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Foreword 
Freeman Dyson 
Institute for Advanced Study 
Princeton, New Jersey 

This little book is extraordinary in at least three ways. 
First, it contains in only 150 pages a synopsis of the whole 
of modern mathematics. Second, it is fully international 
in scope, giving equal emphasis to outstanding achieve­
ments of mathematicians of all countries. Third, it comes' 
with a superb bibliography, giving references to original 
papers and review articles from which the expert or non­
expert reader can obtain detailed information about the 
many subjects that are only briefly mentioned in the text. 

The idea of summarizing the whole- of mathematics in 
150 pages seems at first glance to be absurd. Probably the 
apparent absurdity of it is the reason why nobody has done 
it before. Monastyrsky was brave enough to attempt it in 
spite of the absurdity, and he has brilliantly succeeded. To 
succeed, he needed not only boldness, but also a rare abil­
ity to read and understand a vast literature in many lan­
guages. He ne~ded breadth of vision to see connections be­
tween ideas in widely separated contexts. He needed good 
t~te in order to simplify without distortion. Monastyrsky 
may not be unique among mathematicians in possessing 
the necessary knowledge, vision, and taste to succeed in 
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viii Foreword 

this task. He is unique in combining these qualities with 
the will power to push the job through to completion. 

What Monastyrsky has produced is a road map to 
the territory of mathematics, with the Fields Medals as a 
convenient set of nodal points. Like a road map, this book 
consists mostly of names and connections. It names the im­
portant people and the important concepts, and sketches 
briefly the important connections between them. It is not 
a topographic map, describing in detail the beauty of the 
landscape. It is impossible in 150 pages to explain all the 
names or to follow all the twists and turns of the connec­
tions. To be useful, a road map must not be overloaded 
with information. I believe this book will be useful, both 
to experts and nonexperts, in giving us a quick overview 
of mathematics. It tells us how to move into unfamiliar 
parts of the territory without getting lost. And it tells us, 
through the abundant references to the bibliography, where 
to look for more detailed information when we need it. 

The human genome project gives us another metaphor 
for the usefulness of this book. The genome is, like math­
ematics, a complicated structure stretching the limits of 
human understanding. The genome project consists of two 
parts, sequencing and mapping. Sequencing means discov­
ering the precise sequence of bases out of which the entire 
apparatus of human genes is built. Mapping means iden­
tifying the most important genes and finding out roughly 
where. they sit in relation to one another. Sequencing is still 
a long-range goal, while mapping is already a practical tool. 
So far as practical applications in science and medicine are 
concerned, mapping is more useful than sequencing. Map­
ping gives us a road map of human genes, while sequencing 
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will give us the genes themselves in minute detail. Apply­
ing this metaphor to mathematics, we may compare the 
sequencing of the genome to the monthly publication of 
Mathematical Reviews, now filling several hundred massive 
volumes, while the mapping of mathematics is done quite 
adequately by Monastyrsky's 150 pages. 

Monastyrsky had the misfortune to live a large part 
of his life as an "internal exile" in the Soviet Unjon, un­
able to travel freely or to publish Ireely. That misfortune, 
however painful it was to Monastyrsky personally, had use­
ful consequences for the writing of this book. One conse­
quence was that he had more time for omnivorous read­
ing than mathematicians in happier circumstances enjoy. 
Another consequence was that he was familiar with the 
work of many outstanding mathematicians whose names 
were hardly known outside the Soviet Union. This book is, 
among other things, a poignant memorial to the two gen­
erations of Soviet mathematicians whose lives and works 
were stunted by the vagaries of the Soviet regime. 

A final word of instruction to the reader. For a road 
map to be useful, it is not necessary for the reader to un­
derstand the significance of the place-names. If you dip 
into this book at random,' you may well feel like Alice on 
her journey through the looking-glass, when she was con­
fronted with the poem "Jabberwocky" and spelled out the 
words: 

'Twas brillig, and the slithy toves 
Did gyre and gimble in the wabe; 
All mimsy were the borogroves, 
And the mome raths outgrabe. 



x Foreword 

Alice remarked that the only thing she could under­
stand in the poem was that somebody killed something. 
So you may find that some of Monastyrsky's pages sound 
like "Jabberwocky," full of unfamiliar names, and the only 
thing you can understand is that somebody proved some­
thing. If this should happen to you, do not discard the 
book in anger. The purpose of a road map is to help you 
find your way in unfamiliar territory. If you were already 
familiar with the landscape, you would not 'need the map. 
The right way to use this book is to skip lightly over things 
you do not understand until you reach something that you 
are really determined to understand, and then turn to the 
bibliography. For students who seriously want to learn 
what modern mathematics is about, the most important 
part of the book is the bibliography. For casual readers 
who will not dig into the bibliography, for tourists in the 
land of mathematics who do not speak the local language, 
the road map still provides a wealth of useful information.' 
The mathematical "tourist can enjoy the human drama of 
John Fields and his, medals without understanding the dif­
ference between a foliation and a functor, just as the spec­
tator.at the Winter Olympic Games can enjoy the triumph 
of Oksana Baiul in the figure-skating competition without 
understanding the difference between a triple lutz and a 
triple axel. 



Preface 

A famous physicist once gave this advice to authors pub­
lishing scientific papers. "Before submitting your paper for 
publication, hide it in a remote drawer of your desk, then 
take it out six months later and reread it. If it doesn't pro­
duce revulsion and a desire to throw it into the garbage, 
send it off." 

This advice, like all good advice, has few adherents 
in real life, not even its own author. Circumstances not 
entirely within my control have caused this book to ap­
pear nearly six years after I wrote most of it. I thus could 
not take full advantage of the advice and adopted a com­
promise. The Russian edition was published in 1991. It 
contains mistakes made by the author, supplemented by 
many typographical and editorial lapses. As a compensa­
tion, the Russian edition includes an article by A.N. Kol­
mogorov "On tables of random numbers." This was an 
unusual event in publishing, in which a highly artificial 
combination of two authors resulted from the vagaries of 
the series "Mathematics and Cybernetics," from the pub­
lishing house Znanie, which printed my book. 

However that may be, I was flattered by this co-auth­
orship. After the passage of four years, the small annoy­
ance experienced at the sight of misprints in this book has 
faded in comparison with the success of its publication in 

Xl 
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Russian. In 1992 the series "Mathematics and Cybernet­
ics," Znanie, and even the Soviet Union disappeared. And 
now the publishing of scientific books in Russia' has be­
come a dream.' The English edition has undergone some 
revision in comparison with the Russian. Also added are 
several facts from the biography of John Charles Fields 
connected with the establishment of the prize. I gleaned 
them from the unpublished autobiography of John Light­
on Synge, the Irish mathematician and physicist, who was 
a friend of Fields and a direct participant in this historic 
event. 

Preface to the 1991 Russian Edition 

This small book is an expanded version of an article pub­
lished in Istoriko-matematicheskie Issledovaniya (Histori­
cal Mathematical Research) in 1989. The book was written 
later that year for Birkhauser. The proposal by Znanie to 
publish it in the series "Mathematics and Cybernetics," in 
which I made my debut in 1979 with a brochure on Rie­
mann, was, for me, a pleasant surprise. The compressed 
publication time meant that I had no chance to undertake 
an extensive revision of the text. In its main outlines, how­
ever, it does not seem to me to require any revision. The 
only serious addition is an analysis of the papers of the 
Fields medalists for 1990. The list of new Fields prize win-

, ners is in complete accord with the prediction that I made 
at the end of 1989. 

The high level of Soviet mathematics was again con­
firmed at the 1990 mathematical congress in Kyoto. One 
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Fields medalist was the Soviet mathematician V. G. Drin­
fel'd. The Nevanlinna prize in applied mathematics was 
also awarded to a Soviet mathematician, A.A. Razborov. 
Both medalists were present at the awards ceremony. The 
invitation to give a plenary hour-long or a sectional 45-
minute paper is an honor for any mathematician. Here 
the participation of Soviet mathematicians was significant. 
B.L. Feigin, G.A. Margulis, Ya.G. Sinai, and A.N. Var­
chenko gave hour-long talks. (There were only 15 hour-long 
talks altogether.) Eighteen people gave 45-minute sectional 
presentations. There were about 100 mathematicians in 
the Soviet delegation, and in contrast to previous years all 
invited speakers were free to participate in the congress. 
The absence of several speakers resulted from purely per­
sonal reasons. 

Participants in the congress noted with satisfaction the 
propitious changes in the Soviet mathematical community. 

,The changes largely arose from the improvement in the 
social climate of the USSR. Unfortunately the trying social 
situation in the country, the political instability, and the 
economic difficulties raise serious concerns for the future of 
science in general, and mathematics in particular. 

Loss of the position of leadership won by many gen­
erations of Soviet mathematicians is not simply a loss in a 
single area of science. Mathematics is not only the founda­
tion of all natural scientific knowledge, but it is an element 
of culture, in no way less important than music, literature, 
and art. In my view the forfeiture of the leading position 
in mathematics may cause irreparable damage to Russia's 
effort to occupy its rightful position of respect among de­
veloped nations. 
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Prologue 

The author of a solely scientific book has no need to explain 
his reason~ for writing it. When it comes to a work with 
an admixture of journalism, however, the situation is differ­
ent. The author who values his scientific reputation must 
provide some explanation. In 1978 the Soviet mathemati­
cian G .A. Margulis was awarded the Fields medal along 
with three other leading mathematicians. This occasion 
was only the second on which this prize was awarded to 
a Soviet mathematician. On the first occasion, in 1970, 
the medal was awarded to S.P. Novikov. Both occasions 
should have been cause for joy in the Soviet mathemati­
cal community, as evidence of the international recognition 
of the high caliber of Soviet mathematical research. But, 
alas, this was not the case. The Soviet scientific community 
hardly learned what had occurred, and the scientific leader­
ship disturbingly deprived both medalists of the chance to 
participate in the awards ceremony. The National Commit­
tee of Soviet mathematicians, which had long been headed 
by LM. Vinogradov, made this decision. Vinogradov and, 
as unpleasant as it is to say, L.S. Pontryagin, were primar­
ily behind the shameful act of excluding Margulis from the 

1 
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Soviet delegation to the Helsinki Congress in 1978.1 

At this time the idea came to me to write a small, 
rather popular note on the Fields prize, the history of its 
founding, and the works of the prize winners. It was origi­
nally planned to be published in the journal Priroda (N a­
ture) , a journal on the same level as Scientific American 
or La Recherche. The famous Soviet mathematician B.N. 
Delone had for many years been a member of the math­
ematical section of its editorial board. Delone was a leg­
endary figure, who had in the past been a famous moun­
tain climber, builder of sail planes, artist, and musician. 
European-educated, he was a man of integrity and courage 
(and not only in mountain climbing). As evidence of this 
statement, he once journeyed to a prison camp in Mordovia 
with Academician A.D. Aleksandrov, where his grandson, 
the poet Vadim Delone, was being held after the invasion 
of Czechoslovakia in 1968. Additionally, for many years 
the samizdat writer Venedikt Erofeev, author of the con­
troversial book Moskva-Petushki, lived at his dacha. Such 
activity is unusual in the context of the Soviet reality of 
those years. This small digression was made in order to 
prepare the reader for the ensuing course of events. 

Originally Delone had been in favor of preparing this 
brief history, and the decision was made that we would 
write it together. But events took a dramatic turn. Af­
ter the article was ready to go to press, Delone telephoned 
me to say that he' had talked with Vinogradov and Pon­
tryagin, who implored him not to print the article. Their 

1 The reader will find the original explanation of this decision 

in a letter of Academician Pontryagin to the journal Science (1979, 

Vol. 205, No. 4411). 
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influence was sufficient to prevent the article from appear­
ing in Priroda. Shortly before his death in 1980, Delone 
regretted his momentary weakness, attributing it .to the 
mesmerizing influence of Vinogradov, the evil genius of So­
viet mathematics. In abbreviated form, under my name 
only, a partial note was published in the journal Voprosy 
Istorii Estestvoznaniya i Tekhniki (Questions of the His­
tory of Science and Technology), No.2, pp. 72-75 in 1982. 

The quite gloomy situation in Soviet mathematics in 
the 1970s led to the emigration of many talented young 
mathematicians, as well as some not so young. The sit­
uation improved slightly over the next few years, as new 
people came into positions of leadership following the death 
of Vinogradov i;n 1983. To a considerable degree the de­
cisive reaction of the international scientific community 
prompted this improvement. 

Ten years after the events described above, Birkhauser 
unexpectedly proposed that I write a short book on the 
work of the Fields medalists. After some hesitation, I 
agreed. The reader can judge the work for himself. Let 
me add only a few remarks in passing. 

1. Mathematics is a single subject, a fact that is not always 
obvious when you study the daily reality of research. It be­
comes clear, however, when you become acquainted with 
results obtained by great mathematicians. This realization 
is one by-product resulting from an analysis of the works of 
the Fields medalists. Although honors went to authors of 
the greatest achievements obtained in the year immediately 
preceding each congress and sometimes in areas of mathe­
matics widely separated from one another, truly wonderful 
connections between them were discovered with the pas-
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sage of time. For that reason an €-grid over the works 
of the Fields medalists covers a significant portion of the 
achievements of modern mathematics. 

2. The development of pure mathematics in the period be­
tween the two world wars, and especially in the post-World 
War II period, was characterized by weak connections with 
the applied sciences, in particular with physics. This as­
sociation was especially true of the areas of mathematics 
in which many Fields medalists worked. It was difficult 
to imagine that the concepts of sheaf, etale cohomology, 
J-functors, and the like would ever be applied in physics. 
It was still more difficult to imagine that physics could as­
sist algebraic topology or geometry. This point of view 
was widespread. French mathematician Jean Dieudonne 
expressed himself unambiguously on this subject in 1962:2 

I would like to stress how little recent history has 
been willing to conform to the pious platitudes of 
the prophets of doom who regularly warn us of 
the dire consequences that mathematics is bound 
to incur by cutting itself off from applications 
to other sciences. I do not intend to say that 
close contact with other fields, such as theoret­
ical physics, is not beneficial to all parties con­
cerned; but it is perfectly clear that of all the 

2 In an address delivered at the University of Wisconsin in 1962 

Dieudonne gave a survey of the achievements of the preceding decade 

in pure mathematics. He emphasized algebraic geometry, algebraic 

topology, complex analysis, and algebraic number theory. See J. 

Dieudonne, "The development of modern mathematics," American 

Math. Monthly, 71 (1964), 239-242. 
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striking progress I have been talking about, not a 
single one, with the possible exception of distri­
bution theory, had anything to do with physical 
applications. 

But, as often happens with globally expressed opin­
ions, the situation underwent a sea change 10 to 15 years 
later. Over the past few years a close union of modern 
physics and mathematics has developed that has been ex­
ceptionally productive for both sides. Moreover, the most 
esoteric areas of mathematics have found brilliant applica­
tions. At the same time, certain remarkable achievements 
·in mathematics, which will be related in this book, are 
based on ideas that arose in papers on physics. A recent 
example is the solution of Schottky's problem, which makes 
use of the theory of nonlinear Kadomtsev-Petviashvili equa­
tions. 

Prophecy is always dangerous, but one would like to 
think that the achievements of modern physical mathemat­
ics will be reflected in the names of the new Fields winners 
at the congress in Kyoto. 

A Brief Biography of John Charles Fields 

The founder of the prize, John Charles Fields, was born 14 
May 1863 in Hamilton, Ontario, Canada. After graduat­
ing from the University of Toronto in 1884, he received his 
doctorate in 1887 from the Johns Hopkins University. In 
1892 Fields traveled to Europe, where he mainly attended 
seminars in Berlin and Paris. During the following decade 
he became acquainted with such mathematicians as Ferdi-
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nand Georg Frobenius, Hermann Amandus Schwarz, and 
Lazarus Fuchs, and the physicist Max Planck. In 1902 he 
returned to Canada, to the University of Toronto, where 
he worked until the end of his life. Fields was a member of 
several academies, including the Royal Society of Canada 
(1907), the Royal Society of London (1913), and the Rus­
sian Academy of Sciences (1924). 

In mathematics Fields stressed throughout his life the 
theory of algebraic functions and algebra, precisely the' 
fields where, more than half a century later, the major 
achievements of many Fields medalists were concentrated. 
Fields himself provided an algebraic proof of the Riemann­
Roch theorem, but his greatest renown resulted from his 
international activity. Through his efforts the International 
Congress was held in Canada in 1924. 

Fields had to overcome the threat of a boycott of the 
congress, mostly by French mathematicians, if the Ger­
mans and their World War I allies were invited. Seemingly, 
tactical considerations related to this problem elicited the 
proposal from Fields to convene the congress in Toronto. 
He called it an "International Mathematical Congress." 
Other congresses had been called "International Congresses 
of Mathematicians." 

Fields skillfully directed the organizational work of the 
congress and gave a paper on the theory of ideals. At 
this congress an international mathematical prize was first 
discussed. The final decision was not ~ade until eight years 
later at the International Congress in Zurich. 

While years of preparatory work had preceded the pro- , 
posal for a Fields medal, the decisive events unfolded at the 
beginning of 1932. In January Fields wrote a memorandum 
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entitled, "An international medal for outstanding achieve­
ment in mathematics." This memorandum discussed in 
detail the charter of the medal, the procedure for awarding 
it, and even general wishes as to the design of the medal. 
Fields was preparing to present his ideas in September at 
the congress in Zurich. But "in May he fell gravely ill. Prof. 
John Lighton Synge, the secretary of the Toronto congress 
arid close friend of Fields, recalled that a short time later 
he was suddenly called to Fields' side, whom he found in 
critical condition. A will was prepared, in which Fields 
gave most of his funds to the medal. According to Fields' 
will, Synge was to present the memorandum for adoption 
to the executive committee of the congress in Zurich. 

Fields was not to learn of the decision. He died on 8 
August 1932, one month before the congress opened. 

The session of the ad hoc committee th?-t considered 
the question of the prize was stormy. Not all the mem­
bers of the committee supported the establishment of a 
prize. In particular Oswald Veblen spoke against it, per­
haps motivated by the thesis that the study of science is 
its own reward, so the researcher has no need of additional 
encouragement. Nevertheless, most of the committee mem­
bers favored Fields' proposal. At the plenary session of the 
congress, the question was finally decided in the affirma­
tive. 

There is an interesting story connected with the actual 
medal. As a Canadian patriot, Fields wanted the design 
made by a Canadian sculptor and proposed Tate MacKen­
zie, who was known for his memorials to war dead in Ed­
inburgh, Cambridge (Britain), and Princeton. MacKenzie 
was inclined to depict the Greek mathematician Archimedes. 
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According to Fields' wishes, despite the stylistic discrep­
ancy, the corresponding text was composed in Latin by 
Norwood, a Latin scholar. The Canadian mint cast the 
medal. 

Since the first Fields medal was awarded at Oslo in 
1936,34 mathematicians have been so honored. The prize 
has become integral to the life of the international mathe­
matical community. 

The selfless activity of Fields has not been forgotten 
in Canada. The mathematical institute at the University 
of Waterloo, Ontario, which opened in 1992, is named in 
his honor. 

History of the Fields Medals 

On 21 August 1990 at the opening of the International 
Congress of Mathematicians in Kyoto, Japan, following 
tradition, the names of the Fields Medalists-the highest 
honors given by the International Mathematical Union in 
pure mathematics3-were announced. The Fields medal 
had passed its first big jubilee year-its fiftieth anniver­
sary. Some estimate of the importance of this longevity 
can be gained from an excursion into the history of math­
ematical prizes. 

In the nineteenth century prizes for outstanding scien­
tific results were established in practically every European 
academy of sciences. Many were awarded to foreign schol­
ars. But the mere fact of having been awarded did not make 

3 A prize in applied mathematics-the Nevanlinna prize-has also 

been given since 1982. 
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any of the awards permanent or significant throughout Eu­
rope. An ad hoc committee usually awarded each .prize 
for the solution of a difficult problem, frequently through a 
competition. Either the prize ceased to be awarded later, 
or it was simply a one-time award. Among such prizes 
was that of Swedish King' Oscar II, which went to Henri 
Poincare. ' 

The (Paris) Academy prizes were awarded more con­
sistently, for example the Bordin Prize which was awarded 
to Sof'ya Koval~wskaya im 1888. However, like' all the 
other mathematical prizes that existed in the nineteenth 
and early twentieth centuries, it had no claim to world- or 
even European-wide significance. 

Alfred Nobel delivered the coup de grace to mathemat­
ics by excluding it from the sciences designated to receive 
his prize.4 

The role of prizes, like the role of international recog­
nition in general, is important support for individual schol­
ars. Despite Franz N ~mmann's beautiful quote: "The dis­
covery of new truth is the greatest joy; recognition can add 
almost nothing to it," this wise idea is only partially true. 
Following Niels Bohr, the opposite conclusion is also valid. 
Recognition is especially important to young researchers. 

The establishment of an international prize was first, 
discussed in earnest in 1924 at the International Mathe­
matical Congress in Toronto. This meeting was the second 

4 There exists a large number of conjectures, especially dear to the 

authors of popular articles "explaining" this fact. A critical analysis 

of this silly gossip is given in an article by the two Swedish mathe­

maticians L. Hormander and L. Garding [HGJ. 
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international congress after World War L 5 Mathematicians 
of different countries had healed the breaches caused by the 
war. It was natural to raise the question of establishing an 
international prize. Fields, the president of the congress, 
initiated this dialogue. 

Establishing the prize was, however, far from simple. 
The world had entered upon a period of social cataclysms, 
and international cooperation was complicated by the in­
terwar political map. 

Fields' perseverance eventually yielded results, though 
not immediately. The next congress in Bologna (1928) 
reached no decision. However, by 1932, the year the sub­
sequent congress was held in Zurich, several mathematical 
societies had reached a preliminary agreement. At the be­
ginning of 1932 Fields wrote his memorandum which gave 
a detailed characterization of the charter for the new prize. 
This memorandum pointed out the basic properties that 
distinguished the new prize: 

One would here again emphasize the fact that the 
medals should be of such a character as purely 
international and impersonal as possible. .. There 

5 The first postwar congress met in Strasbourg in 1920. It was 

small in relation to the number of countries and participants, since no 

representatives of Germany or its allies were present. The congress 

in Toronto was more representative, although Weimar Germany and 

its allies were again not invited. A delegation from the USSR par­

ticipated in this congress. Among the papers delivered by the So­

viet mathematicians was the famous paper of B.N. Delone, "Sur les 

spheres vides." Unfortunately Delone himself did not take part in the 

work of the congress, and his paper was read by Prof. Y.V. Uspensky. 



Prologue 11 

should not be attached to them in any way the 
name of any country, institution or person. 

In contrast to the Nobel prize, there is no men,tion of 
Fields on the medal. The name of the winner and the year 
are engraved on the rim. Nevertheless, the name of Fields 
has deservedly become attached to both the prize and the 
medal. 

The 1932 Zurich congress decided to give the, first 
Fields medal at the next congress in Oslo in 1936. Fields' 
memorandum stated that the prize should not only rec­
ognize results already obtained, but also stimulate further 
research. The first Fields committee took this instruction 
to mean that the prizes should go to relat'ively young schol­
ars. 

The Oslo congress conferred the first Fields medals in 
1936. The gold medals and the monetary prize of $1500 
Canadian were awarded to Jesse Douglas (1897-1965) of 
the Massachusetts Institute of Technology for the solution 
of Plateau's problem and Lars Ahlfors (1907-1996) of the 
University of Helsinki for work on the theory of Riemann 
surfaces. More details on the work of Ahlfors and Douglas 
will be given below. 

The choice of these first two medalists was quite im­
portant for setting standards. It established a certain age 
limit: all future medalists were under 40. In choosing can­
didates both the solution of difficult problems and the cre­
ation of new theories and methods enlarging the fields of 
application of mathematics were considered. 

A special committee on the Fields medals, appointed 
by the executive committee of the International Mathemat­
ical Union, reviews candidates and selects winners. Usu-
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ally, the chair of the Fields committee is the president of the 
union. The candidates are carefully identified. Many lead­
ing mathematicians are asked their opinions as a matter of 
course. The final selection is made by secret ballot through 
correspondence. The committee for this task changes after 
every congress. Names of the committee members, except 
for the chair, are kept secret until winners are announced 
at the next congress. These measures are designed to guar- . 
antee the maximum objectivity of the choice. 

In 1936 the first Fields committee consisted of the 
leading mathematicians George D. Birkhoff, Constantin 
Caratheodory, Elie Cartan, Francesco Severi (chair), and 
Teiji Takagi. The next congress was scheduled to take place 
in the USA, four years later, but the Second World War 
upset that plan. Not until 1950, under the aegis of the 
reconstituted International Mathematical Union, was an­
other congress called in Cambridge, Massachusetts, USA. 
It was held at Harvard University. 

Soviet mathematicians had missed the 1936 congress. 
The two invited Soviet speakers, A.O. Gel'fond and A.Y. 
Khinchin, informed the organizing committee at the last 
minute that they could not attend. Removal of their papers 
from the congress program was announced at the opening 
ceremony. This act became a lamentable tradition at sub­
sequent congresl;:)es. 

Soviet mathematicians were also not allowed by their 
government to participate in the work of the 1950 congress. 
The campaign against "rootless cosmopolitans" was at its 
height-an antisemitic campaign that gradually became a 
struggle against all progressive trends in Soviet intellectual 
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life. The acme of the "Lysenkovshchina," 6 brought the at­
tack on cybernetics, which resulted in the destruction of 
entire research specialties and schools in Russia. A spec­
tacular example of the insular epistolary level of this era 
appears in a telegram from the president of the Academy of 
Sciences of the USSR, S.L Vavilov, explaining why Soviet 
mathematicians could not participate in the work of. the 
congress: "The Soviet Academy of Sciences thanks you for 
the cordial invitation to Soviet scholars to participate in 
the work of the i~ternational mathematical congress being 
held in Cambridge. Soviet mathematicians are too busy 
with their routine work and cannot attend the congress. 
I hope that the upcoming congress will be an important 
event for mathematical science. I wish you success in the 
work of the congress. (Signed) President of the Academy 
of Sciences of the USSR, S.L Vavilov." A.N. Kolmogorov, 
one of the members of the Fields committee, thus could 
not participate in its work. 

The Fields committee was enlarged to eight members 

6 The Russian suffix -shchina has no English equivalent and is at­

tached to a name to denote a political campaign-usually sinister­

associated with the person named. The Lysenkovshchina is an ob­

scure phenomenon in Soviet biology. Lysenko and his supporters 

became notorious for abolishing the Soviet school of genetics. Ly­

senko's activity was dangerous because J. Stalin and N. Khrushchev 

supported it. In Soviet science the term "Lysenkovshchina" became 

a synonym for ignorance and arrogance in any field of science. The 

life of Lysenko and' his teaching has been discussed in a paper by 

K.O. Rossianov, "Joseph Stalin and the 'new' Soviet biology," Isis, 

Vol. 84, No.4 (1993), 728-795. See also the book of D. Joravsky, The 

Lysenko Affair, University of Chicago Press, 1986 [Jo]. 
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in 1950, but met with only seven members. Through 1986, 
the committee consisted of eight members. In 1990 this 
tradition was broken when the membership of the com­
mittee was expanded to nine. Certain procedural changes 
were made in the composition of the 1994 committee. Vice­
Chair David Mumford became chair of the committee, be­
cause of ethical considerations that arose from the nomina­
tion of Pierre-Louis Lions, son of the president of the Inter­
national Mathematical Union Jacques-Louis Lions, for the 
award. V.I. Arnol'd, professor at the Universite de Paris­
Dauphine, also declined work on the committee for reasons 
of academic ethics. 

A complete list of Fields committee members speaks 
more eloquently of their authoritativeness than any words. 
The place and country where the meeting was held is given 
in parentheses. 

1950 (Cambridge, MA, USA): Harald Bohr (chair), 
Lars Ahlfors, Karel Borsuk, Maurice Frechet, William 
Hodge, Damodar Kosambi, AndreY Nikolaevich Kolmogor-. 
ov (did not participate), and Marston Morse. 

1954 (Amsterdam, The Netherlands): Hermann Weyl 
(chair), Enrico Bompiani, Florent Bureau, Henri Cartan, 
Alexander Ostrowski, Arne Pleijel, Gabor Szego, and Ed­
ward Charles Titchmarsh. 

1958 (Edinburgh, Scotland): Heinz Hopf (chair), Ko­
maravolu Chandrasekharan, Kurt Friedrichs, Philip Hall, 
AndreY Nikolaevich Kolmogorov, Laurent Schwartz, and 
Carl Ludwig Siegel. 

1962 (Stockholm, Sweden): Rolf Nevanlinna (chair), 
Pavel Sergeevich Aleksandrov, Emil Artin, Shiing-Shen 
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Cher:n, Claude Chevalley, Lars Garding, Hassler Whitney, 
and K6saku Yosida. 

1966 (Moscow, USSR): Georges de Rham (chair), Har­
old Davenport, Max Deuring, William Feller, Mikhail Alek­
seevich Lavrent'ev, Jean-Pierre Serre, Donald Spencer, and 
Rene Thorn. 

1970 (Nice, France): Henri Cartan (chair), John Doob, 
Friedrich Hirzebruch, Lars Hormander, Shokichi lyanaga, 
John Milnor, Igor Rostislavovich Shafarevich, and Paul 
Turan. 

1974 (Vancouver, B. C., Canada): Komaravolu Chan­
drasekharan (chair), John Adams, Kunihiko Kodaira, Ber­
nard Malgrange, Andrzej Mostowski, Lev Semyenovich Pon­
tryagin, John Tate, and Antoni Zygmund. 

1978 (Helsinki, Finland): Deane Montgomery (chair), 
loan Mackenzie James, Lennart Carleson, Martin Eichler, 
Jiirgen Moser, YuriY Vasil'evich Prokhorov, Bela Szokefal­
vi-Nagy, and Jacques Tits. 

19837 (Warsaw, Poland): Lennart Carleson (chair), 
Huzihiro Araki, NikolaY Nikolaevich Bogolyubov, Paul Mal­
liavin, David Mumford, Louis Nirenberg, Andrzej Schinzel, 
and Charles Terence Clegg Wall. 

1986 (Berkeley, CA, USA): Jiirgen Moser (chair), Mich­
, ael Francis Atiyah, Pierre Deligne, Lars Hormander, Kazu­
fumi Ito, John Milnor, SergeY Petrovich Novikov, and Con­
jeevaram S. Seshadri. 

7 This congress was scheduled for 1982, but the declaration of 

martial law in Poland in December 1981 caused it to be postponed 

to 1983. 
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1990 (Kyoto, Japan): Lyudvig Dmitrevich Faddeev 
( chair), Michael Francis Atiyah, Jean Michel Bismut, En­
rico Bombieri, Charles Fefferman, Kenkichi Iwasawa, Peter 
D. Lax, Igor Rostislavovich Shafarevich, and John Griggs 
Thompson. 

1994 (Zurich, Switzerland): David Mumford (Chair), 
Luis Caffarelli, Masoki Kashiwara, Barry Mazur, Alexan­
der Schrijver, Dennis Sullivan, Jacques,Tits, and S.R. Srini­
vasa Varadhan. 

The prizes are awarded at the opening of the congress. 
After an introductory speech ,by the chair of the Fields 
committee the medals are presented by the honorary pres­
ident of the congress. Among those conferring the medals 
have been the King of Sweden at the Stockholm congress in 
1962 and the President of the Soviet Academy of Sciences 
Mstislav V sevelodovich Keldysh at the Moscow congress in 
1966. 

In 1986 at the prize's fiftieth anniversary, Ahlfors, the 
first Fields medalist, was named honorary president of the 
congress. He shared his reminiscences of the first presenting 
of the prize. Names of the new medalists-to-be had been 
kept secret, so that Ahlfors learned only accidentally on the 
eve of the ceremony that he was the new winner and was of­
ficially notified only one hour before the congress opened. 
Such secrecy apparently resulted in Douglas, the second 
winner, not coming to the congress. The reason given was 
exhaustion from a long journey. But possibly more advance 
notice on the program might have given Douglas additional 
strength. Norbert Wiener accepted Douglas' medal on be­
half of the Massachusetts Institute of Technology. 
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A special session at which papers devoted to the works 
of the winners are read precedes the scholarly program of 

. the congress. Authorities in the corresponding fields. of 
mathematics survey the achievements of Fields medalists. 
Although Caratheodory (1936), Bohr "(1950), and Weyl 
(1954) presented synopses of all the prize-winning papers, 
subsequently a separate paper was dedicated to each win­
ner. 

Originally two prizes were established, but the im­
proved fund and private contributions made -it possible to 
give four prizes in 1966, 1970, 1978, and 1990 as well as 
three in 1983 and 1986. 

The following mathematicians have been named Fields 
medalists. 

1936: Jesse Douglas (1897-1965), Massachusetts Institute of 
Technology;8 Lars Ahlfors (1907-1996), University of 
Helsinki. 

1950: Laurent Schwartz (b. 1915), Universite de Nancy; Atle 
Selberg (b. 1917)" Institute for Advanced Study, Prince-
ton. . 

1954: Jean-Pierre Serre (b. 1926), Universite de Paris; Ku­
nihiko Kodaira (b. 1915), Princeton University. 

1958: Klaus Friedrich Roth (b. 1925), University of London; 
Rene Thorn (b. 1923), Universite de Strasbourg. 

1962:. Lars H6rmander (b. 1931), University of Stockholm; 
John Milnor (b. 1931), Princeton University. 

1966: Stephen Smale (b. 1930), University of California, 
Berkeley; Paul Cohen (b. 1934), Stanford University; 

8 The institution named is the affiliation at the time the prize was 

awarded. 
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Alexander Grothendieck (b. 1928), Universite de Paris; 
Michael Francis Atiyah (b. 1929), Oxford University. 

1970: Alan Baker (b. 1939), Cambridge University; SergeI 
Petrovich Novikov (b. 1938), Steklov Institute of the 
USSR Academy of Sciences; John Thompson (b. 1932), 
Cambridge University; Heisuke Hironaka (b. 1931), 
Harvard University. 

1974: David Mumford (b. 1937), Harvard University; .Enrico 
Bombieri (b. 1940), University of Pisa. 

1978: Pierre Deligne (b. 1944), Institut des Hautes Etudes 
Scientifiques, Bures-sur-Yvette; Daniel Quillen (b. 
1940), Massachusetts Institute of Technology; GrigoriY 
Aleksandrovich Margulis (b. 1946), Institute for Prob­
lems of Information Transmission, USSR Academy of 
Sciences; Charles Fefferman (b. 1949), Princeton Uni­
versity. 

1983: Alain Connes (b. 1947) Universite de Paris; William 
Thurston (b. 1946), Princeton University; Shing Tung 
Yau (b. 1949), Stanford University. 

1986: Simon Kirwan Donaldson (b. 1957), Oxford Univer­
sity; Gerd Faltings (b. 1954), Princeton University; 
Michael Freedman (b. 1951), University of California 
at San Diego. 

1990: Vladimir Gershonovich Drinfel'd (b. 1954), Physico­
technical Institute of Low Temperatures, Khar'kov; 
Edward Witten (b. 1951), Institute for Advanced Stud­
y, Princeton; Vaughan Jones (b. 1952), University of 
California at Berkeley; Shigefumi Mori (b. 1951), Ky­
oto University. 
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1994: Jean Bourgain (b. 1954), Institut des Hautes Etudes 
Scientifiques, Bures-sur-Yvette; Pierre-Louis Lions (b. 
1956), Universite de Paris-Dauphine; Jean-Christophe 
Yoccoz (b. 1957), Universite de Paris-Sud, Orsay; Efim 
Zelmanov (b. 1955), University of Wisconsin, Madi­
son/Institute of Mathematics, Novosibirsk. 

Selection of young mathematicians supports the con­
tinuing development of mathematics. The Fields commit­
tees are representative of outstanding mathematicians of 
the older generation, which makes their assessment of the 
creativity of the young all the more interesting. 
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Work of the Fields medalists encompasses nearly ev­
ery branch of mathematics. O:r;Lly the theory of probability 
has been passed over as of the present moment. Carrying 
out a detailed analysis of the me~alist areas is tantamount 
to compiling an encyclopedia of modern mathematics. For 
this reason I shall only sketch the results obtained, sin­
gling out either those most amenable to brief exposition or 
closest to my own area of expertise. 

An examination of the list of medalists shows that 
more than half of the prize winners work in algebraic topol­
ogy, algebraic geometry, and complex analysis. This fact is 
quite revealing. Despite the largely cumulative and contin­
uous development of mathematics in this century, the pre­
dominance of these features in the changing face of mathe­
matics after World War II is indisputable. The three areas 
just listed are now so intertwined that it is difficult to sep­
arate them. It is even more difficult to place a boundary 
on the creativity of individual mathematicians, especially 
since the specialties of many have changed abruptly. 

21 
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Topology 

Jean-Pierre Serre. In 1954 Serre received the first Fields 
prize for a paper on topology. He is one of a brilliant 
constellation of French topologists, including such math­
ematicians as H. Cartan, and J. Leray. Only war and the 
age restriction prevented these others from becoming Fields 
medalists themselves. In particular Serre, a student of Car­
tan, applied the method of spectral sequences created by 
Leray to fundamentally advance the classical problem of 
topology-the computation of homotopy groups of spheres. 

To assess Serre's contribution to the solution of this 
problem results of the preceding period must first be re­
viewed. 

In 1935 Witold Hurewicz defined an n-dimensional ho­
motopy group as the set of equivalence classes of homo­
topically distinct mappings of the n-dimensional sphere §n 

into a topological space Mk. The standard notation for 
this group is 7rn (M k ). Hurewicz's definition is the natural 
n-dimensional generalization of the concept of the funda­
mental group 7rl (Mk). In 1895 H. Poincare introduced the 
fundamental group, also called the Poincare group, in his 
classical paper "Analysis Situs," 9 which laid the foundation 
of modern topology. 

In 1931 H. Hopf, in his paper "Uber die Abbildungen 
der dreidimensionalen Sphare auf die Kugelflache," took a 
crucial step preceding the appearance of the general con­
cept of a homotopy group. In modern terms he showed 
that the group 7r3 (§2) is isomorphic to Z, where .z is the 

9 Analysis situs-analysis of position-is an archaic name for 

topology. 
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group of integers. Hopf's paper is a classic in topology. 
Its results and ideas stimulated the development of topol­
ogy for many years. Among its new concepts are the Hopf 
invariant and the Hopf bundle. 

Relatively recently, in the 1970s, it became clear that 
the Dirac monopole can be naturally interpreted in terms of 
the Hopf bundle. Curiously, P. Dirac's paper was also pub­
lished in 1931, a few months after Hopf's paper appeared. 
Still, it took 40 years of development in physics and math­
ematics for the close connection between these papers to 
be noticed. Here is a worthy example for F. Dyson's col- ' 
lection of "IDissed opportunities" [Dy]. For more details on 
the connection of the Dirac monopole and the Hopf invari­
ant see [Mo]. 

The nontriviality of the homotopy groups 7rnCMk) for 
n > k contrasts sharply with properties of homology groups 
Hn(Mk) and cohomology groups Hn(Mk), which are triv­
ial for n > k. It is now possible to define homology and 
cohomology groups axiomatically, thereby guaranteeing a 
way of computing them. Knowledge of the homology and 
cohomology groups of a specific manifold is of very little 
help, however, in the study of the hqmotopy groups of the 
manifold. Hurewicz's isomorphism essentially establishes 
the only direct connection between the homotopy and ho­
mology of a given manifold: 

Hurewicz' Theorem. 7rk(M) = Hk(M) if 7ri = Hi = 0 
for 0 < i ::; k - 1. 

Consequently some profound pre-World War II results 
in the theory of homology and cohomology, including the 
creation of the foundations of the theory of characteristic 
classes, were of little help in computing homotopy groups. 
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In this area, the only general result was the suspension 
theorem proved by H. Freudenthal. 

Freudenthal's Theorem. The gr'Oup 1Tr(sn) is isomor­
phic to the group 'Tr r+ 1 (§n+ 1) for 1 ::; r < 2n - 1, and the 
group 'Tr2n-l (§n) is mapped onto the group 1T"2n (§n+ 1 

). 

Freudenthal succeeded in partially describing the ker­
nel of the mapping: 

In particular he computed the group 'Tr4(§3) = Z2. 
Freudenthal's result is important. Using the Freud~n­

thaI isomorphism 7rr(§n) ~ 7rr+l (sn+l) ~ 1T"r+k(§n+k), one 
can show easily that the groups ?T'r+k(§k) are independent 
of k for k > r + 1. Taking k = 00, we therefore obtain the 
so-called stable homotopy groups 7rr (§OO). However, ev~n 
for computing homotopy groups of type 7rr +2(§r), for ex­
ample 7r5(§3), Freudenthal's theorem is useless. Thus each 
successive step in the computation of the homotopy groups 
requires a special technique that was achieved with great 
difficulty. Some methods invented to solve this problem 
were extraordinarily interesting in another circle of prob­
lems. Here first of all is the Pontryagin theory of framed 
manifolds. In 1950 Pontryagin studied submanifolds Mk 
of ]Rn+k that admit a field of n-linear independent normal 
vectors. In modern language this property is called trivi­
alizability of the normal bundle. The manifold Mk itself 
with the trivial frame is an n-framed submanifold in }Rn+k. 
Because of the property of trivializability, the manifold Mk 
admits a certain tubular neighborhood N diffeomorphic to 
Mk X ~n. It can be shown that there exists a mapping 
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9 : N ~ ]Rk such that gl8N --t 00. If ]Rn+k and ]Rn are 
regarded as the interiors of §n+k and §n respectively, the 
mapping 9 can be extended to a mapping I : sn+k --t §n 

in such a way that the pre-image of a noncritical point 
So C §n is given by f-1(80) = Mk. 

Pontryagin made the crucial observation that the ho­
motopy equivalence of mappings 11, 12 :. §n+k -+ §k cor­
responds to a certain equivalence of framed submanifolds 
Mk C ]Rn+k. This equivalence, called intrinsic homology 
by V.A. Rokhlin, amounts to the following: Two mani­
folds Mf and M~ c ]Rn+k are intrinsically homologous if a 
framed manifold (film) W k+ 1 C ]Rn+k x R exists such that' 

1) Ml X {O} and M2 x {I} are obtained by intersect­
ing W k+l with the planes Xn +k+1 = 0 and Xn+k+1 = 1 
respectively; 

2) the normal bundles to the submanifolds Mf and M~ 
are the intersection of these hyperplanes with the normal 
bundle to W. 

Following this route, Pontryagin computed the groups 
7rn+l(§n) and 7rn+2(§n). Rokhlin, a colleague of Pontrya­
gin's at the time, took the next, even more difficult step in 
using this technique to compute the group 7rn+3(sn). Fur­
ther obstacles along this route proved technically insupera­
ble. In 1954 the methods of the theory of framed manifolds 
became the basis for a promising new theory-cobordism 
theory. 

The results of computations of the homotopy groups 
of spheres prior to Serre were often first-rate and very di­
verse. But general theorems and even approaches to gen­
eral theorems were almost completely absent. Then, in a 
series of notes in the Comptes Rendus, and in more detail 
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in his dissertation in the Annals of Mathematics (1951), 
Serre proved several general theorems on the structure of 
the groups 7ri(§n). Here is the statement of one of the most 
important. 

The Serre Finiteness Theorem. For even n the groups 
7ri(§n) are finite for all i > n except the group 7r2n_l(§n). 
The group 7r2n-l (§n) is the direct sum of Z and a finite 
group. For odd nand i > n the group 7ri(§n) is finite. 

Interestingly, Serre based his proof on a connection 
that he found between the homotopy groups of §k and cer­
tain homology and cohomology groups, not for the sphere 
itself, but for a certain associated space, the so-called loop 
space. The theory of spectral sequences can be applied 
in computing the homology and cohomology of the loop 
space. Following this route, Serre made progress in com­
puting specific homotopy groups. He duplicated results of 
Pontryagin, J.H.C. Whitehead, and Rokhlin by computing 
7r n+ 1 (§n), 7r n+2 (sn ), and 7I" n+3 (§n), and in addition found 
the group 7rn+4(§n). No one had found this last result by 
other methods. 

This general construction was applied with great suc­
cess in computing the homotopy groups of other spaces, 
in particular symmetric spaces and Lie groups. The close 
connection between computing the homotopy groups of 
spheres and the classical Lie groups seems clear. As is 
known, the classical groups generate bundles with a spher­
ical base. For example: 

U(m + 1) ~ §2m+l. 

Serre solved a number of difficult problems connected 
with computing the homotopy groups of the classical Lie 



Mathematical Progress 27 

groups. In particular he successfully described the primary 
components of the groups 7r p (G) in many significant cases, 
showing that the primary components of the groups 7fq (G) 
are sums of the primary components of the groups 7fi(§j). 

The problem of computing the homotopy groups of 
Lie groups turned out to be easier than the analogous 
problem for spheres. Yet even in the case of Lie groups 
specific problems connected with the structure of partic­
ular groups 7ri(G) remain unsolved. R. Bott proved a re­
markable theorem on the structure of the stable homotopy 
groups of Lie groups. This theorem asserts that the sta­
ble groups 7fi(G) possess the property of periodicity, for 
example, 7ri(U(OO») = 7ri+2(U(OO)). 

Bott based his proof on a beautiful use of Morse the­
ory. The periodicity theorem subsequently acquired fun­
damental importance in modern topology. 

Although the achievements of Serre from the early 
1950s are connected with topology, the theory of complex 
spaces had already entered his circle of interests. His in­
terest seems to have been sparked by the influence of his 
teacher Cartan, the leading authority in the theory of com­
plex manifolds. Cartan had worked in that area as early 
as the 1930s. It turned out that the Cartan-Oka theorems 
in Cousin's problem admit an effective statement in terms 
of cohomology with coefficients in analytic sheaves. The 
papers of Serre, partly written in collaboration -with Car­
tan, greatly advanced the theory of analytic sheaves. The 
original definition of a sheaf by Leray in 1945 was supple­
mented by a number of definitions connected with delicate 
analyticity properties. Leray is credited with introducing 
two fundamental concepts that changed the face of post-
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war mathematics. It is a startling fact that he develDped 
his principal ideas during the war, while in a German con­
centratiDn camp. This periDd is mentiDned in [Dil]. In 
particular, Serre studied the cohDmDlDgy .of complex spaces 
with cDefficients in sheaves .of hDlDmDrphic functiDns. The­
Drems on the structure of certain cDhDmDlDgy classes .of an­
alytic spaces entered the literature under the name of the 
KDdaira-Serre duality theorems. All these results were es­
sential at the next stage .of develDpment .of algebraic topol­
Dgy and geDmetry. Serre later turned tD algebraic geDmetry 
and arithmetic, .obtaining significant results in the theory 
.of representatiDns .of p-adic grDups, mDdular functiDns, and 
mDre. In addition he authDred brilliant mDnDgraphs and ' 
textbDDks [S2, 83]. In 1986 8pringer-Verlag issued the cDl­
lected wDrks .of Serre in three vDlumes, giving a cDmplete 
picture .of his wDrk [SI]. 

Rene Thom. One .of the 1958 Fields medals was awarded 
tD Thom, a representative .of the same SChODl .of French 
tDPDlogists. ThDm's papers cDnstructed cobordism theory. 
One prDblem of this theDry has a rather simple statement: 
'find necessary and sufficient cDnditiDns fDr a given com­
pact manifDld M n tD be the bDundary .of a manifDld wn+ 1 . 

A necessary cDnditiDn-that the 8tiefel-Whitney numbers 
be equal tD zerD-had been fDund earlier by PDntryagin. 
Thom prDved the mDre difficult part, that this cDndition is 

,alsD sufficient. 
ThDm's cDbDrdism theDry cDntinued the wDrk .of the 

SDviet mathematicians PDntryagin and RDkhlin arid gave 
rise tD a number .of .outstanding papers that sDlved some 
very difficult tDpDIDgical prDblems. Later medalists further 
develDped the ide~ in Thorn's papers. 
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In developing cobordism theory Thorn introduced new 
topological concepts that have entered the basic lexicon of 
the modern topologist. One of these ideas-the concept 
of a Thorn space-is key to the modern theory of charac­
teristic. classes. The Thorn space is defined for a bundle 
of k-dimensional planes endowed with a Euclidean met­
ric. Let e be a vector bundle over the manifold B, E the 
space of the bundle, and A the subset of E(~) consisting of 
the vectors v with Ivl 2:: 1. Contracting A to a point, we 
obtain the space E(e)/A, which is called the Thom space 
T(~). 'The space T(e) can be identified with the one-point 
compactification of the space E(~). 

One remarkable application connected with the space 
T(~) is a theorem that Thorn proved on the connection of 
the homotopy groups of the spaces T(~) and the homology 
groups of the manifold B, the base of the bundle of k­
vectors. 

Thorn's' Theorem. The groups 7rn+k.(T) are isomorphic 
to Hn(B, IE) for all n < k - 1. 

This theorem and its generalizations form the basis 
for computations in cobordism theory, where the funda­
mental object became the group of cobordisms of mani­
folds. Thorn remarked that the cobordism condition is an 
equivalence relation that makes it possible to introduce the 
concept of a group on the classes 'of cobordism manifolds, 
the cobordism group O. The group operation is taken as 
the disjoint sum of manifolds. The 'group of n-dimensional 
manifolds is usually denoted On. It is also natural to con­
sider the group 0 = 0 0 + 0 1 + ... + On .... The operation 
of forming the direct product Mn x Nm of two manifolds 
of dimensions m and n generates an additional operation: 
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On X Om ---* On+m, turning 0 into a (graded) ring. Some 
significant topological problems can be stated in terms of 
the structure of the ring O. Thorn's predecessors Pontrya­
gin and Rokhlin had obtained some results on the structure 
of the rings Oi, though not in such a general formulation. In 
particular, Rokhlin proved that the group 0 3 is trivial, i.e., 
every oriented three-dimensional manifold is the boundary 
of a four-dimensional manifold. Thorn. described the group 
On using a relation he had found between the homotopy 
groups of the space T(~) and On. Cobordism theory, was 
subsequently developed in connection with the study of the 
groups 0, taking account of additional manifold structure, 
for example the structure of complex manifolds, spin man­
ifolds, and others. Computing each such group involves ' 
solving a challenging topological problem. 

Many important ideas that have found applications, 
some many years later, are due to Thorn. For example, 
Thorn's use of Morse theory to study the topology of com­
plex spaces was applied very recently by M. Goresky and 
R. Macpherson in analyzing the cohomology of manifolds 
with singularities [GM]. 

Of course, among Thorn's main achievements are his 
papers on the theory of singularities, which led to its devel­
opment into an independent discipline--catastrophe the­
ory. Catastrophe theory, in somewhat vulgar terms, stud­
ies the global behavior of functions from properties of their 
singularities. This theory builds upon Morse theory, the 
Whitney theory of singularities, and much more. It consol­
idates numerous elegant results in different areas of math­
ematics in a unified conceptual framework. Both the proof 
of the fundamental theorems and, no less important, the 
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statement of the problems, comes from Thom. Some solu­
tions are fundamental. Here are the central ideas in this 
circle. 

1. Given a mapping f : :Rm ---+ :Rn that is structurally 
stable at a point Xo E ]Rm, what does the normal form of 
such a mapping look like? 

2. Give a description of the stable mappings lRm ---* 

]Rn. 

Both of these problems require precise formulations of 
the concepts of stability, classes of mappings, and the like. 
It is not possible to go into the details here. The reader 
should consult the literature. The most complete mathe­
matically rigorous exposition is a two-volume monograph 
[AGV]. Let me note just two important results of Thorn 
relating to problems 1 and 2. 

The first of these results is the classification of the 
stable mappings :Rn ---* ]Rn for n < 6. All the normal forms 
can be written out. In higher dimensions the situation is 
more complicated. Thorn showed that for n 2:: 9 the stable 
mappings do not form a dense set in the class of all smooth 
(differentiable) mappings :Rn ---* ]Rn. Continuous invariants 
of the mappings f (moduli) exist. Therefore no substantive 
classification of the stable mappings in the class of smooth 
mappings exists. For topologically equivalent mappings, 
however, such a classification is possible. Thom's second 
result is: 

There exists a topological classification of the germs 
of smooth mappings f : :Rm ---+ lRn , if a set of inji'T"ite 
codimension is removed from the space of all mappings. 

Thom stated this result in 1964, but the complete 
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proof was given only recently by A.N. Varchenko, a stu­
dent of V.I. Arnol'd. 

In the context of singularity theory it became possi­
ble to explain many seemingly mysterious and accidental 
connections between the results obtained in 'branches of 
mathematics far removed from one another. It turned out, 
for example, that the classification of degenerate critical 
points of functions is determined by the Dynkin diagrams 
of semi-simple Lie algebras. ' 

Numerous leading mathematicians are working pro­
d uctively today in singularity theory. They include the 
large school in Moscow founded by Arnol' d, as well as E. C. 
Zeeman and his students in Warwick, England. Catastro­
phe theory has gone beyond pure mathematics and even 
physics. Ideas of this theory are being applied in such di­
verse areas as economics and sociology. Next to Fermat's 
last theorem, catastrophe theory has 'become the math­
ematical phenomenon best known to the public. Thorn 
himself was led first by ideas of his theory to study bi­
ological systems and later linguistics. His book Stabilite 
Structurelle et Morphogenese (1972) aroused great inter­
est among specialists. and has been translated into several 
languages [Th]. 

John Milnor. Milnor, who had obtained important results 
in computing the cobordism groups of manifolds, received 
one of the 1962 prizes. In particular, he solved the prob­
lem that Thoin had left open on the orders of the torsion . 
subgroups fk of the groups On for n 2: 8. Milnor, and in­
dependently of him the Moscow mathematician B. G. A ver­
bukh, proved that the subgroups r k have no elements of 
odd order. This result requires use of powerful topological 
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techniques: the Steenrod operation and the Adams spec­
tral sequence. C.T.C. Wall later succeeded in describing 
the group On completely by using the results of Milnor 
and Averbukh. Another 'result in cobordism theory ob­
tained by Milnor and independently by S.P. Novikov was 
the computation of the unitary cobordism group, i.e., the 
ring of cobordism manifolds with a unitary structure group. 
This class defines the complex cobordism and corresponds 
to manifolds with a quasi-complex structure. 

Milnor's most brilliant result, however, was the proof 
in 1956 that there exist different smooth structures on the 
seven-dimensional sphere. This discovery, which caught 
the imagination of all mathematicians, led .to the creation 
of a new area of topology--differential topology. 

Milnor based his original proof on the introduction of 
an invariant of the differentiable structure of a manifold. 
Consider a simply connected compact manifold M7 with 
cohomology groups H3(M7,Z) = H4(M7,Z) = O. The 
Milnor invariant )"(M7) is constructed as follows. Using 
Thom's result that fh = 0, one can choose a manifold WB 
whose boundary is M7. On the manifold WB the following 
topological invariants are defined: the first Pontryagin class 
PI and the signature 0'(W8) E H4(W8, Z). From these 
invariants the quantity A is determined as a function of PI 
and 0'. 

Milnor primarily observed that.).. depends only on the· 
choice of the cobordism class of the manifold W8, and not 
on W8 itself. Using earlier computations by F. Hirzebruch 
of the signature O'(WB), Milnor obtained the following ex­
pression for )..: 
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Here P2 is the second Pontryagin class and (WB) is the 
fundamental homology class of W 8 . 

All that remained was to construct manifolds Ml such 
that MI = aW8 • The manifold W B is a bundle over the 
sphere §4 with fiber equal to the ball B 4 , whose boundary 
is the sphere §3. Thus the manifolds MI form a bundle of 
three-dimensional spheres, over §4. The signature a(WB) 
and PI (WB) were known. For )..(MI) one obtains: 

)..(Ml) = ),,(W8) = 45 + pi + 7p2· 

It is known that PI = k for the disk bundle WB, where k is 
any integer congruent to 2 modulo 4. We have P2 = (45 + 
k2 )/7. But if k =1= ±2 (mod 7), then the number P2 is not an 
integer. Since the Pontryagin numbers of smooth manifolds 
are integers, and the manifolds Ml are homeomorphic to 
the standard sphere §7, we obtain Milnor's result. 

Milnor and the Swiss mathematician M. Kervaire suc­
ceeded in describing all the different smooth structures on 
§7. They demonstrated that a group operation can be in­
troduced on the set of smooth structures 0(§7) = 07 that 
makes 87 into an abelian group. The group 07 is the finite 
cyclic group of order 28, Z28. 

The sphere §7 is not the only example of a mani­
fold with different smooth structures. Milnor and Kervaire 
proved that the group o(§n) is finite for n > 7 and com­
puted it in some cases, for example 18(§1l)1 = 992. Quite 
recently the existence of a large number of smooth struc­
tures on §1l has been analyzed in the context of the mem­
brane theory of supergravity, where the manifold §11 arises 
in compactifying the additional degrees of freedom of the 
space-time continuum. 
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The study of smooth structures on manifolds has pro­
ceeded in many directions. Kervaire constructed an exam­
ple of a ten-dimensional manifold having no srIlooth struc­
ture [Ke]'. 

Milnor's 1956 proof that 28 di~erent smooth structures 
exist on the seven-dimensional sphere is by no means a 
pathological result. Shortly afterwatd the German mathe­
matician E. Brieskorn constructed all 28 smooth structures 
on §7, defining them by the following systems of equations 
in <c5: 

Here Zo, ZI,. .. , Z4 are arbitrary complex numbers. 
S. Donaldson showed 25 years later that there exist 

different smooth structures on a compact simply-connected 
four-manifold. This outstanding result gained him the Fields 
medal in 1986. 

Milnor is a versatile mathematician who has made out­
standing contributions in the theory of discrete and' alge­
braic groups and K theory. In recent years Milnor has 
been studying a topic connected with rational mappings 
of complex domains. This field of research, begun in the 
early twentieth century in the papers of French mathemati­
cians P. Fatou, G. Julia, P. Montel, and others, is devel­
oping rapidly at present. Some important and unexpect~d 
connections are now being discovered with ergodic theory, 
quasi-conformal mappings, discrete groups, and fractals. 

Milnor's beautiful books on Morse theory, character­
istic classes, and cobordisms [Mil, Mi2] expound compli­
cated branches of mathematics with exceptional clarity. 
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After Milnor three other topologists were added to the 
ranks of the Fields medalists: M.F. Atiyah, S. Smale, and 
S.P. Novikov. 

Michael Francis Atiyah. Atiyah, a 1966 medalist, is the au­
thor of significant results in several branches of algebraIc 
topology and complex analysis. His first papers on alge­
braic surfaces put him into the first ranks of mathemati­
cians. But his chief result was the index theorem, proved 
in 1963 in collaboration with American mathematician 1. 
Singer. 

The index theorem for elliptic operators on an arbi­
trary compact manifold M n can be stated as follows. 

Let D be an elliptic differential operator on Mn. It 
is known that the kernel of the operator D (ker D) forms 
a finite-dimensional vector space. Similarly the concept of 
the cokernel can be defined as coker D = ker D* (here D* is 
the adjoint operator)." The quantity dim (ker D - ker D*), 
called the index (ind (D)) turns out not to change un­
der continuous deformations of the manifold Mn, i.e., it 
is a topological invariant. 1.M. Gel'fand conjectured that 
ind (D) can be expressed in terms of the characteristic 
classes of the manifold M n , and Atiyah and Singer proved 
that such an expression is possible. 

The index theorem has long roots. It has subsumed 
many classical results connecting the topological proper­
ties of manifolds with their differential-geometric proper­
ties. For example, the simplest case of the index theorem 
is a theorem of Poincare expressing the sum of the indices 
of a vector field on a surface in terms of the Euler charac­
teristic. Here the operator D is 8/82. This theorem was 
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subsequently generalized. First, the class of manifolds was 
enlarged, for example, the index theorem was extended to 
manifolds with boundary, open manifolds, and so forth. 
Second, the class of operators was enlarged. In essence, a 
larger class of operators was used in the original proof­
pseudodifferential operators, whose theory had been devel­
oped in the preceding years. The 1962 Fields medalist Lars 
Hormander made a major contribution to the construction 
of the general theory of pseudodifferential operators. 

The index theorem has also been applied in the theory 
of complex algebraic varieties. A special case of it is the 
Riemann-Roch-Hirzebruch theorem-a key result in alge-: 
braic geometry. 

The studies of Atiyah and Singer on the index prob­
lem began with attempts to generalize the Riemann-Roch­
Hirzebruch theorem. While doing this work they learned of 
Gel'fand's conjecture from Smale. Details and other subtle 
remarks of Atiyah appear in his interview in the M athe­
matical Intelligencer [At]. 

The original proof of the Atiyah-Singer theorem was 
complicated. It used a wide spectrum of mathematical con­
cepts, from the methods of topological K -theory, where the 
fundamental results were due to Atiyah, Hirzebruch, and 
others, to cobordism theory,' to the theory of pseudodif­
ferential operators, Sobolev spaces, and subtle facts from 
functional analysis. 

The proceedings of several yearly seminars and work­
shops devoted to the study of the index theorem, which 
appeared soon after Atiyah and Singer's 1963 paper, give 
an idea of the difficulty of the first proof. The significance 
of this theorem has not diminished, even today. In recent 



38 Topology 

years interesting applications have been found in physics. 
Quantum anomalies in field theory and computing dimen­
sions of the spaces of instantons in gauge theories remain 
issues. The index of the Dirac operator and its analogues 
are also computed in these theories. 

Application of the index theorem in physics helped 
simplify the proof itself. After the first proof there were 
several attempts to simplify and clarify it. A greater sim­
plicity and lucidity marks the proof of the authors [At] and 
the papers of Atiyah, Bott, and V.K. Patodi [At], but these 
works relied on the same body of ideas, even though they 
eliminated one complicated ingredient or another. 

Physicist E. Witten took a new approach to the proof 
of the index theorem. He originally applied the ideas of 
supersymmetry, which originated in the 1970s, to prove 
the Morse inequalities and Lefschetz's formula. It became 
clear from the conceptual framework of the index theorem 
that this approach could be applied to the theorem itself. 
Physicist L. Alvarez-Gaume [AG] obtained this result. 

Here, briefly, are the main ideas of the proof of Alvar­
ez-Gaume. Choose some one-dimensional quantum-mech­
anical supersymmetric system. In the Euclidean formula­
tion of field theory this is a system in the space of (0 + 1)­
dimensions with Hamiltonian H and a 'system of super­
charge operators (supersymmetric charges) Qi satisfying 
the system 'of commutation relations 

{Q\Qj*} = 28ij H, {Qi,Qj} = {Qi*,Qj*} = 0, (1) 

where {Qi, Qj} = QiQ.i + Q.iQi is the anticommutator. 
In the (0 + I)-dimensional. field theory one of the co­

ordinates can be interpreted as time, and the usual con­
cept of spin does not exist. Hence it is not obvious how 
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to define an operator that maps boson states into fermion 
states. E. Witten [Will introduced the fermion operator 
(-l)F = exp(27rJz ), which makes it possible to map bosons 
into fermions. Here Jz is a projection defined in the Hilbert 
space of states. 

Q+Q* 
We now introduce the operator S ,= --2-

lows from (1) that 

It fol-

(2) 

Witten observed that the eigenstates of the Hamiltonian 
H with nonzero energy map into other states of nonzero 
energy under the operator S, but these states have oppo­
site fermion numbers IE). I use the standard Dirac nota­
tion from the physics literature. Therefore all states with 
nonzero energy arise in the form of Fermi-Bose pairs that 
generate a two-dimensional representation of the supersym­
metry for each energy level. For the zero values of the 
energy this is no longer the case. Therefore the number 
of boson states with zero energy n~=o is not equal to the 
number of fermion states with zero energy n~=O. Witten 
showed that the difference n~=o - n~=o = W is Tr (-l)F; 
more precisely that it equals the regularized trace 

(3) 

Little remains to be done in order to see that Eq. (3) de­
fines the index of the operator Q on the Hilbert space of 
states. When the Hilbert space of states is decomposed 
into boson and fermion parts the condition Q I w) = 0 de­
fines this decomposition. Thus one can define the index of 
the operator Q = ind (Q) = dim (kerQ - kerQ*); and as 
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Witten showed, 

Tr( _l)F = dim (kerQ - ker Q*). (4) 

The index of the operator Q can now be computed using 
the technique of functional integration that was well de­
veloped in the literature. Using perturbation theory, we 
compute the integral 

Tr (_l)F e-flH =.1 dcp(t) d'ifJ(t) exp( -SE(cp, 'ifJ», (5) 

where SE(<p, 'lj;) is the Euclidean action. Next expand the 
quantity Tr (-l)F e-/3H into a series in /3. Then the first 
term in (5), which is independent of /3, gives the index of 
the operator Q. 

The scheme for computing the index of any elliptic op­
erator Q thus consists of the following. Construct a sui t­
able one-dimensional supersymmetric quantum-mechanical 
model with supercharge Q. For this model determine the 
Hilbert space of states in which the operator Q acts. The 
index of the operator Q equals the Witten index of the 
model. 

Alvarez-Gaume [AG] showed that to find the indices 
of such classical operators as the Euler characteristic, the 
Hirzebruch signature, and the index of the Dirac opera­
tor on a compact manifold, it suffices to consider a su­
persymmetric extension of an elementary a-model on Mn 
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defined10 by the Lagrangian LF (free motion of a point 
over Mn): 

1 . . 
LF = "29ij (<P)<jl<jY, 

i ~ o· -;-i k-j l 
Lsup = "29ij (<P)\II 'Y Dt 'ljJ1 + Rijkl\ll W \II \II . 

Here 

')'0 = (J2 (the Pauli matrix); and \I1i = (:1) is a two-: 

component real spinor. 
The full Lagrangian has the form L = Lp + L"up' 
By going into more depth in the topic of the index the­

orem I have attempted to illustrate how modern physical 
ideas have facilitated a fresh look at fundamental math­
ematical achievements. The interweaving of old and new 
physical and mathematical ideas and methods produces an 
exceptionally strong impression. 

10 The a-model, so popular in physics in recent years, is noth­
ing more than harmonic mappings. Its study in mathematics 
began in the late 1950s and early 1960s in papers of F. Fuller, 
J. Eells, J. Sampson, and others. However, the influence of 
physical ideas, the supersymmetry of the a-model, the quan­
tum a-model, and the like have considerably increased interest 
in the theory of harmonic mappings in recent years. This quiet, 
respectable area of mathematics was peripheral to the problems 
of most interest in the 1970s. 
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The result of Atiyah and Singer gave rise to a new 
branch of mathematics-global analysis. In a happy phrase 
of Atiyah, topologists used to study simple operators on 
compHcated manifolds while analysts studied complicated 
operators on simple spaces. The time has arrived to study 
complicated operators on complicated spaces. 

Undoubtedly, the numerous applications of the Ati­
yah-Singer theorem in different branches of mathematics 
and physics will ensure it a long life. In recent years Atiyah, 
without breaking his connection with pure mathematics, 
has engaged in studies of modern physical mathematics. 
Here also he obtained several outstanding results. It suf­
fices to mention his paper on the classification of instan­
tons, written with V.G. Drinfel'd, N. Hitchin, and Yu.I., 
Manin, and his paper on the representation of four-dimen­
sional instantons as loop spaces over two-dimensional in­
stantons. Together with his friends and co-authors Bott 
and Singer, he has developed the Yang-Mills theory over 
Riemann surfaces. 

Atiyah is the author of numerous survey and popular 
articles on modern problems of mathematics and mathe­
matical physics, and he is an excellent lecturer and teacher. 
Not surprisingly, a student of Atiyah, Donaldson, made a 
remarkable discovery in four-dimensional topology using 
ideas of field theory and algebraic topology. Oxford Uni­
versity Press has published the complete works of Atiyah 
up to 1985 in five weighty volumes (in folio) [At]; but they 
no longer give a complete picture of Atiyah's works, since 
his indefatigable research leads yearly to the publication of 
several new and substantive papers. 

. Stephen Smale. In deepening our acquaintance with 
the prize-winning papers on topology, we turn to those of 
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Smale, the 1966 winner. Of his remarkable results in the 
topology and theory of dynamical systems, let us begin 
with topology. ' 

The Poincare conjecture is among the most difficult 
problems of topology. In modern terms it can be stated as 
follows: 

Poincare Conjecture: A closed smooth simply connected 
manifold Mn with the homology groups of the sphere §in is 
homeomorphic to §n. 

Poincare stated this conjecture in three dimensions. 
The natural generalization to the n-dimensional case is 
called the generalized Poincare conjecture. Poincare be­
lieved that a stronger assertion was true, namely that M n 

is diffeomorphic to §in. But, as follows from the existence 
of Milnor's exotic spheres, the conjecture is not true in 
this form. Smale proved a more general theorem on h­
cobordism, from which it follows that the Poincare conjec­
ture holds for dimensions n 2:: 5. In dimensions five and six 
the stronger Poincare conjecture is true (Mn is diffeomor­
phic to §n). 

Smale's theorem on h-cobordism is stated as follows: 
Let V, V', and W be a triple of manifolds, and let V and V' 
be boundaries of W'; assume that V and V' are deformation 
retracts of W. This statement defines h-cobordism. 

Smale's Theorem. If V and V' are simply connected, 
,then W rv V x I, and consequently V is diffeomorphic to 
V'. 

Smale's proof, which skillfully uses the theory of Morse 
surgery, is beautifully described in Milnor's book [Mi2]. 
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At first sight it seems paradoxical that the proof of the 
Poincare conjecture for higher-dimensional spaces is more 
accessible than for three- and four-dimensional manifolds. 
The reason is that a map of a surface into a manifold of 
fewer than five dimensions cannot be approximated by an 
embedding. The situation is similar to the classification of 
manifolds. ' 

M. Freedman and Donaldson, the 1986 prize winners, 
have made the most significant progress in recent years in 
four-dimensional topology., We shall turn to their works 
shortly. 

Lacking space to review all of Smale's achievements in 
topology, I shall mention only one beautiful result that has 
a curious geometric interpretation. In 1959 Smale proved 
that any two immersions of §2 into IR3 are regularly homo­
topic. One corollary of this theorem is that a sphere can 
be turned inside out in IR3. This result and its generaliza­
tion have attracted attention recently in connection with 
the study of groups of diffeomorphisms of spheres. 

Smale wrote another series of papers on the theory 
of dynamical systems, which have a profound topological 
basis. The application of topology in the theory of dy­
namical systems is long standing. Among Smale's prede­
cessors are George D. Birkhoff, who studied in detail the 
behavior of three-dimensional systems in a neighborhood 
of a homo clinic trajectory. Poincare discovered homoclinic 
trajectories in his famous study of the restricted t;hree­
body problem in celestial mechanics. In the 1920s and 
1930s Birkhoff examined dynamical systems having phase 
manifolds of complicated structure. A prolonged period of 
mostly specialized investigations followed. Smale deserves 
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credit for reviving interest in the theory of dynamical sys­
tems and the construction of a multi-dimensional theory, 
which over the last 30 years has become one of the most 
prolific areas of mathematics. One important concept of 
the roul ti-dimensional theory of dynamical systems is pro­
vided by the so-called structurally stable systems. For this 
class Smale constructed a substantive theory. In 1937 A.A. 
Andronov and Pontryagin had precisely stated the concept 
of structural stability of a dynamical system, but they stud­
ied it only for the two-dimensional case (in the plane). 

The concept of stability of a system of differential 
equations can be stated as follows. A system of equations 

x = f(x), (6) 

where x is an n-dimensional vector, is called structurally 
stable if the topological type of the trajectories (phase por­
trait) is preserved under a small perturbation in the right­
hand side. A precise formulation of structural stability 
requires the introduction of several concepts (cf. [Sm1]). 

In the two-dimensional case structurally stable An­
dronov-Pontryagin systems have these properties: . 

a) a finite number of singularities of focus and saddle 
type; 

b) a finite number of limit cycles. 

Smale showed that in the multi-dimensional case the 
situation alters radically. He constructed a structurally 
stable system having an infinite number of singular points, 
limit cycles, and so forth. Smale's book [Sm2] gives in­
teresting details connected with this discovery. He showed 
that structurally stable systems also arise from discrete au­
tomorphisms, for example, the group of automorphisms of 
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the two-dimensional torus generated by the transforma­
tions with eigenvalues AI, A2 such that Al = 1/..\2, A2 > l. 
Smale conjectured that the geodesic flow on manifolds of 
negative curvature is structurally stable. This conjecture, 
later proved by D.V. Anosov, led to the identification of an 
important class of dynamical systems with exponentially 
unstable trajectories (Y -systems or Anosov systems). 

Currently the theory of multi-dimensional dynamical 
systems is finding physical applications in turbulence and 
hydrodynamics and has been enriched by such notable dis­
coveries as strange attractors and Feigenbaum universality. 

In conclusion we make one remark of historical charac­
ter. Apparently the first example of a strange attractor is 
the Lorenz attractor. In 1963 E. Lorenz made a numerical 
study of the following system of equations, which describes 
a trimodal convection equation. This system is a good ap­
proximate description of the motion of the atmosphere: 

x=ax+by 

iJ = xy + bx - Y 
i=xy-cz 

(a, b, and c are fixed numbers). An invariant set was found 
for this system that behaved like trajectories of Smale type. 
A remarkable, but exceptionally difficult, 1945 paper of the 
British mathematicians M. Cartwright and J. Littlewood 
studied the Van der Pol equation with a perturbation of 
the form 

x - k(l - x 2 )± + x = bJ.Lkcos(J1t.+ a). 

They observed Smale behavior in the trajectories in a cer­
tain domain of the parameter b (infinitely many periodic 
solutions, unstable trajectories, etc.). 
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Of course, neither Cartwright nor Littlewood could 
have foreseen the prolific development of the theory of 
dynamical systems. They both simply exchanged their 
usual area of work for one more suited to wartime. For 
Cartwright, a specialist in differential.equations, this change 
was more natural. But Littlewood also laid aside his belov­
ed theory of numbers and, with his characteristic analytic 
brilliance, took up the solution of a difficult and, as it must 
have seemed to them, applied problem. After all, the Van 
der Pol equation arises in radiophysics. Littlewood ap­
parently was seriously interested in this problem, for he 
returned to the Van der Pol equation in 1957 and devoted 
two long memoirs to it. 

Sergei Petrovich Novikov. In 1970 Novikov was honored 
with the Fields medal. He is the author of outstanding 
results throughout topology. This account begins with his 
unique work on the theory of foliations, which lies at the 
interface of dynamical systems and topology. The theory 
of foliations is a multi-dimensional generalization of the 
theory of ordinary differential equations in the following 
sense. Instead of trajectories, the theory of foliations con­
siders distributions of hypersurfaces defined by differential 
forms. The simplest class of foliations is the dass of folia­
tions of codimension one (or the class of n - I-dimensional 
hypersurfaces in an n-dimensional manifold). The theory 
of foliations is a relatively new branch of mathematics lo­
cated at the juncture of differential topology and the theory 
of differential equations. It essentially begins with a paper 
from the 1940s by C. Ehresmann and G. Reeb, who con­
structed a nontrivial foliation on §3. This foliation was not 



48 Topology 

smooth. In 1952 Reeb improved the construction slightly, 
obtaining a smooth foliation that now bears his name. 

The Reeb Foliation. The sphere §3 is represented as 
IZll2 + IZ212 = 1, Zi = (pi, (Ji), and the Reeb foliation is 
constructed first on the anchor ring DI x §l, Iz l l2 :s 1/2, 
where DI is the disk with coordinates pI, (JI, and §l is the. 
unit circle parametrized by the angle (J2. The foliation is 
defined geometrically using the following sections: 

a). e2 = c, (pI) 2 = const (the section is a circle), 
(pI)2 = 0 (the section is a point); 

b) a section of the foliation tan 01 = A consists of the 
curves fJ2 = 05 = exp[-1/(1 - 2(pl )2] for pI < V2/2. 
Foliations on the anchor ring p2 < V2/2 are constructed 
similarly. The border p2 = pI forms a closed fiber. This 
fiber is the only one of the Reeb foliation; all other fibers 
are homeomorphic to the plane. 

The three-dimensional sphere §3 can be obtained by 
gluing the two anchor rings p2 < ../2/2, and pI < V2/2 
together, identifying the points of the boundary p2 = pl. 
Choosing one Reeb foliation on each polytope and taking 
account of the identification of the boundaries, we obtain 
the Reeb foliation on all of §3. Here a compact fiber of §3 

is T2. This foliation has smoothness CI. 

According to one conjecture, any foliation of codimen­
sion 1 on §3 has a compact fiber. Novikov proved this 
difficult conjecture. In the proof he set forth constructions 
that were important for the development of the theory of 
foliations. 
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For co dimension two (curves) this conjecture is false. 
The corresponding conjecture made in the 1930s by H. 
Seifert was refuted in 1974 by P. Schweitzer, who con­
structed an example of a vector field of smoothness CIon 
§3 for which there is no periodic solution, Le., no compact 
fiber of codimension two. 

N ovikov wrote other papers involving algebraic topol­
ogy. One classifies the simply connected manifolds M n 

for n ~ 5 (a result obtained independently by W. Brow­
der); another paper proves the topological invariance of 
the rational Pontryagin classes. Although Novikov's theo­
rem on the topological invariance of the Pontryagln classes 
is true only for simply connected manifolds, its proof in­
volves passing to nonsimply connected toroidal submani­
folds. Despite some artificiality of this device, attempts 
to derive a new proof have as yet come to nothing. 11 In 
1966 Novikov advanced a conjecture on the structure of 
the homotopy invariants of nonsimply connected manifolds, 
which came to be known as the conjecture on higher signa­
tures. It asserts that for manifolds with nontrivial fun­
damental group (7rl (Mn) =I=- 0) all homotopy invariants 
can be represented as integrals of the Hirzebruch poly­
nomials L(Pl)'" ,Pn) multiplied by classes defined by 7rl, 

where Pi (Mn) are the Pontryagin classes. This conjec­
ture greatly interested topologists. The efforts of many 
mathematicians went into the proof of Novikov's conjec­
ture for a large class of manifolds. G. Lustig. proposed a 
new method to prove the Novikov conjecture on higher sig­
natures based on the theory of elliptic operators, a gener-

11 The short analytic proof by D. Sullivan and N. Telemann of 

Novikov's result still uses Novikov's reduction at a key point [STl. 



50 Topology 

alization of the Atiyah-Singer theory. The development of 
Lustig's method, through some modifications from math­
ematical physics, enabled A. Connes, H. Moscovici, and 
J. Lott to prove the conjecture for manifolds for which 
71"1 (Mn) is, a hyperbolic group. This class of groups, in­
troduced by M. Gromov, is particularly important for the 
study of three-dimensional manifolds in the context of Thur­
ston's program. 

In later years Novikov turned away from algebraic and 
differential topology and immersed himself in mathemati­
cal physics, where he obtained important results in the 
general theory of relativity-the structure of homogeneous 
models-and nonlinear integrable systems. One fundamen­
tal result in this direction was the solution of the peri­
odic problem for the Korteweg-de Vries equation. This 
equation was studied independently by P. Lax. The cor­
responding formulation of the problem led to the creation 
of a new area in the theory of integrable systems closely 
connected with algebraic geometry. Considering the two­
dimensional generalizations of the Korteweg-de Vries equa­
tions, the Kadomtsev-Petviashvili eq~ations, Novikov ar­
rived at an intriguing conjecture that is connected with 
the solution of a classical problem of the theory of Rie­
mann surfaces-Schottky's problem. This problem consists 
of finding a system of equations that characterizes the J a­
cobian of a Riemann surface. Novikov proposed that the 
corresponding theta functions describe the Jacobian if and 
only if the theta function is a solution of the Kadomtsev­
Petviashvili. This N ovikov conj ecture was recently proved 
by T. Shiota and M. Mulase. 

Through close collaboration with physicists Novikov 
pursued the study of gauge fields, where he pioneered re-
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suIts in the theory of multivalued functionals. Here, as in 
his other physical papers, Novikov combines physical intu­
i tion with profound topological. technique. Together with 
his students, he has recently obtained important results in 
string theory. 

His close contact with physicists moved Novikov to 
discuss putting modern geometry and topology into a form 
accessible to theoretical physicists. Many physicists and 
mathematicians had recognized the need for such an ex­
position, but N ovikov was the first to carry out this plan, 
together with his colleagues B.A. Dubrovin and A.T. Fom­
enko. Study of his three-volume Modern Geometry gives 
the theoretical physicist the necessary grounding for work 
in new branches of mathematical physics. 

An analysis of the research of topologists shows' that 
many of them are connected with the problem of the classi­
fication of manifolds. This section on topology closes with a 
discussion of papers devoted to three- and four-dimensional 
manifolds. 

Michael Freedman. In 1982 Freedman, who was a 1986 
prize winner, proved the Poincare conjecture for §4. His 
result-the classification of four-dimensional compact sim­
ply connected topological manifolds M4-was more gen­
eral than the conjecture itself. Taking into account the 
intersection form .Q that arises on the cohomology group 
H2(M4,7I.) his result is: any unimodular quadratic form 
over 71. (the ring of integers) can be an intersection form Q 
on H2(M4, 71.). 

As often happens in mathematics, the simple state­
ment of the result conceals an extremely difficult proof. 
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The main tool was a complicated surgery technique that 
involves gluing on so-called Casson handles. The idea of 
using the intersection form for classification goes back to a 
1952 paper of Rokhlin, who obtained a result that was not 
fully appreciated until 20 years later. He showed that if 
a smooth compact simply connected manifold has an even 
intersection form Q, its signature CJ must be divisible by 
16, while for topological manifolds it suffices that (J be di­
visible by 8. As Donaldson later proved, this result means 
that manifolds M4 with an even definite form Q cannot 
have a smooth structure. 

In recent years Freedman's interests have become at­
tached to physics. But in contrast with Donaldson's work, 
which was initiated by the theory of gauge fields, Freedman 
sought to apply topology to plasma physics and magneto­
hydrodynamics. He succeeded in estimating the energy of 
dissipation of a magnetic field using the nontriviality of the 
linking of magnetic lines of force. [FH, FHW] 

Simon Donaldson. Only a year after the 1982 publication 
of Freedman's result, Donaldson, who was a 1986 prize 
winner, proved that for a smooth four-dimensional com­
pact simply connected manifold M4 with a positive-definite 
intersection form Q, this form can be diagonalized over 
the ring Z, i.e., Q = xf + ... + x~. In conjunction with 
Freedman's result, this proof could lead to an unexpected 
corollary-there exist homeomorphic but not diffeomorphic 
four-dimensional manifolds. 

Donaldson's paper does not imply that different smooth 
structures on §4 exist, and thus does not refute the strong 
Poincare conjecture. For §4 we have H2(§4, Z) = 0, and 
the theorem becomes trivially degenerate. Nevertheless a 
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possible strengthening of Donaldson's results leads to the 
construction of different smooth structures on §4. Donald­
son's results imply that there exist different smooth struc­
tures on the noncompact space }R4 (four-dimensional Eu­
clidean space). 

In a series of papers R. Gompf and C. Taubes con­
structed first a countable ( Gompf) and then a continu­
ous (Taubes) family of pairwise nondiffeomorphic smooth 
structures. Nevertheless the family constructed by Taubes 
is incomplete, since there are exotic }R4 spaces (fake }R4) 

that do not occur in the Taubes series. The properties 
of such spaces are unusuaL For example, compact sub­
sets exist in them that cannot be surrounded by a three­
dimensional sphere imbedded in the standard manner. The 
occurrence of exotic }R4 spaces may have significant im­
plications for quantum field theory, since the differential 
structure of Euclidean space is at issue. 

Donaldson's results generated a new field of research 
that revealed unexpected properties of manifolds. Partic­
ularly interesting are those connected with the differential 
structure of algebraic varieties. 

The question arises: what are the relations between 
the topological and algebraic properties of four-dimensional 
manifolds? The answer can be given in terms of the ma­
trix of intersection indices, or, the form Q. Donaldson's 
result was unexpected. -He constructed an entire series of 
algebraic surfaces which have the same quadratic form Q 
but which are differentiably inequivalent. This result is 
connected with another property of such manifolds. For 
topological manifolds Freedman proved the property of de­
composability, i.e., if the form Q satisfies Q = Ql +Q2, then 
a manifold M with form Q can be represented as Ml +M2 
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with forms Q1 and Q2 respectively. For the algebraic sur­
faces described by Donaldson this property does not hold. 
Such algebraic surfaces are said to be indecomposable. Sev­
eral beautiful conjectures relating to the structure of inde­
composable manifolds exist. Atiyah proposed the follow­
ing: The indecomposable smooth four-dimensional mani­
folds are the sphere §4 and the indecomposable algebraic 
surfaces. In the summer of 1990 Gompf and T. Mrowka re­
futed Atiyah's conjecture when they constructed an exam­
ple of a surface of type K3-a simply connected manifold 
of dimension four that is not diffeomorphic to any algebraic 
(complex) surface. 

I shall mention a more interesting result in this body 
of ideas. S.M. Finashin, M. Kreck, and O.Ya. Viro [FKV] , 
have proved the following theorem: There exists an infinite 
series 81, 82, ... of smooth two-dimensional surfaces of §4 

such that 

1) for any i and j the pairs (§4, Si) and (§4, Sj) are home­
omorphic, but not diffeomorphic; 

2) each 8 n is homeomorphic to the connected sum of ten 
copies of the real projective plane RP2. 

Donaldson's papers 'are full of interesting results and 
methods of proof. Along with a subtle topological tech­
nique, he employed constructions of modern field theory­
instant on solutions of the Yang-Mills equations. Here the 
important papers of Taubes and K. Uhlenbeck form the 
basis of the analytic part of Donaldson's proof. In their 
books D. Freed and Uhlenbeck [FU], and H.B. Lawson, Jr. 
[L2] gave a beautiful exposition of Donaldson's theorem, 
which includes all the necessary analytic and topological 
machinery. 
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Since there is not space to mention all of Donaldson's 
achievements, I shall list just two results from the classifica­
tion of monopoles and instantons. Both of th,ese problems 
come from physics, but their complete solution became pos­
sible only by use of the techniques of algebraic geometry. 
For the problem connected with the classification of instan­
tons, Donaldson found a new method of proof. The second 
problem is linked with the complicated problem of describ­
ing the moduli space of monopoles (three-dimensional clas:­
sical time-dependent solutions of the field equations). In­
teresting unsolved problems on the connection of monopole 
solutions with the classification of three-dimensional mani­
folds arise here, by analogy with the four-dimensional case. 

In 1985 A. Casson of the California Institute of Tech­
nology introduced a new class of integer invariants of three­
dimensional manifolds M3 (mostly homological spheres). 
IIis approach is related to representations of the group 
7r1(M3) into a gauge group, for example SU(2) acting in 
connection with zero curvature over M3. Casson's result 
was given an important generalization by A. Floer, 12 who 
constructed the homology group of infinite-dimensional spa­
ces of connections. Here also ,a connection with physical 
models can be traced. This area remains in its infancy, 
but connections already have been noted with symplectic 
Morse theory, pseudoholomorphic curves (in the sense of 
Gromov) in symplectic manifolds, and invariants of four­
dimensional manifolds augur substantial and unpredictable 
results. 

12 The German mathematician Floer (b. 1956) died in 1991 at the 

beginning of a brilliant research career. 
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William Thurston. The early 1930s saw the completion 
of a classification of two-dimensional manifolds that is re­
markable for its simplicity and completeness. But the tran­
sition to three-dimensional spaces posed enormous difficul­
ties that seemed insuperable. This situation changed rad­
ically after the papers of Thurston, a 1983 prize winner. 
Ideas of Thurston and a few other mathematicians pro­
moted progress in tackling even this seemingly hopeless 
problem. 

Thurston conjectured that a three-dimensional mani­
fold admits a canonical decomposition into pieces having a 
certain geometric structure. This last phrase needs decod­
ing. It asserts that a compact three-dimensional orientable 
manifold can be partitioned into pieces by two-dimensional 
spheres and tori imbedded in it in such a way that by gluing 
the boundary spheres of three-dimensional balls and leav­
ing the tori alone we obtain a manifold M3 with boundary 
admitting a geometric structure. The manifold M3 is said 
to admit a geometric structure if it is possible to introduce 
on it a complete locally homogeneous Riemannian metric. 
In the most interesting cases we are talking about a metric 
of negative curvature (hyperbolic spaces). 

Thurston's conjecture has not been proved completely. 
A proof of it would contain a proof of the three-dimensional 
Poincare conjecture. However, for a large class of mani­
folds, the so-called Haken manifolds, Thurston was able to 
prove his conjecture. Thurston also conjectured that any 
hyperbolic manifold can be covered by a Raken manifold. 

The connection of the topology of three-dimensional 
manifolds with differential-geometric characteristics (the 
ex.istence of a hyperbolic metric on a manifold) seems un-
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expected. A number of important results have been ob­
tained in this direction. For example, Gromov proved that 
for hyperbolic spaces the volume is a topological invariant; 
moreover there exists only a finite number of complete hy­
perbolic spaces having volume less than a given constant. 

From the study of three-dimensional manifolds beau­
tiful connections have been discovered between different 
branches of mathematics-the theory of Kleinian groups, 
quasi-conformal mappings, discrete groups, dynamical sys­
tems, and several others. These connections stand out 
especially clearly in the problem of describing up to iso­
topy the group of diffeomorphisms (or homeomorphisms) 
{ i.p} of two-dimensional surfaces M2. Among those study­
ing this problem in the 1930s O. Teichmiiller obtained the 
chief results. Teichmiiller approached the problem from the 
point of view of the theory of Riemann surfaces and quasi­
conformal mappings, and J. Nielsen studied the problem 
from the geometric and algebraic points of view. Nielsen 
called attention to the importance of considering the par­
tition of M2 into pieces even in the case of closed surfaces 
M2 and studying the properties of the mappings i.p un­
der approach to the boundary. Thurston remarkably used 
the theory of dynamical systems in this problem and, in 
particular, introduced a class of foliations on M2 that are 
hyperbolic and Anosov unstable. Here it is necessary to 
introduce a hyperbolic metric in the space of surfaces of 
genus larger than one. The reader drawn to this promis­
ing field of mathematics should consult the popular article 
[TW] and the survey of Thurston [T2]. Unfortunately, as of 
this writing Thurston's 1979 Princeton lectures exist only 
as a preprint. 
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We close this brief excursion into the papers of Thurs­
ton by noting the many brilliant auxiliary results in his 
studies of three-dimensional manifolds. Thurston, for ex­
ample, proved a long-standing conjecture of P.A. Smith. 

Theorem (Smith's Conjecture). Let i.p : §3 -+ §3 be a 
diffeomorphism that preserves orientation, let cpn = 1, and 
suppose there exists a fixed point of the mapping cp. Then 
the set of fixed points of i.p is· an unknotted circle and the 
diffeomorphism i.p is conjugate to an isometry. 

Thurston found rich results in other areas of mathe­
matics, for example the theory of foliations. Here is one 
example: on each manifold with X(M) = 0 there exists a 
foliation of codimension 1. Recently Thurston has studied 
models of cellular automata. 

The Thurston papers reflect a growing interest in the 
study of the subtle connections between the algebraic-geo­
metric, differential-geometric, and topological characteris­
tics of manifolds. 

Complex Analysis 

. Shing Tung Yau. At this point it is natural to build a bridge 
to work in complex analysis. Violating the chronology, I 
begin with the papers of 1983 medalist Yau, a mathemati­
cian of wide ranging interests. One of Yau's achievements 
was the proof of a 1954 conjecture of Calabi. 

Calabi's Conjecture. Let Mn be a compact Kahler man­
ifold with the Kahler metric g and associated form !l: 

!l = (i/2)g(z, z) dz i 1\ dzj
. (7) 
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Every Kahler form (7) is ,cohomologous to the form n gen;.. 
erated by the Ricci tensor. 

Numerous corollaries of this theorem attest to 'its im­
portance for complex analysis and algebraic geometry. We 
shall mention one of them, known as the Severi conjec­
ture: If a complex surface is homotopic to' CP2 (the two­
dimensional complex projective plane), then it is biholo­
morphic to Cp2. 

Currently, the study of manifolds with a Ricci-flat 
metric (the first Chern class Cl = 0), known as Calabi-Yau 
manifolds, has increased in connection with new discover­
ies in physics, notably in string theory and superstrings. In 
string theory physical space-time is a 26-dimensional space, 
the so-called bosonic string, and a ten-dimensional space, 
known as the fermionic string. Complicated problems arise 
in the attempt to pass to four-dimensional space-time by 
compactifying the extra degrees of freedom. The physical 
requirements lead to the assumption that the compact i­
fied manifolds are Calabi-Yau manifolds. These manifolds 
include also those with singularities, or orbifolds in the ter­
minology of Thurston. 

Another result ofYau having a significance that reaches 
beyond mathematics was the proof with R. Schoen of the 
conjecture that mass is positive in the general theory of 
relativity. They proved that for a nontrivial isolated phys­
ical system the total energy, including the contribution of 
matter and gravitation, is positive. Later Witten advanced 
a new proof using ideas of supersymmetry. 

Omitting discussion of other results of Yau, I. note his 
papers on three-dimensional manifolds, co-authored with 
W. Meeks. They solved some long-standing problems in 
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the theory of minimal surfaces. The results thus obtained, 
such as the equivariant loop theorem, were important for 
proving the Smith conjecture also. In a series of papers co­
authored with Lawson, Yau described a class of manifolds 
having a metric of positive scalar curvature acted on by a 
compact nonabelian group of transformations. 

Although the proofs proposed by Yau often include 
complicated analytic machinery (for example, a priori esti­
mates of solutions ()f the Monge-Ampere equation are used 
to prove the Calabi conjecture), the results themselves are 
algebraic or topological in nature. 

Lars Ahlfors. Let us go back 50 years. For his work in 
complex analysis, Ahlfors received the first Fields medal. 
He is the representative of a brilliant school of Finnish 
mathematicians founded by E. Lindel6f and R. Nevanlinna. 
Ahlfors helped found the modern geometric theory of Rie­
mann surfaces. In his famous 1935 paper "Zur Theorie der 
UberIagerungsfHichen," (Acta Math., 65, 157-194), he ex-· 
hibited the class of surfaces for which the Nevanlinna theo­
rems on the distribution of values of meromorphic functions 
hold. He constructed a theory of coverings and demon­
strated that the corresponding surfaces are determined by a 
wider class of mappings than conformal mappings. Ahlfors 
called these mappings quasi-conformal. H. Grotzsch had 
introduced these mappings somewhat earlier in 1928. Also 
in 1935 M.A. Lavrent'ev introduced them in the theory of 
quasi-elliptic equations. Largely due to Ahlfors himself, 
the importance of quasi-conformal mappings in the theory 
of complex manifolds was soon realized. The machinery of 
quasi-conformal mappings makes it possible to solve basic 
problems in the theory of Riemann surfaces: the descrip-
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tion of the space of moduli of Riemann surfaces and the 
Teichmiiller space, the deformation of Riemann surfaces, 
and so on. Ahlfors deserves credit for reviving interest in 
the fundamental papers of Teichmiiller during the 1930s. 
In their work Ahlfors and his students, especially Lipman 
Bers, strengthened the results of Teichmiiller and devel­
oped them in several directions. Especially beautiful are 
their studies of Kleinian groups. For over half a century, 
Ahlfors has been the leader in complex analysis, confirming 
the soundness of his selection by the first Fields committee. 
His collected works were published in 1982 [Ah]. 

Kunihiko Kodaira. At the 1954 congress in Amsterdam the 
Fields medal was given to Kodaira. His papers encompass 
three branches of mathematics: topology, complex analy­
sis, and algebraic geometry. The artificiality of separating 
these branches is easily seen through Kodaira's papers. 

A most important Kodaira paper concerns a criterion 
for a compact complex manifold to be algebraic. He proved 
that a compact complex manifold is algebraic if and only 
if it is a Hodge' manifold, i.e., it has a Kahler form co­
homologous to an integral form. Kodaira also provided 
the first multi-dimensional generalizations of the Riemann­
Roch theorem and the first classification of compact com­
plex surfaces. 

In 1954 Kodaira published the fundamental paper "On 
Kahler varieties of restricted type" [Kod], which contained 
the proofs of important theorems on the degeneracy (triv­
iality) of certain cohomology groups of compact complex 
manifolds. His· theorems (vanishing theorems) are crucial 
for investigations into the geometry of complex manifolds. 
One corollary of Kodaira's theorem is a simple proof of 
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Lefschetz's theorem connecting the cohomology of a pro­
jective manifold with the cohomology of a nondegenerate 
hyperplane section of it. 

Kodaira's papers were the crowning achievement of a 
long period of research into algebraic manifolds over the 
field of complex numbers. In the opinion of the distin­
guished mathematician Hermann Weyl, these papers were 
the foremost contribution to the theory of 'complex mani­
folds since those of Hodge. 

Weyl, who chaired the Fields committee in 1954, de-, 
livered a speech on the papers of the medalists Kodaira 
and Serre. Curiously, Weyl had difficulty distinguishing 
the areas of research of the two mathematicians. He said, 
"The uninitiated may get the impression that our Commit­
tee erred in awarding the Fields Medals to two men whose 
research runs on such closely neighboring lines. It is the 
task of the Corrimittee to show that, despite some overlap 
in methods, they give the solutions of completely different, 
extremely difficult problems." 

Continuing his predilection for the theory of complex 
manifolds, Kodaira later obtained several important re­
sults, particularly in his series of joint papers with D. Spen­
cer on the deformation of analytic spaces. These papers in­
vestigated families of complex varieties. They opened new 
areas of investigation. The works of Kodaira up to 1975 
have been published in three volumes by Princeton Univer­
sity, where he worked for nearly 30 years. Since that time 
the connections between algebraic geometry, topology, and 
complex analysis have become even closer. 
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Algebraic Geometry 

Alexander Grothendieck. In 1966 Grothendieck received a 
Fields medal for work in algebraic geometry. The name of 
Grothendieck is linked with a revolution in algebraic ge­
ometry, which influenced other areas of mathematics. The 
concept of schemes that he introduced raised algebraic ge­
ometry to a new level of abstraction, beyond the reach of 
mathematicians with a. traditional education. The theory 
of sheaves, spectral sequences, and other innovations in 
the late 1940s and early 19508 are subsumed by this com­
plicated technique. But if certain mathematicians could 
console themselves for a time with the hope that all this , 
complicated structure was "abstract nonsense," 13 the later 
papers of Grothendieck and his successors showed that clas­
sical problems of algebraic geometry and the theory ofnum­
bers, the solutions of which had resisted efforts of several 
generations of talented mathematicians, could be solved in 
terms of the Grothendieck K-functor, motives, l-adic co­
homology, and other equally complicated concepts. 

The outstanding results obtained in this body of ideas 
garnered prizes in subsequent years. Grothendieck, who 
was at the summit of his fame in the early' 1970s, has faded 
from the mathematical horizon. He has not published a 
single article in the past 20 years. Nevertheless, one of his 
manuscripts that has become available to mathematicians 
shows the depth and intensity of his work during this time. 
The manuscript "Esquisse d'un Programme," 14 presented 

13 In algebra the term "abstract nonsense" has a definite meaning 

without any pejorative connotation. 

14 A book analyzing this work has recently been published by the 

Cambridge University Press [Grotl]. 
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to the CNRS15 to apply for a research position at the Uni­
versity of Montpellier, contains a detailed exposition of sev­
eral topics that Grothendieck believes to be important for 
the development of mathematics, and which he wanted to 
study with colleagues and students. In essence it is a ques­
tion of finding connections between geometry, combinato­
rial topology, and algebraic geometry. One problem that 
Grothendieck considers can be stated as follows: Consider 
a certain graph 2) (which Grothendieck calls a dessin) on 
a Riemann surface M2 satisfying certain regularity condi­
tions; in particular it is a connected one-dimensional com­
plex. To each such graph one can assign a smooth algebraic 
curve Xl) defined over some number field. The existence of 
such a curve is a corollary of a complicated theorem proved 
by Moscow mathematician G. Belyi. 

The central question is the following: Suppose a graph 
2) is given. What can be said about X'D and functions 
f3'D : 'D ~ X'D? In the simplest case, when 1) is a tree on 
the sphere §2, the corresponding curves are hyperelliptic 
functions. 

The converse statement of the problem is also of in­
terest. Given an algebraic curve, to which graphs on the 
surface does it correspond? Grothendieck claimed that the 
correspondence between the graphs and the functions i3'D is 
determined by the action of the Galois group Gal (Q/Q) on 
the graph 1). (Here Q is the field 'of rational numbers and <Q 
is its algebraic closure.) The connection between geometric 
properties of graphs on a surface and algebraic functions 
discovered by Grothendieck is of great value not only from 

15 Centre Nationale de Recherche Scientifique, the organization 

that funds most of the basic research in France. 
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the purely mathematical point of view, but also for theo­
retical physics, especially in such branches as string theory 
and crystallography. One possible application is the the­
ory of two-dimensional gravitation; another is the theory 
of two-dimensional and three-dimensional quasi-crystals. 
Moscow mathematicians V. Voevodskii and G. Shabat, try­
ing to prove some of Grothendieck's conjectures, have ob­
tained elegant results by studying graphs on a surface of 
genus ::; 2. They confirm Grothendieck's conjecture and 
raise the curtain on some difficult general theorems. 

I have mentioned only one of the themes contained in 
Grothendieck's "Esquisse d'un Programme." Undoubtedly 
a careful study of other propositions and conjectures will 
lead to no less interesting discoveries. 

Since I cannot refer the reader directly to Grothen­
dieck's "Esquisse d'un programme," I recommend reading 
the three-volume festschrift dedicated to Grothendieck's 
sixtieth birthday [Grot2]. It gives a rather complete picture 
of the influence of Grothendieck on modern mathematics. 

Heisuki Hironaka. In 1970 Hironaka was awarded the medal 
for solving an important problem-the resolution of the 
singularities of algebraic varieties over fields of character­
istic zero. 

A variety with singularities is defined as a variety for 
which the Jacobian fails to have maximal rank at some 
points. The simplest example of a variety with singular­
ities is provided by curves of ~'node" and "cusp" types. 
Typical examples of such curves are y2 = x3 + x 2 (node) 
and y2 = x 3 (cusp). Another series of varieties with sin­
gularities is obtained by the following construction. Con­
sider a manifold Mn on which a discrete group t acts with 
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fixed points Xi E Mn. Then the space M n jr is a variety 
with singularities. Such varieties, as already stated, are 
now called orbifolds. Some classes of orbifolds, for example 
M6 = 1I'6 jr, where 1I'6 is the six-dimensional torus, occur 
in modern string theory. 

The problem of resolving singularities in algebraic ge­
<E!letry consists of the following. Given an algebraic variety 
M with singularities, is it p~sible to construct a nons in­
gular variety M such that M can be obtained through a 
birational mapping of M? In algebraic geometry a process 
of resolution of singularities (the o--process) has been de­
veloped, in which a projective plane of suitable dimension 
is glued in place of the singular point. In this way the pro­
cess of successive resolution of singularities arises. When 
this procedure is done, however, many complicated prob­
lems arise; for example, one must prove that the removal 
of a singularity does not cause new singularities to appear. 

The problem of resolution of singularities is regarded 
as central in algebraic geometry. Resolution of singularities 
for curves was known even in the nineteenth century, while 
for surfaces it appeared in the works of the Italian school 
of algebraic geometry. But, like many other results of this 
school, it was considered nonrigorous, since it was obtained 
by transcendental methods. At present almost all of the 
results of the Italian school have been rehabilitated. In 
1939 O. Zariski gave a purely algebraic proof over fields of 
characteristic zero. Finally, in 1964 Hironaka solved thi~ 
difficult problem for n-dimensional algebraic varieties in 
characteristic zero. 

David Mumford. In 1974 Mumford received the prize. He 
had greatly advanced the solution of a classical problem 
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of algebraic geometry, namely the description of the mod­
uli spaces of abelian varieties. Mumford's papers include 
a purely algebraic construction of the theory of theta­
functions. 

His papers on invariant theory revived interest in this 
classical area of mathematics, connected with the names of 
D. Hilbert, P. Gordan, A. Clebsch, and other remarkable 
late nineteenth and early twentieth century mathemati­
cians. Mumford completely transformed invariant theory 
from the point of view of modern algebraic geometry. In 
particular he introduced the concept of stability of vector 
bundles. 'This concept originally arose in describing the 
orbits of a group G on an algebraic variety. Later it be­
came clear that in those cases when the algebraic variety 
is a parameter space or a family of algebraic objects, and 
the group G establishes an equivalence between them, the 
stability of the orbit of an object is faithfully reflected in 
its geometric properties. This observation lay at the ba­
sis of the constructive theory of moduli of algebraic vari­
eties, and made it possible to solve many specific problems 
of algebraic geometry by the method of degeneracy. The 
essence of this approach can be illustrated by the following 
example. 

Consider the space of solutions of a polynomial equa­
tion j(z) = 0, where J(z) is a polynomial of degree n in 
the complex variable z. The number of roots of this equa­
tion equals n not only for a polynomial in general position, 
when all the roots are distinct, but also for any polynomial 
of degree n if the roots are counted with the appropriate 
multiplicities. But degeneracies can also be bad, for exam­
ple, if the coefficient of zn becomes zero. 
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Mumford's theory constructively distinguished "good" 
stable degeneracies in almost any specific geometric situ­
ation, leading eventually to the solution of many classical 
problems of algebraic geometry. For example, Mumford 
and J. Harris proved that the moduli space of algebraic 
curves of large genus is nonrational, and Harris wrote on 
the connectedness of manifolds of smooth curves with ele­
mentary modal singularities. 

Mumford's papers are at the forefront of promising in­
vestigations of recent decades, directed toward merging the 
generalizing concepts of modern algebraic geometry and 
the brilliant particular results of classical mathematics ob­
tained by transcendental methods, in particular by the Ital­
ian school of algebraic geometry. 

Pierre Deligne. In 1978 Deligne received the prize for a 
proof of a conjecture of Andre Wei! on zeta-functions over 
finite fields. In 1949 Wei! had stated a series of conjec­
tures on the behavior of the analogue of the Riemann zeta­
function for algebraic varieties over fields of finite charac­
teristic. His conjectures included the proof of the ratio­
nality of the zeta-function and the behavior of the "zeros" 
(Cti) of the zeta-function, which is the analogue of the fa­
mous, still-unproved Riemann hypothesis for the classical 
zeta-function: Re Cti = 1/2. 

For curves over finite fields, E. Artin, H. Hasse (for 
elliptic curves), and Wei! himself had stated and proved 
thes'e results, which are great achievements in algebrruc 
number theory. The study of zeta-functions of curves over 
finite fields stimulated the development of the powerful 
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machinery of algebraic geometry and made it possible to 
solve some difficult problems in number theory. Among 
other things, the Italian school of algebraic geometry found 

'purely algebraic proofs for a number of classical theorems. 
Despite individual successes, however, (for example B. 
Dwork's proof of the rationality of the zeta-function), the 
multi-dimensional Weil hypotheses remained inaccessible. 
Deligne's proof in 1973 is striking in its beauty and com­
plexity, but required the application of the wealth of tech­
niques accumulated in algebraic geometry over the preced­
ing years. Here the work of M. Artin and Grothendieck 
was decisive, in particular the concept of l-adic cohomolo­
gies introduced by Grothendieck. The construction of the 
l-adic cohomologies allowed the extension of the funda­
mental results of Lefschetz for cohomologies of classical al­
gebraic varieties (over the field C) to varieties over finite 
fields. Nicholas Katz [Kat] gave a beautiful and maximally 
accessible exposition of Deligne's theorem. The proof of 
several classical hypotheses of number theory -follows from 
Deligne's result. 

The classical Ramanujan conjecture is a particular 
consequence of Deligne's results. This conjecture can be 
interpreted as a statement about the behavior of the coef­
ficients of the cusp form.6.. In 1930 the German mathe­
matician H. Petersson offered some interesting conjectures 
on the behavior of the coefficients of more general modu­
lar forms. Afterwards this body of ideas became known as 
the Ramanujan-Petersson conjectures. Deligne succeeded 
in proving the Ramanujan-Petersson conjectures in general 
form. 
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Ramanujan Conjecture. Consider the parabolic form 

00 

(27r)-12.6.(Z) = x II (1- xn)24 = 
n=l 

00 

_"" n 
- ~ Tn X , 

n=l 

Then ITp I ~ 2p¥ for all primes p. 

x = exp(27riz). 

This statement is quite .simple, but a proof aimed at 
a mathematician who is not a specialist in algebraic ge­
ometry, in the words of Deligne, would occupy about 2000 
pages. 

Despite the diligent efforts of many mathematicians, 
including Deligne, who later devised a new proof of the 
Weil conjecture, it has not been p.ossible to simplify the 
proof in any important way. The most complicated part .of 
the proof is using l-adic cohomologies. Nevertheless Ger­
ard Lauman. has obtained certain fundamental simplifica­
tions. In this sense the multidimensional situation con­
trasts sharply with the case of curves, where S. Stepanov, 
and later E. Bombieri, obtained an elementary proof .of 
Weil's theorem. 

Deligne's theory of "mixed Hodge structures," which 
develops cohomology theory for complex algebraic varieties 
with singularities, must also be mentioned. His papers sig­
nificantly generalize classical results of W. Hodge, Kodaira, 
Serre, and others. The papers on Hodge theory, written al­
most simultaneously with the proof of the Weil conjecture, 
have pr.ofound internal connections. 

The variety of papers Deligne has written in number 
theory and algebraic geometry is enormous. Let me point 
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out just one recent result related to the study of hyperge­
ometric functions. This area of mathematics, after being 
actively studied in the late nineteenth and early twentieth 
century, had lost its interest for pure mathematicians. The 
recent revival of the investigations in the theory of special 
functions arises from the papers of Deligne and G. Mostow 
and the new perspective of representation theory developed 
by the school of Gel'fand [DM] [GKZ]. 

Deligne and Mostow described the monodromy group 
r of a multi-dimensional hypergeometric function of the 
form 

d J zA(z _l)Al n (z - Xi)A, dz. 

For certain values of the parameters the group r forms a 
discrete lattice with finite covolume in the group of d - 1-
dimensional projective transformations, and in some cases 
nonarithmetic lattices are obtained. Together with the re­
sults of Gromov and 1. Piatetski-Shapiro, who have con­
structed a whole series of nonari,thmetic lattices in Loba­
chevskii spaces (spaces of rank one), these results comple­
ment the research of G. A. Margulis on arithmetic lattices 
in spaces of rank ~ 2. 

Gerd Faltings. The last work on post-Grothendieck al­
gebraic geometry recognized by a Fields medal was a re­
markable paper of Faltings proving the Mordell conjecture, 
which had been open for 60 years. A fundamental step was 
thereby taken on the road to proving Fermat's last theo­
rem. 

In simplified form the Mordell conjecture asserts that 
a system of algebraic equations with rational coefficients 



72 Algebraic Geometry 

defining an algebraic curve of genus ~ 2 has only a finite 
number of rational solutions. In proving the Mordell con­
jecture Faltings used results of S.Yu. Arakelov, Deligne, 
Manin, Mumford, A. Neron, A.N. Parshin, I.R~ Shafare­
vich, J. Tate, and Yu.G. Zarkhin. This list is by no means 
complete. 

A crucial difficulty overcome by Faltings in proving 
the Mordell conjecture arises from a fact common to many 
problems in algebraic number theory, and which seems re­
markable at first glance. This 'difficulty is the Riemann 
problem for' the zeta-function. The corresponding ana­
logues of these theorems stated for function fields can be 
proved much more simply. In particular, as early as 1963 
Manin obtained the analogue of Mordell's theorem for func­
tion fields. 

In this regard Faltings outlined an entire program of 
research into algebraic varieties over number fields, which 
were called arithmetic surfaces. No wonder that Faltings' 
recent work in this area can be applied in physics in an­
alyzing the multiloop contributions to a statistical sum of 
strings. 

In selecting the medalists the committees have always 
tried to adhere to the basic principle of the founder of the 
prize-to reward both the solution of particular difficult 
long-standing problems and the formulation of new con­
cepts that enlarge our knowledge. As far as the solution of 
specific classical problems is concerned, the medalists' pa­
pers in the area of analytic number theory can be assigned 
to this category in its purest form. 
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Number Theory 

Atle Selberg. In 1950 Selberg became the first medalist 
honored for work in number theory. He developed an ex­
traordinarily efficient method of estimating the distribu­
tion of primes. Since the time of Eratosthenes the sieve 
method has been applied to estimate the number of primes 
in a given interval. In 1919 Selberg's compatriot Norwegian 
mathematician V., Brun greatly improved the sieve method 
with his double sieve method, i.e., simultaneous estimation 
of the number of primes in two sequences. This method 
enabled him to obtain an estimate for the number 7r2 (x) , 
the number of twin prime pairs, each of which is less than 
x. 
Brun '8 Theorelll. When x > xo 

() 
cx(lnln(x))2 

7r2 x < 2 , 
In x 

where c and Xo are positive constants. 

Selberg obtained significantly more precise estimates 
in the sieve method, enabling him to solve classical prob­
lems of number theory. The solution of one-finding an 
elementary proof of the asymptotic law for the distribu­
tion of primes 

7r(X) I"V x/lnx (8) 

-resolved a paradoxical situation in number theory, which, 
in the words of G.H. Hardy, had thrown out a challenge to 
modern mathematics. Until Selberg'S work the only way 
of proving the above formula (8), given by J. Hadamard 
and C.-J. de la ValIee-Poussin in 1897, relied on the theory 
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of functions of a complex variable. Now thanks to Selberg 
and P. Erdos, who proposed another elementary version 
based on the Selberg formula, it was possible to obtain 
an entire proof within the framework of number-theoretic 
estimates. Selberg's results facilitated advances in solving 
a whole series of thorny problems in number theory. 

Let me mention just one remarkable result of L.G. 
Shnirel'man.16 Using original ideas on the density of the 
distribution of primes, he proved the following theorem in 
1930: 

Shnirel'man's Theorem. Every integer can be repre­
sented as the sum of at most c primes, where c is an abso­
lute positive constant. 

Shnirel'man obtained the estimate c = 800, 000. By 
use of Selberg's technique, this number was reduced to 20 
for sufficiently large numbers by R.N. Shapiro and R.S. 
Varga in 1951. The best known result is due to British 
mathematician R.C. Vaughan, who obtained the estimate 
Co :5 7. An important detail needs to be pointed out at this 

16 The reason's for the suicide of the brilliant mathematician Shnir­

el'man (1905-1938) are not fully understood. Along with his out­

standing papers in number theory, he is credited, together with L.A. 

Lyusternik, with solving Poincare's problem on the number of distinct 

geodesics on an ellipsoid, the introduction of the concept of category 

of a manifold, and much more. If not for the forced isolation of Soviet 

mathematicians he might have been a sure candidate for the Fields 

, prize. In the 1930s a group of world-class young mathematicians grew 

up in the USSR. It suffices to name A.N. Kolmogorov, Pontryagin, 

and Gel'fond. But the rupture in international scientific bonds, which 

was no fault of theirs, prevented their timely ,recognition. 
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juncture. Although Shnirel'man's method makes it possi­
ble to obtain the required representation for all numbers, a 
difference exists between the estimates for the quantity CO 
for all numbers and c~ for sufficiently large numbers. Thus 
Vaughan obtains the result c~ ::; 7 for sufficiently large 
numbers, while CO ::; 27 for all numbers. Even the result of 
Shnirel'man does not make it possible to solve the classical 
Goldbach problem-to obtain the desired estimate CO ::; 3. 
A known result of Vinogradov gives the estimate Co ~ 4 
only for sufficiently large numbers. Later a lower bound 
for these numbers was obtained: N rv N6,60. A beauti­
ful exposition of Selberg's method and the accompanying 
results appears in the book of Gel'fond and Yu.V. Linnik 
[GL]. 

Among the papers of Selberg that were so highly es­
teemed by the Fields Committee was his 1942 doctoral dis­
sertation, which contains brilliant results on the problem 

. of the distribution of zeros of the Riemann zeta-function. 
The Riemann conjecture is that all zeros of (( s) (s = CT + it) 
except for the trivial ones (-2, ... , -2n, ... ) lie, on the line 
Res = !. Despite efforts of many outstanding mathemati­
cians, this conjecture remains unproved to the present. Of 
course any advance in this problem is regarded as a great 
achievement. Among the predecessors of Selberg are such 
famous mathematicians as Hadamard, H. von Mangoldt, 
E. Landau, Hardy, and Littlewood. In particular, in 1914 
Hardy proved that there are infinitely many zeros on the 
line (J = !, and Littlewood constructed an estimate of the 
'number of zeros No(T) on the line (J = ! in the interval 
o ::; t ~ T: No(T) > ,T. Mangoldt had previously proved 
Riemann's conjecture that the number of zeros N(t) of the 
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zeta-function in the critical strip 0 < a < 1, 0 :$ t :5 T 
is asymptotically given by N (T) rv in. log T. Selberg ob­
tained an estimate of this type for the density of zeros on 
the critical line a = ! itself. His result No(T) > ')'Tlog T 
(where')' is a certain small constant) was not improved 
until American mathematician N. Levinson obtained the­
value T = i 30 years later. 

Research in analytic number theory not only brought 
world wide fame to Selberg, it also was the source of re­
markable new papers, which revealed unexpected links be­
tween number theory and other branches of mathematics. 
Selberg's ideas made it possible to combine areas of mathe­
matics as seemingly remote from one another as the theory 
of discrete groups and automorphic forms, representations 
of semi-simple Lie groups, the theory of the zeta-function, 
scattering theory, and several others. Central to this body 
of problems was a 1956 paper in which Selberg obtained his 
trace formula. The problem that led Selberg to his formula 
is connected on the one hand with the study of real-analytic 
Eisenstein series, which are important in number-theoretic 
problems, and on the other hand with finding the spec­
trum of Laplace operators defined on symmetric spaces X 
of negative curvature. I shall sketch the group-theoretic 
construction that forms the basis of Selberg'S result. 

Suppose the semi-simple Lie group G is the group of 
motions of a space X, and f is a discrete subgroup of G 
such that the quotient space f \ G is compact. Let T(g) 
(g E G) be a unitary representation of the group G acting 
via shifts in the Hilbert space L2 (f\X) of functions that are 
square-integrable with respect to the invariant measure on 
f \ X. The representation T(g) is reducible, and the basic 
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problem of representation theory is to decompose it into 
irreducible components and find the multiplicities Nk of the 
irreducible representations. Since the operators T(g) act 
on an infinite-dimensional space and have ,no trace in the 
usual sense, one considers instead of them the convolution 
operators of the form 

T<p = J <p(g)T(g) dg. 

Under certain natural conditions on the function <p, for ex­
ample, assuming that <p are functions of compact support, 
the operator T<p is a nuclear operator for which the concept 
of a trace is defined in the ordinary sense as the sum of the 
eigenvalues of the matrix kernel of the operator T<p. The 
following trace identity holds: 

Here O'k (g) are the characters of the irreducible representa­
tions occurring in T(g), and Nk are the multiplicities with 
which they occur in that representation. 

The left-hand side of the identity (9) can be brought 
into the form 

L /L(r" \ G,,) J <p(g-l,g), 

G/G-y 

where the summation extends over the set of conjugacy 
classes of the group r. Here r -y and G-y denote the cen­
tralizers of the element I in rand G respectively, and 
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f.L(r'Y \ G'Y) is the measure of the space r'Y \ G'Y' The prin­
cipal problem is to obtain explicit formulas for the integral J 'P(g-l'Yg) dg. 

Selberg found explicit formulas for the traces of the 
operators T<p for several important classes of symmetric 
spaces (spaces of rank one). These formulas are expressed 
on the one hand as sums of a series over the conjugacy 
classes of the elements of the group r, and on the other 
hand as functions of the eigenvalues of the invariant Laplace 
operators defined on X and acting in the space of represen­
tations of the group G. The Selberg trace formulas have 
most important applications in computing the dimensions 
of the space of automorphic forms, analysis of Eisenstein 
series, the study of multi-dimensional zeta-functions, and 
the investigation of other problems of the theory of repre­
sentations and number theory. Indeed, number-theoretic 
research led Selberg to his famous result. In particular, 
the classical Riemann hypothesis on the zeros of the zeta­
function admits an interpretation in terms of the trace for­
mula. Another predecessor of the Selberg formula is the 
classical Poisson summation formula: 

L eintp = L 8(<p - 27rm). (10) 
nEZ mEZ 

An elementary, though very useful exercise for the reader 
would be to analyze the Poisson summation formula from 
the group-theoretic point of view, taking into account that 
the role of G is played by the real line :iR, while r is the 
group of integers Z. Formula (10) and its generalizations 
are important in physics, especially in the theory of phase 
transitions. Formulas of type (10) make it possible to find 
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the points of phase transition in several models of statistical 
physics, for example in the Ising model. 

Selberg originally obtained his formula by considering 
the groups G = SL (2, JR) and r = SL (2, Z). The group G 
is the group of rigid motions of the hyperbolic plane (the 
upper half-plane) presented in the form SL (2, JR)/SO (2).' 
The irreducible representations of the group SL (2, JR) can 
be realized in the space of eigenfunctions of the Laplacian 
on the hyperbolic plane. The realization of the Selberg 
formula for the group SL (2, JR) and its discrete subgroups 
leads to some very interesting questions. Please' note that 
the space SL (2, Z)/SL (2, JR) is noncompact, but has finite 
volume. Obtaining the trace formula in this case is far more 
difficul t than in the compact case, since the spectrum of 
the operators of the representation has a continuous part. 
Another body of questions is related to the description of 
discrete subgroups r having the property M(r \ G) < 00. 

Among the groups having this property there is the intrigu- , 
ing subclass of arithmetic groups, which Weil described 
completely for subgroups of SL (2, JR). Examples are the 
group r = SL (2, Z), the quaternion groups, and their sub­
groups of finite index. The arithmetic property of discrete 
groups is very important in the multi-dimensional situa­
tion. Not having time to discuss even a small part of the 
applications of the Selberg trace formula, I refer the reader 
to corresponding literature [Hel, He2, Vel. 

In studying properties of discrete subgroups of Lie 
groups Selberg stated many important conjectures on their 
structure. The following generations of mathematicians 
proved Some of them. Another Fields medalist, Margulis, 
obtained the chief results in this direction. 
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Klaus Roth. In 1958 Roth was honored for the proof of a 
delicate estimate that refines the Thue-Siegel theorem on 
the approximation of algebraic numbers by rational num­
bers. He proved the following theorem. 

Roth's Theorem. If 0 is any algebraic number, not itself 
rational, then for any 1/ > 2 the inequality 

IE -'01 < ~ q ql/ 

has only a finite number of solutions in rational pi q. 

This theorem is best-possible. It would not remain 
valid if 1/ = 2. Among the important developments to 
which Roths' work gave rise was a far-reaching general­
ization on simultaneous approximations obtained by W.M. 
Schmidt in: 1970. Termed the subspace theorem, it fur­
nishes best-possible multi-dimensional results and complete­
ly answers the question of which normal form equations 
have only finitely many solutions. Faltings and G. Wustholz 
have recently profoundly extended this work in the context 
of algebraic geometry. Incidentally, in another direction, 
P. Vojta has utilized algebraic geometric ideas and some 
classical work in the Thue-Siegel context from Dyson to 
develop a new proof of Faltings' celebrated result on the 
Mordell conjecture. Faltings has extended Vojta's method 
to construct a theory of Diophantine approximation on al­
gebraic (more precisely, abelian) varieties. 

Another series of papers by Roth deals with the prob­
lem of P. Thran and Erdos, already known in the 1930s, on 
sequences containing arithmetic progressions. 

Let rk (n) be the smallest integer p for which each se­
quence of positive integers al < a2 < ... ap :5 n contains an 
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arithmetic progression with k terms. More than 60 years 
ago Tunin and Erdos conjectured that rk(n) = o(n). 

Roth obtained the first substantial result, the proof 
of the Thnin-Erdos conjecture for k = 3. Quite recently 
Hungarian mathematician E. Szemen§di proved the con­
jecture completely [Sze]. Szemeredi's work attracted the 
attention of specialists in ergodic theory. H. Furstenberg, 
Y. Katznelson, and D. Orenstein then found a new proof 
of Szemeredi's theorem and obtained a multi-dimensional 
generalization of it [FKO]. 

Apparently the latter proof does not give sharp esti­
mates for rk (n). The result of Roth and F. Behrend for 
r3 (n) long remained optimal: 

Szemeredi later obtained the better upper bound r3(n) < 
C2n 

(1 ) 
for some small, > O. 

ogn 'Y 

. In 1966 Roth published a monograph in collaboration 
with H. Halberstam which is still a very good introduction 
to elementary methods in analytic number theory, espe­
cially combinatorial problems and sieve methods [HR]. 

In 1965 Roth discovered an optimal result in conjunc­
tion with the large sieve of Linnik and A. Renyi. Bombieri 
and A.I Vinogradov subsequently took up this field of re­
search with fruitful consequences. 

Alan Baker. The work of Baker, who was a 1970 prize win­
ner, continues that of the brilliant members of the Cam­
bridge school of number theory-Hardy, Littlewood, and 
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Ramanujan. Baker developed a powerful method for esti­
mating linear forms in the logarithms of algebraic numbers. 
The impact of his work on many classical questions is far­
reaching. Ari early application was the solution to the prob­
lem of K. Gauss, whether there are only nine imaginary 
quadratic fields with class number one. Baker established 
the result through an argument going back to Gel'fond and 
Linnik. Remarkably, H. Stark simultaneously gave another 
verification, motivated by a paper of Heegner. The solu­
tion of J. Ax and A. Brumer to the Leopoldt p~oblem on 
the p-adic regulator of an abelian field was another early 
success directly dependent on Baker's work. But by far the 
most profound application has been to the theory of Dio­
phantine equations. Baker first effectively demonstrated 
Thue's theorem on the representation of integers by binary 
forms. By a different method, he had previously dealt with 
special Thue equations of the form 

and these results greatly improved the classical work of 
B.N. Delone (1922) and T. Nagell (1925), who had found a 
complete solution only in the case n ~ 1. Returning to log­
arithmic forms, Baker showed that they underpin both the 
theoretical and the practical determination of all the inte­
ger points on a wide range of Diophantine curves. These 
curves include the one defined by the Mordell equation 

and indeed any equation of hyperelliptic or superelliptic 
type. Subsequent refinements in the fundamental estimates 
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by Baker and others have spawned the effective solution of 
a whole new class of examples, termed exponential Dio­
phantine equations. In these instances not even an inef­
fective theory existed previously; that is, the number of 
solutions was not even known to be finite. As R. Tijdeman 

,demonstrated, the new class includes the Catalan equation 

which is the subject of a recent book by P. Ribenboim [Ri]. 
Baker's methods originated in the classical studies of 

Gel'fond, C. Siegel, and T. Schneider that led to solving 
Hilbert's seventh problem on the transcendence of numbers 
of the form 0,13, with a algebraic and f3 algebraic irrational. 
The key result here is the following theorem.' 

Baker's Theorem. If aI, ... ,an are nonzero algebraic 
numbers such that log a2, ... , log an are linearly indepen­
dent over the rationals, then 1, log aI, ... , log an are lin­
early independent over the field of all algebraic numbers. 

This theorem has been generalized, principally in the 
context of algebraic groups. Profound connections have 
been discovered with complex function theory, Kummer 
theory, and many aspects of Diophantine geometry, includ­
ing Faltings' theorem on the Mordell conjecture, to which 
we referred earlier. Without doubt it is an active area of 
research, and a book covering the subject is in preparation 
by Baker and Wustholz. A good idea of some earlier mate­
rial is provided in the treatise of T.N. Shorey and Tijdeman 
[Sh] and a collection of articles [Ba]. 

Among Baker's outstanding achievements is the 1966 
solution of a problem that goes back to Gauss: Find all 
imaginary quadratic fields Q( Vd) (Le., sets of numbers of 
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the form u + vVd, where u and v are rational numbers) 
having the property of unique decomposition, up to order, 
into prime factors. Baker showed that there are nine such 
fields: d = -1, -2, -3, -7, -11, -19, -43, -67, -163. His 
proof is based on his theory of transcendental numbers. H. 
Stark reached this result simultaneously and independently 
of Baker by a different method, using elliptic functions. In 
the case of real fields (d> 0), however, the solution of this 
problem remains unknown. It is unknown, for example, 
whether infinitely many such fields exist. 

Enrico Bombieri. The last work to be noted in this list 
of number theorists is a paper of Bombieri, a 1974 prize 
winner. Bombieri especially investigated the large sieve, 
finding an inequality which shows that on the average the 
Riemann hypothesis holds with respect to primes in arith­
metical progressions. About the same time, A.I. Vino­
gradov independently obtained a quite similar result. An 
immediate application of this work arising from the clas­
sical work of Renyi shows that every large even integer is 
the sum of a prime and a number with at most three prime . 
factors. This result was the best available on the Goldbach 
conjecture to that time. Later, J. Chen ingeniously added 
the idea of replacing "three factors" by "two factors." For 
further discussion see [Da]. Bombieri also authored a large 
series of papers on the implementation of the Thue-Siegel­
Roth method. 

Bombieri's work extends beyond number theory. An 
exceptionally versatile scholar, he is the author of many 
first-class papers in algebraic number theory, classical anal­
ysis, algebraic geometry, and quasi-crystals. I shall first 
discuss his result, obtained in 1969 jointly with E. di Giorgi 
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and E. Giusti, the multi-dimensional analogue of the theo­
rem of S.N. Bernstein from the theory of minimal surfaces. 

Bernstein's theorem has a long history. In 1902 Bern­
stein proved that a complete two-dimensional regular sur­
face with zero mean curvature in ~3 is a plane. The con­
jecture arose that this result holds in any dimension. In 
1968 J. Simons proved Bernstein's conjecture for dimen­
sion :::; 7. For M8 C ]R9, however, the analogue of this 
theorem is false. 

In the same paper Simons identified another class of lo­
cally minimal surfaces in ~2m-the locally minimal cones. 
Simons' cones are defined by a system of equations in ~2m: 

2 2 2 2 2 
Xl + ... + Xm = Xm+l + ... + x2m < r . 

They are located in the sphere s2m of radius r and have 
boundary S;: x s;: c S~; (here s~ denotes a sphere of 
radius r in IRm). 

As shown in a 1969 paper of Bombieri, di Giorgi, 
and Giusti, Simons' cones give a global minimum for n ~ 
8. The subtle proof makes clever use of the Bendixson­
Poincare theory at the final stage. 

Bombieri understood immediately the remarkable pro­
spects opened up in solid state physics by the discovery 
o(quasi-crystals in 1984 (see [SBGe]). Quasi-crystals are 
substances that have local symmetries of order five (icosa­
hedral groups) and, in contrast to ordinary crystals, do 
not admit translation invariance. The discovery of quasi­
crystals shed new light on papers of R. Penrose, N.G. De 
Bruin, R.M. Robinson, and other mathematicians on quasi­
crystal tilings of a plane, and they provoked a flood of 
papers. It was shown that the most natural method of 
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constructing quasi crystal tilings of the plane and three­
dimensional space )R3 is the "cut and project" method, 
i.e., projection of points of a regular n-dimensional lat­
tice (n = 5 for the plane and n = 6 for ]R3) onto an "irra­
tionally" imbedded subspace]R2 or)R3 respectively (imbed­
ded so that the only point with integer coordinates it con­
tains is the origin). In his paper "Quasi-crystals, tilings, 
and algebraic number theory," written jointly with J. Tay­
lor [BT], Bombieri linked the problem of classifying quasi­
crystals with problems of number theory. They studied the 
problem of constructing quasi-crystal tilings starting from , 
special local rules for gluing together elementary cells. The 
major result of this paper was a construction using special 
properties of algebraic numbers (the elements of Galois the­
ory and Pisot numbers) and quasicrystals, which cannot 
be obtained by the "cut and project" method. At approx­
imately the same time S.P. Novikov, who had become in­
terested in the problem of classifying quasi-crystals, was 
proposing the concept of quasi-crystallographic group, a' 
nontrivial generalization of the concept of the usual crys­
tallographic group. His student S. Piunichin obtained a 
fairly complete classification of the two-dimensional quasi­
crystallographic groups and constructed new examples of 
quasi-crystal tilings not possible by the intersection and 
projection method. To solve this problem, Piunichin ap­
plied the elements of algebraic K-theory. Undoubtedly the 
theory of quasi-crystals will pose new and unexpected prob­
lems for mathematicians. 

Jesse Douglas. The mathematical community has always 
seen the solution of a classical problem in the theory of 
minimal surfaces as an outstanding achievement in general 
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mathematics. The winner of the first Fields prize, Douglas, 
was honored for his solution of Plateau's problem. Largely 
through his 1847 soap film experiments, the Belgian physi­
cist, J. Plateau created a new area of research-the theory 
of minimal surfaces. But nearly 90 years passed before a 
rigorous mathematical proof appeared in works of Douglas 
and T. Rad6. Rad6's proof depended on the conformal­
ity properties of two-dimensional surfaces. Douglas' more 
general proof contained ideas that were essential in later 
investigations. The statement of Plateau's problem is well 
known: Prove that for a given Jordan curve r c }Rn there 
exists a surface of minimal area having r as its boundary. 
This problem, which is intuitively clear when the bound­
ary r is simply a circle, becomes nonobvious when one 
considers a complicated curve r, for example, a system of 
linked circles. W. Fleming (cf., for example, [Ll]) showed 
that it is possible to construct a system of minimal sur­
faces of various topological types, having linked circles as 
their boundary. The surface having an absolute minimum 
area is unique among all surfaces of fixed topological type 
(e.g., simply connected surfaces) however, as the solution 
of Plateau's problem implies. 

Sixty years after its publication Douglas' paper gained 
attention through the development of the theory of strings. 
Italian physicist T. Regge pointed to the connection be­
tween the Douglas functional that is being minimized and 
the ground state of the wave function of a string. Follow­
ing Regge and omitting technical details, I shall exhibit 
this analogy. Consider the simplest case of Plateau's prob­
lem, in which the surface S is diffeomorphic to the unit 
disk 'D C }Rn and bounded by the curve r. Consider all 
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the parametrizations of r, i.e., all mappings 9 : §2 -+ IRn, 
x = g(O'), where 0 ::; a ::; 27r and gIL(O) = gIL(27r). 

Douglas mainly studied the integral 

A(g) = J... ff Ig(O') - g(O)1 dadO. 
47r (2 sin ~(a - 0))2 

§! §1 

The integrand has a simple geometric meaning: the ratio 
of the square of the length of chords between points on the 
curve r and their preimages in §1. The functional A(g) 
is a minimum for some mapping g*. If the function g* 
is continued to the interior of 2) by the classical Poisson 
formula, we obtain x = ReF(w), where w = u + iv. When 
this procedure is done, 

n 

LF:2(W) = O. (11) 
i=l 

As early as 1865 K. Weierstrass showed that the condition 
(11) defines a minimal surface S*. The area of S* is A(g*). 
To establish the connection with quantum oscillations of a 
string, it suffices to expand g(O') as a Fourier integral 

am = 2~ f g(O)e-imO dO. 
S! 

In the context of this expansion the functional A (g) can be 
expressed as 

00 

A(g) = 27r L mlam l2 . 

m=l 
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The wave function cP = exp( - A(g)) includes all the 
natural vibrations of the string. The physical consequences 
of this analysis are given in the article of Regge [Re]. 

An important part of Douglas' theorem is the asser­
tion that the parametrization g* that minimizes A(g) also 
defines the minimal surface. V. Guillemin, B. Kostant, 
and S. Sternberg gave an elegant proof of this assertion 
using the invariance of the functional A(g) with respect 
to all reparametrizations of the mapping 9 from the group 
SL(2,IR) [GKS]. 

N. Hitchin offered another interesting observation con­
necting the theory of minimal surfaces with modern physi­
cal structures. He remarked that the Weierstrass criterion, 
which is based on the introduction of a complex structure 
on the minimal surface, admits a natural interpretation in 
the language of Penrose twistors. 

Algebra 

John Thompson. The classification of the finite simple 
groups is a classical problem of mathematics. At present 
this topic seems completely solved. Thompson, a 1970 prize 
winner, made an important contribution to this classifica­
tion. 

Moving ahead, I should explain why the phrase "seems 
to be" occurs in a precise mathematical assertion. D. 
Gorenstein, a leading expert in the theory of finite groups, 
used this phrase. It was evoked by a rather unusual prob­
lem in the history of mathematics. 
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The proof of the completeness of the classification con­
tains about 5000 journal pages. Moreover a thorough un­
derstanding requires an equal number of supplementary 
pages, since some results were obtained using a computer. 
The verification of the proof is a difficult problem itself. 
The book of Gorenstein [Gor] gives a partial exposition, 
and two other volumes by Gorenstein have appeared with 
detailed proofs. 

Classifying the simple finite groups is immeasurably 
more complicated than, for example, classifying the sim­
ple Lie algebras. Among the finite groups there are 26 
exceptional groups, and the orders of these groups can be 
quite large. For example, the order of the maximal spo­
radic group, the Fischer-Griess group, known according to 
taste as either the monster or the friendly giant, is 

This group can' be represented as the group of automor­
phisms of a certain nonassociative but commutative alge­
bra of dimension 196,883. Some wonderful recent discov­
eries involve this group, which is discussed below. 

Any finite simple group is either of Lie type, i.e., the 
analogue of a Lie group over a 'field of finite characteristic, 
or an a1 ternating group An (n ~ 5), or one of the ex - ' 
ceptional (sporadic) groups. The proof that the sporadic 
groups are simple requires a special technique. The com­
pilation of a final list of sporadic simple groups completed 
the classification, but the preceding stage was also difficult: 
the proof of a number of theorems on the structure of sim­
ple groups.: These theorems provide a way to find common 
regularities in the structure of finite simple groups. In this 
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direction the results of Thompson are most important. In a 
joint paper with W. Feit he proved the fundamental result: 
all nonabelian simple groups are of even order. 

Thompson's papers cover the entire subject of finite 
groups. He has continued to work actively in this area. One 
of the problems he posed was recently solved by Bombieri. 

The main developments in the theory of finite simple 
groups are connected with the study of the Fischer-Griess 
monster. Thompson and J. McKay discovered that the di­
mensions of the representations of the monster are the co­
efficients in the expansion of the modular function J( T) de­
fined by the Dedekind eta-function and the theta-function 
of the weighted lattice of the simple Lie algebra Es. This 

. observation directly linked the study of the Fischer-Griess 
group and work on infinite-dimensional Lie :;tlgebras, which 
developed in parallel with it. The work of many mathe­
maticians, especially 1. Macdonald and V. Kac, went into 
the discovery of relations between the dimensions of repre­
sentations of infinite-dimensional Lie algebras and identi­
ties for eta-functions [Kac]. A new area of mathematics 
had arisen, with completely unexpected results and ap­
plications, including such seemingly widely sep?-rated ar­
eas as string theory, two-dimensional conformal theories in 
physics, the classification of Leech lattices, coding theory, 
and more. Two recently published beautiful books [FLM, 
CS] give a clear presentation of these results. 

Reviewers of the papers of Fields medalists constantly 
encounter the difficulty of assigning a given paper' to some 
traditional area of mathematics, so much has the face of 
mathematics changed over the last 30 years. To which 
branch of mathematics, for example, should the papers of 
Margulis and D. Quillen be assigned? 
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Miscellany 

Grigorii Aleksandrovich Margulis. The most important of 
Margulis' results of is his proof of Selberg's conjecture that 
a certain class of discrete groups is arithmetic. While the 
conjecture can be stated rather easily, its proof required a 
virtuoso mastery of the technique of the theory of algebraic 
groups, use of the multiplicative ergodic theorem, the the­
ory of quasi-conformal mappings, and much more. French 
mathematician J. Tits, in presenting one of Margulis' pa­
pers at the Helsinki congress, said: "During the year in 
which 1 conducted a seminar on the papers of Margulis, 1 
learned more mathematics than in all the years preceding." 

The theory of discrete groups is tied closely to the the­
ory of Riemann surfaces. F. Klein and Poincare had dis­
covered that the description of Riemann surfaces of genus 
larger than one can be reduced to the study of the discrete 
subgroups of the group SL(2,~) (the study of the uni­
modular group SL(2, Z)) acting on the upper half-plane 

1m z > 0 as fractional-linear transformations z 1--+ az + db ) . 
cz+ 

The discrete subgroup r = 8L(2, Z) is the subgroup of 
matrices in SL(2,~) with integer coefficients. Other dis­
crete subgroups in 8L(2,~) are subgroups of finite index in 
SL(2,Z). As is well known, all Riemann surfaces of genus 
9 > 1, both compact and noncompact, can be obtained 
by taking the quotient of SL(2,~) over r n, where r n is a 
discrete subgroup in SL(2, Z). 

The two-dimensional theory can be generalized to the 
multi-dimensional case in various directions. One natural 
problem can be stated as follows: Describe all the discrete 
subgroups of the group SL(n,~) with the property that the 



Mathematical Progress 93 

space SL(n, IR)/r has finite volume (with respect to a given 
invariant measure). C. Hermite proved that the space 
SL(n, TR) I SL(n, Z) has finite volume. Many subtle facts 
from -algebraic number theory can be reduced to general 
statements of this type. Without giving precise definitions, 
I remark that the discrete subgroup r n is an important ex­
ample of the so-called arithmetic subgroups. 

Arithmetic subgroups of semi-simple Lie groups e have 
the property J.l(G/f) < 00, where f..l is the volume of elf 
with respect to an invariant measure. Margulis proved that 
under certain conditions on the rank of G (rk e ~ 2) the 
converse is also true: every discrete subgroup r such that 
f..l( G Ir) < 00 is arithmetic. Various generalizations of this 
result and a number of beautiful corollaries have been ob­
tained by many mathematicians over the last few years in 
the theory of discrete groups and related areas of mathe­
matics. This work attests to the profundity of Margulis' 
theorems. 

Margulis has also arrived at some beautiful results in' 
such areas as ergodic theory and the theory of foliations. 
Margulis' papers display his exceptional originality. By 
invoking ideas from widely separated branches of mathe­
matics, he proceeds to the goal by the simplest possible 
route. 

One of these theorems, which was central to proving 
the theorem on arithmetic subgroups, was announced sev­
eral years before the full proof appeared. Despite efforts of 
many leading experts in this area, the result could not be 
reproduced independently. The nature of Margulis' origi­
nal proof was very simple and, to the experts, unexpected 
[Margl]. 
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In recent years Margulis has examined the properties 
of discrete groups in different and sometimes unexpected 
areas. For example, he refuted a conjecture of Milnor on 
the structure of groups of motions acting discontinuously 
on affine spaces. It had been believed that such groups are 
always solvable (polycyclic). Margulis constructed a coun­
terexample. By combining ideas from the theory of discrete 
groups and ergodic theory, he recently solved an old prob­
lem of the geometry of numbers-Oppenheim's problem on 
the representation of numbers by indefinite quadratic forms 
[Marg2]. 

Daniel Quillen. The 1978 Fields prize winner Quillen is 
a leading expert in algebra and algebraic topology. His 
achievements are extremely difficult to present in a brief 
form accessible to the nonspecialist.· One of Quillen'S im­
pressive accomplishments was the proof of Serre's conjec­
ture on the structure of projective modules over a ring of 
algebraic functions. At the same time, Leningrad math­
ematician A.A. Suslin obtained this result independently_ 
The rapidly developing Soviet-now Russian-reality is dif­
ficult to convey. When this book was written, Suslin was 
a Soviet mathematician living in Leningrad. The Soviet 
Union has now broken up, Leningrad has become St. Pe­
tersburg, and Suslin is working at Northwestern Univer­
sity in the USA, nevertheless retaining his position in the 
Steklov Mathematical Institute. 

J.-P. Serre stated this conjecture in 1955 in a now clas­
sic paper [SI]. This paper first extensively applied homo­
logical algebra to the study of algebraiC varieties. 
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Serre's Conjecture. Every projective module over a ring 
of polynomials is free. 

This assertion can be understood intuitively by an 
analogy with vector bundles. I shall illustrate it by an ,ex..;. 
ample proposed by Atiyah [At]. Consider the Mobius band 
M, representing it as a twisted (infinitely'wide) cylinder. 
M can be thought of as a family of lines Me parameterized 
by the parameter () of the base circle §1. Each such line 
forms a one-dimensional vector space, but there is no way 
of choosing a natural basis in it. On the other hand, the 
normals to M form an analogous linear bundle M'l.. over §1 . 

The direct sum M + M l.. is a two-dimensional vector bun­
dle over §1. It can be regarded as the normal bundle to the 
middle line 1 of the Mobius band imbedded.in ~3. Since 1 
is an ordinary plane circle, its normal bundle is trivial, and 
consequently in it a global basis can be introduced. We 
have thus represented a nontrivial one-dimensional bun­
dle Mover §1 as a direct summand of a trivial but two­
dimensional bundle. The essence of Serre's conjecture is 
that by a suitable choice of the polynomial ring-the ana­
logue of the coefficient field-a projective module (a non­
trivial vector bundle) can be made free, i.e., a global basis 
can be introduced into it. 

In an equally well-known development, Quillen proved 
J. Adams' conjecture in topological K-theory. This result 
was obtained at the same time by Sullivan, using a different 
method. 

All of Quillen's results fall in the context of the con­
struction of algebraic K-theory. His transference of Groth­
endieck's K -theory into a purely algebraic situation leads 
to the solution of many fundamental problems of alge-
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bra and number theory. Quillen even solved one in al­
gebraic K-theory, the construction of the higher analogues 
of Grothendieck rings. 

Quillen's recent paper [Q] gives an expression for the 
metric of a linear holomorphic bundle over the moduli 
spaces of Riemann surfaces. This result is important in 
modern investigations in string theory. In this theory in­
tegration over the moduli space emerges in computing sta­
tistical sums, correlation functions, and other basic objects 
of the theory. 

Laurent Schwartz. For those who apply the subject, math­
ematics is primarily thought of as analysis. But relatively 
few analysts appear in the list of medalists. Besides Hor­
mander, a specialist in differential equations, medalists in­
clude Schwartz and C. Fefferman. 

Schwartz, a 1950 prize winner, received the prize for 
his work in the theory of generalized functions (distribu­
tions). The theory of generalized functions originated in 
the work of Hadamard, M. Riesz, N.M. Gunther, S.L. Sobo­
lev, and Dirac.17 Its finished form and wide applications 
may be traced to Schwartz. 

Schwartz regarded a distribution as a functional on a 
space of test functions. In this sense his approach closely 
resembled the definition of Dirac. Such a technique made 
it possible to expound all basic problems of the theory of 
distributions from a unified point of view-the theory of 

17 As recently discovered, the Dirac delta-function had appeared in 

the works of O. Heaviside at the end of the nineteenth century. Some 

idea of the reaction of pure mathematicians to Heaviside's work can 

be gained from Hardy's, Divergent Series. 
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integration, differentiation, Fourier transform, and so on. 
In the apt phrase of Dieudonne, one can say that, just 
as Leibniz and 1. Newton did not discover the differential 
and the integral, but proposed a system of calculus, so 
Schwartz constructed a calculus of generalized functions. 
His two-volume Theorie des distributions (1950), together 
with the six-volume course Generalized Functions, written 
by Gel'fand and co-authors, became the bible of specialists 
in functional analysis. 

Schwartz' other remarkable achievements in the theory 
of nuclear spaces and complex manifolds were eclipsed by 
his papers on the theory of distributions. Such, alas, is the 
lot of those who have conquered a real summit. 

Lars Hormander. A 1962 Fields prize was awarded to 
H6rmander. Among the important topics H6rmander stud­
ied up to the time he received the prize was the general the­
ory of linear partial differential equations constructed by 
him. Study of the relations between the smoothness of the 
coefficients of a differential operator P and the smoothness 
of the solutions is a significant theme in the theory of differ­
ential equations. One theorem of this type is the Cauchy­
Kovalevskaya theorem, which is included in all textbooks. 
A more complicated problem was that of describing the 
classes of differential operators for which the problem has 
only analytic solutions: 

Pu = 0 => u is an analytic function. 

Hilbert included this problem in his list of problems 
posed at the 1900 International Congress of Mathemati­
cians in Paris. In the 1940s LG. Petrovskil solved this 
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problem in the exact form stated by Hilbert. Petrovskil 
proved many other general results in the theory of partial 
differential equations. In particular, he showed that solu­
tions of nonlinear elliptic systems with analytic coefficients 
are analytic and stated the problem of constructing a gen­
eral theory of systems of linear operators. This theory was 
the one that H6rmander constructed. 

H6rmander extended Petrovskil's theory by describing 
a class of differential operators P such that 

Pu = 0 ::::} u E Coo. (12) 

The identification of a new important class of operators 
called hypoelliptic operators followed. The solution ofprob­
lern (12) answered a question posed by Schwartz in his 
Theorie des distributions. Later work by H6rmander was 
associated with the theory of pseudo differential operators, 
where he also derived fundamental results. His four-volume 
monograph on differential operators is an encyclopedic ex­
position of the subject [Ha]. 

Charles Fefferman. Fefferman, a 1978 prize winner, is 
known for reviving the study of the classical problems of 
analysis. He obtained strong results in real and complex 
analysis, solving the du~lity problem for the Hardy spaces 
and studying the convergence of Fourier series of functions 
of several variables. In these problems he also solved the 
multiplier problem for the ball [Fe]. Define an' operator T 
in LP(JRn ) by the relation Tt(x) = XB(X)j(X), where XB 
is the characteristic function of the unit ball, and the hat 
denotes the Fourier transform. Is the operator T bounded 
in the norm of LP(JRn )? Earlier it had been proved that 
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the operator T is bounded if the ball is replaced by a cube. 
Fefferman's result for the ball is thus all the more surpris­
ing: The operator T 'is bounded only in L2 (lRn) if n > 1. 
Fefferman's proof ingeniously uses a beautiful classical con­
struction of A. Besicovitch. I recall Besicovitch's result 
here for the reader. In 1917 the Japanese mathematician 
S. Kakeya stated the following problem: In the class of fig­
ures in which a segment of length one can be turned through 
a complete revolution, while always remaining within the 
figure, which one has the smallest area'? Besicovitch's as-_ 
tonishing solution, obtained in 1928, was that the area of 
such a figure can be arbitrarily small. Subsequently the 
construction of analogues of such sets for regions in lRn 

(n > 2) were critical in a number of problems of the theory 
of functio~s, in particular, in Bourgain's work on estimat­
ing oscillatory integrals. 

Fefferman's papers on the classification of biholomor­
phic domains. is also very interesting. This work builds 
upon sharp estimates of the Bergman kernels. Fefferman 
offers a harmonious blend of the methods of real and com­
plex analysis. Especially beautiful are his results on real 
hypersurfaces and complex manifolds. 

Alain Connes. The work of Connes, a 1983 prize winner, 
fits into functional analysis with a bit of stretching. His 
principal results are in the theory of factors created by J. 
von Neumann in the theory of operators. In the 1930s and 
1940s von Neumann and F. Murray laid the foundations of 
factor theory. 

The basic propositions of this theory, whose source is 
in the commutation relations of quantum mechanics, re­
duce to the following. Let A be a ring of operators acting 
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in a Hilbert space H, and A* the ring of operators that 
commute with A. The rings A and A* form a factor if 
An A* = {AE}, where E is the identity operator. In the 
finite-dimensional case the rings A are isomorphic to rings 
of matrices acting in a space IRn. This result follows from 
Schur's lemma. The dimension n is the only invariant of a 
factor A. 

The infinite-dimensional case involves an immeasur­
ably more complicated situation. Murray and von Neu­
mann introduced the concept of relative dimension (6.), 
which makes it possible to classify factors in the infinite­
dimensional case. Besides factors of the type described 
(which are said to be of type I) there are two other classes 
of factors called types II and III. Factors of type II are 
divided into two subclasses III and Hoo. In class III the 
quantity 6. can assume any value in a finite interval [0, A) 
and in Hoo any value in [0,00]. Here A is a positive real 
number. For class III the quantity 6. assumes only the two 
values 0 and 00. In the 30 years following the papers of 
von Neumann and Murray almost no advances were made 
in factor theory. Then, in the 1960s, the situation changed. 
Many mathematicians contributed to advancing the classi­
fication of factors of types II and III. In particular, in 1967 
R. Powers constructed a continuous family of pairwise non­
isomorphic factors of type III. Connes completely classified 
factors of type III and solved a series of problems in factor 
theory posed in the foundational papers of von Neumann. 
He also found new, unexpected applications of this theory. 

Connes has also conducted a promising cycle of re­
search in a new area-noncommutative differential geome­
try. 



Mathematical Progress 101 

Concerning the papers of Connes, I wish to make some 
general remarks. The fate of the papers of von Neumann 
and Murray in factor theory is rather curious. They were 
inspired by von Neumann's deep interest in the problems 
of quantum mechanics, as one can tell from the text of 
articles. It was assumed that factors would be applied in 
quantum field theory and statistical physics. But, except 
for some highly artificial, desultory applications, this ap­
plication has not yet happened. Recent advances in field 
theory, especially two-dimensional conformal theories, may 
change the situation. 

This hope has been reinforced by some remarkable re­
cent discoveries. V. Jones contributed the main result when 
he constructed a new class of invariants of knots of polyno­
mial type. The Jones invariants differ from those of Alexan­
der, which have been known since the 1920s and provided 
a basis for solving some classical problems in knot the­
ory. Perhaps no less remarkable than the result itself is the 
method of constructing such invariants. Jones polynomials 
are closely connected with braid groups and Hecke algebras 
that generate factors of type III. In addition, such algebras 
arise in many models of statistical physics. Immediately 
after the papers of Jones, whole series of new polynomial 
invariants were obtained, defined by exactly solvable sta­
tistical models. In this field of research, mathematicians 
are discovering huge numbers of unexpected connections 
among topological, field-theoretic, and group problems. E. 
Witten [Wi2] has recently developed a fascinating approach 
to the construction of knot theory by field-theoretic meth­
ods. 

Although I am compelled to leave this theme, let me 
point out an amazing fact that becomes evident when the 
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classification of conformal theories and factors in Jones' 
theory are compared. One nearly identical number char­
acterizes both-the central charge in the first case and the 
factor index in the second [BPZ, J1]. 

Connes' work on noncommutative differential geome­
try has recently been applied to and connected with su­
perstring models. Witten has applied these subtle results 
to derive the Lagrangians for superstrings. In another re­
cent cycle of research applying noncommutative algebraic 
geometry to solid state physics, J. Bellisard attempts to 
explain the quantum Hall effect ([Be]). Connes has also in­
vestigated applications to physics. He has developed with 
enthusiasm the concept of physical space-time represented 
not as a set of points, but as a noncommutative space [Can]. 

These unforeseen ways of applying very abstract math­
ematical structures illustrate the "unreasonable effective­
ness of mathematics in the natural sciences." 

Mathematical Logic 

Paul Cohen. The contributions of Cohen to mathemati­
cal logic-the solution of the continuum hypothesis-are 
unusual. G. Cantor stated the continuum hypothesis in 
1878. A later formulation of it runs as follows: There does 
not exist a set of cardinality intermediate between a count­
able set and a set having cardinality of the continuum. In 
concluding an 1884 paper in the Mathematische Annalen 
with the words "to be continued," Cantor planned to prove 
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the continuum hypothesis in .the next part of the paper. 
The planned paper never appeared, however, and thereby 
shared the fate of many famous papers, beginning with 
Fermat's proof of his last theorem. 18 

Despite many attempts, several generations of mathe­
maticians failed to prove or refute the continuum hypoth­
esis. From 1938 to 1940 K. G6del obtained an outstanding 
result in relation to this question, when he proved that 
the continuum hypothesis.is consistent with the axioms of 
set theory, including the axiom of choice. Finally, in 1963 
Cohen proved that the continuum hypothesis cannot be 
deduced from the axioms of set theory. Like Godel's theo­
rem on the incompleteness of arithmetic,' this fundamental 
result has general scientific and philosophical significance. 

Cohen, a mathematician with wide-ranging interests, 
gave a paper at the 1962 congress in Stockholm devoted to 
harmonic analysis. Nevertheless, his principal achievement 
dealt with the continuum. 

This survey is perforce brief and superficial, but the 
prize-winning papers bring out an impressive picture of 
mathematical progress over the last 50 years. 

Tracing the fate of the Fields medalists makes one 
realize that the idea of the founder of the prize was ex­
ceptionally propitious. Nearly all winners of the prize are 
alive at present. The first two winners, J. Douglas and 
L. Ahlfors, passed away in 1965 and 1996, respectively. 
Many of them have continued to obtain significant results 

18 The 300-year history of Fermat's last theorem has apparently 

ended with a successful proof found by A. Wiles (Princeton U niver­

sity) [RS]. [Fal], [Po], [Wil]. 
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even after receiving the award and are recognized author­
ities in their branches of mathematics. Many medalists 
have changed areas of research, but have achieved impor­
tant results even in branches new to them: For example, 
Thom' founded catastrophe theory, which has found impor­
tant applications in mechanics, physics, ecology, and more. 
S.P. Novikov took up the study of the theory of nonlinear 
equations and the general theory of relativity. Smale has 
worked in economics and computational mathematics. 

Recent years have seen other prominent international 
mathematical prizes appear. It is difficult as yet to pro­
nounce on their longevity or compare them with the Fields 
prize. The most significant, the Wolf prize, is based on dif­
ferent principles [Za]. It crowns the career of great math­
ematicians (such at any rate is the appearance of the list 
of winners). Among the winners of the Wolf prize are Sel­
berg, Ahlfors, Kodaira, Milnor, Hormander, and Thomp­
son. Whether or not the Fields medal can be compared 
with the Nobel Prize, Fields' happy idea of awarding it to 
the young has been crowned with complete success. 



Appendix 1 

The 1990 Fields Medalists 

New Fields medalists were named at the Kyoto congress 
in August 1990. They were Drinfel'd, Jones, S. Mori, and 
Witten. All are well known in the mathematical world and 
'highly deserve the honor. The only unprecedented hap­
pening was that the Fields prize was awarded for the first 

, time to a person formally educated in physics and whose 
style of writing was physical, namely, E. Witten. In hon­
oring him the mathematical community was recognizing 
the exceptional importance of the penetration of physical 
ideas and methods into modern mathematics. Recent pa­
pers of medalists Jones and Drinfel'd also concern to a 
degree mathematical physics, or, from a different point of 
view, physical mathematics. In light of the close connec­
tion among many results of these three researchers, I shall 
begin an analysis of the achievements of the 1990 medalists 
with Japanese mathematician Mori, whose work is some­
what peripheral to that of the others. 

Shigejumi Mori. M9ri, who specializes in algebraic geom­
etry, continues the tradition of the distinguished Japanese 
school of algebraic geometers, which has already yielded 
two Fields medalists, Kodaira and Hironaka. Mori's most 

105 
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brilliant achievements are associated with the problem of 
classifying complex algebraic varieties of dimension ~ 3. 

In order to present Mori's results as concisely as pos­
sible, I shall make an excursion into the theory of algebraic 
varieties of low dimension. An algebraic variety is defined 
by a system of algebraic equations of the form 

where the Ii are polynomials in n variables. If the Ii are 
homogeneous polynomials, the variety can be regarded as a 
submanifold of projective space (cpn, Rpn). In this case 
they are called projective algebraic varieties. Depending 
on the coefficient field F to which the coordinates of the 
points (Xl, ... , xn) belong, one speaks of a real, complex, 
rational, or finite-characteristic algebraic variety. 

Classifying one-dimensional complex algebraic curves 
is equivalent to the problem of classifying compact Rie­
mann surfaces. The corresponding (unique) discrete topo­
logical invariant is the genus g-the "number of handles" of 
the Riemann surface. There are also continuous invariants 
(moduli) of the surface defined by integrals of holomorphic 
forms over cycles of the Riemann surface. 

Curiously, the study of general properties of algebraic 
curves leads to the following division into classes depend­
ing on the genus of the curve g: 1) curves with 9 = 0; 2) 
curves with 9 = 1; and 3) curves with 9 ~ 2. The geo­
metric analogues are respectively a sphere, a torus, and a' 
Riemann surface of genu~ 9 ~ 2. With striking consistency, 
the general algebraic and arithmetic theorems for algebraic 
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curves divide into precisely these three classes. The proof 
of Mordell's conjecture on the number of rational points on 
algebraic curves is the latest example of this type. 

The classification of two-dimensional complex alge­
braic surfaces is incomparably more difficult. Here a signif­
icantly larger number of possibilities exist, and the problem 
is not yet fully solved. A certain method of classification 
exists, however. 

In contrast to algebraic curves, by no means every 
compact complex surface is algebraic. Examples of such 
surfaces can be obtained from two-dimensional complex 
tori with a specially chosen lattice. Nevertheless methods 
of complex analysis are useful even in this problem. 

Studying the behavior of holomorphic forms on alge­
braic varieties, Kodaira introduced an invariant that al­
lowed him to distinguish two-dimensional algebraic sur­
faces in the spirit of algebraic curves. This invariant, called 
the Kodaira dimension, is connected with the multiple gen­
era of the surface determined by the behavior of holomor­
phic forms of higher dimensions. 

The Kodaira dimension facilitates a classification of 
surfaces analogous to that for curves, but the classifica­
tion is far from complete. Not having the opportunity to 
give details of this beautiful classification, I note here also 
that the principle of "Neanderthal arithmetic" holds: 0, 1, 
many. The Kodaira classification includes surfaces of gen­
eral type with J1- = 2 and special classes with J1- = -1,0, l. 
From the 1880s to the 1930s the Italian school of algebraic 
geometry obtained most of the results on the classification 
of complex two-dimensional surfaces. This school included 
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L. Cremona, E. Bertini, F. Enriques, G. Cast elnuovo , and 
F. Severi [Di4]. 

At the beginning of this century, Enriques described all 
surfaces of a special type. But, putting the virtuoso anal­
ysis of the Italian geometers on a sound algebraic founda­
tion required another 50 years of intensive development of 
algebra, topology, and algebraic geometry. R. Dedekind, 
H. Weber, Kummer, L. Kronecker, Hilbert, M. and E. 
N oether, and others laid the foundation for this work. 

Despite the progress made in algebraic geometry in the 
postwar years, mostly related to introducing such new con­
cepts as the theory of sheaves, schemes, the K -functor, and 
the like, the advance in more classical branches of algebraic 
geometry was slower. 

The problem of a reasonable classification of multi­
dimensional algebraic varieties conforming to the theory 
of algebraic curves or the Enriques-Kodaira theory of two­
dimensional surfaces seemed intractable. For that reason 
Mori's papers in the 1970s and 1980s were unexpected. 
By introducing many new ideas he extended the Kodaira 
classification to projective algebraic varieties of dimension 
three. Greatly simplified, the method of Mori's classifica­
tion can be thought of as the following sequence of opera­
tions. 

Let X be a projective algebraic variety. I introduce 
the concept of the cone of X, denoted C (X), i.e., the set of 
positive linear combinations of homology classes H2(X, R) 
of curves on X. The set C(X) forms a cone in H2(X, T). 
Mori proved that a special basis consisting of smooth ratio­
nal curves-the extremal rays-generates the negative in­
tersection of this cone with a one-dimensional Chern class 
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of the canonical . class of X. Carrying out a contraction 
along the extremal rays, using Kodaira surgery, Mori de­
rived all canonical forms of projective three-dimensional 
varieties. What is striking is that in the proof of the fun­
damental theorem he passed from the complex field to a 
field of finite characteristic. No proof of this theorem yet 
exists in the context of pure complex algebraic geometry. 
The methods developed by Mori have various applications 
and have already evoked many interesting results in multi­
dimensional algebraic geometry. His ideas are highly sig­
nificant for the entire foundation of this discipline. 

One corollary of his work is a new, transparent proof 
of the Enriques-Kodaira classification theorem. The study 
of three-dimensional algebraic varieties with singularities 
is another topic. Mori's papers are a splendid combination 
of the algebraic-geometric structures of the Grothendieck 
era with the geometric intuition and analytic virtuosity of 
mathematicians of the golden age of algebraic geometry. 

Let me complete this brief story of Mori's work with 
a remark on possible physical applications of his results. 
Modern theoretical physics, especially such branches as 
string theory and conformal field theory are absorbing the 
latest mathematical achievements with striking speed. Quite 
unexpected applications are now possible, but I mention 
only two areas right now. The first is the classification 
of n-dimensional (in particular three-dimensional) complex 
manifolds, a problem which arises in compactifying addi­
tional degrees of freedom in the theory of strings. The sec­
ond problem is finding the connection between completely 
integrable dynamical systems and moduli of algebraic va­
rieties. 
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Vladimir Gershonovich Drinfel'd. Continuing to violate al­
phabetical order and adhering rather to the intrinsic logic 
of narration, I now survey the papers of Drinfel'd, an al­
gebraic geometer by education and a student of Manin. 
His first series of papers, which earned him international 
fame, deal with the solution of a critical problem in non­
commutative class field theory-the proof of R. Langlands' 
conjecture for the group GL(2) defined over a function field 
[Dr!]. Noncommutative class field theory, a central theme 
of modern algebraic number theory, naturally generalizes 
classical class field theory-the theory of abelian extensions 
of global and local fields. 

Global fields include number fields, which can be re­
garded as finite extensions of the rational numbers, and 
function fields, i.e., finite extensions of the rational func­
tions of one variable over a finite field. A local field is the 
completion of a global field, and an abelian 'extension is 
an extension with an abelian Galois group. Abelian class 
field theory basically seeks to describe an abelian subgroup 

, of the Galois group Gal (KS / K), where K is a local or 
global field and KS the separable closure of it. Efforts 
of many generations of outstanding mathematicians of the 
nineteenth and twentieth centuries, among them E. Artin, 
Dedekind, Gauss, Hilbert, Kronecker, Kummer, J.L. La­
grange, T. Takagi, and Weil, solved this problem. 

By understanding the first step taken by Lagrange and 
Kummer, who described the cyclic extensions of a field K, 
the reader can appreciate the full power of this theory. 

The Lagrange-Kummer Theorem. If a field K con­
tains a primitive nth root of unity '7 then every cyclic field 
of degree n over K is generated by :yI8 for some o. 
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The principal problems of number theory are connect­
ed to some extent with class field theory, for example, study 
of the distribution of zeros of the zeta-function over alge­
braic fields. The most accessible introduction to classical 
theory is Weyl's book [We]. 

After this introduction, it is easy to imagine the dif­
ficulties posed in the transition to the noncommutative 
case-the description of the full Galois group Gal (KS / K). 
Langlands asserted that describing the group Gal (KS 

/ K) 
reduces to studying the set of finite-dimensional represen­
tations of the Galois group Gal (KS / K). In more precise 
language the question is whether a one-to-one correspon:" 
dence exists between the set of irreducible n-dimensional 
representations of the group Gal (KS / K) and the set of 
automorphic representations of the group GL(n;A). Here 
A is the ring of adeles-the set of numbers of the form 
( aoo , a2, ... , ap ), where aoo is a real number and ap are p­
adic numbers. Langlands' conjecture is a highly nontrivial. 
All of classical class field theory corresponds to the case 
n=1. 

The proof of this conjecture, aSide from independent 
interest, leads to a solution of several fundamental prob­
lems of number theory related to the analytic properties of ' 
zeta-functions of algebraic varieties. Clearly every advance 
toward its proof is of exceptional interest. 

Drinfel'd's first fully proved Langlands' conjecture for 
the case that follows the classical case (n = 1), namely the 
group 8L(2) over a function field. 

Here we again encounter a striking fact that has been 
ubiquitous in the theory of numbers starting with the Rie­
mann conjecture on the zeros of the zeta-function and end­
ing with the Mordell conjecture. Proof of the theorem has 
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been obtained for function fields. For number fields, even in 
the case GL(2), Langlands' conjecture remains unproved, 
and even stating it involves certain difficulties. 

Drinfel'd not only obtained results having various ap­
plications in algebraic geometry, but also the method of 
proof. He introduced new algebraic-geometric structures, 
the F -sheaves, that find wide application across algebraic 
geometry, for example, in the theory of algebraic surfaces. 

Drinfel'd's interests are not limited to algebraic ge­
ometry. Modern physical problems, where mathematicians 
may find applications of their methods and acquire new 
formulations of purely mathematical problems, did not es­
cape Drinfel'd's attention. I have already noted the work 
of Atiyah, Drinfel'd, Manin, and Hitchin on the algebraic­
geometric classification of instantons. This work made 
Drinfel'd widely known among theoretical physicists. Pa­
pers of Drinfel'd and A.A. Belavin on the construction of 
the solutions of the Yang-Baxter equations ("triangles") 
in conformal field theory and his joint paper with V.V. 
Sokolov on nonlinear equations followed. They showed that 
for each infinite-dimensional Kac-Moody algebra it is pos­
sible to construct a system of evolution equations linked 
to a two-dimensional integrable system (a Toda chain) just 
as the Korteweg-de Vries equation is connected with, the 
sine-Gordon equation [DS]. The proof that the equation& 
of two-dimensional gravitation are integrable has recently 
drawn additional attention to this paper. 

Finally, I come to the last series of papers by Drin­
fel'd, which has brought him the most fame, on quantum 
groups [Dr2]. The object itself, quantum groups (choosing 
a propitious name is half the job) arose earlier under differ-
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ent names-Hopf algebras, ring groups-and in relation to 
other problems. Somewhat inaccurately, a quantum group 
is an algebra on which two kinds of multiplication are de­
fined: multiplication, which maps the vector space into the 
algebra, and comultiplication, or multiplication in the dual 
space. 

H. Hopf first studied algebras of this type in alge­
braic topology in constructing the theory of cohomology of 
groups. Milnor and J. Moore systematically studied Hopf 
algebras from the point of view of topology. In the 1960s 
G.L Katz introduced another class of quantum groups­
ring groups-in generalizing the concept of duality on non­
commutative groups. Here the analogues of quantum groups 
are rings of continuous functions on a group. Hopf alge­
bras appeared, also in algebraic field theory, in the laws of 
superselection. Nevertheless these profound results seemed 
artificial and to have an insignificant field of applications. 

In the last decade the situation has changed radically 
with the discovery of a powerful new method of integrating 
the model equations of quantum field theory and statistical 
physics-the quantum inverse scattering method. The new 
method is an amalgam of ideas from the classical inverse 
problem and specific devices gleaned from physics-Bethe 
substitutions and the Yang-Baxter equations. 

The main object of this theory is the so-called R­
matrix. This matrix makes it possible to compute the 
transfer-matrix of the corresponding equation and find the 
spectrum of the model. The algebra of R-matrices was to 
be a very nontrivial mathematical object. In the analysis 
of R-matrices of solutions, Drinfel'd discovered their close 
connection with quantum groups. 
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Together with quantum groups he introduced Poisson­
Lie groups. His definition of a Poisson-Lie group G in­
cluded a definition of Poisson brackets on the function 
space F(G) and the coproduct ~ : F(G) --t F(G) ® F(G). 

With this definition one can introduce the concept of 
the quantized Poisson algebra as a deformation depending 
on the parameter 17, (where 17, has a physical interpretation 
as Planck's constant). This last property justifies the term 
quantum group. 

Quantum groups were a concept whose time had come. 
Simultaneously with the papers of Drinfel'd, works of M. 
Jimbo and S. Woronowicz appeared that gave other defini­
tions and applications of quantum groups. The Leningrad 
school of mathematical physics founded by L.D. Faddeev 
[Fa] arrived at first-rate results in the theory of quantum 
groups. Faddeev and his students have been leaders in the 
construction of a general method of integrating quantum 
systems: the construction of the quantum inverse' scatter­
ing problem. No wonder such active participants in the 
group as V.E. Korepin, N.Yu. Reshetikhin, M.A. Semenov­
Tyanshanskii, S.E. Sklyanin, L.A. Takhtadjan, and others 
have taken up the development of the theory of quantum 
groups. The close contacts with topology (V.G. Turaev, 
Viro) lead to unexpected ties with another recent remark­
able discovery-the Jones polynomials. I shall say more 
about this later when I discuss another winner of the Fields 
prize. 

Vaughan Jones. In 1990, for the first time, the Fields 
prize honored a mathematician from the southern hemi­
sphere. Jones was born in New Zealand, graduated from 
the University of Geneva, and is now professor at the Uni-
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versity of California at Berkeley (the nightmare of Soviet19 

bureaucrats-the continuing "brain drain"). 
A student of Swiss topologist A. Haefliger, Jones spe­

cialized in one branch of functional analysis, the theory of 
factors. In connection with his research in the von Neu­
mann theory of factors he made a remarkable discovery­
the construction of a new type of polynomial invariants of 
knots. In the main portion of this book I have already 
mentioned the Jones invariants, and so I shall try here to 
give a clearer idea of the structure of the Jones polynomials 
proper. 

I begin with a parallel description of two systems. The 
first system is physical. Consider the motion of three points 
on aline, all moving with constant velocity. Assuming that 
only pairwise collisions are possible and that the particles 
exchange only their internal degrees of freedom in a col­
lision and maintain the trajectories of their motion, we 
obtain the following equation for the scattering matrices of 
three-particle s~attering: 

(13) 

Here R = (R~/») are the scattering amplitudes; i and j 
are the final states; and k and l the initial states of the 
system of particles (i,j, k, l = 1,2,3). Here the indices 1 or 
2 indicate that the matrices R act on the particles (1 2) and" 
(2 3) respectively. Equation (13) is the simplest example 
of the Yang-Baxter equations. 

19 Now "former" Soviet bureaucrats. Human psychology does not 

change as rapidly as political regimes. 
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I now turn to a mathematical model. With each knot 
one can associate the group braid B. The simplest non­
trivial braid consists of three threads aI, a2, and a3. If we 
identify isotopic sets of threads, the set of braids becomes 
a group B 3 . There exists a homomorphism of the group 
B3 into the permutation group 83. The elementary gener­
ators of the group (J"i (i = 1,2) satisfy relations analogous 
to (13). This fact holds also for an arbitrary group Bn-

By associating the matrix Rn with the element an, we 
obtain a matrix representation of the group B. Computing 
the generating function for this representation gives the 
Jones knot invariants. 

This construction makes clear the role of the Yang­
Baxter algebra for finding a system of invariants. Imme­
diately after the work of Jones two directions of research 
came to the forefront. One is connected with topology. In 
this area researchers obtained new classes of invariants: en­
tire series of new polynomials, for example polynomials in 
two variables, Kaufman polynomials, and the like. 

In contrast to the Alexander polynomials, the Jones 
polynomials have the remarkable property of chirality, i.e., 
they distinguish a knot from its mirror image. For the sim­
plest nontrivial knot, the trefoil for example, the Alexander 
polynomial A(t) is t2 - t + 1, while the Jones polynomial is 
V = _t4 + t 3 + t. Computing the Jones polynomial solves 
in some cases the old problem of distinguishing a knot from 
its mirror image. 

Connections of Jones structures with physical prob­
lems are of equal interest. The original construction was 
based on the study of factors that arise in exactly solvable 
models of statistical physics. A direct link was soon found 
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between the method of the quantum inverse problem (R­
matrices) and polynomials of Jones type in papers of Jones 
and Turaev. By choosing a suitable Yang-Baxter equation, 
it is possible to construct other polynomials of Jones type. 
Most recently knot invariants have been obtained by using 
the ideas of quantum group theory. 

For all their remarkable properties the Jones polyno­
mials had certain shortcomings. It remained unclear how 
the Jones polynomials relate to the known topological con­
structions of knot invariants: the fundamental group of the 
complement of the knot, linking coefficients, Milnor num­
bers, Seifert manifolds, and so forth. 

Moscow mathematician V. Vasil'ev recently proposed 
an unexpected approach to the problem of constructing 
a complete system of knot invariants. Vasil'ev's work is 
giving a new look at this whole body of questions. [Va] 

The Vasil'ev construction of knot invariants is based 
on ideas of singularity theory and schematically looks as 
follows. Consider the set of mappings §1 ---* §3 having 
singularities or self-intersection. This set is called the dis­
criminant and forms a special hypersurface in the space of 
all mappings. Its nonsingular points correspond to map­
ping with one point of transversal self-intersection, and its 
singularities to mappings having derivatives with zeros, or 
nontransversal or multiple self-intersections. By use of a 
discriminant any numerical knot invariant of isotopic type 
can be given. To be specific, to each nonsingular piece 
of the discriminant, i.e., connected component of the set 
of its nonsingular points, one must ascribe an index-the 
difference of values of the invariant for the nearby knots 
separated by this piece. This set of indices is not arbitrary 
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and must satisfy a homology condition if the invariant is 
to be well defined: the sum of the components taken with 
certain coefficients is homologous to zero in the space of 
mappings §1 -)0 §3. A more precise definition requires in­
troducing the class of noncompact knots, i.e., nonsingular 
imbeddings ~l -)0 ~3 of infinity tending to a fixed linearly 
imbedded line ~ 1. I shall denote the space of all smooth 
mappings, including singular mappings, by X. This space 
is homotopic ally triviaL I denote the discriminant of this 
space by 2). The connected components of the space of non­
compact knots X \ 2) is in one-to-one correspondence with 
the regularly homotopic classes of ordinary knots §1 -t §3. 

The Vasil'ev invariants correspond to the zero-dimensional 
cohomology group HO(X \ 2»). The group HO(X \ TI) to­
gether with Hi(X\ 2»), i > 0 is computed using the spectral 
sequence whose filtration is determined by the types and 
multiplicities of singularities of the discriminant surface. 

The fundamental question of knot theory-whether 
there exists a complete system of invariants-reduces in the 
Vasil' ev theory to determining the convergence of the spec­
tral sequence. Currently there is not a complete answer, 
but the Vasil'ev theory appears to be the most realistic 
route to solving this problem. Even the preliminary results 
and connections discovered with other, remote branches of 
mathematics, show the exceptional importance of this re­
sult. I note only a few of these results, which have all been 
obtained very recently. 

J. Birman and X.S. Lin first showed how to obtain the 
Jones polynomials from the Vasil'ev invariants [Bi] which 
is only the initial, but important step, on the road to un­
derstanding the Vasil'ev and Jones invariants within the 
classical topological technique. M. Kontsevich, D. Bar-



Appendix 1 119 

N atan, and Witten are developing an intriguing approach 
to the Vasil'ev invariants, based on topological field the­
ory. In particular, Kontsevich has found integral represen­
tations like the Gauss formula for Vasil'ev invariants, and 

, Bar-Natan and Witten have devised a perturbation theory 
for computing the same invariants, using Feynman inte­
grals for the Chern-Simons action. The Vasll'ev technique 
makes possible the construction of analogous invariants for 
imbeddings of multi-dimensional knots. 

Edward Witten. The prior results indicate a discovery of 
exceptional importance, while the unexpected connections 
with other fundamental problems of mathematical physics, 
sometimes encountered, suggest that we are only at the 
beginning of the road. Witten's papers best confirm this 
fact. Witten graduated from Harvard University having 
majored in physics. His first paper, which made him fa­
mous, was the construction of an n-instanton solution of 
the Yang-Mills equation. It showed a physicist who had 
an impressive mastery of modern mathematical machin­
ery. In about four years he wrote a series of papers hav­
ing both purely physical interest and great mathematical 
value. The fundamental paper was "Supersymmetry and 
Morse theory," which has already been mentioned in dis­
cussing the Atiyah-Singer index theorem. The principal 
idea, the construction for each classical differential oper­
ator on a manifold of a certain fermion operator of the 
classical differential operator accompanying the quantum­
mechanical supersymmetric system, has been exceptionally 
productive. 

Witten is a brilliant representative of the new wave of 
physicists who are redefining the face of modern theoreti-
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cal physics, turning it more toward mathematics. While 
other physicists-it suffices to mention A. Polyakov, A. 
Zamolodchikov, and G. 't Hooft-arrive at new or nonstan­
dard mathematical applications (the theory of monopoles, 
instantons, conformal field theory) in solving a physical 
problem, the opposite trait is characteristic of Witten, es­
pecially in his later papers: He applies physical ideas to 
construct mathematical structures. Here are two exam­
ples. The first involves a new approach to the construction 
of Jones polynomials. 

Let M3 be a three-dimensional closed manifold and L 
a set of linked circles li, situated in it. With each manifold 
M3 we connect a certain topological field-theoretic model 
defined by the Lagrangian 

[, = k J Tr (A i\ dA + (2/3)A i\ A fI A). 
M3 

Here A is the connection, or field intensity, generated by 
the bundle over M3 with gauge group G. With the system 
of curves li one can associate a functional of the connection 
A. 

where R is an irreducible representation of the group G, 
P is the normal ordering necessary for defining exp for a 
noncommutative group G. 

Now consider the Feynman path integral over: 

Z = J DAexp(i[,)IIWRj(lj). 

D A is the Feynman measure. 
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Proposition. The correlation function Z defines Jones­
type in variants for the link L. 

One corollary is the possibility of defining the Jones 
invariants for linkages lying in any compact manifold M3, 
not only in the sphere §3. Although Witten's chief paper 
does not meet mathematical standards of rigorous proof, 
the large number of brilliant ideas, conjectures, and results 
it contained more than atoned for this sin. 

The second example, taken from a 1992 paper by Wit­
ten, relates to a major discovery in theoretical physics-the 
exact solutions of the two-dimensional gravity equations. 
This significant result seems particularly interesting in its 
method. In essence Witten arrived at the first major re­
sult in field theory by combining analytic computations 
and computer experiments. This achievement is based on 
the method of dynamic triangulations of manifolds, which 
A. Migdal and his school had developed over many years 
[Mig]. With his characteristic energy Witten took up this 
problem. He conjectured that a connection exists between 
the problem of the moduli of Riemann surfaces and topo­
logical gravity. He found a representation for the intersec­
tion numbers of the moduli space of a punctured Riemann 
surface of genus 9 in terms of solutions of the generalized 
Korteweg-de Vries equation, the basic object of the theory 
of completely integrable systems. Kontsevich [Wi3] has 
obtained a strict proof in some special cases. 

Witten's ideas in topological field theory allow us to 
sense hidden connections between such beautiful results 
(at first sight so remote from one another) as the theory 
of Jones polynomials, Donaldson and Floer invariants of 
three- and four-dimensional manifolds, completely integra-
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ble equations of conformal field theory, two-dimensional 
statistical systems, and many others. 

In recognizing Witten, the Fields committee set a pre­
cedent that seems to be in perfect accord with the spirit of 
this prize. By choosing Witten along with three "regular" 
mathematicians-Drinfel'd, Jones, and Mori-the .Fields 
committee was reminding the mathematical community of 
the range of remarkable discoveries that had been made 
in modern mathematics and what penetrating talents are 
at our disposal. The Fields prize entered its second half­
century with confidence. 
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The 1994 Fields Medalists 

Zurich had the horior of hosting the 1994 International 
Congress of Mathematicians. In this city the history of 
mathematical congresses had begun in 1897,20 and the 
Fields prize was established there in 1932. Considering 
that up to the present the International Congress has not 
been held even twice in any other city, the role of Zurich in 
the life of the worldwide mathematical community is truly 
exceptional. 

J. Bourgain, P.-L. Lions, J.-C. Yoccoz, and E. Zel­
manov are the new Fields medalists. These mathemati­
cians had obtained significant results in algebra, harmonic 
analysis, the theory of dynamical systems, and partial dif­
ferential equations. The 1994 decisions of the Fields com­
mittee bespeak a reaction to the tendency of the preced­
ing few congresses, where topology and algebraic geometry 
predominated. 

In this brief survey of the achievements of the Fields 
winners I shall follow the classifications of the congress and 

20 The 1893 congress in Chicago, organized by Felix Klein, was not 

international, despite being called so. Only four foreign scholars took 

. part in the congress, which was part of the World's Fair celebrating 

the 400th anniversary of Columbus' discovery of America. 

123 
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begin with the classical section and the oldest branch of 
mathematics-algebra. 

Efim Zelmanov. Zelmanov received the Fields medal for 
solving the restricted Burnside problem. This result capped 
off an extended period in group theory. 

In 1902 British mathematician W. Burnside stated the 
following problem. Consider a group B(m, n) with a finite 
number of generators b1, ... , bm , all of whose elements have 
finite order n: gn = 1, 9 E B (such groups are said to be 
periodic of degree n). Is the group B finite? A weaker state­
ment, which came to be known as the generalized Burnside 
problem, reduces to the question of the finiteness of the 
group B under the assumption that it is periodic, without 
requiring a universal degree n for all elements. 

The solution of the Burnside problem and its general­
ized statement was exceptionally difficult but fruitful. The 
solution took over 60 years and required new, powerful 
methods, not only in abstract group theory, but also the 
application of ideas from other areas of algebra, like the 
theory of Lie algebras. 

In 1964 Moscow mathematician E. Golod solved the 
generalized Burnside problem. He constructed an example 
of a finitely generated infinite group all of whose elements 
have finite order, but for which the orders are not uniformly 
bounded. His result is based on reducing the generalized 
Burnside problem to a certain problem in the theory of Lie 
algebras, where analogous ideas made it possible to con­
struct a counterexample to another interesting conjecture: 
the finiteness of a tower of fields of classes [Gol]. 

A bout the same time an assault on the classical Burn­
side problem began. P.S. Novikov (the father of S.P. Novi-
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kov) took a fundamental step in 1959, but the complete 
proof was not achieved until 1968 in a joint paper of P.S. 
Novikov and S.l. Adyan. They constructed an example of 
an infinite periodic group having odd degree n 2:: 438l. 
The proof of this result is among the most difficult in mod­
ern mathematics. It occupies more than 300 journal pages 
and is based on a complicated induction. In recent years 
Adyan, A.Yu. Ol'shanskii, LG. Lisenok, and others, have 
succeeded in simplifying the original proof, lowering the 
degree n to 115. 

These results make it all the more remarkable that the 
restricted Burnside problem has a positive answer. The 
explicit statement and terminology are due to W. Magnus 
(1950): Is the number of m-generated finite groups of de­
gree n finite? More precisely, the question reduces to the 
existence of a maximal finite m-generated group Bo(m, n) 
of degree n: Bo(m, n) = B(m, n)/ H, where H is the inter­
section of all normal subgroups of finite index in the group 
B(m, n). Magnus reduced this problem for a prime expo­
nent n = p to the question of the nilpotence of finitely gen­
erated Lie algebras with the Engel identity. Subsequently 
1. Sanoy generalized this result to n = pO! and P. Hall and I 

G. Higman proved that the case of general n reduces to 
n = pO!. 

A. Kostrikin [Kos] took the next step. He proposed a 
proof of the restricted Burnside 'problem for a prime expo­
nent n = p. Unfortunately, it contained serious gaps and 
was completed only 20 years later. For n = pO! the proof 
becomes significantly more complicated, since the corre­
sponding algebra L is no longer an algebra over the ring 
Zp, and satisfies a weaker condition than the Engel identity, 
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the so-called linearized Engel condition. Nevertheless by 
using highly nontrivial constructions, including Jordan al­
gebras and supersymmetric Lie algebras, Zelmanov proved 
that the algebra L is nilpotent. It follows that the re­
stricted Burnside problem has a positive answer for expo­
nents n = pk, including the case p = 2 [Ze1, Ze2]. 

For an arbitrary n the proof is achieved by reduction 
to the theorem on the classification of finite simple groups. 
It would be extremely desirable to have a direct proof of 
the general case. 

Zelmanov harmoniously combines a mastery of virtu­
oso techniques with the use of new ideas and general alge­
braic constructions. One important Ingredient in the proof 
of the restricted Burnside problem is Jordan algebras. For 
many years Zelmanov studied the theory of Jordan alge­
bras. He made significant advances in the classification of 
finite-dimensional and infinite-dimensional Jordan algebras 
[Ze3]. 

The attempt to extend Zelmanov's results to compact 
and so-called profinite groups gave rise to yet another circle 
of problems. Zelmanov proved an analogue of the gener­
alized Burnside problem for periodic compact groups. A 
corollary of this result is a beautiful theorem: Every in­
finite compact group contains an infinite abelian subgroup 
[Ze4]. 

Despite these beautiful results connected with Burn­
side's problem, many unsolved problems remain. For ex­
ample, no lower bound has been found on the degree n in 
the Novikov-Adyan theorem. 

But connections with other branches of mathematics 
may be yet more important. The connection with the hy-



Appendix 2 127 

perbolic Gromov groups is promising [Grom]. Undoubtedly 
the theory of Jordan algebras, which arose in connection 
with problems of quantum mechanics in the work of P. Jor­
dan, von Neumann, and E. Wigner and was so brilliantly 
advanced in the work of Zelmanov, will find substantial 
physical applications. 

Jean Bourgain. Bourgain, a mathematician with wide in­
terests, is the author of major results in Banach spaces, 
harmonic analysis, convex bodies, ergodic theory, and non­
linear equations. Characteristic of his work is his virtuoso 
mastery of analytic technique and the skillful construction 
of unexpected examples, some in well-traveled and tradi­
tional areas. 

Let us begin with the theory of Banach spaces, a classi­
cal branch of linear functional analysis. Banach spaces, dis­
covered by the Polish mathematician Stefan Banach in the 
early 19208, were intensely studied in the period just before 
the Second World War. The Polish school, which included 
some outstanding mathematicians, such as H. Steinhaus, J. 
Schauder, S. Mazur, and 'others, made an especially large 
contribution to the theory of Banach spaces. Unfortunately 
tJ::le war interrupted their fertile investigations. After the 
war, interest in Banach spaces declined sharply. A feeling 
had arisen that, outside the difficult unsolved problems left 
by classical authors, little prospect existed of any particu­
larly interesting results, much less of applications to other 
branches of mathematics. The change in this point of view, 
which occurred in the mid-1950s, is largely bound to the 
new ideas and methods propounded by Grothendieck and 
Schwartz. The "great French revolution," which reawak­
ened interest in this area of mathematics, was the solution 
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of several of the most difficult problems in the theory of 
Banach spaces. 

In 1973 Per Enflo's negative solution of the famou~ 
problem of the existence of a basis caused a sensation. One 
important corollary of this work was the identification of 
a large class of Banach spaces having special (Schauder) 
bases. 

Such spaces have the approximation property, i.e., ev­
ery compact operator from any Banach space into the given 
Banach space B can be approximated by operators of finite 
rank. Banach spaces of this type are infinite-dimensional, 
yet many of their characteristics are close to finite-dimen­
sional spaces. Nevertheless, even general Banach spaces 
have a number of remarkable properties. Well-known ex­
amples of Banach spaces are the spaces LP (S), 1 :::; p < 00, 

Loo, lp(S), O(S) = {c(S)}, where O(S) is the space of 
bounded scalar-valued functions defined on the set S. From 
the topological point of view the Banach spaces of simplest 
structure are the Hilbert spaces £2(S) and l2. In particu­
lar all separable Hilbert spaces are isomorphic: For general 
Banach spaces this assertion no longer holds. Examples 
constructed by Bourgain show the complicated phenomena 
that arise in the study of arbitrary Banach spaces. Here are 
two examples from the many constructed by Bourgain: 1) 
There exists a subspace V c L1 isomorphic to l1 but having 
no complementary subspace V.l such that V.lE9V = £1; 2) 
in l1 there exist uncomplemented subspaces Y isomorphic 
to h. 

Recently these results have aroused the interest of spe­
cialists in Banach algebras in the attempt at a homological 
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classification of modules over rings. These ideas also have 
earlier work of Grothendieck as a source. 

Important Banach spaces that arise in several branches 
of analysis are the spaces of analytic functions defined in 
a domain of the complex plane A(D), where D c en. A 
fundamental question asks whether the isomorphism of two 
spaces A(DI ) and A(D2) is determined by the dimension 
and geometry of the domains DI and D 2 . Among the pro­
found results obtained in this area was G.M. Henkin's proof 
that the spaces A(Dk) and A(Dr) are nonisomorphic for 
any natural numbers n ~ 2, k ~ 1. Here Dk is the open 
unit ball in ek and Dr is the unit polycylinder in en: 
IZil < 1, (i = 1, ... , n). Bourgain solved the analogous 
problem for the Hardy spaces HI(D), which are subspaces 
of the corresponding A(D). He proved that the spaces 
HI(Dm) and HI (Dn) are nonisomorphic, where Dm and 
Dn are polydisks of the corresponding dimensions. The 
study of isomorphism required a complicated analytic tech­
nique, in particular the theory of integral representations in 
complex domains. Bourgain also solved the difficult basis 
problem in the space A(B), where B is the unit ball in en. 
Previously it had been known that an unconditional basis 
exists in A(B). Bourgain showed that there is no Schauder 
basis in A(B). This result shows that delicate properties 
of Banach spaces arise even in the most natural examples. 
The similarity to finite-dimensional vector spaces makes it 
possible to develop the beautiful geometric theory of Ba­
nach spaces. Remarkable applications have opened up in 
the theory of approximations of functions, harmonic mea­
sures, entropy properties of function spaces, and so forth. 
Bourgain, jointly with V. Milman, obtained the following 
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result: Let X be an n-dimensional real normed space with 
unit ball Band c an ellipsoid of maximal volume contained 
in B. Then the following estimate holds: 

(
VOln B ) 4 
Volnc < kC2 (X) log C2(X), 

where C2 (X) is defined for every finite-dimensional space 
X. 

This result is valid for a large class of Banach spaces, 
for example LP, p ;::: 2, and has many applications in the 
theory of Kolmogorov diameters. 

Bourgain's work on harmonic analysis in real spaces 
generated great resonance. His analytic talent fully re­
vealed itself in the study of multi-dimensional Fourier trans­
forms and generalized osCillatory integrals. To obtain pre­
cise estimates of the spherical means in the metric of LP 
he applied new geometric constructions, including a multi­
dimensional generalization of the Besicovitch-Kakeya sets. 

Not having space to discuss all of Bourgain's work, 
much of which is devoted to solving long-standing prob­
lems by relying on complicated analytic machinery, I shall 
mention only one result, which can be stated simply. The 
ergodic theorem proved by Bourgain is a beautiful gener­
alization of Birkhoff's well-known theorem. 

Let T be a measure-preserving ergodic transformation 
of the space f2 and f E Lr(f2,I-"), where r > 1 and f-£ is a 
probability measure on f2. Let P(x) be a polynomial with 
integer coefficients. Consider the mean: 

AN f = ~ L TP(n) J. 
1 ".5:.n".5:.N 



Appendix 2 131 

Bourgain's Theorem. The quantity AN f converges al­
most everywhere on n. 
This theorem applies to a large class of arithmetic sets and 
has applications in number theory and harmonic analysis. 

In recent years study of the existence of global solu­
tions of nonlinear evolution equations has entered Bour­
gain's interests, and he has applied the technique of har­
monic analysis. A brief survey of Bourgain's achievements 
and a selected list of his papers appears in the article by J. 
Lindenstrauss in the Notices of the American l'l.lathematical 
Society [Lin]. 

Pierre-Louis Lions. Lions concentrated on the theory of 
partial differential equations, an area of mathematics closely 
connected with physics, mechanics, and control theory. An 
extraordinarily active mathematician, Lions has obtained 
profound results in several areas of differential equations. 

I shall single out two series of papers of Lions, which 
have brought him great renown. 

1. The theory of kinetic equations. 
2. The theory of viscosity solutions. 
The kinetic theory, which mathematically describes 

the most important physical media such as gases, plasma 
(ionized gas), and the like, is a complicated system of con­
sistent nonlinear integro-differEmtial equations. Pursuit of 
general methods of solving such equations, and clarifica­
tion of conditions for 'uniqueness and smoothness of the 
solutions are very difficult mathematical problems. 

A classical kinetic equation is the system 

(14) 
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where f is the distribution function of particles over the 
coordinates (x) and momenta (p), and CJ f is the collision 
integral. The derivative p is determined by the force act­
ing on the particle. Equation (2) contains as special cases 
the Boltzmann equation (p = 0) and the equation that de­
scribes a collision-free plasma. In a series of papers, written 
jointly with R. Di Perna, Lions studied the Cauchy prob­
lem for Equation (14). He distinguished a class of global 
solutions, the so-called renormalized solutions, Jor which a 
priori estimates derived from conservation laws are valid. 
In the case when CI f = 0, Lions and B. Perthame proved 
the uniqueness and regularity of the corresponding solu­
tions. The methods of proof are based on deriving delicate 
a priori estimates and require the application of nonstan­
dard considerations from harmonic analysis. These meth­
ods have also been applied to other physically interesting 
problems: the Navier-Stokes equation, the equations of gas 
dynamics, and a number of others. 

Since the classical work of E. Hopf, the method of vis­
cosity solutions has been used in the theory of differential 
equations. Hopf's idea can be explained using the example 
of the simplest quasi-linear equation 

Ut + UUx = 0. (15) 

Consider the auxiliary equation 

(16) 

with initial condition Ut=O = uo(x). 
Passing to the limit over the vanishing viscosity c --+ 0 

in the solution U = uE:(t,x) of Equation (16) gives the so­
lution of Equation (15). A suitable justification of passage 
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to the limit requires estimates of the solutions ue(t, x) that 
are uniform with respect to e for Uo (x) E L1 (lR 1) n L 00 (lR 1). 

Equation (15) belongs to an important class of equations 
generated by the system of conservation laws 

Ut + cp(U)x = 0 

with convex function cp(u). 
Lions broadened and generalized the theory of viscos­

ity solutions. The foremost class of equations amenable to 
the method of viscosity solutions includes the Hamilton­
Jacobi equations and the Bellman equation, which is fun­
damental to control theory. 

A much larger field of applications arose after the work 
of R. Jensen [Je], who proved that the theory of viscos­
ity solutions applies to second-order equations. This body 
of questions harmoniously encompassed wide application 
of nontraditional methods, mainly the wide application of 
the ideas of global functional analysis, and a significantly 
enlarged area of applications. 

I have mentioned only two areas of Lions' work. Not 
having space to discuss his other interesting results, I refer 
the reader to the articles by Lions [Liol] , [Lio2], and the 
paper [CIL], which contains detailed information. 

Jean-Christophe Yoccoz. Yoccoz pursued two rapidly de­
veloping areas of mathematics: the theory of dynamical 
systems and holomorphic dynamics. The two areas are 
closely intertwined and connected with the names of clas­
sical scholars of the French mathematical school: Poincare, 
Fatou, and Julia. The fates of these two areas were differ­
ent. Poincare's. work in celestial mechanics and his paper 
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"On curves defined by differential equations" laid the foun­
dations of the modern theory of dynamical systems. The 
leading mathematicians of the twentieth century extended 
them. The papers of Fatou and Julia on the structure of 
the endomorphisms of complex sets, such as the Riemann 
sphere, remained a backwater in mathematics for almost 
50 years .. Only in the late 1960s was interest revived in 
connection with new horizons in the theory of dynamical 
systems, Sinai billiards, and the like. In the last decade 
studies in holomorphic dynamics have become especially 
popular. Such new and "well-forgotten old" concepts as 
fractals and strange attractors. have now found a natural 
sphere of application. 

In this more intuitive presentation of Yoccoz' achieve­
ments, I shall briefly state several basic problems in both 
dynamical systems and holomorphic dynamics and mention 
the results of his illustrious predecessors. 

1. The problem of small denominators. 

In his studies on the three-body problem Poincare 
grappled with the difficult series of perturbation theory ap­
plied by astronomers G.W. Hill, H. Gylden, A. Lindstedt, 
and others in studying the stability of the orbits of planets 
and asteroids. 

The small denominators that arise in the analysis of 
. these series, i.e., expressions of the form 

(A, q), (17) 

where A = {Al, ... ,An} E en, q= {ql, ... ,qn) E zn, and 
(A, q), the inner products occurring as denominators in the 
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terms of the expansion 

ei()..,q)t 

I:amn (A,q) , (18) 

turn out to be anomalously small and make analysis of the 
asymptotic convergence of the series (18) difficult. Without 
this analysis operations with the series become unfeasible. 
The problem of small denominators also arises in other 
problems of the theory of ordinary differential equations, 
for example, in studying the behavior of the trajectories ' 
of conservative systems in a neighborhood of a point of 
equilibrium or a periodic solution. An effective method of 

, solving this problem is to reduce the equation to a simpler 
form, i.e., to find a normal form. A typical example is the 
following problem: Suppose given the equation 

x = A(x), x E en, (19) 

where A(x) is a power series in x. Under which conditions 
can this equation can be made into a linear equation by a 
change of the variable x: 

iJ = Ay? (20) 

This problem has various formulations and generalizations, 
for example, reduction to. the form (20) in the class of 
formal power series, which Poincare himself studied. The 
question of the reduction using analytic functions is more 
complicated. It requires clarification of the convergence of 
the formal series. These problems formed part of the clas­
sical studies of Bir khoff, Siegel, and other prominent math­
ematicians. Despite all these efforts, the multi-dimensional 
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problem of finding a normal form remains far from being 
completely solved. But in the case of two degrees of free­
dom it has been solved. The importance of the properties 
of arithmeticity of the eigenvalues of the matrix A was al­
ready cited in the early papers of Poincare. Later Siegel 
proved the following remarkable theorem: 

If the eigenvalues of the linear part of the matrix A at 
a singular point satisfy the condition 

C 
IAi - (m,A)1 > -, v> 2, mV 

then the field A(x) is analytically equivalent to its linear 
part in a neighborhood of the singular point. 

This theorem also holds in the multi-dimensional case. 
T. Cheery and A. Bryuno made it possible to weaken Sieg­
el's condition when they proved the following theorem: 

Let A = All A2, and let A have the continued-fraction 
expansion 

1 
A = ao + ----::'1--

al+--­
a2 + ... 

Let qk denote the denominator of the convergent Pk of or­
qk 

der k in the expansion of A. Then the system (19) can be 
reduced to the form (20) if 

00 

L q;l In qk+l < 00. 
k=l 

Although this result was reached from 1964 to 1965, it 
took another 20 years before Yoccoz proved the necessity of 
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this condition. Thus, in the case of two degrees of freedom a 
complete criterion for analytic reducibility to normal form 
(20) exists. 

Another result of Yoccoz has a long prehistory and 
also goes back to Poincare, namely the study of condition­
ally periodic motions of Hamiltonian systems. Study of 
the motions of Hamiltonian systems even on an invariant 
torus (1'2) with two degrees of freedom leads to profound 
theorems in the theory of dynamical systems. 

Let us define a differential equation on the torus 'JI'2 in 
the form 

dx 
dt = F(x,y), 

dy 
dt = G(x, y), 

where F(x,y) and G(x,y) are functions having a certain 
smoothness and periodic in x and y. Under which condi­
tions on functions F and G can the system be reduced to 
the form 

dy = \ ? 
dt "'2· (21) 

Thus the question is whether the system (21) admits con­
ditionally periodic motions with particles Al and A2. The 
solution of this problem and its generalizations occupied 
the entire twentieth century and led to many fundamental 
concepts in the modern theory of dynamical systems. 

Here is a sketchy history of the subject. Poincare took 
the first decisive step when he showed that the system (17) 
can be reduced to mapping a circle into itself. To this end 
he introduced a sweep function connected with Eq. (17). 
A sweep function is a mapping of a meridian of the torus 
onto itself taking each point of the meridian to the next 
point of intersection of the trajectory of the equation with 
the meridian. Thus the study of trajectories reduces to 
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the study of homeomorphisms of a circle. The second con­
cept, also introduced by Poincare, is the winding number. 
In terms of homeomorphisms of the circle f it can be de-

fined as lim fn(xo) = p. This number is independent 
n--HXl n 

of the choice of the point Xo on §1. The winding number 
of the homeomorphism §1 determines the number of revo­
lutions of the vector field of Equations (17) and (18). For 
Equation (18), for example, we have p = )..,1/)..,2. This num­
ber is an important characteristic of the homeomorphism. 
The arithmetic properties of p determine the behavior of 
homeomorphisms. Thus if p = p/q is rational, there ex­
ist periodic trajectories of period q that traverse the circle 
p times. In the general case the trajectories of almost all 
points are attracted to stable periodic trajectories. If p 
is irrational, then for sufficiently smooth diffeomorphisms 
Tf (for example of class C2 ) the trajectory of any point 
is dense in the circle, and the diffeomorphism reduces to 
rotation by angle p. A. Denjoy found this result. It can be 
stated as the following relation: 

TgTfTg-1 = Tp, 

where Tp is {x + p}, a rotation of the circle by angle p. 
Denjoy's theorem assumes nothing about the smoothness 
of the transformation Tg • 

This problem is crucial in constructions in perturba­
tion theory for conditionally periodic motions, since it is 
linked to the condition of conservation of invariant tori. In 
KAM theory, named for its founders Kolmogorov, Arnol'd, 
and J. Moser, this problem was solved for analytic and 
sufficiently smooth diffeomorphisms of a circle close to ro­
tations. The corresponding results came to be known as 
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local reduction theorems. The possibility of reducing Tf to 
a rotation was found to depend on the arithmetic proper­
ties of p, more precisely on the rate at which an irrational 
number p can be approximated by rational numbers. M. 
Hermann (Yoccoz' advisor) took the fundamental new step 
when he proved a global reduction theorem, except for the 
requirement of nearness to a rotation. Hermann showed 
that if the homeomorphism Tf has smoothness 0 3 , then 
for almost every winding number p a diffeomorphism Tf 
having winding number p is smoothly equivalent to a rota­
tion through the angle p. In this theorem "almost every" 
means that the measure of any excluded set is zero. Yoc­
coz thereby greatly strengthened the result of his advisor. 
He showed that reduction is possible for any Diophantine 
number p, and number for which 

and obtained an optimal estimate of the smoothness of the 
transformation Tg as a function of 8. 

Achieving these results required new ideas and an an­
alytic technique that is important in the multi-dimensional 
case, which has not yet been solved. 

2. Holomorphic dynamics. 
I now turn to holomorphic dynamics. In it the study of 

the sequence of mappings of complex sets leads to a series 
of problems close to the theory of dynamical systems. 

A typical problem of holomorphic dynamics is to de­
scribe the limiting sets of points of a mapping: z f---4 R(z), 
where R(z) is a rational function, z E a or a (the Rie­
mann sphere). Even the study of the sequence of iterations 
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of such a seemingly simple mapping as Ic(z) = Z2 + C con­
ceals highly nontrivial results. To convey an idea regarding 
the structure of the set {/~ (z)} I introduce two important 
concepts: the Fatou set and the Julia set. The Fatou set 
F (I) of a mapping I is the set of regular points of the iter­
ations In, Le., the points z such that the family {/n}~=o 
is equicontinuous in a neighborhood of the point z and the 
trajectories of the point z are Lyapunov stable. The Ju­
lia set J(/) is the complement C \ F. Thus the Riemann 
sphere decomposes into two invariant subsets: an open set 
F consisting of the regular points of the iterations In (the 
asymptotically stable points), and a closed set J = (j \ F 
on which the behavior of the trajectories is stochastic. The 
study of Fatou and Julia sets for various classes of mappings 
I(z) is a central problem of holomorphic dynamics. 

Let us now return to the mapping 

(22) 

For c = -3 the set J(fc) is a Cantor set, while for c 
small but nonzero the Julia set is a Jordan curve having 
no tangent at any point. The Julia set for the function 
Ic(z) = z2 -1 is a curve that divides the plane into a set of 
countable components. Computer models of the' Julia sets 
yields pictures of marvelous beauty [PRJ. 

In the late nineteenth and early twentieth centuries 
studies of dynamics on the Fatou set developed in parallel 
with the theory of ordinary differential equations, although 
specialists in each of the two fields often did not suspect 
the existence of those in the other. However, by the 1930s 
and 1940s the connection of these results was recognized, 
for example in the 1942 paper of Siegel, "On the reduction 
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of an analytic transformation to a rotation in a neighbor­
hood of a singular point." Siegel's result admits a natural 
interpretation in terms of differential equations (see the dis­
cussion on the first topic above). The corresponding efforts 
of Bryuno and Yoccoz also apply to it. 

Although the studies of the Fatou set in the papers 
of A. Douady and J.H. Hubbard, Sullivan, and Thurston 
during the past decade have produced a rather complete 
description of it, knowledge of the structure of the Julia 
set remains far from complete for many classes of endomor­
phisms. Yoccoz solved a major problem connected with the 
structure of the Julia set for the mapping (22). The Julia 
sets Jc for mappings of the form (22) are either connected 
or have the structure of a Cantor set. Let Jc be connected. 
Consider the set Me of values of the parameter c at which 
Je is connected. This set is called the Mandelbrojt set. 
Douady and Hubbard [DH] proved that if Je is connected, 
then Me is also connected. Their paper showed that a 
more detailed description of the sets Je and Me depends 
on conditions for them to be locally connected. Yoccoz 
found a criterion for local connectedness of the sets Je and 
Me. Remarkably, the condition for local connectedness is 
closely linked with the question of whether it is possible 
to linearize mappings of the form f ex (z) = z2 + e27riex z in a 
neighborhood of zero. This question can be solved by the 
Bryuno-Yoccoz criterion. 

I must now leave this beautiful area of modern math­
ematics, where the ideas and methods of so many of its 
different branches are concentrated in a small space: every­
thing from the theory of Kleinian groups to the theory of 
approximation of real numbers, from the Teichmiiller space 
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to ordinary differential equations and computer graphics, 
an area in which history and modernity are strikingly in­
tertwined [Mcl,2]. The unity of mathematics is shown 
best with these seemingly simple yet extraordinarily com­
plicated examples. 

The recently published title Fields Medalist Lectures 
presents surveys on the original articles of more than 20 
Fields Medalists. Some of the papers relate to more current 
interests of the medalists [FM]. 
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Remarks on the Literature 

1. The proceedings of the congresses are the main source for 
detailed references. Nearly all laureates have delivered plenary 
or sectional talks, some more than once. Their talks are printed 
in the proceedings of the congresses and present a picture of the 
results obtained. 

2. A beautifully edited illustrated history of the mathematical 
congresses has recently appeared [AI]. It briefly describes all 
the mathematical congresses starting with the 1893 congress in 
Chicago and contains photographs of all the Fields laureates 
and brief biographies of them. The book is carefully edited, 
though a few comic errors did creep through in biographical 
details of Soviet medalists. 

3. An article of H. Tropp [Tr] offers basic material on the 
founding of the medal, including the text of Fields' will. The 
late French mathematician J. Dieudonne devoted several books 
[Di1-4] to an historical survey of the achievements in twentieth­
century mathematics. 

4. A conference on "Mathematical Research Today and Tomor­
row" was held in Barcelona in 1991. Seven Fields medalists 
gave papers: A. Connes, G. Faltings, V. Jones, S.P. Novikov, S. 
Smale, R. Thorn, and S.T. Yau. The proceedings of the confer­
ence are of great scientific interest, since they convey the views 
of leading mathematicians both on mathematics as a whole and 
on their own scholarly work [MR]. 
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