x = cos(6)
7.10. a, = 0.0001 = 0.0009; a, = v, = 0.871 = 0.018
a; = g2 = 4.870 = 0.057 (after iterating)

Chapter 8

8.3. (a) n = 1.8741 * 0.0005; x*> = 13.70

(b) w =1.8471 = 0.0005; T = 0.0555 = 0.0008; x> = 13.3
84. a, =148.6 + 31.0;a, = 31.0 = 1.1, x> = 13.0

€, = 65.6;€, =€, = —6.26;€,, = 1.156



Answers to Selected Exercises

Chapter 9

9.4. (b) x* = 34.2 for 24 degrees of freedom
Fitted parameters a; through ag:
—2.2 136. —31.6 79.8 0.098 0.20
Uncertainties s, through sg:
2.6 8 3.1 7.0 0.007 0.02

Chapter 10
10.1. a; = 4.16; a, = 22.8 at the maximum of the likelihood function

Chapter 11

11.4. Approximately 10% probability

11.5. Approximately 0.1% probability; not a very good fit
11.9. 0.9985

11.10. 0.9729

11.12, 0.9997

11.14. F=10forv,=1; F=5forv, = v,

11.18. Ax?=2.7;a, = 3.4%43; as = 20573
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INDEX

A

Absolute precision, 3
Accuracy, 2, 14
precision versus, 2-3
Anderson,R L., 131
Arbitrary function, least-squares fit to, 142-165
Area determination, 170-177
composite plots
multiple peaks, 175-177
single peak and background, 174-175
under curve with Poisson statistics,
172-174, 177
uncertainties in areas under peaks, 171-172
Arndt, R. A,, 146
Array See also Matrix
one-dimensional, 238
two-dimensional, 238
Average, 9
Average deviation, 10, 11, 15
Average vanance, 58

B

Background
fitting composite curves and, 168-177
subtraction, 177

Bell-shaped curve, 7. See also Gaussian

distribution

Bin width, 110, 175, 272

Binomial distribution, 17-23, 32-33
mean and standard deviation of, 20-23
Poisson distribution as approximation to,

23-24

smoothing of data, 236-237

Binomial theorem, 20

Bounding parameters, 149

Box-Muller method, 85, 86, 96

Breit-Wigner resonance, 32

C

Calculus, basic principles, 222-226
differentiation, 223-225
integration, 226
Cauchy distribution, 31. See also Lorentzian
distribution
Chauvenet’s criterion, 56
Chi-square (x?), 65-71, 108, 114, 210-211
constraints and degrees of freedom, 70-71
definition, 67
expansion of, 156161, 165
expectation value, 67, 69, 70
F test determination of, 204-208, 216
generalizations of, 69-70
graphs and tables, 71, 256-258
hypersurface, 145-146, 149, 156-158
maximum likelihood method and, 103-104
minimization, 117, 128, 135, 142, 145-151
(See also Least-squares method)
probability distribution, 65-71, 195-197, 253
reduced, 68, 71, 195, 197, 208
vanance relationship to, 194-195, 215
variation near a minimum, 146-147
CHI2PROB routine, 196-197, 298-300
CHIFIT routine, 151, 160
Cofactor of a matrix element, 241, 243
Column matrix, 239, 241, 244
Combinations, 19
Composite curves, fitting, 168-177
Computer calculation of uncertainty, 4748
Computer routines, 275-306
Appendix A: Simpson’s rule, 300-301
Appendix A: Spline interpolation, 301-303
Appendix B: Matrix, 247, 303-305
Appendix C: Student’s ¢ test, 305-306
Appendix D: Graphs and histograms,
274,306
Chapter 5: Monte Carlo, 86, 278-281

313
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Computer routines—Cont.
Chapter 6: Fit to straight line, 106-107,
281-283

Chapter 7: Least-squares fitting with matrices,

124-125, 283-287
Chapter 8: Nonlinear fitting, 150-151, 152,
155, 160, 163, 287-294
Chapter 9: Lorentzian peak on quadratic
background, 170, 294-295
Chapter 10: Maximum likelihood method,
188, 295-298
Chapter 11: Chi-square probability, 196-197,
298-300
Chapter 11: Linear correlation, 200, 300
program flow, 276
variable definitions, 276-277
Confidence interval (level), 37, 63,
208-212
for multiparameter fit, 210-212
for one-parameter fit, 208-210
for predicted value, 212
Continuous distribution, 12-14, 28, 31
Convergence in nonlinear fit, 150, 161
Correlation
linear-correlation coefficient, 197-203,
252-255
multivariable, 201-204
Covarance, 41, 43, 48, 123
sample, 201, 215
Cramérs rule, 244
Cubic sphines, 228-231
Curvature matrix (a), 123, 124, 147, 157,
160-163
Curves, fitting composite, 168-177

D
Data points
elimination of, 56
outlying, 55, 56
weighting, 56-57, 203

Data smearing, 86, 90, 96, 236
Data smoothing, 173, 235-237
Degeneracy, 19
Degree, matrix, 239
Degrees of freedom, 64, 70-71
Dependent variable, 98-99
graphing, 268
histogram, 110
linear relationship, 98-99, 102
uncertainty assignment to, 102
Determinant
matrix, 240-243
solution for fit to a polynomial, 116-121
Determinants, method of, 105, 106

Deviate. See also Random numbers
Gaussian, 96
uniform, 79, 95
Deviation
average, 10, 11, 15
definition, 9-10
standard (See Standard deviation)
Diagonal error, 164
Diagonal matrix, 157, 242, 243
Differentiation, 223-225, 227
functions of functions, 224
higher-order derivatives, 224-225
minima and maxima, 225
multivariable functions, 225
partial derivatives, 225
sums and products, 223-224
Discarding data, 56, 59-60
Discrepancy, 6
in area under a curve with Poisson statistics,
173-174, 177
Discrete distribution, 12, 25
Dispersion, 10, 57, 195
Distribution. See also specific distributions
binomial, 17-23, 32-33, 236-237
Cauchy, 31
chi-square (x?), 65-71, 195-197, 253
continuous, 12-14, 28, 31
discrete, 12, 25
exponential, 88-94, 96
F, 204-208
Gaussian, 17, 27-31, 33, 236-237, 248-252
Lorentzian, 31-32, 33, 168-170
mean, median, and mode of, 9-14
normalized, 81, 95
parental, 7-9, 11, 13, 14
Poisson, 17, 23-27, 31, 33, 37-38, 87-89,
111-114, 172-174
random numbers from, 81-84
sample, 7, 11, 13
standard deviation, 10-14, 25, 29, 32, 38, 208
Student’s ¢, 63-65, 259, 266
uniform, 81-83
variance, 10-11, 15, 20, 61
Distribution function. See Probability density
function
Divided differences method, 220-222
Double-precision variables, 196

E
Efficiency in Monte Carlo method, 94-95
Error, 6, 14
definition, 1
diagonal, 164
discrepancy compared, 6



Error—Cont.
illegitimate, 1
measuring, 1-5
propagation, 3941, 48, 109
random, 34,7, 14
relative, 94
specific formulas, 41-46, 48-49
standard, 6, 54, 63
statistical, 60
systematic, 2, 3, 14, 55
Error analysis, 2, 6, 3649
Error bars, 2, 267, 268
Error function, 252. See also Gaussian
distribution
Error matrix (€), 124—-126, 134, 138, 157,
163-164. See also Inverse matrix
Error propagation equation, 41, 48
Estimates of error
approximation, 47
in experiments, 5-6
in hnear fit, 107-110
matrix method, 123-126
in mean, 53-55, 57-59
in measurements, 34
Expansion methods for nonlinear fitting,
156-161, 165
Expectation value, 12, 14, 67, 69, 70
EXPNDFIT routine, 151, 160, 291
Exponential distribution, random numbers from,
88-94, 96
Extrapolation, 221-222

F

F test, 204-208, 216

for additional term, 207-208

for chi-square (x?2), 204-208, 216

for multiple-correlation, 205-207, 216

probability density function, 259

tables and graphs, 204-205, 260-265
Factorial function (n!), 195-196
FGENUTIL routine, 107
FITFUNS routine, 151, 292-293
FITFUNCT routine, 125, 134, 284-286
FITLINE routine, 106, 281-283
FITUTIL routine, 106, 281-283, 300
FITVARS routine, 106, 282, 283
Fluctuations

nonstatistical, 55

statistical, 60-63, 71, 114, 176-177
Frequency plot, 272
Full-logarithmic graphs, 271-272
Full-width at half maximum I'. See Half-width I’
Function. See also Probability density function

gamma, 64, 195-196

INDEX 315

Function—Cont.
linear, 99, 103, 114, 116-135, 137, 138
nonlinear, 135-137, 139, 164

G

Gamma function I' (n), 64, 195-196
Gaussian deviate, 96
Gaussian distribution, 7, 17, 27-31, 33
characteristics, 28
integral probability, 30, 250-252
Lorentzian distribution compared, 32, 33
mean and standard deviation, 29-30
Poisson distribution compared, 31
random numbers from, 84-87
smoothing of data, 236-237
standard deviation, 208
standard form, 29, 30, 33
tables and graphs, 30, 248-252
Gaussian smearing, 86, 90, 236
Gauss-Jordan method of elimination, 245-247
Goodness of fit. See Chi-square (x?)
Gradient-expansion algorithm, 162, 165
Gradient-search method for nonlinear fit,
153-156, 164
GRADLS routine, 150, 155
GRADSEAR routine, 150, 155, 290-291
Graphs, 267-274
chi-square distribution, 258
computer routines, 274
creating, 268
error bars, 267, 268
F distribution, 261, 263, 265
frequency plot, 272
full-logarithmic, 271-272
Gaussian distribution, integral of, 252
Gaussian probability density distribution, 250
histograms, 272-274
linear-correlation coefficient, 255
parameter estimation, 269-272
semilogarithmic, 271
Grid-search method for nonlinear fit,
151-153, 164
GRIDLS routine, 150, 152
GRIDSEAR routine, 150, 152, 289-290

H

Half-width T, 28, 31-32
Hill, I. D., 80
Histogram, 7, 8, 13, 272-274
bin width, 110, 175, 272
normalized curves on, 273-274
Histogram bins, 179-180
HISTOGRAM routine, 88
HOTROD routine, 86, 278
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Houseman, E. E., 131
Hypercubes, 148
Hypersurface, 145-146, 149, 156-158

Illegitimate error, 1
Independent parameters for fit to a polynomial,
127-135
Independent variable, 98-99
graphing, 268
histogram, 110
linear relationship, 98-99, 102
Instrumental uncertainty, 36-37, 38-39, 71
Integral probability, 30, 199-201, 204
Integration, 226, 227-228. See also Numerical
integration
Interpolation. See Polynomial interpolation
Inverse matrix, 123, 124, 157, 244, 245-247

K
KDECAY routine, 92, 281
Knuth, D., 80

L

Lagrange’s method of polynomial
interpolation, 219
LCORLATE routine, 200, 300
LCORPROB routine, 200, 300
Least-squares method
composite curves, 171-174
linear correlation and, 198
maximum likelihood method and, 103-104,
179-193
multiple-correlation and, 205
for nonlinear fitting, 142-164
expansion of x2, 156-161, 165
gradient-search method, 153-156, 164
grid-search method, 151-153, 164
Marquardt method, 161-164, 165
for polynomial linear function,
116-135, 138
coefficients, estimates of, 129—-130
determinant solution, 116-121
independence of parameters, 127-135
Legendre polynomials, 132-134
matrix solution, 122-127, 132, 138
orthogonal polynomials, 129
spreadsheet use, 126-127
for straight line, 102-114, 270
error estimation, 107-110
limitations, 110-111
Poisson statistics use, 111-114
Legendre polynomials, 132-134, 139

Likelihood function, 145, 180, 185-187, 189,
191. See also Maximum likelihood method
Gaussian form of, 145, 192
logarithm of, 191
maximization of, 191
variation near a minimum, 146
Linear function, 99, 103, 114, 116-135,
137, 138
Linear matrix, 126, 239, 240, 243, 244
Linear regression, 122, 135-137
Linear simultaneous equations, 105, 111-112
LINEARBYSQUARE routine, 247, 305
Linear-correlation coefficient (r), 197-203, 215,
252-253
graphs and tables, 254-255
Local maxima, 225
Local minima, 148-149, 150, 225
Logarithms
graphs, 271-272
linear regression use of, 135-137
in maximum likelihood method,
185-187, 191
Lorentzian distribution, 31-32, 33
half-width, 31-32
Lorentzian peak on quadratic background,
168-170
mean and standard deviation, 32
LORINFIT routine, 170, 294-295
Low statistics, method for, 192

M

MacGregor, M. H., 145
MAKEAB?7 routine, 125, 286-287
MAKEABS routine, 151, 160, 293-294
MARQFIT routine, 151, 163, 292
Marquardt, D. W., 161
Marquardt method, 161-164, 165, 169, 210
MARQUARDT routine, 151, 163
MATINYV routine, 247
Matnix, 239-243
cofactor of an element, 241, 243
column, 239, 241, 244
computation, 242-243
curvature, 123, 124, 147, 157, 160-163
degree, 239
determinants, 240-243
diagonal, 157, 242, 243
error, 124-126, 134, 138, 157, 163-164
estimation of errors, 123-126
inverse, 123, 124, 157, 244, 245-247
linear, 126, 239, 240, 243, 244
minor of an element, 241
multiple regression solution, 122
row, 122, 239, 240



Matnx—Cont.
singular, 244
solution
for linear least-squares fit, 122-127,
132, 138
for nonlinear fit, 144, 156-165
of simultaneous equations, 243-245
square, 126, 239, 240, 241, 243, 244, 245
symmetric, 122, 123, 124, 239, 245
trace, 242
unity, 124, 240, 244, 246
MATRIX routine, 125, 151, 160, 303-305
Maximum likelihood method, 51-53, 57,
112-113
basic procedure, 180-183
computer example, 187-190
direct application, 179-192
goodness of fit, 103, 191
least-squares method and, 103-104, 179-180
logarithm use, 185-187, 191
normalization for, 184-185, 191
parameter search, 185-187
uncertainties in parameters, 190-191, 192
MAXLIKE routine, 187-188, 295-298
MAXLINCL routine, 298
Mean (n) of a distribution, 9-14, 15
binomial distribution, 20
estimated error in, 53-55, 57-59
Gaussian distribution, 29
Lorentzian distribution, 32
maximum likelihood method of calculation,
51-53, 57
Poisson distribution, 25
variance of, 53-54, 71
Mean (£) of a sample, 9, 11, 15
weighted, 71
Measuring errors, 1-5
Measuring uncertainties and linear fit, 101-102
Median, 9, 10, 14
Minor of a matrix element, 241
Mode, 9, 10
Monte Carlo method, 190
Box-Miiller method, 85, 86, 96
efficient generation, 94-95
exponential distribution, 88-94, 96
Gaussian distribution, 84-87
1n nonlinear fitting, 149
numerical integration, 82-83
overview, 76-78
Poisson distribution, 87-88, 89
random numbers, 76-81
rejection method, 83-84, 96
statistical significance and, 212-214
transformation method, 81-83, 95
MONTELLIB routine, 86, 278-280
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Most probable value, 9-10, 15
Multiple regression, 122, 124
Multiple-correlation coefficient (R),
203-207, 215
F test and, 205-207
Multivanable correlations, 201-204
MULTREGR routine, 124, 283-284

N
Natural splines, 230

Newton-Raphson method for roots of nonlinear

equations, 233
Newton’s method of divided differences,
220-222
Nonlinear equations
roots, finding, 231-235
simultaneous, 233-235
Nonlinear fitting, 142-164
expansion of x2, 156-161, 165
gradient-search method, 153-156, 164
grid-search method, 151-153, 164
local minima, 148-149, 150
Marquardt method, 161-164, 165
Monte Carlo method use, 149
starting values of parameters, 148
Nonlinear functions, 135-137, 139, 164
NONLINFT routine, 150, 287-289
Nonstatistical fluctuations, 55
Normal error distribution. See Gaussian
distribution
Normalized curves on histograms, 273-274
Normalized distribution, 81, 95

Normalized form of the Lorentzian function, 171

Normalized probability density function, 83,
184-185, 191, 208
Notation, use of Greek and Latin letter, 7
NUMDERIV routine, 151, 160
Numerical integration, 75, 82-83, 227-228
chi-square probability, 196-197
linear correlation, 200

o

Orear, Jay, 190
Orthogonal polynomuals, 128, 130, 138-139
Outlying data points, 55, 56

P

Parabolic expansion of x2, 156-157
Parameter estimation, graphical, 269-272
Parameter space, searching, 144165
bounding parameters, 149
expansion methods, 156-161, 165
gradient-search method, 153-156, 164
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Parameter space, searching—Cont.
grid-search method, 151-153, 164
Marquardt method, 161-164, 165
matrix methods, 156-165
step sizes, 149-150

Parental distribution, 7-9, 11, 13, 14

Peak
area determination, 170-177
composite plots

multiple peaks, 175-177
single peak and background, 174-175
Lorentzian on quadratic background,
168-170

Permutations, 18-19

Plot See also Graphs
composite, 174-177
frequency, 272

POISDECAY routine, 88, 278

Poisson distribution, 17, 23-27, 31, 33
as approximation to binomial distribution,

23-24
area under a curve, 172-174, 177
derivation of, 24
fitting a straight line, 111-114
Gaussian distribution compared, 31
mean, 25
random numbers from, 87-88, 89
standard deviation, 25, 38
statistical uncertainty and, 37-38
summed probability, 26-27
variance, 61

POISSONDEVIATE routine, 88, 280

POISSONRECUR routine, 88, 280

Polynomial, 202, 207
least-square fit to, 116-135, 138
Legendre, 132-134, 139
orthogonal, 128, 130-131, 138-139

Polynomial interpolation, 218-222
divided differences, 220-222
extrapolation, 221-222
Lagrange’s method, 219
remainder, 221
uniform spacing, 221

Power series, 116, 118, 174, 202

Precision, 2, 14
absolute versus relative, 3
accuracy versus, 2-3

Probability density function p(x), 7, 12
binomial, 23
chi-square (x?), 195-197, 215, 253
F distribution, 260-265
Gaussian, 28, 30, 208, 248-252
Lorentzian, 31
normalized, 83, 208

Probability distribution. See Distribution

Probability tests, 63—65

Probable error (ay,), 30

Product-moment correlation coefficients. See
Linear-correlation coefficient

Propagation of errors, 39-41, 109

Pseudorandom numbers, 78-80, 95. See also
Random numbers

Q

QDISPLAY routine, 206, 274
QUIKHIST routine, 274, 278, 306
QUIKSCRP routine, 274, 306

R

Random error, 3-4, 7, 14
Random number generator, 79-80
Random numbers, 7677
correlations, checking for, 81
from probability distributions
exponential, 88-94, 96
Gaussian, 84-87
Poisson, 87-88
rejection method, 83-84
transformation method, 81-83
pseudorandom numbers, 78-80, 95
shuffling, 79
Recursion relation
gamma function, 195-196
Legendre polynomials, 132, 139
for Poisson distribution, 25
for random numbers, 79
Reduced chi-square (x?), 68, 71, 195, 197, 208
Regression
linear, 122, 135-137
multiple, 122, 124
Regulo-Falsi method, 233
Rejection method for Monte Carlo calculation,
83,96
Relative error, 94
Relative precision, 3
Reproducibility of results, 2
Resonant behavior, 31, 32, 33, 168
Root mean square, 11
Roots of nonlinear equations, 231-235
half-interval, 232
Newton-Raphson method, 233
secant methods, 232-233, 234-235
for simultaneous linear equations, 233-235
Roundoff, 4-5, 14, 111
Routines. See Computer routines
Row matrix, 122, 239, 240

S

Sample covariance, 201, 215
Sample distribution, 7, 11, 13



Sample linear-correlation coefficient, 202
Sample mean (§), 9, 11, 15, 71
Sample standard deviation o, 32
Sample vanance (s?), 11, 15, 138, 201, 215
Scientific notation, 4
Searching parameter space. See Parameter space,
searching
Secant methods, for finding roots, 232-235
Second moment, 11
Semilogarithmic graphs, 271
Shuffling random numbers, 79
Significant figures, 4-5, 14
SIMPSON routine, 228, 300-301
Simpson’s rule, 196, 200, 228
Simultaneous equations
matrix determinant solution, 243-245
nonlinear, 233-235
Singular matrix, 244
Slope, 269
Smearing, data, 86, 90, 96, 236
Smoothing, data, 173, 235-237
SPLINEINT routine, 231
SPLINEMAKE routine, 231, 301-303
Splines, 228-231
SPLINTST routine, 301
Spreadsheet, linear least-squares fitting with,
126-127
Square matrix, 126, 239, 240, 241, 243,
244,245
Standard deviation of the mean. See Standard
error
Standard deviation o, 10-11, 15
confidence interval, 63
of Gaussian distribution, 29, 208
of Lorentzian distribution, 32
as measure of uncertainty, 37
outlying data point removal and, 56
of Poisson distribution, 25, 38
sample, 32
Standard error, 6, 54, 63
Starting values of parameter search, 148
Statistical error, 60
Statistical fluctuations, 60—63, 71, 114, 176-177
Statistical significance in Monte Carlo test,
212-214
Statistical uncertainty, 37-38, 106
Steepest descent, direction of, 154, 165
Step sizes, search, 149-150
Stirling’s approximation, 196
Student’s ¢ distribution, 63-65, 259, 266
STUDENTST routine, 305-306
Summed probability, 26-27
Symmetric matrix, 122, 123, 124, 239, 245
Symmetrical uncertainty, 209
Systematic error, 2, 3, 14, 55
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T

Tables
chi-square distribution, 256-257
F distribution, 260, 262, 264
Gaussian distribution, integral of, 251
Gaussian probability density distribution, 249
hinear-correlation coefficient, 254
Student’s ¢ distribution, 266
Taylor series expansion, 39, 145, 158-159, 220,
221,229
Thompson, W. J , 228
Tolerance, 37
Trace, matrix, 242
Transformation integral, 95
Transformation method for Monte Carlo
calculation, 81-83, 95

U

Uncertainty, 2, 5-6, 14
approximation, 47
in areas under peaks, 171-172, 177
in coefficients, 114
computer calculation of, 4748
dependent variable, assigning to, 102
instrumental, 36-37, 38-39, 71
in linear fit, 107-110
measuring, linear fit and, 101-102
minimizing, 6
1n parameters after maximum-likelihood fit,
190-191, 192
propagation, 39-41
relative, 57-59
simple formulas, 41-46, 48-49
standard deviation as measure of, 11, 22, 37
statistical, 37-38, 106
symmetrical, 209
Uniform deviates, 79, 95. See also Random
numbers
Uniform distribution, 81-83
Uniform variance, 114
Unity matrix, 124, 240, 244, 246

\%

Variables, dependent and independent, 98-99
Variance 02, 40-41, 4344

average, 58

binomial distribution, 20

definition, 10-11

of distributions, 11, 15, 20, 61

estimated uniform, 114

of the fit, 194-195, 215

of the mean (), 53-54, 58, 71

of parameters from fit, 107, 109-110, 123
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Variance o2—Cont.
Poisson distribution, 61
sample, 11, 15, 138, 201, 215

w

Weighted mean, 71

Weighting data, 56-57, 203
Weighting factors, 57, 203, 215
Wichmann, B. A., 80
Wichmann-Hill algorithm, 80
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