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ciples, this book develops the theory of a variety of optical activity and related
phenomena from the perspective of molecular scattering of polarized light. In addi-
tion to the traditional topic of optical rotation and circular dichroism in the visible
and ultraviolet region associated with electronic transitions, the newer topic of op-
tical activity associated with vibrational transitions, which may be studied using
both infrared and Raman techniques, is also treated. Ranging from the physics of
elementary particles to the structure of viruses, the subject matter of the book re-
flects the importance of optical activity and chirality in much of modern science
and will be of interest to a wide range of physical and life scientists.
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Preface to the first edition

Scientists have been fascinated by optical activity ever since its discovery in the
early years of the last century, and have been led to make major discoveries in
physics, chemistry and biology while trying to grapple with its subtleties. We can
think of Fresnel’s work on classical optics, Pasteur’s discovery of enantiomeric pairs
of optically active molecules which took him into biochemistry and then medicine,
and Faraday’s conclusive demonstration of the intimate connection between elec-
tromagnetism and light through his discovery of magnetic optical activity. And of
course the whole subject of stereochemistry, or chemistry in space, has its roots
in the realization by Fresnel and Pasteur that the molecules which exhibit optical
rotation must have an essentially helical structure, so from early on molecules were
being thought about in three dimensions.

A system is called ‘optically active’ if it has the power to rotate the plane of
polarization of a linearly polarized light beam, but in fact optical rotation is just
one of a number of optical activity phenomena which can all be reduced to the
common origin of a different response to right- and left-circularly polarized light.
Substances that are optically active in the absence of external influences are said
to exhibit ‘natural’ optical activity. Otherwise, all substances in magnetic fields are
optically active, and electric fields can sometimes induce optical activity in special
situations.

It might be thought that a subject originating at the start of the nineteenth century
would be virtually exhausted by now, but nothing could be further from the truth.
The recent dramatic developments in optical and electronic technology have led
to large increase in the sensitivity of conventional optical activity measurements,
and have enabled completely new optical activity phenomena to be observed and
applied. Traditionally, optical activity has been associated almost exclusively with
electronic transitions; but one particularly significant advance over the last decade
has been the extension of natural optical activity measurements into the vibrational
spectrum using both infrared and Raman techniques. It is now becoming clear
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xii Preface to first edition

that vibrational optical activity makes possible a whole new world of fundamental
studies and practical applications quite undreamt of in the realm of conventional
electronic optical activity.

Optical activity measurements are expected to become increasingly important
in chemistry and biochemistry. This is because ‘conventional’ methods have now
laid the groundwork for the determination of gross molecular structure, and em-
phasis is turning more and more towards the determination of the precise three-
dimensional structures of molecules in various environments: in biochemistry it is
of course the fine detail in three dimensions that is largely responsible for biological
function. Whereas X-ray crystallography, for example, provides such information
completely, it is restricted to studies of molecules in crystals in which the three
dimensional structures are not necessarily the same as in the environment of interest.
Natural optical activity measurements are a uniquely sensitive probe of molecular
stereochemistry, both conformation and absolute configuration, but unlike X-ray
methods can be applied to liquid and solution samples, and even to biological
molecules in vivo. The significance of magnetic optical activity measurements, on
the other hand, can probably be summarized best by saying that they inject addi-
tional structure into atomic and molecular spectra, enabling more information to
be extracted.

Following the recent triumph of theoretical physics in unifying the weak and
electromagnetic forces into a single ‘electroweak’ force, the world of physics has
also started to look at optical activity afresh. Since weak and electromagnetic forces
have turned out to be different aspects of the same, more fundamental, unified
force, the absolute parity violation associated with the weak force is now thought
to infiltrate to a tiny extent into all electromagnetic phenomena, and this can be
studied in the realm of atoms and molecules by means of delicate optical activity
experiments. So just as optical activity acted as a catalyst in the progress of science
in the last century, in our own time it appears set to contribute to further fundamental
advances. One could say that optical activity provides a peephole into the fabric of
the universe!

In order to deal with the optical properties of optically active substances in a
unified fashion, and to understand the relationship between the conventional ‘bire-
fringence’ phenomena of optical rotation and circular dichroism and the newer
‘scattering’ phenomena of Rayleigh and Raman optical activity, the theory is de-
veloped in this book from the viewpoint of the scattering of polarized light by
molecules. In so doing, a general theory of molecular optics is obtained and is ap-
plied to the basic phenomena of refraction, birefringence and Rayleigh and Raman
scattering. Optical activity experiments are then regarded as applications of these
phenomena in ways that probe the asymmetry in the response of the optically active
system to right- and left-circularly polarized light. As well as using the results of the
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general theory to obtain expressions for the observables in each particular optical
activity phenomenon, where possible the expressions are also derived separately in
as simple a fashion as possible for the benefit of the reader who is interested in one
topic in isolation.

There are several important topics within the general area of optical activity that
I have either omitted or mentioned only briefly, mainly because they are outwith
the theme of molecular scattering of polarized light, and also because of my lack
of familiarity with them. These include circular polarization of luminescence, and
chiral discrimination. I have also not treated helical polymers: to do justice to this
very important topic would divert us too far from the fundamental theory. Where 1
have discussed specific atomic or molecular systems, this has been to illuminate the
theory rather than to give an exhaustive explanation of the optical activity of any
particular system. For a much broader view of natural optical activity, including
experimental aspects and a detailed account of a number of specific systems, the
reader is referred to S. F. Mason’s new book ‘Molecular Optical Activity and the
Chiral Discriminations’ (Mason, 1982).

So this is not a comprehensive treatise on optical activity. Rather, it is a personal
view of the theory of optical activity and related polarized light scattering effects
that reflects my own research interests over the last 14 years or so. During the earlier
part of this period I was fortunate to work with, and learn from, two outstanding
physical chemists: Dr P. W. Atkins in Oxford and Professor A. D. Buckingham in
Cambridge; and their influence extends throughout the book.

I wish to thank the many colleagues who have helped to clarify much of the
material in this book through discussion and correspondence over the years. I am
particularly grateful to Dr J. Vrbancich for working through the entire manuscript
and pointing out many errors and obscure passages.

Glasgow
May 1982






Preface to the second edition

Interest in optical activity has burgeoned since the first edition of this book was
published in 1982. The book anticipated a number of new developments and helped
to fuel this interest, but has become increasingly hard to find since going out of print
in 1990. Numerous requests about where a copy might be found, often accompa-
nied by ‘our library copy has been stolen’ and the suggestion that a second edition
would be well-received, have encouraged me to prepare this new edition. The book
has been considerably revised and enlarged, but the general plan and style remain
as before.

Traditionally, the field of optical activity and chirality has been largely the pre-
serve of synthetic and structural chemistry due to the inherent chirality of many
molecules, especially natural products. It has also been important in biomolecu-
lar science since proteins, nucleic acids and oligosaccharides are constructed from
chiral molecular building blocks, namely the L-amino acids and the D-sugars,
and the chemistry of life is exquisitely stereospecific. The field is becoming in-
creasingly important in these traditional areas. For example, chirality and enan-
tioselective chemistry are now central to the pharmaceutical industry since many
drugs are chiral and it has been recognized that they should be manufactured as
single enantiomers; and chiroptical spectroscopies are used ever more widely for
studying the solution structure and behaviour of biomolecules, a subject at the
forefront of biomedical science. But in recent years optical activity and chiral-
ity have also been embraced enthusiastically by several other disciplines. Physi-
cists, for example, are becoming increasingly interested in the field due to the
subtle new optical phenomena, linear and nonlinear, supported by chiral fluids,
crystals and surfaces. Furthermore, since homochiral chemistry is the signature
of life, and considerable effort is being devoted to searches for evidence of life,
or at least of prebiotic chemistry, elsewhere in the cosmos including interstellar

XV



XVi Preface to second edition

dust clouds, cometary material and the surfaces of extrasolar planets, chirality
has captured the interest of some astrophysicists and space scientists. It has even
caught the attention of applied mathematicians and electrical engineers on ac-
count of the novel and potentially useful electromagnetic properties of chiral
media.

Although containing a significant amount of new material the second edition, like
the first, is not a comprehensive treatise on optical activity and remains a personal
view of the theory of optical activity and related polarized light scattering effects
that reflects my own research interests. The material on symmetry and chirality has
been expanded to include motion-dependent enantiomorphism and the associated
concepts of ‘true’ and ‘false’ chirality, and to expose productive analogies between
the physics of chiral molecules and that of elementary particles which are further
emphasized by considering the violation of parity and time reversal invariance.
Another significant addition is a detailed treatment of magnetochiral phenomena,
which are generated by a subtle interplay of chirality and magnetism and which
were unknown at the time of writing the first edition. Since vibrational optical
activity has now ‘come of age’ thanks to new developments in instrumentation and
theory in the 1980s and 1990s, the treatment of this topic has been considerably
revised and expanded. Of particular importance is a new treatment of vibrational
circular dichroism in Chapter 7; serious problems in the quantum chemical theory,
now resolved, were unsolved at the time of writing the first edition, which contains
an error in the way in which the Born—Oppenheimer approximation was applied.
The revised material on natural Raman optical activity now reflects the fact that it
has become an incisive chiroptical technique giving information on a vast range
of chiral molecular structures, from the smallest such as CHFCIBr to the largest
such as intact viruses. New developments in magnetic Raman optical activity are
also described which illustrate how it may be used as a novel probe of magnetic
structure.

Another subject to come of age in recent years is nonlinear optical activity, man-
ifest as a host of different optical phenomena generated by intense laser beams
incident on both bulk and surface chiral samples. However the subject has become
too large and important, and too specialized with respect to its theoretical devel-
opment, to do it justice within this volume which is therefore confined to linear
optical activity phenomena.

I'have benefited greatly from interactions with many colleagues who have helped
directly and indirectly with the identification and correction of errors in the first edi-
tion, and with the preparation of new material. [ am especially grateful in this respect
to E. W. Blanch, I. H. McColl, A. D. Buckingham, J. H. Cloete, R. N. Compton,
J. D. Dunitz, K.-H. Emnst, R. A. Harris, L. Hecht, W. Hug, T. A. Keiderling, L. A.
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Nafie, R. D. Peacock, P. L. Polavarapu, M. Quack, R. E. Raab, G. L. J. A. Rikken,
A. Rizzo, P. J. Stephens, G. Wagniere and N. 1. Zheludev.

I hope that workers in many different areas of pure and applied science will find
something of value in this second edition.

Glasgow
2004



Symbols

The symbols below are grouped according to context. In some cases the same
symbol has more than one meaning, but it is usually clear from the context which
meaning is to be taken. A tilde above a symbol, for example A, denotes a complex
quantity, the complex conjugate being denoted by an asterisk, for example A*. A
dot over a symbol, for example A, denotes the time derivative of the corresponding
quantity. An asterisk is also used to denote an antiparticle or an antiatom, for
example v* and Co*.

Historical review

o optical rotation angle

[o] specific rotation

v ellipticity

[¥] specific ellipticity

€ decadic molar extinction coefficient

g dissymmetry factor

Vv Verdet constant

A dimensionless Rayleigh or Raman circular intensity difference

R.,S absolute configuration in the Cahn—Ingold—Prelog notation. (R)-(4) etc.

specifies the sense of optical rotation associated with a particular
absolute configuration
P.M helicity designation of the absolute configuration of helical molecules

Electric and magnetic fields and electromagnetic waves
wavelength

velocity of light

wave velocity

angular frequency, magnitude 2w v/4 (2 c/4 in free space)
refractive index, magnitude c¢/v

g = o >

S S

absorption index

XViil



List of symbols Xix

complex refractive index n + in’
propagation vector, magnitude n
wavevector, magnitude @ /v (may be written wh/c)
electric field vector in free space
magnetic field vector in free space
electric field vector within a medium
magnetic field vector within a medium
electric charge density

electric current density

Poynting vector

intensity (time average of |N|)

scalar potential

vector potential

bulk polarization

bulk magnetization

bulk quadrupole polarization
dielectric constant

magnetic permeability

permittivity of free space

permeability of free space

AT N"NOZ VPO ~NZ2CD TOOMA S5 =

=
<)

Polarized light

n ellipticity of the polarization ellipse
0 azimuth of the polarization ellipse
So, S1, S2, S3 Stokes parameters

P degree of polarization

I1 complex polarization vector
Pap complex polarization tensor

Geometry and symmetry

i.j,K unit vectors along space-fixed axes x,y,z.

1,J,K unit vectors along molecule-fixed axes X,Y ,Z.

r position vector

Ly direction cosine between the 1’ and o axes (cos~ '/, is the angle
between the A’ and o axes)

dup Kronecker delta

EaBy alternating tensor

Tup.. Vo Vg...R7!

P parity operation

T classical time reversal operation
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List of symbols

charge conjugation operation

eigenvalue of P

helix pitch

helix radius

symmetric part of the direct product of the representation I" with itself
antisymmetric part of the direct product of the representation I" with
itself

irreducible representation of the proper rotation group RY

irreducible spherical tensor operator

Classical mechanics

Ty <~NsSTro<

~ QO
>

&

velocity vector

linear momentum vector

angular momentum vector

Lorentz force vector

total energy

kinetic energy

potential energy

Lagrangian function

Hamiltonian function

generalized momentum vector

normal coordinate for the pth normal mode of vibration
momentum conjugate to Q ,, namely 0 P
gth internal vibrational coordinate
vibrational L -matrix

Quantum mechanics

h Planck constant

h h/2m

W wavefunction

H Hamiltonian operator

ej,vj,r; electronic, vibrational, rotational parts of the jth quantum state

j.m general angular momentum quantum number, associated magnetic
quantum number, of a particle

[, m orbital angular momentum quantum number, associated magnetic
quantum number, of a particle

S, My spin angular momentum quantum number, associated magnetic
quantum number, of a particle

J, M total angular momentum quantum number, associated magnetic

quantum number, of an atom or molecule
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K quantum number specifying the projection of the total angular
momentum onto the principal axis of a symmetric top

gi g-value of the ith particle spin

e quantum mechanical time reversal operator

€ eigenvalue of 62

AT transpose of operator A

Al = AT~ Hermitian conjugate of operator A

Yin spherical harmonic function

268 tunnelling splitting

2¢ parity-violating energy difference between chiral enantiomers

G Fermi weak coupling constant

o fine structure constant

g weak charge

Ow effective weak charge

Ow Weinberg electroweak mixing angle

(o) Pauli spin operator

Z proton number

[a, b] commutator ab — ba

{a, b} anticommutator ab + ba

Molecular properties

e electric charge of the ith particle (+e for the proton, —e for the

a, By

/
Aa-ﬂy

¢

af
ap

electron)

net charge or electric monopole moment

electric dipole moment vector

magnetic dipole moment vector

traceless electric quadrupole moment tensor

real part of the electric dipole—electric dipole polarizability tensor
imaginary part of the electric dipole—electric dipole polarizability
tensor

real part of the electric dipole—-magnetic dipole optical activity tensor
imaginary part of the electric dipole-magnetic dipole optical
activity tensor

real part of the electric dipole—electric quadrupole optical activity
tensor

imaginary part of the electric dipole—electric quadrupole optical
activity tensor

real part of the magnetic dipole—electric dipole optical activity tensor
imaginary part of the magnetic dipole—electric dipole optical
activity tensor
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Ay, By real part of the electric quadrupole—electric dipole optical activity
tensor

Ay, By imaginary part of the electric quadrupole—electric dipole optical
activity tensor

Gqp, etc. complex polarizability o —ict’4g, etc. (the minus sign arises from

the choice of sign in the exponents of the complex dynamic electric
and magnetic fields)

o isotropic invariant of aqg

G’ isotropic invariant of G4

B(a)? anisotropic invariant of aqg

B(G')? anisotropic invariant of G/, 8

B(A)? anisotropic invariant of A, g,

K dimensionless polarizability anisotropy

Spectroscopy

[AB] specific rotation
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IR - Rayleigh or Raman scattered intensity in right (R)- or left
(L)-circularly polarized incident light

D(j < n) dipole strength for the j <— n transition

R(j < n) rotational strength for the j <— n transition

ié Zeeman splitting
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1

A historical review of optical activity phenomena

Yet each in itself — this was the uncanny, the antiorganic, the life-denying
character of them all — each of them was absolutely symmetrical, icily
regular in form. They were too regular, as substance adapted to life never
was to this degree — the living principle shuddered at this perfect preci-
sion, found it deathly, the very marrow of death — Hans Castorp felt he
understood now the reason why the builders of antiquity purposely and
secretly introduced minute variations from absolute symmetry in their
columnar structures.

Thomas Mann (The Magic Mountain)

1.1 Introduction

In the Preface, an optical activity phenomenon was defined as one whose origin may
be reduced to a different response of a system to right- and left-circularly polarized
light. This first chapter provides a review, from a historical perspective, of the main
features of a range of phenomena that can be classified as manifestations of optical
activity, together with a few effects that are related but are not strictly examples
of optical activity. The reader is referred to the splendid books by Lowry (1935),
Partington (1953) and Mason (1982) for further historical details.

The symbols and units employed in this review are those encountered in the
earlier literature, which uses CGS units almost exclusively; but these are not nec-
essarily the same as those used in the rest of the book in which the theory of many
of the phenomena included in the review are developed in detail from the unified
viewpoint of the molecular scattering of polarized light. In particular, the theoretical
development in subsequent chapters employs SI units since these are currently in
favour internationally.



2 A historical review of optical activity

1.2 Natural optical rotation and circular dichroism

Optical activity was first observed by Arago (1811) in the form of colours in sunlight
that had passed along the optic axis of a quartz crystal placed between crossed
polarizers. Subsequent experiments by Biot (1812) established that the colours
were due to two distinct effects: optical rotation, that is the rotation of the plane of
polarization of a linearly polarized light beam; and optical rotatory dispersion, that
is the unequal rotation of the plane of polarization of light of different wavelengths.
Biot also discovered a second form of quartz which rotated the plane of polarization
in the opposite direction. Biot (1818) recognized subsequently that the angle of
rotation o was inversely proportional to the square of the wavelength 4 of the light
for a fixed path length through the quartz. The more accurate experimental data
available to Drude (1902) enabled him to replace Biot’s law of inverse squares by

o= Z ﬁ (1.2.1)
j j
where A; is a constant appropriate to the visible or near ultraviolet absorption
wavelength 1 ;. Modern molecular theories of optical rotation all provide equations
of this form for transparent regions.

Optical rotation was soon discovered in organic liquids such as turpentine (Biot,
1815), as well as in alcoholic solutions of camphor and aqueous solutions of sugar
and tartaric acid, the last being reported in 1832 (Lowry, 1935). It was appreciated
that the optical activity of fluids must reside in the individual molecules, and may
be observed even when the molecules are oriented in random fashion; whereas that
of quartz is a property of the crystal structure and not of the individual molecules,
since molten quartz is not optically active. As discussed in detail in Section 1.9
below, it was eventually realized that the source of natural optical activity is a
chiral (handed) molecular or crystal structure which arises when the structure has
a sufficiently low symmetry that it is not superposable on its mirror image. The two
distinct forms that can exist are said to have opposite absolute configurations, and
these generate optical rotations of equal magnitude but opposite sense at a given
wavelength.

The relationship between absolute configuration and the sense of optical rota-
tion is subtle and has exercised theoreticians for a good many years. The modern
system for specifying the absolute configuration of most chiral molecules is based
on the R (for rectus) and S (for sinister) system of Cahn, Ingold and Prelog, sup-
plemented with the P (for plus) and M (for minus) designation for molecules that
have a clear helical structure. The sense of optical rotation (usually measured at
the sodium D-line wavelength of 589 nm) associated with a particular absolute
configuration is given in brackets, for example (R)-(—) or (S)-(+). Eliel and Wilen
(1994) may be consulted for further details. The definitive method of determining



1.2 Natural optical rotation 3

Fig. 1.1 The instantaneous electric field vectors of a right-circularly polarized
light beam propagating along z. A vector in a fixed plane rotates clockwise when
viewed in the —z direction.

absolute configuration is via anomalous X-ray scattering associated with the pres-
ence of a relatively heavy atom substituted into the molecule, first demonstrated
by Bijvoet et al. (1951) in a study of sodium rubidium tartrate. However, many
chiral molecules are not accessible to X-ray crystallography: for these cases opti-
cal activity phenomena such as optical rotation, which are intrinsically sensitive to
molecular chirality, are being used with increasing success. An optical method that
can differentiate between the two enantiomers of a chiral compound is referred to
as a chiroptical technique.

Fresnel’s celebrated theory of optical rotation (Fresnel, 1825) followed from his
discovery of circularly polarized light. In a circularly polarized light beam, the tip of
the electric field vector in a fixed plane perpendicular to the direction of propagation
traces out a circle with time: traditionally, the circular polarization is said to be right
handed (positive) or left handed (negative) depending on whether the electric field
vector rotates clockwise or anticlockwise, respectively, when viewed in this plane
by an observer looking towards the source of the light. At a given instant, the
tips of the electric field vectors distributed along the direction of propagation of a
circularly polarized light beam constitute a helix, as shown in Fig. 1.1. Since the
helix moves along the direction of propagation, but does not rotate, the previous
definition of right and left handedness corresponds with the handedness of the helix,
for as the helix moves through the fixed plane, the point of intersection of the tip of
the electric field vector when viewed towards the light source rotates clockwise for
aright-handed helix and anticlockwise for a left-handed helix. A particularly clear
account of circularly polarized light and of the pitfalls that may arise in its graphical
description may be found in the book by Kliger, Lewis and Randall (1990).

Fresnel realized that linearly polarized light can be regarded as a superposition
of coherent left- and right-circularly polarized light beams of equal amplitude, the
orientation of the plane of polarization being a function of the relative phases of the
two components. This is illustrated in Fig. 1.2a. He attributed optical rotation to a
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Fig. 1.2 (a) The electric field vector of a linearly polarized light beam decomposed
into coherent right- and left-circularly polarized components. The propagation
direction is out of the plane of the paper. (b) The rotated electric field vector at
some further point in the optically active medium. Take note of Fig. 1.1 if confused
by Fig. 1.2b.

difference in the velocity of propagation of the left- and right-circularly polarized
components of the linearly polarized beam in the medium, for the introduction of
a phase difference between the circularly polarized components would change the
orientation of the plane of polarization, as shown in Fig. 1.2b. Suppose that a linearly
polarized light beam of angular frequency w = 2w c/4 enters a transparent optically
active medium at z = 0. If, at a given instant, the electric field vectors of the right-
and left-circularly polarized components at z = 0 are parallel to the direction of
polarization of the linearly polarized light beam, then at the same instant the electric
field vectors of the right- and left-circularly polarized components at some point
z = [ in the optically active medium are inclined at angles 0% = —2mcl/Av® and
0% = 2mcl /Avt, respectively, to this direction, where vR and v are the velocities
of the right- and left-circularly polarized components in the medium. The angle of
rotation in radians is then

1R, oLy el (1 1

Since the refractive index is n = c/v, the angle of rotation in radians per unit length
(measured in the same units as 1) can be written

o= %(nL —nR), (1.2.3)

and is therefore a function of the circular birefringence of the medium, that is the
difference between the refractive indices n™ and n® for left- and right-circularly
polarized light.
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In the chemistry literature, the medium is said to be dextro rotatory if the plane
of polarization rotates clockwise (positive angle of rotation), and laevo rotatory if
the plane of polarization rotates anticlockwise (negative angle of rotation), when
viewed towards the source of the light. The path of a linearly polarized light beam
in a transparent optically active medium is characterized by a helical pattern of
electric field vectors, since the orientation of each electric field vector is a function
only of its position in the medium, although its amplitude is a function of time.

The form of the Drude equation (1.2.1) follows from (1.2.3) if an expression for
the wavelength dependence of the refractive index such as

2 J
n“=1+ o 1.2.4
Zj:}'z_li ( )

is used, where C; is a constant appropriate to the visible or near ultraviolet ab-
sorption wavelength 4 ;. This is a version of Sellmeier’s equation (1872). Thus if
the C;s are slightly different for right- and left-circularly polarized light, an ex-
pression for (n%)? — (n®)? is found. But (n%)? — (n®)?> = (n* — n®)(n" + nR), and
since n" and n® are close to n, the refractive index for unpolarized light, the value
of (n" + n®) may be taken as 2n, and Drude’s equation (1.2.1) is obtained with
Aj = rr/I(C}“ — C}{) /2n. This simple argument serves to illustrate how optical ro-
tation can be generated if a mechanism exists giving C}“ #+ C}{.

Since refraction and absorption are intimately related, an optically active medium
should absorb right- and left-circularly polarized light differently. This was first
observed by Haidinger (1847) in amethyst quartz crystals, and later by Cotton
(1895) in solutions of copper and chromium tartrate. Furthermore, linearly polarized
light becomes elliptically polarized in an absorbing optically active medium: since
elliptically polarized light can be decomposed into coherent right- and left-circularly
polarized components of different amplitude, as illustrated in Fig. 1.3, the traditional
theory ascribes the generation of an ellipticity to a difference in the absorption of
the two circular components. The ellipticity ¥ is obtained from the ratio of the
minor and major axes of the ellipse, which are simply the difference and sum of
the amplitudes of the two circular components:

tany = (Er — E1)/(Er + Ev). (1.2.5)

When Er > E}, v is defined to be positive, corresponding to a clockwise rotation
of the electric field vector of the elliptically polarized beam in a fixed plane. The
attenuation of the amplitude of a light beam by an absorbing medium is related to
the absorption index n’ and path length [ by

E, = Ege 712, (1.2.6)
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Fig. 1.3 Elliptical polarization, specified by the angle i, resolved into coherent
right- and left-circular polarizations of different amplitude.

The ellipticity is then

R /L
6727m /2 _ 6727”: 1/

tanyy =

e—27n’R/a + e—21n't1/A

en(n’L—n’R)//I _ e—nl(n’L—n'R)//l

el —n"?)/1 + el —n"?)/1

:mﬂ{%&ﬂL—w%}, (1.2.7)

where n'" and n'® are the absorption indices for left- and right-circularly polarized
light. For small ellipticities, in radians per unit length (measured in the same units
as i),

w~%mi—ﬂ5. (1.2.8)

The ellipticity is therefore a function of ('™ — n'®), the circular dichroism of the
medium.

Apart from the fact that they are signed quantities, circular dichroism and optical
rotatory dispersion have wavelength dependence curves in the region of an elec-
tronic absorption very similar to those for conventional absorption and refraction,
respectively. These are illustrated in Fig. 1.4. Circular dichroism, together with the
anomalous optical rotatory dispersion which accompanies it in the absorption re-
gion, are known collectively as the Cotton effect. The ellipticity maximum coincides
with the point of inflection in the curve of optical rotatory dispersion, which ideally
coincides with the maximum of an electronic absorption band at ;. The ellipticity
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Fig. 1.4 The ellipticity and anomalous optical rotatory dispersion in the region
of the electronic absorption wavelength 4;. The signs shown here correspond to a
positive Cotton effect.
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and optical rotatory dispersion curves always have the relative signs shown in
Fig. 1.4 for an isolated absorption band in a given sample. At wavelengths far re-
moved from any 4, the rotatory dispersion is given by the Drude equation (1.2.1),
but in the anomalous region the Drude equation must be modified to remove the
singularity and to allow for the finite absorption width. If there are several adjacent
absorption bands, the net Cotton effect will be a superposition of the individual
Cotton effect curves.

Optical rotation measurements are usually presented as the specific optical ro-
tatory power (often called simply the specific rotation)

[a] = ﬂ, (1.2.9)
ml

where « is the optical rotation in degrees, V is the volume containing a mass m of
the optically active substance, and [ is the path length. In much of the chemistry
literature, CGS units are used and / is specified in decimetres. Similarly, circular
dichroism measurements are usually presented as the specific ellipticity
=2,
ml
where ¢ is measured in degrees. Circular dichroism is now usually obtained directly
by measuring the difference in the decadic molar extinction coefficients

L Jog o (1.2.11)
€ = — 108 —, L.
cl g[[

where [ is the intensity of the light wave and c is the concentration of absorbing
molecules in moles per litre, of separate left- and right-circularly polarized light
beams, rather than via the ellipticity induced in an initially linearly polarized light
beam. Since the intensity of a wave is proportional to the square of the amplitude,
the relationship between extinction coefficient and absorption index is obtained

(1.2.10)
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from (1.2.6) and (1.2.11) by writing
II — 106—2.303661 — Ioe—4n’n/l/l’ (1212)

from which it follows that

/

2.303Ace
n=—.

47
The following expression, giving the relationship between the ellipticity in degrees

and the decadic molar circular dichroism, is often encountered in the chemistry
literature:

(1.2.13)

[6] = 3300(e" — €®) = 3300A¢. (1.2.14)

This obtains from (1.2.8), (1.2.10) and (1.2.13) if CGS units are used and it is
remembered that the path length is specified in decimetres.
A useful dimensionless quantity is the dissymmetry factor (Kuhn, 1930)

EL—ER EL—ER

g = - , (1.2.15)
€ el + Ry

which is the ratio of the circular dichroism to the conventional absorption. The
constants that arise in the determination of absolute absorption intensities therefore
cancel out, and g often reduces to simple expressions involving just the molecular
geometry. Since circular dichroism is of necessity always determined in the presence
of absorption, g is also an appropriate criterion of whether or not circular dichroism
in a particular absorption band is measurable, given the available instrumental
sensitivity.

Although optical rotatory dispersion and circular dichroism have been known
for more than 100 years, until the middle of the twentieth century most applica-
tions in chemistry utilized just the optical rotation at some transparent wavelength,
usually the sodium D line at 589 nm. Then in the early 1950s a revolution in the
study of optically active molecules was brought about through the introduction of
instruments to measure optical rotatory dispersion routinely: this was possible as
a result of developments in electronics, particularly the advent of photomultiplier
tubes, so that the recording of visible and ultraviolet spectra no longer depended
on the use of photographic plates. Steroid chemistry was one of the first areas to
benefit, mainly as a result of the pioneering work of Djerassi (1960). Instruments
to measure circular dichroism routinely were developed in the early 1960s when
electro-optic modulators, which switch the polarization of the incident light be-
tween right and left circular at a suitable frequency, became available, and this
technique is now generally preferred over optical rotatory dispersion because it
provides better discrimination between overlapping absorption bands (the circular
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dichroism lineshape function drops to zero much more rapidly than the optical
rotatory dispersion lineshape function).

Conventional optical rotation and circular dichroism utilize visible or ultra-
violet radiation: since this excites the electronic states of the molecule, these
techniques can be regarded as forms of polarized electronic spectroscopy. Thus it is
the spatial distribution of the electronic states responsible for a particular circular
dichroism band, for example, that is probed. This can often be related to the stere-
ochemistry of the molecular skeleton in ways that are elaborated in later chapters.
It is often stated that optical rotatory dispersion and circular dichroism are used to
look at the stereochemistry of the molecule through the eyes of the chromophore
(the structural group absorbing the visible or near ultraviolet radiation). The first
successful application of this anthropomorphic viewpoint was the celebrated octant
rule of Moffit et al. (1961), which relates the sign and magnitude of Cotton effects
induced in the inherently optically inactive carbonyl chromophore by the spatial
arrangement of perturbing groups in the rest of the molecule. The theoretical basis
of the octant rule is discussed in detail in Chapter 5.

There are two topics closely related to circular dichroism that should be men-
tioned, namely circular polarization of luminescence, and fluorescence detected
circular dichroism. The latter is simply an alternative method of measuring circu-
lar dichroism in samples, usually biological, with poor transmission, and involves
measurement of a difference in the fluorescence intensity excited by right- and
left-circularly polarized incident light with wavelength in the vicinity of an elec-
tronic absorption band (Turner, Tinoco and Maestre, 1974). The former refers to
a circularly polarized component in the light spontaneously emitted from an op-
tically active molecule in an excited state. The well-known relationship between
the Einstein coefficients for absorption and spontaneous emission suggests that the
circular dichroism and circular polarization of luminescence associated with a par-
ticular molecular electronic transition will provide identical structural information.
However, differences between these observables will occur when the structure of
the molecule in the ground electronic state differs from the structure in the excited
luminescent state. Thus circular dichroism is a probe of ground state structure and
circular polarization of luminescence is a probe of excited state structure. Under
certain conditions, circular polarization of luminescence can be used to study as-
pects of excited state molecular dynamics such as photoselection and reorientational
relaxation. A detailed development of these topics is outside the scope of this book,
and the interested reader is referred to reviews by Richardson and Metcalf (2000)
and Dekkers (2000).

An interesting variant of fluorescence detected circular dichroism has been
mooted: circular differential photoacoustic spectroscopy (Saxe, Faulkner and
Richardson, 1979). In conventional photoacoustic spectroscopy, light energy is
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absorbed by a sample, and that portion of the absorbed energy which is subse-
quently dissipated into heat is detected in the following manner. If the exciting
light is modulated in time, the sample heating and cooling will also be modulated.
The resulting temperature fluctuations lead to the transformation of the thermal
energy into mechanical energy carried by sound waves in the sample which are
detected with a microphone. In circular differential photoacoustic spectroscopy,
the polarization of the incident light is modulated between right- and left-circular
and the intensity of any sound waves detected at the modulation frequency will
be a function of the circular dichroism of the absorbing chiral sample. It could be
more widely applicable than fluorescence detected circular dichroism because a
fluorescing chromophore is not required, and could be particularly attractive for
studying molecules on surfaces.

As well as their general importance in stereochemistry, natural optical activity
techniques, especially ultraviolet circular dichroism, have become central physical
methods in biochemistry and biophysics since they are sensitive to the delicate
stereochemical features that determine biological function (Fasman, 1996; Berova,
Nakanishi and Woody, 2000).

1.3 Magnetic optical rotation and circular dichroism

Faraday’s conviction of the connection between electromagnetism and light led him
to the discovery of the rotation of the plane of polarization of a linearly polarized
light beam on traversing a rod of lead borate glass placed between the poles of an
electromagnet (Faraday, 1846). A Faraday rotation is found when light is transmitted
through any medium, isotropic or oriented, in the direction of a magnetic field.
The sense of rotation depends on the relative directions of the light beam and
the magnetic field, and is reversed on reversing either the direction of the light
beam or the magnetic field. Thus magnetic rotatory power differs from natural
rotatory power in that the rotations are added, rather than cancelled, on reflecting
the light back through the medium. It was soon discovered that magnetic optical
rotation varies inversely with the square of the wavelength, in accordance with
Biot’s law for natural optical rotation; although it was subsequently found that a
better approximation is provided by a formula similar to Drude’s equation (1.2.1).

The quantitative investigations of Verdet (1854) are summarized in Verdet’s law
for the angle of rotation per unit path length in a magnetic field B making an angle
6 with the direction of propagation of the light beam:

o = VBcos0, (1.3.1)

where V is the Verdet constant for the material for a given wavelength and temper-
ature. For light passing through the medium in the direction of the magnetic field
(north pole to south pole) most diamagnetic materials rotate the plane of polarization
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Fig. 1.5 The magnetic ellipticity and anomalous optical rotatory dispersion shown
by (a) diamagnetic and (b) paramagnetic samples in the region of the electronic
absorption wavelength 1;.
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in an anticlockwise sense when viewed towards the light source, corresponding to
a negative rotation in the chemistry convention. This optical rotation is in the same
sense as the circulation of current in a solenoid producing an equivalent magnetic
field.

Magnetic optical rotation can be described in terms of different refractive indices
for left- and right-circularly polarized light, and (1.2.3) applies equally well to
natural and magnetic rotation, although the origin of the circular birefringence
is different in the two cases. In regions of absorption there is a difference in the
absorption of left- and right-circularly polarized light in the direction of the magnetic
field, and linearly polarized light acquires an ellipticity given by the same equation
(1.2.8) that describes natural circular dichroism.

Verdet also discovered that iron salts in aqueous solution show a magnetic rota-
tion which is in the opposite sense to that of water, arising from the paramagnetism
of iron salts. In general, only the magnetic rotatory dispersions of diamagnetic mate-
rials follow the laws of Drude and Verdet; those of paramagnetic materials are more
complicated. The influence of temperature on the magnetic rotation of diamagnetic
materials is slight, but paramagnetic materials show a pronounced variation with
temperature which is related to the temperature dependence of paramagnetism.

The dispersion with wavelength of the magnetic rotation and ellipticity in a
region of absorption depends on the relative magnitudes of the diamagnetic and
paramagnetic contributions. The two ideal cases are illustrated in Fig. 1.5. The
diamagnetic rotation curve shown is actually the resultant of two equal and opposite
optical rotatory dispersion curves for two adjacent electronic absorption bands, and
is usually symmetric. The paramagnetic rotation curve is like an optical rotatory
dispersion curve for a single absorption band, and is usually unsymmetric.

Faraday had looked for the effect of a magnetic field on a source of radiation, but
without success because strong fields and spectroscopes of good resolution were not
available to him. The first positive results were obtained by Zeeman (1896), and were
described as a broadening of the two lines of the first principal doublet from a sodium
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Fig. 1.6 The normal Zeeman effect (a) for light emitted perpendicular to the
magnetic field and (b) for light emitted in the direction of the magnetic field.

flame placed between the poles of a powerful electromagnet. Soon afterwards,
Lorentz showed that his electron theory of radiation and matter accommodated this
observation: when viewed perpendicular to the magnetic field, the spectral lines
should be split into three linearly polarized components with the central (unshifted)
line linearly polarized parallel (]|) to the field and the other two lines linearly
polarized perpendicular (_L) to the field; when the magnetic field points towards the
observer, there should be two lines on either side of the original line with the high and
low wavelength lines showing right- and left-circular polarizations, respectively.
This is illustrated in Fig. 1.6. The displacements A should be proportional to the
magnetic field strength. These predictions were verified later by Zeeman, but only
for certain spectral lines showing what is now called the normal Zeeman effect;
other lines (including the components of the first principal sodium doublet) split
into a greater number of components and are said to show the anomalous Zeeman
effect. The normal effect is simply a special case in which the effects of electron
spin are absent.

Since the right- and left-circularly polarized components of light emitted by an
atom in the presence of a magnetic field are differentiated, the Zeeman effect can
be regarded as a manifestation of optical activity. Indeed, it was soon recognized
that the main features of the Faraday effect can be explained in terms of the Zeeman
effect. Since right- and left-circularly polarized light beams are also absorbed at
the slightly different wavelengths 2% = 2; + AZ and 2% = 4; — A% in a magnetic
field along the direction of propagation of the incident beam, one could use, for
example, equation (1.2.4) for the refractive index with two absorption wavelengths
/11} and /lljf:

"y — m*? =2 L SEN )2} : (1.3.2)
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Fig. 1.7 The diamagnetic optical rotatory dispersion curve generated from two
equal and opposite Drude-type curves centred on A% and /IJR. The sign shown here
obtains when the magnetic field is in the direction of propagation of the light beam.

which is simply the sum of two equal and opposite optical rotatory dispersion curves
centred on 47 and 47, so that

A I
“T o 2 L2 2 R\2 |
2= (257 2 =(35)

If (1.3.3) is modified to remove the singularities and allow for a finite absorption
width, the general form of a diamagnetic optical rotation curve is reproduced, as
illustrated in Fig. 1.7. Similarly, the general form of a diamagnetic ellipticity curve
is reproduced from the sum of two equal and opposite ellipticity curves centred on
A% and A%

Notice that in justifying Drude’s equation (1.2.1) for the dispersion of natural
optical rotation we invoked a slight difference in the constants C; in Sellmeier’s
equation (1.2.4) for the refractive indices for right- and left-circularly polarized
light, but assumed that the resonance wavelengths were the same, whereas in de-
veloping the form (1.3.3) for the diamagnetic rotation curve we assumed that the
C;s are the same for the opposite circular polarizations but that the resonance
wavelengths are different. This illustrates two distinct mechanisms by which opti-
cal rotation (and circular dichroism) can be generated, and we shall see later, when
general quantum mechanical theories are developed, that analogues of both mech-
anisms can contribute to both natural and magnetic optical rotation and circular
dichroism.

The main significance of magnetic optical activity in chemistry is that it provides
information about ground and excited electronic states of atoms and molecules. As
indicated above, magnetic circular dichroism is the difference between left- and

(1.3.3)
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right-circularly polarized Zeeman spectra and therefore provides no new informa-
tion when the Zeeman components of a transition are resolved. But since magnetic
circular dichroism can be measured in broad bands where conventional Zeeman
effects are undetectable, the essence of its value is in extending the circularly po-
larized Zeeman experiment to broad spectra. The simplest use of magnetic circular
dichroism is for detecting weak transitions which are either buried under a stronger
transition or are just too weak to be observed in conventional absorption. Magnetic
circular dichroism has proved most useful in the study of the excited electronic
states of transition metal complexes and of colour centres in crystals; particularly
their symmetry species, angular momenta, electronic splittings and vibrational—
electronic interactions. Magnetic optical activity has also been useful in the study
of organic and biological systems, especially for cyclic 7 electron molecules such
as porphyrins.

Not surprisingly, there is a magnetic version of the circular polarization of lumi-
nescence (outlined in Section 1.2) that is shown by all molecules in a magnetic field
parallel to the direction of observation of the luminescence. Again this gives infor-
mation about excited state molecular properties, and we refer to Richardson and
Riehl (1977) for further details. There are also magnetic versions of fluorescence
detected circular dichroism, and circular differential photoacoustic spectroscopy.

1.4 Light scattering from optically active molecules

Optical rotation and circular dichroism are concerned with the polarization charac-
teristics of light transmitted through an optically active medium, and are therefore
associated with refraction. Refraction is one consequence of the scattering of light
by the electrons and nuclei in the constituent molecules of the medium, and can be
accompanied by Rayleigh and Raman scattering in all directions. Rayleigh scat-
tered light has the same frequency as the incident light, whereas the frequency of
Raman scattered light is shifted from that of the incident light by amounts corre-
sponding to molecular rotational, vibrational and electronic transitions. Specular
reflection by polished surfaces of glass and metals, and diffuse reflection by, for
example, a sheet of paper, can also be attributed ultimately to molecular scattering.

The scattering description of refraction is subtle, and involves interference be-
tween the unscattered component of the light wave and the net plane wavefront in
the forward direction from planar arrays of individual scatterers in the medium.
This process is discussed in detail in Chapter 3. This interference modifies the po-
larization properties of the light from individual molecular scatterers, so the light
refracted through an optically active medium has different polarization properties
from the Rayleigh- and Raman-scattered light (and the reflected light). Thus with
linearly polarized light incident on isotropic optically active samples at transparent



1.4 Optical activity in light scattering 15

wavelengths, the refracted light suffers a rotation of the plane of polarization with
no ellipticity produced, whereas the scattered light acquires an ellipticity but no
rotation of the plane of polarization.

The origin of the ellipticity in Rayleigh and Raman scattered light is easily
understood in general terms because optically active molecules respond differently
to right- and left-circularly polarized light, which are therefore scattered to different
extents. Consequently, the coherent right- and left-circularly polarized components
into which a linearly polarized beam can be resolved are scattered differently, and
are no longer of equal amplitude in the scattered light, which is therefore elliptically
polarized. A dramatic example is provided by cholesteric liquid crystals which
have enormous optical rotatory powers so that the light reflected from the surface
is almost completely circularly polarized (Giesel, 1910).

Instead of measuring an ellipticity in Rayleigh and Raman scattered light, a differ-
ence in the scattered intensities in right- and left-circularly polarized incident light
(the circular intensity difference) may be measured directly instead. At transparent
wavelengths, the ellipticity (or the associated degree of circular polarization) of the
scattered light and the circular intensity difference provide equivalent information
about optically active molecules, but subtle differences can arise at absorbing wave-
lengths. Both the degree of circular polarization and the circular intensity difference
are manifestations of Rayleigh and Raman optical activity.

The first attempts to observe Rayleigh and Raman optical activity concentrated
on the circular intensity difference. The chequered history of these attempts is
briefly as follows. Gans (1923) considered additional contributions to Rayleigh
scattering from optically active molecules, but omitted a crucial interference term
that generates the ellipticity and the circular intensity difference; he claimed to
have observed optical activity effects in the depolarization ratio, but de Mallemann
(1925) pointed out that the depolarization ratio anomalies originated in optical
rotation of the incident and scattered beams. Shortly after the discovery of the
Raman effect, Bhagavantam and Venkateswaran (1930) found differences in the
relative intensities of some of the vibrational Raman lines of two optical isomers
in unpolarized incident light, but these were subsequently attributed to impurities.
Although he had no explicit theory, Kastler (1930) thought that, since optically
active molecules respond differently to right- and left-circularly polarized light, a
difference might exist in the vibrational Raman spectra of optically active molecules
in right- and left-circularly polarized incident light, but the instrumentation at that
time was far too primitive for him to observe the effect. Perrin (1942) alluded to the
existence of additional polarization effects in light scattered from optically active
molecules; but it was not until the theoretical work of Atkins and Barron (1969)
that the interference mechanism (between light waves scattered via the molecular
polarizability and optical activity property tensors) responsible for the ellipticity
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in the scattered light and the circular intensity difference was discovered. Barron
and Buckingham (1971) subsequently developed a more definitive version of the
theory and introduced the following definition of the dimensionless Rayleigh and
Raman circular intensity difference,

IR — L

where IR and I" are the scattered intensities in right- and left-circularly polar-
ized incident light, as an appropriate experimental quantity in Rayleigh and Raman
optical activity. The first reported natural Raman circular intensity difference spec-
tra by Bosnich, Moskovits and Ozin (1972) and by Diem, Fry and Burow (1973)
originated in instrumental artifacts, but the spectra subsequently reported in the
chiral molecules 1-phenylethylamine and 1-phenylethanol, (C¢Hs)CH(CH3)(NH>)
and (C¢Hs)CH(CH3)(OH), by Barron, Bogaard and Buckingham (1973) were con-
firmed by Hug et al. (1975) as genuine. On account of experimental difficulties, the
natural Rayleigh circular intensity difference has not yet been observed in small
chiral molecules, but has been reported in large biological structures (Maestre et al.,
1982; Tinoco and Williams, 1984).

Since all molecules can show optical rotation and circular dichroism in a mag-
netic field, it is not surprising that all molecules in a strong magnetic field should
show Rayleigh and Raman optical activity (Barron and Buckingham, 1972). More
specifically, the magnetic field must be parallel to the incident light beam to generate
a circular intensity difference, and parallel to the scattered light beam to generate
an ellipticity. The signs of these observables reverse on reversing the magnetic field
direction. The first observation of this effect was in the resonance Raman spectrum
of a dilute aqueous solution of ferrocytochrome c, a haem protein (Barron, 1975a).
It should be mentioned, however, that there is a much older phenomenon that proba-
bly falls within the definition of magnetic optical activity in light scattering, namely
the Kerr magneto-optic effect (Kerr, 1877). Here, linearly polarized light becomes
elliptically polarized when reflected from the polished pole of an electromagnet:
the incident light must be linearly polarized either in, or perpendicular to, the plane
of incidence, otherwise elliptical polarization results from metallic reflection.

More surprisingly, although there are no simple electrical analogues of magnetic
optical rotation and circular dichroism (they would violate parity and reversality, as
discussed in Section 1.9), Rayleigh and Raman optical activity should also be shown
by any fluid in a static electric field perpendicular to both the incident and scattered
directions (Buckingham and Raab, 1975). Electric Rayleigh optical activity was
first observed by Buckingham and Shatwell (1980) in gaseous methyl chloride.

There has been interest in the influence on circular dichroism spectra of the
differential scattering of right- and left-circularly polarized light by turbid optically
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active media: light scattered out of the sides of the sample removes an intensity
from the transmitted beam additional to that from absorption (Tinoco and Williams,
1984). A dramatic example of the effect is provided by cholesteric liquid crystals
(de Gennes and Prost, 1993): an initially linearly polarized beam can become al-
most completely circularly polarized after passing through a slab on account of
the preferential scattering (reflection) of one of the coherent circularly polarized
components.

The main significance of Rayleigh optical activity is that, from appropriate mea-
surements in light scattered at 90°, it provides a measure of the anisotropy in the
molecular optical activity using an isotropic sample such as a liquid or solution.
Such information can only be obtained from optical rotation or circular dichroism
measurements using an oriented sample such as a crystal, or a fluid in a static elec-
tric field (Tinoco, 1957). The main significance of Raman optical activity is that
it provides an alternative method to infrared optical rotation and circular dichro-
ism for measuring vibrational optical activity: this is discussed further in the next
section.

1.5 Vibrational optical activity

It had been appreciated for some time that the measurement of optical activity asso-
ciated with molecular vibrations could provide a wealth of delicate stereochemical
information. But only since the early 1970s, thanks mainly to developments in
optical and electronic technology, have the formidable technical difficulties been
overcome and vibrational optical activity spectra been observed using both infrared
and Raman techniques.

The significance of vibrational optical activity becomes apparent when it is com-
pared with conventional electronic optical activity in the form of optical rotation
and circular dichroism of visible and near ultraviolet radiation. These conventional
techniques have proved most valuable in stereochemical studies, but since the elec-
tronic transition frequencies of most structural units in a molecule occur in the far
ultraviolet, they are restricted to probing limited regions of molecules, in particular
chromophores and their immediate intramolecular environments, and cannot be
used at all when a molecule lacks a chromophore (although optical rotation mea-
surements at transparent frequencies can still be of value). But since a vibrational
spectrum, infrared or Raman, contains bands from vibrations associated with most
parts of a molecule, measurements of some form of vibrational optical activity
could provide much more information.

The obvious method of measuring vibrational optical activity is by extending
optical rotatory dispersion and circular dichroism into the infrared. But in addition
to the technical difficulties in manipulating polarized infrared radiation, there is a
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fundamental physical difficulty: optical activity is a function of the frequency of
the exciting light and infrared frequencies are several orders of magnitude smaller
than visible and near ultraviolet frequencies. On the other hand, the Raman effect
provides vibrational spectra using visible exciting light, the molecular vibrational
frequencies being measured as small displacements from the frequency of the in-
cident light in the visible spectrum of the scattered light. Consequently, the funda-
mental frequency problem does not arise if vibrational optical activity is measured
by means of the Raman circular intensity difference (or degree of circular polar-
ization), outlined in the previous section.

Natural infrared optical rotation was first observed as long ago as 1836 by Biot
and Melloni, who passed linearly polarized infrared radiation along the optic axis
of a column of quartz, but this probably originated mainly in near infrared elec-
tronic transitions. Further progress was slow, and Lowry (1935) concluded a review
of infrared optical activity with the unenthusiastic statement: ‘Very few measure-
ments of rotatory dispersion have been made in the infrared, since this phenomenon
shows no points of outstanding interest, the rotatory power decreasing steadily with
increasing wavelength, even when passing through an infrared absorption band’.
Anomalous infrared optical rotatory dispersion in quartz was reported by Gutowsky
(1951), but this work was challenged by West (1954). Katzin (1964) reanalyzed
the early near infrared optical rotatory dispersion data of Lowry and Snow (1930)
and concluded that, while electronic transitions were mainly responsible, contri-
butions from infrared vibrational transitions were certainly present. Hediger and
Giinthard (1954) reported the observation of anomalous optical rotatory dispersion
associated with an overtone in the vibrational spectrum of 2-butanol, but Wyss and
Giinthard (1966) subsequently questioned the results and in further experiments
failed to observe any effects.

Schrader and Korte (1972) reported anomalous optical rotatory dispersion in the
vibrational spectrum of N-(p-methoxybenzylidene) butylaniline perturbed into the
cholesteric mesophase by the addition of an optically active solute. Soon afterwards,
Dudley, Mason and Peacock (1972) reported vibrational circular dichroism in a
similar sample. The reason that vibrational optical activity is so readily accessible
in cholesteric liquid crystals is that the helix pitch length is of the order of the
wavelength of the infrared radiation.

The first ray of hope for practical chemical applications of infrared vibrational
optical activity came in 1973 when Hsu and Holzwarth reported well defined cir-
cular dichroism bands arising from vibrations of water molecules in optically ac-
tive crystals such as nickel sulphate, « NiSO4 - 6H,O. This ray intensified when
Holzwarth et al. (1974) reported circular dichroism in the 2920 cm~! band of 2,2,2-
trifluoro I-phenylethanol, (C¢Hs)C*H(CF3)(OH), due to the C*-H stretching mode.
The publication by Nafie, Keiderling and Stephens (1976) of vibrational circular
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dichroism spectra down to about 2000 cm~! in a number of typical optically active
molecules served notice that infrared vibrational circular dichroism had become a
routine technique.

While this frontal attack on vibrational optical activity through infrared optical
rotation and circular dichroism was under way, the outflanking manoeuvre involv-
ing Raman optical activity, described in the previous section, was passing rela-
tively unnoticed. In fact the first observations of Raman optical activity reported
by Barron, Bogaard and Buckingham (1973), mentioned previously, constituted
the first observations of genuine natural vibrational optical activity of small chiral
molecules in the liquid phase. High quality infrared circular dichroism and Raman
optical activity spectra of chiral molecules may now be measured routinely and
are proving increasingly valuable for solving a wide range of stereochemical prob-
lems. The Raman optical activity spectrum of a-pinene is shown in Fig. 1.8 as
a typical example of a vibrational optical activity spectrum. The fact that there
is almost perfect mirror symmetry in the spectra of the two enantiomers, which
were studied in microgram quantities in throw-away capillary tubes, emphasizes
the ease and reliability of such measurements using the latest generation of instru-
ment (Hug, 2003). Typical infrared circular dichroism spectra have a similar general
appearance, except that they do not penetrate much below 800 cm~! due to both
technical problems and the fundamental frequency problem mentioned above. Also
the signs and magnitudes of infrared circular dichroism bands associated with par-
ticular vibrations generally bear no relation to the corresponding Raman optical
activity bands due to the completely different mechanisms responsible for the two
phenomena (see Chapter 7).

Vibrational optical activity techniques, both infrared and Raman, have become
especially valuable in biochemistry and biophysics, enormous progress having been
made since the publication of the first edition of this book. Important milestones
were the first reports of the vibrational optical activity spectra of proteins using
infrared circular dichroism by Keiderling (1986) and Raman optical activity by
Barron, Gargaro and Wen (1990). Raman optical activity spectra may even be
recorded routinely on intact live viruses in aqueous solution to provide information
on the structures and mutual interactions of the protein coat and the nucleic acid
core (see Section 7.6).

Vibrational optical activity induced by a magnetic field using infrared circular
dichroism was first observed by Keiderling (1981) but, as mentioned in Section
1.4, it had been observed previously as a circular intensity difference in resonance
Raman scattering. Just as conventional magnetic optical activity injects additional
structure into an electronic spectrum, so magnetic infrared and Raman optical
activity inject additional structure into a vibrational spectrum, thereby facilitating
the assignment of bands, for example. Magnetic vibrational circular dichroism
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Fig. 1.8 The Raman (a) and Raman optical activity (b, ¢) spectra of the two enan-
tiomers of a-pinene measured as the degree of circular polarization in backscat-
tered light. Adapted from Hug (2003). Spectrum (b) is a little less intense than
(c) because the (1S, 55)-(—) sample had a slightly lower enantiomeric excess.

The absolute intensities are not defined but the relative Raman and Raman optical
activity intensities are significant.

is valuable for studies of small molecules in the gas phase, where it can yield
vibrational g-values from rotationally resolved bands (Bour, Tam and Keiderling,
1996). On the other hand, systems in degenerate ground states, most commonly
encountered as Kramers degeneracy in molecules with an odd number of electrons,
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add another dimension to magnetic Raman optical activity studies, since transitions
between the magnetically split components of the degenerate ground electronic
level superimposed upon the vibrational transition may be observed. This ‘Raman
electron paramagnetic resonance’ effect was first observed by Barron and Meehan
(1979) in resonance scattering from dilute solutions of transition metal complexes
such as iridium (IV) hexachloride, IrCls>~. Raman electron paramagnetic resonance
provides information about the magnetic structure of ground and low-lying excited
electronic states, including the sign of the g-factor and how the magnetic structure
changes when the molecule is in an excited vibrational state.

There has also been discussion of optical activity associated with pure rotational
transitions of chiral molecules in the gas phase, including optical rotation and
circular dichroism in the microwave region and Raman optical activity (Salzman,
1977; Barron and Johnston, 1985; Polavarapu, 1987), but to date no experimental
observations have been reported.

1.6 X-ray optical activity

Since the appearance of the first edition of this book, optical activity measurements
have been extended to X-ray wavelengths, thanks to developments in the X-ray syn-
chrotron beams that are essential for such measurements. This was first achieved
for magnetic field induced circular dichroism by Schutz et al. (1987), who stud-
ied magnetized iron. The first observation of natural circular dichroism in chiral
molecules was made a decade later by Alagna et al. (1998) in crystals of a chiral
neodymium complex. Magnetic X-ray circular dichroism was observed first be-
cause the X-ray magnetic dissymmetry factors can be several orders of magnitude
larger than the X-ray natural dissymmetry factors.

Both magnetic and natural X-ray circular dichroism originate in near-edge atomic
absorptions and their associated structure. The magnetic effect is now widely used
to explore the magnetic properties of magnetically ordered materials. The natural
effect, studies of which are still in their infancy (Peacock and Stewart, 2001; Goulon
et al., 2003), is sensitive to absolute chirality in the molecular environment around
the absorbing atom. An interesting aspect of natural X-ray circular dichroism is
that it relies mainly on an unusual electric dipole—electric quadrupole mechanism,
discussed in detail in later chapters, that survives only in oriented samples such
as crystals. The electric dipole-magnetic dipole mechanism that dominates in-
frared, visible and ultraviolet circular dichroism and which survives in isotropic
media such as liquids and solutions is small in the X-ray region. In this respect
magnetochiral dichroism, described in the next section, could be favourable for the
study of chiral samples in the X-ray region because an electric dipole—electric
quadrupole contribution survives in isotropic media, and linearly polarized
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synchrotron radiation, which is easier to generate than circularly polarized, could be
employed with the measurements effected by reversing the magnetic field direction.

1.7 Magnetochiral phenomena

Shortly after the appearance of the first edition of this book, a remarkable new
class of optical phenomena that depend on the interplay of chirality and magnetism
came to prominence. Wagniere and Meier (1982) predicted that a static magnetic
field parallel to the propagation direction of an incident light beam would induce a
small shift in the absorption coefficient of a medium composed of chiral molecules.
This shift is independent of the polarization characteristics of the light beam and
so appears even in unpolarized light. The shift changes sign either on replacing the
chiral molecule by its mirror image enantiomer or on reversing the relative directions
of the magnetic field and the propagation direction of the light beam. Portigal and
Burstein (1971) had earlier shown, on the basis of symmetry arguments, that an
extra term exists in the dielectric constant of a chiral medium which is proportional
to k - B, where k is the unit propagation vector of the light beam and B is the
external static magnetic field; and Baranova and Zeldovich (1979a) had predicted
a shift in the refractive index of a fluid composed of chiral molecules in a static
magnetic field applied parallel to the direction of propagation of a light beam.
The associated difference in absorption of a light beam parallel (1) and an-
tiparallel (1)) to the magnetic field was subsequently christened magnetochiral
dichroism by Barron and Vrbancich (1984), with the corresponding difference in
refractive index called magnetochiral birefringence. The magnetochiral dichroism
experiment is illustrated in Fig. 1.9. The corresponding magnetochiral birefrin-
gence and dichroism observables, n™t —n™ and n'"" — '™, are linear in the
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Fig. 1.9 The magnetochiral dichroism experiment. The absorption index n’ of a
medium composed of chiral molecules is slightly different for unpolarized light
when a static magnetic field is applied parallel (11) and antiparallel (1) to the
direction of propagation of the beam.
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magnetic field strength just like the Faraday effect. Magnetochiral dichroism was
first observed by Rikken and Raupach (1997) in a chiral europium(III) complex in
dimethylsulphoxide solution, and magnetochiral birefringence by Kleindienst and
Wagniere (1998) in chiral organic fluids such as a camphor derivative and carvone.
At the time of writing there are some unresolved problems with measurements of
magnetochiral birefringence, since different experimental strategies appear to give
quite different results (Vallet et al., 2001).

It might appear at first sight that magnetochiral dichroism is simply the result of
cascade mechanisms involving successive natural circular dichroism and magnetic
circular dichroism steps, and vice versa. Thus natural circular dichroism of the
incoherent right- and left-circularly polarized components of equal amplitude into
which unpolarized light may be decomposed leads to the initially unpolarized light
beam acquiring a circular component as it progresses through the medium, which
will subsequently be absorbed differently depending on whether the applied mag-
netic field is parallel or antiparallel to the propagation direction. Equivalently, mag-
netic circular dichroism will induce a circular component in the initially unpolarized
light beam, followed by natural circular dichroism. Although these cascade mech-
anisms may provide an initial insight into the physical origin of the phenomenon,
and will indeed provide higher-order contributions (Rikken and Raupach, 1998), as
elaborated in Chapter 6 magnetochiral dichroism originates primarily in a single-
step scattering process in which the chiral and magnetic interactions interfere.

Although the magnetochiral effects observed to date are very weak, they are of
fundamental interest. For example, they provide a new source of absolute enan-
tioselection via photochemical reactions in unpolarized light in a static magnetic
field that may be significant for the origin of biological homochirality (Rikken and
Raupach, 2000). Also, they might be exploited in new phenomena of technological
significance in chiral magnetic media such as an anisotropy in electrical resistance
through a chiral conductor in directions parallel and antiparallel to a static magnetic
field (Rikken, Folling and Wyder, 2001).

1.8 The Kerr and Cotton—-Mouton effects

The Kerr and Cotton—-Mouton effects refer to the linear birefringence induced in
a fluid or an isotropic solid by a static electric or magnetic field, respectively,
applied perpendicular to the propagation direction of a light beam (Kerr, 1875;
Cotton and Mouton, 1907). The effects originate mainly in a partial orientation of
the molecules in the medium. The sample behaves, in fact, like a uniaxial crystal
with the optic axis parallel to the direction of the field. Although these phenomena
are not manifestations of optical activity (they do not originate in a difference in
response to right- and left-circularly polarized light) we describe them briefly since
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equations for the associated polarization changes emerge automatically from the
birefringent scattering treatment presented in Chapter 3.

If the light beam is linearly polarized at 45° to the direction of the applied field,
elliptical polarization is produced on account of a phase difference induced in the
two coherent resolved components of the light beam linearly polarized parallel and
perpendicular to the static field direction. Since the phase difference is

2rl
é = T(I’IH — nL), (181)

where n and n | are the refractive indices for light linearly polarized parallel and
perpendicular to the static field direction, the resulting ellipticity is simply §/2 so
that, in radians per unit path length,

i
Y= I(ﬂu —ny). (1.8.2)

At absorbing wavelengths, the two different refractive indices for light linearly
polarized parallel and perpendicular to the static field direction are accompanied
by different absorption coefficients. This results in a rotation of the major axis of
the polarization ellipse because a difference in amplitude develops between the two
orthogonal resolved components for which no phase difference exists. Again, this
optical rotation due to linear dichroism is not a manifestation of optical activity.
The lineshapes for the dispersion of linear birefringence and linear dichroism are
the same as for ordinary refraction and absorption. Further information on linear
dichroism and its applications in chemistry may be found in the books by Michl
and Thulstrup (1986) and Rodger and Nordén (1997).

1.9 Symmetry and optical activity

The subject of symmetry and optical activity reviewed in this section impacts on
many different areas of science, ranging from classical crystal optics to elementary
particle physics, cosmology and the origin of life. Some of the topics mentioned
here are revisited in detail in Chapter 4, but for others a more detailed account is
beyond the scope of this book.

1.9.1 Spatial symmetry and optical activity

Fresnel’s analysis of optical rotation in terms of different refractive indices for left-
and right-circularly polarized light immediately provided a physical insight into
the symmetry requirements for the structure of an optically active medium. In the
words of Fresnel (1824):
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Fig. 1.10 A right-handed helix and its left-handed mirror image.

There are certain refracting media, such as quartz in the direction of its axis, turpentine,
essence of lemon, etc., which have the property of not transmitting with the same velocity
circular vibrations from right to left and those from left to right. This may result from
a peculiar constitution of the refracting medium or of its molecules, which produces a
difference between the directions right to left and left to right; such, for instance, would
be a helicoidal arrangement of the molecules of the medium, which would present inverse
properties according as these helices were dextrogyrate or laevogyrate.

A finite cylindrical helix is the archetype for all figures exhibiting what Pasteur
(1848) called dissymmetry to describe objects ‘which differ only as an image in a
mirror differs from the object which produces it.” Thus a helix and its mirror image
cannot be superposed since reflection reverses the screw sense, as illustrated in Fig.
1.10. Systems which exist in two nonsuperposable mirror image forms are said
to exhibit enantiomorphism. Dissymmetric figures are not necessarily asymmetric,
that is devoid of all symmetry elements, since they may possess one or more proper
rotation axes (the finite cylindrical helix has a twofold rotation axis C, through the
mid point of the coil, perpendicular to the long helix axis). However, dissymmetry
excludes improper rotation axes, that is centres of inversion, reflection planes and
rotation—reflection axes. In recent years the word dissymmetry has been replaced by
chirality, meaning handedness (from the Greek chir = hand), in the more modern
literature of stereochemistry and other branches of science. ‘Chirality’ was first used
in this context by Lord Kelvin, Professor of Natural Philosophy at the University
of Glasgow. His complete definition is as follows (Lord Kelvin, 1904):

I call any geometrical figure, or group of points, chiral, and say that it has chirality if its
image in a plane mirror, ideally realized, cannot be brought to coincide with itself. Two
equal and similar right hands are homochirally similar. Equal and similar right and left
hands are heterochirally similar or ‘allochirally’ similar (but heterochirally is better). These
are also called ‘enantiomorphs’, after a usage introduced, I believe, by German writers. Any
chiral object and its image in a plane mirror are heterochirally similar.

The first sentence is essentially the definition used today. Strictly speaking, the
term ‘enantiomorph’ is usually reserved for a macroscopic object such as a crystal,
and ‘enantiomer’ for a molecule, but because of the ambiguity of scale in the case
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Fig. 1.11 (a) A holohedral hexagonal crystal. (b) A hemihedral hexagonal crystal
and its mirror image.

of general physical systems these two terms are used as synonyms in this book.
The group theoretical criterion for an object to be chiral is that it must not pos-
sess improper rotation symmetry elements such as a centre of inversion, reflection
planes or rotation—reflection axes and so must belong to one of the point groups
C,. D, O Torl.

Direct evidence that the structure of optically active materials is in some way
chiral followed from the observation by Hauy in 1801 that the apparent hexagonal
symmetry of quartz crystals was in fact reduced by the presence of small facets
on alternate corners of the crystal. These hemihedral facets destroy the centre and
planes of symmetry of the basic holohedral hexagonal crystal, and reduce the sixfold
principal rotation axis with six perpendicular twofold rotation axes to a threefold
principal axis with three perpendicular twofold axes, giving rise to two mirror
image forms of quartz, as in Fig. 1.11. The two forms of quartz which Biot had
found to provide opposite senses of optical rotation were subsequently identified by
Herschel (1822) as the two hemihedral forms of quartz. This early example is very
instructive since it illustrates a feature common to the generation of natural optical
activity in many systems; namely a small chiral perturbation of a basic structure
that is inherently symmetric.

Pasteur extended the concept of chirality from the realm of the structures of
optically active crystals to that of the individual molecules which provide optically
active fluids or solutions. He worked with tartaric acid, which Biot had shown to
be optically active, and with paratartaric acid, which was chemically identical but
optically inactive. The crystal forms of tartaric acid and most of its salts are hemihe-
dral, whereas those of paratartaric acid and most of its salts are holohedral. But an
anomaly in the case of sodium ammonium tartrate was discovered by Mitscherlich:
the crystals of both active and inactive forms are hemihedral (in fact this was for-
tuitous since sodium ammonium paratartrate only gives hemihedral crystals when
crystallized below 26°C). In 1848 Pasteur, in following up this discovery, observed
that although both were indeed hemihedral, in the tartrate the hemihedral facets
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Fig. 1.12 A water molecule oriented in such a way that it appears as part of a left-
handed helix to a light beam travelling parallel or antiparallel to the unit vector k.

were all turned the same way, whereas in the paratartrate there were equal amounts
of crystals with opposite hemihedral facets. Pasteur reports (quoted by Lowry,
1935):
I carefully separated the crystals which were hemihedral to the right from those hemihedral
to the left, and examined their solutions separately in the polarizing apparatus. I then saw
with no less surprise than pleasure that the crystals hemihedral to the right deviated the
plane of polarization to the right, and that those hemihedral to the left deviated to the left.
Paratartaric acid was therefore identified as a mixture, now known as a racemic
mixture, of equal parts of mirror image forms of tartaric acid which neutralized
the optical activity. This work, together with Fresnel’s earlier statements, was in-
strumental in establishing the tetrahedral valencies of the carbon atom because a
molecule must be assigned a three dimensional structure in order to be chiral.
While the absence of a centre of inversion, reflection planes and rotation—
reflection axes in individual molecules is mandatory if an isotropic ensemble is
to show optical activity, some crystals and oriented molecules which lack a cen-
tre of inversion but possess reflection planes or a rotation—reflection axis (so that
they are superposable on their mirror images) can show optical activity for cer-
tain directions of propagation of the light beam. For example, an oriented water
molecule (point group symmetry C»,) appears as part of a helix to a light beam in
any direction not contained in either of the two reflection planes of the molecule, as
illustrated in Fig. 1.12. For every direction of the light beam for which the molecule
appears as part of a left-handed helix, there is a direction for which the molecule
appears as part of a corresponding right-handed helix. The optical rotations in the
two directions are equal and opposite, so an isotropic ensemble of water molecules
does not show optical activity. Although optical activity in oriented water has never
been observed, optical rotation has been observed in certain directions in two other
non-enantiomorphous systems: crystals of silver gallium sulphide, AgGaS,, which
have D,; (42m) symmetry (Hobden, 1967); and the planar molecules of para-
azoxyanisole, which form nematic liquid crystals, by orienting the molecules on a
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glass plate in the presence of a magnetic field perpendicular to the direction of
propagation of the light (Williams, 1968). Thus natural optical activity is not ex-
clusively related to enantiomorphism.

Although the measurement of natural optical rotation in chiral cubic crystals
such as those of sodium chlorate is straightforward due to their spatial isotropy,
for light propagation in a general direction in noncubic crystals natural optical
activity is obscured by linear birefringence. It was only with the introduction of
high accuracy universal polarimetry by Kobayashi and Uesu (1983) that optical
rotation in crystals of any symmetry could be measured reliably and accurately.
This enabled the optical rotation of tartaric acid crystals to be measured for the
first time (Brozek et al., 1995), 163 years after Biot’s observation of the optical
activity of tartaric acid in solution and 147 years after Pasteur’s manual resolution
of the enantiomorphous crystals. Kaminsky (2000) has provided a comprehensive
review of the subtle topic of crystal optical activity and its measurement.

1.9.2 Inversion symmetry and physical laws

The discussion so far has been concerned with the intrinsic spatial symmetry, known
as point group symmetry, of optically active molecules and crystals. The objects
of the physical world display many kinds of spatial symmetry. For example stars,
planets, water droplets and atoms have the high degree of symmetry associated with
a sphere; and even the plant and animal world exhibit some degree of symmetry,
although the symmetry of a butterfly is not as fundamental as that of a crystal
or molecule. An object is said to have spatial symmetry if, after subjecting it to
a symmetry operation such as inversion, reflection or rotation with respect to a
symmetry element within the object, it looks the same as it did before. But more
remarkable than these spatial symmetries is the fact that symmetries exist in the
laws which determine the operation of the physical world. One consequence is
that if a complete experiment is subjected to space inversion or time reversal, the
resulting experiment should, in principle, be realizable (Wigner, 1927).

The symmetry operation of space inversion, represented by the parity operator
P, inverts the coordinates used to specify the system through the coordinate origin,
which may be located arbitrarily. This is equivalent to a reflection of the actual
physical system in any plane containing the coordinate origin, followed by a rotation
R, through 180° about an axis perpendicular to the reflection plane, as illustrated
in Fig. 1.13. Most physical laws, in particular those of electromagnetism (but not
those responsible for 8-decay), are unchanged by space inversion; in other words the
equations representing the physical laws are unchanged if the coordinates (x, y, z)
are replaced everywhere by (—x, —y, —z), and the physical processes described by
these laws are said to conserve parity.
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Fig. 1.13 The operation of space inversion P. An object at the point g(x, y, z) is
moved to the point ¢'(—x, —y, —z).

The symmetry operation of time reversal, represented by the operator T, reverses
the motions of all the physical entities in the system. If replacing the time coordinate
(t) by (—t) everywhere in equations describing physical laws leaves those equations
unchanged, the physical processes represented by those laws are said to be time
reversal invariant, or have reversality. The reversality of a process referred to here
must not be confused with the thermodynamic notion of reversability: a process
will have reversality as long as the process with all motions reversed is in principle
a possible process, however improbable it may be; thermodynamics is concerned
with calculating the probability. The mechanical shuffling of a pack of cards is,
in principle, a reversible process, although thermodynamics would classify it as
an irreversible process. As Sachs (1987) has emphasized, the time coordinate has
little to do with the thermodynamic concept of the ‘arrow of time’. Time reversal
is best thought of as motion reversal. It does not mean going backwards in time! A
remarkable book by the philosopher—physicist Costa de Beauregard (1987) provides
a comprehensive critical review of time as a measurable entity and the relation
between its intrinsic reversibility and the asymmetry between past and future.

A scalar physical quantity such as temperature has magnitude but no directional
properties; a vector quantity such as velocity has magnitude and an associated direc-
tion; and a fensor quantity such as electric polarizability has magnitudes associated
with two or more directions. Scalars, vectors and tensors are classified according
to their behaviour under the operations P and 7. A vector whose sign is changed
by P is called a polar or true vector; for example a position vector r, as shown in
Fig. 1.14a. A vector whose sign is not changed by P is called an axial or pseudo
vector; for example the angular momentum is L. = r x p, the vector product of the
position vector r and the momentum p, and since the polar vectors r and p change
sign under P, the axial vector L does not. In other words L is defined relative to
the sense of rotation by a ‘right hand rule’, and P does not change the sense of
rotation, as illustrated in Fig. 1.14b. A vector whose sign is not changed by T is
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Fig. 1.14 The space inversion operator P changes the sign of the polar position
vector r in (a) but does not change the sign of the axial angular momentum vector
L in (b).

called time-even; for example the position vector, which is not a function of time.
A vector whose sign is changed by T is called time-odd; for example, velocity and
angular momentum, which are linear functions of time. Figure 1.15 illustrates the
effectof T onr, vand L.

Pseudoscalar quantities are, in accordance with the classification outlined in the
previous paragraph, numbers with no directional properties but which change sign
under space inversion. Pseudoscalars are of central importance in natural optical
activity phenomena because the quantities that are measured, such as optical rota-
tion angle or circular intensity difference, are pseudoscalars. Since a helix is the
archetype for all chiral objects, it is instructive to identify the pseudoscalar helix
parameter. A circular helix can be defined by the radius vector from the origin O
of a coordinate system to a point on the curve (see Fig. 1.16):

r = iacosf + jasin6 + kb0, (1.9.1)

where i, j, k are unit vectors along the x, y, z axes. The helix pitch is 2 b, this
being the distance between successive turns. A right-handed helical screw sense is
characterized by a positive value of b since a positive change in 6 (taking x into
y) is associated with a positive translation through 56 along z. This assumes that a
right-handed system of axes, as in Fig. 1.16, is used. Similarly, a left-handed screw
sense is characterized by a negative value of b since a positive change in 8 is now
associated with a negative translation along z. Since P reverses the screw sense of
the helix, it changes b to —b so the helix pitch is therefore a pseudoscalar. Since, as
discussed in Section 1.9.3 below, the pattern of electric field vectors of a linearly
polarized light beam established in an optical rotatory medium constitutes a circular



1.9 Symmetry and optical activity 31

(b) dr Ve dr
dt d(-1)

© [:
L—rxp '=rx(-p)=-L

Fig. 1.15 The time reversal operator T does not change the sign of the time-even
position vector r in (a) but changes the sign of the time-odd velocity vector v in
(b) and angular momentum vector L in (¢).
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Fig. 1.16 A circular helix. a is the helix radius and 277 b is the pitch.

helix, this analysis shows that the optical rotation angle « is a pseudoscalar because,
for a path length /, « = —//b. The minus sign arises from the fact that b is defined
above to be positive for a right-handed helical screw sense, whereas the chemical
convention for a positive angle of optical rotation is that it be associated with a left-
handed helical light path (see Fig. 1.18a). In fact it is shown later (Section 4.3.3)
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Fig.1.17 (a) The generation of an electric field E by two plates of opposite charge.
(b) The generation of a magnetic field B by a cylindrical current sheet.

that only the natural optical rotation observable is a pseudoscalar: the magnetic
optical rotation observable turns out to be an axial vector.

We are particularly interested in the behaviour of the electric and magnetic field
vectors E and B under the operations P and 7, which can best be determined by
examining the symmetry of the physical systems which generate E and B. A uniform
electric field can be generated by a pair of parallel plates (strictly of infinite extent)
carrying equal and opposite uniform charge densities, as shown in Fig. 1.17a. Under
P, the two plates exchange positions, while retaining their respective charges, so
E changes sign. Since the charges are stationary, 7 does not affect the system.
Thus E is a polar time-even vector. A uniform magnetic field can be generated by
a cylindrical current sheet (strictly of infinite length), as shown in Fig. 1.17b. The
sense of rotation of the electrons around the current sheet is reversed by 7' but not
by P. Thus B is an axial time-odd vector.

We can now see that the laws of electromagnetism conserve parity and reversality.
The laws are summarized by Maxwell’s equations and the Lorentz force equation
(these equations are introduced and discussed in the next chapter):

V- D=p, V-B=0,

oB oD

VxE=—-——, VxH=J+ —,

at ot
F=pE+J xB.

Thus the third equation, for example, which summarizes Faraday’s and Lenz’s law
of electromagnetic induction, is easily seen to be invariant under P and T':

J(+B

o | PV <oy = 0D
t s

TEV)x =

The remaining equations are easily shown to be similarly invariant. Conse-
quently, any physical process involving only the electromagnetic interaction,
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for example the interaction of light with a molecule, must conserve parity and
reversality.

For completeness, a third fundamental symmetry operation, that of charge con-
jugation, should be mentioned. Charge conjugation, represented by the operator
C, arises in relativistic quantum field theory and interconverts particles and an-
tiparticles (Berestetskii, Lifshitz and Pitaevskii, 1982). For charged particles this
implies a reversal of charge. Although it has no classical counterpart, it nonetheless
has conceptual value in certain contexts and is useful for checking the consistency
of equations. For example, by interpreting C simply as reversing the signs of all
the charges in a system, it is easily seen that Maxwell’s equations given above are
invariant under this operation.

1.9.3 Inversion symmetry and optical rotation

It is now demonstrated that the natural and magnetic optical rotation experiments
conserve parity and reversality. Similar arguments can be applied to all other optical
activity phenomena and, as illustrated below, can be used to discount or predict
possible new effects without recourse to mathematical theories. This section is
based on articles by Rinard and Calvert (1971) and Barron (1972).

The natural optical rotation experiment consists of a chiral medium, such as a
quartz crystal or a fluid containing inherently chiral molecules, in which the electric
field vectors of a linearly polarized light beam are established in a helical pattern.
A convenient representation of this helical pattern is a twisted ribbon extending
through the medium, with the electric field vectors vibrating in the plane of the
ribbon, as illustrated in Fig. 1.18a. The helical pattern of electric field vectors is
a physical object with well-defined symmetry properties. Since only electromag-
netic interactions are involved, the physical processes giving rise to optical rotation
must conserve parity and reversality. In other words, if P and T are applied to the
entire experiment, the result must also be a possible experiment. Since P is not
a point group symmetry operation for chiral molecules, it is sometimes implied
in the literature that processes involving such molecules do not conserve parity
(Ulbricht, 1959): this incorrect notion presumably arises because the experiment is
not considered in its entirity. Thus under P, the screw sense of the helical pattern
of electric field vectors in the medium is inverted (the optical rotation angle being
a pseudoscalar) and the direction of propagation of the light beam is reversed (Fig.
1.18a); at the same time the chiral medium is converted into its nonsuperposable
mirror image (Fig. 1.18b). This result is itself a possible experiment since replacing
the chiral medium by its enantiomorph results in an opposite sense of optical ro-
tation, and reversing the direction of propagation of the light beam does not affect
the optical rotation sense. Thus natural optical rotation conserves parity. Under T,



34 A historical review of optical activity

(@) mm
Ml - 7
2 o Ml
N

v

(b)
. 5000
0000 v
T 0000
(o)
- N
B } :

Fig. 1.18 The effect of P and T on (a) the helical pattern established by the electric
field vectors of a linearly polarized light beam propagating along the direction of
a unit vector k in a rotatory medium, on () a chiral medium and on (c) an achiral
medium in the presence of a static magnetic field. Notice that the negative optical
rotation angle in the initial state on the left in (a) is associated with a right-handed
screw sense in the helical pattern of electric field vectors.

the direction of propagation is reversed, but the screw sense of the helical pattern
of electric field vectors is preserved (Fig. 1.18a). Since T does not affect the chiral
medium (if nonmagnetic), the time-reversed experiment is physically realizable,
and corresponds simply to reversing the direction of propagation of the light beam,
which does not change the sense of the optical rotation. Thus natural optical rotation
has reversality.

The Faraday rotation experiment consists of an achiral medium in a static ex-
ternally applied magnetic field parallel to the direction of propagation of a linearly
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polarized light beam whose electric field vectors are established in a helical pattern
in the medium. Again P reverses the direction of propagation of the light beam and
inverts the screw sense of the helical pattern of electric field vectors (Fig. 1.18a),
but the achiral medium and the magnetic field are unchanged (Fig. 1.18¢). This
corresponds with what is found experimentally, namely that reversing the direction
of propagation of the light beam relative to the magnetic field direction reverses
the sense of the Faraday rotation. Thus Faraday rotation conserves parity. Under 7',
the direction of propagation of the light beam is reversed, but its sense of optical
rotation is preserved. Since T reverses the direction of the magnetic field but does
not affect the medium (if nonmagnetic in the absence of the applied magnetic field)
(Fig. 1.18c¢), the time-reversed experiment is physically realizable, for reversing
the directions of both the magnetic field and the light beam preserves the sense of
the Faraday rotation. Thus Faraday rotation has reversality. It can also be seen that
Faraday rotation must depend on odd powers of B since these change sign under
T, whereas even powers do not.

These symmetry arguments can also be used to demonstrate that there is no
simple electrical analogue of the Faraday effect; in other words, that optical rota-
tion cannot be induced in a linearly polarized light beam traversing an isotropic
achiral medium by a static electric field in the direction of propagation. Thus P
does not affect the medium, although the direction of the electric field and the
direction of propagation and optical rotation sense of the light beam are reversed:
as all directions in the unperturbed medium are equivalent, any optical rotation
induced by odd (or even) powers of E would violate parity. Similarly, 7 does not
affect the electric field, the medium, or the sense of optical rotation, but reverses
the direction of propagation of the light beam relative to the electric field direc-
tion. Consequently, any optical rotation induced by odd (but not even) powers of E
would also violate reversality. It might be thought that this effect could be induced
in a fluid of chiral molecules: certainly, pictorial arguments show that parity would
not be violated, but they also show that reversality would be violated. The extension
of these pictorial arguments to more exotic media is cumbersome, so we refer to
the group theoretical discussions of Buckingham, Graham and Raab (1971) and
Gunning and Raab (1997) for demonstrations that an electric analogue of the
Faraday effect is possible in certain crystals, and to Kaminsky (2000) for an ac-
count of theoretical and experimental aspects of this phenomenon, which is called
electrogyration in crystal optics.

Although rotation of the plane of polarization of linearly polarized light in an
isotropic achiral medium in the absence of magnetic fields would violate parity,
rotation of the major axis of the polarization ellipse of an elliptically polarized light
beam in the same medium would not. Elliptically polarized light is a coherent super-
position of linearly and circularly polarized components. The tip of the electric field
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vector in a fixed plane perpendicular to the direction of propagation of a circularly
polarized light beam traces out a circle with time: thus P reverses the handedness
because, although the rotation sense of the electric field vector is maintained, the
direction of propagation is reversed; whereas T preserves the handedness because
both the rotation sense of the electric field vector and the direction of propagation
are reversed. Thus under P, the medium is not affected but the direction of propaga-
tion, the sense of the optical rotation and the handedness of an elliptically polarized
light beam are reversed; that is, reversing the handedness of the ellipticity reverses
the sense of the optical rotation. Under 7', the medium is not affected, and the sense
of the optical rotation and the handedness of the ellipticity are maintained (with
the direction of propagation of the light beam reversed). These conclusions agree
with the observations of the effect known as the auto rotation of the polarization
ellipse in which the major axis of the polarization ellipse of an intense elliptically
polarized laser beam rotates on passing through an isotropic achiral fluid (Maker,
Terhune and Savage, 1964). Reversing the handedness of the ellipticity reverses
the sense of optical rotation. The effect is due to the intensity dependence of the
refractive index: an elliptically polarized light beam may be considered as a super-
position of two coherent circularly polarized beams of different intensity, so the two
components will propagate through the medium with different velocities thereby
causing the major axis of the ellipse to rotate. An interesting speculation is that a
mechanism could exist for producing optical rotation of an elliptically polarized
light beam in a racemic mixture which would be a function of the optical activity
of one of the enantiomers, for such an effect would not violate parity or reversality.

It is easy to see that optical rotation induced by a rapid rotation of a complete
isotropic sample about an axis parallel to the propagation direction of the light beam
would not violate parity or reversality and is therefore a possible phenomenon. This
effect, called the rotatory ether drag, was observed by Jones (1976) in a rapidly
rotating rod made of Pockels glass. The symmetry aspects lead it to be classified
along with the Faraday effect as optical activity induced by a time-odd external
influence.

1.9.4 Inversion symmetry and optical activity in light scattering

Similar pictorial arguments can be applied to Rayleigh and Raman optical activity.
These are illustrated most simply for ellipticity in Rayleigh scattered light in linearly
polarized incident light: the method applies equally well to the circular intensity
difference, but the exposition is more cumbersome.

Fig. 1.19a shows an experiment in which a small right ellipticity is detected in a
light beam scattered at 90° from an isotropic chiral medium in an incident light beam
linearly polarized perpendicular to the scattering plane. Under P, the directions of
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Fig. 1.19 The effect of P on (a) the natural, (b) the magnetic and (c) the electric
Rayleigh optical activity experiments.

the incident and scattered beams are reversed, with the scattered beam now carrying
a left ellipticity and the chiral medium replaced by its nonsuperposable mirror
image. Assuming that space is isotropic, this is a realizable experiment because
replacing the medium by its enantiomorph results in an opposite sense of ellipticity
in the scattered beam. Thus natural Rayleigh optical activity conserves parity.

If the ellipticity in the scattered beam were generated in an achiral medium by a
static magnetic field parallel to the scattered beam, application of P would reverse
the direction of the scattered beam relative to the magnetic field (Fig. 1.19b) and
so magnetic Rayleigh optical activity also conserves parity.

Fig. 1.19¢ illustrates the more subtle phenomenon of an ellipticity in the scattered
beam generated in an achiral medium by a static electric field perpendicular to both
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the incident and scattered beam directions. This electric Rayleigh optical activity
conserves parity because P changes the hand of the axes defined by the incident
beam direction, the scattered beam direction and the electric field direction.

The discussion of time reversal here is complicated by the fact that light scattering
is not a reversible phenomenon in the sense that reversing only the beam scattered
into the direction of interest, but ignoring the beams scattered into all other di-
rections, would not restore the incident beam to its original condition. However,
the principle of reciprocity, stated first by Lord Rayleigh (1900) and extended by
Krishnan (1938) and Perrin (1942) to include light scattering, is a form of time
reversal which is applicable. This states (following de Figueiredo and Raab, 1980)
that time-reversing an entire light scattering experiment in respect of the scattering
system, light velocities and polarization states produces the same analyzed intensity
in the output beam as that in the original experiment, provided that the intensity used
in the two experiments for their respective input polarization states is the same. We
shall not illustrate this principle here, but instead refer to de Figueiredo and Raab
(1980) and Graham (1980) for a systematic application of space inversion and the
principle of reciprocity to a wide range of polarized light scattering phenomena.

Perrin (1942) gave the following qualification to such formulations: ‘The law
of reciprocity is not valid for fluorescence or for the Raman effect, in which the
change in frequency is irreversible. In scattering phenomena it is only relevant for
Rayleigh scattering, with no or small symmetrical frequency changes.” However,
since the basic Rayleigh light scattering experiment itself is irreversible, it seems
inconsistent to deny the possibility of extending the law of reciprocity to encompass
this additional element of irreversibility. Indeed, Hecht and Barron (1993a) have
provided a generalization of the law of reciprocity for application to Raman scat-
tering based on experiments belonging to a particular Stokes/antiStokes reciprocal
pair.

1.9.5 Motion-dependent enantiomorphism: true and false chirality

Optical activity is not necessarily the hallmark of chirality. The failure to distinguish
properly between natural and magnetic optical rotation, for example, has been a
source of confusion in the literature of both chemistry and physics. Lord Kelvin
(1904) was fully aware of the fundamental distinction, for his Baltimore Lectures
contain the statement:

The magnetic rotation has neither left-handed nor right-handed quality (that is to say, no
chirality). This was perfectly understood by Faraday, and made clear in his writings, yet
even to the present day we frequently find the chiral rotation and the magnetic rotation of
the plane of polarized light classed together in a manner against which Faraday’s original
description of his discovery contains ample warning.
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He may have had Pasteur in mind. For example, because a magnetic field induces
optical rotation, Pasteur thought that by growing crystals, normally holohedral, in a
magnetic field a magnetically induced dissymmetry would be manifest in hemihe-
dral crystal forms. The resulting crystals, however, retained their usual holohedral
forms (Mason, 1982). Lord Kelvin’s viewpoint was reinforced much later by Zocher
and Torok (1953), who discussed the space—time symmetry aspects of natural and
magnetic optical activity from a general classical viewpoint and recognized that
quite different asymmetries are involved. Similarly Post (1962) emphasized the
fundamental distinction between natural and magnetic optical activity in terms of
the reciprocal and nonreciprocal characteristics, respectively, of the two phenomena
(reciprocal and nonreciprocal refer here to the fact that the natural optical rotation
sense is the same on reversing the direction of propagation of the light beam whereas
the magnetic optical rotation sense reverses).

It is already clear from Section 1.9.3 above that natural and magnetic optical ro-
tation have different symmetry characteristics. Further considerations (see Section
4.3.3) show that the natural optical rotation observable is a time-even pseudoscalar,
whereas the magnetic optical rotation observable is a time-odd axial vector. These
and other arguments suggest that the hallmark of a chiral system is that it can
support time-even pseudoscalar observables. This leads to the following defini-
tion which enables chirality to be distinguished from other types of dissymmetry
(Barron, 1986a,b):

True chirality is exhibited by systems that exist in two distinct enantiomeric (enantiomorphic)
states that are interconverted by space inversion, but not by time reversal combined with
any proper spatial rotation.

This means that the spatial enantiomorphism shown by truly chiral systems is time
invariant. Spatial enantiomorphism that is time noninvariant has different char-
acteristics that this author has called false chirality to emphasize the distinction.
Originally, it was not intended that the terminology ‘true’ and ‘false’ chirality
should become standard nomenclature, but these terms have gradually crept into
the literature of stereochemistry. Notice that a magnetic field on its own is not even
falsely chiral because there is no associated spatial enantiomorphism. Essentially,
for a truly chiral system, parity P is not a symmetry operation (since it generates a
different system, namely the enantiomer) but time reversal 7" is a symmetry opera-
tion; whereas for a falsely chiral system neither P nor T are symmetry operations
on their own but the combination PT is a symmetry operation.

A stationary object such as a finite helix that is chiral according to Lord Kelvin’s
original definition is accommodated by the first part of this definition: space in-
version is a more fundamental operation than mirror reflection, but provides an
equivalent result. Time reversal is irrelevant for a stationary object, but the full
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Fig. 1.20 The effect of parity P and time reversal 7 on the motions of (a) a
stationary spinning particle and (b) a translating spinning particle. The designations
L and R for left and right handed follow the convention used in elementary particle
physics, which is opposite to the classical optics convention used elsewhere in this
book.

definition is required to identify more subtle sources of chirality in which motion
is an essential ingredient. A few examples will make this clear.

Consider an electron, which has a spin quantum number s = % with my; = :i:%
corresponding to the two opposite projections of the spin angular momentum onto
a space-fixed axis. A stationary spinning electron is not a chiral object because
space inversion P does not generate a distinguishable P-enantiomer (Fig. 1.20a).
However, an electron translating with its spin projection parallel or antiparallel to the
direction of propagation has true chirality because P interconverts distinguishable
left and right spin-polarized versions propagating in opposite directions, whereas
time reversal T does not (Fig. 1.200). In elementary particle physics, the projection
of the spin angular momentum s of a particle along its direction of motion is called
the helicity A = s - p/|p| (Gibson and Pollard, 1976). Spin—% particles can have
A = =xh/2, the positive and negative states being called right and left handed.
This, however, corresponds to the opposite sense of handedness to that used in the
usual definition of right- and left-circularly polarized light in classical optics as
employed in this book.

The photons in a circularly polarized light beam propagating as a plane wave
are in spin angular momentum eigenstates characterized by s = 1 with my; = £1
corresponding to projections of the spin angular momentum vector parallel or an-
tiparallel, respectively, to the propagation direction. The absence of states with
mg = 0 is connected with the fact that photons, being massless, have no rest frame
and so always move with the velocity of light (Berestetskii, Lifshitz and Pitaevskii,
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Fig. 1.21 The effect of P, T and R, on (a) a stationary spinning cone, which has
false chirality, and on () a translating spinning cone, which has true chirality. The
systems generated by P and 7" may be interconverted by R, in (a) but not in (b).

1982). Considerations the same as those in Fig. 1.20b show that a circularly polar-
ized photon has true chirality.

Now consider a cone spinning about its symmetry axis. Because P generates a
version that is not superposable on the original (Fig. 1.21a), it might be thought
that this is a chiral system. The chirality, however, is false because T followed
by a rotation R, through 180° about an axis perpendicular to the symmetry axis
generates the same system as space inversion (Fig. 1.21a). If, however, the spinning
cone is also translating along the axis of spin, T followed by R, now generates a
system different from that generated by P alone (Fig. 1.21b). Hence a translating
spinning cone has true chirality.

Mislow (1999) has argued that a nontranslating spinning cone belongs to the
spatial point group C, and so is chiral. More generally, he has suggested that
objects that exhibit enantiomorphism, whether 7 -invariant or not, belong to chiral
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point groups and hence that motion-dependent chirality is encompassed in the
group theoretical equivalent of Lord Kelvin’s definition. However, a nontranslating
spinning cone will have quite different physical properties than those of, say, a finite
helix. For example, as shown later (Section 4.3.3), the molecular realization of a
spinning cone, namely a rotating symmetric top molecule, does not support time-
even pseudoscalar observables such as natural optical rotation (it supports magnetic
optical rotation). To classify it as ‘chiral’ the same as for a completely asymmetric
molecule which does support natural optical rotation is therefore misleading as far
as physics is concerned, even though such a classification may be consistent within
a particular mathematical description.

It is clear that neither a static uniform electric field E (a time-even polar vec-
tor) nor a static uniform magnetic field B (a time-odd axial vector) constitutes a
chiral system; likewise for time dependent uniform electric and magnetic fields.
Furthermore, no combination of a static uniform electric and a static uniform mag-
netic field can constitute a chiral system. As Curie (1894) pointed out, collinear
electric and magnetic fields do indeed generate spatial enantiomorphism. Thus
parallel and antiparallel arrangements are interconverted by space inversion and
are not superposable. But they are also interconverted by time reversal combined
with a rotation R, through 180° about an axis perpendicular to the field direc-
tions and so the enantiomorphism corresponds to false chirality. Zocher and Torok
(1953) also recognized that Curie’s spatial enantiomorphism is not the same as
that of a chiral molecule: they called the collinear arrangement of electric and
magnetic fields a time-asymmetric enantiomorphism and said that it does not sup-
port time-symmetric optical activity. Tellegen (1948) conceived of a medium with
novel electromagnetic properties comprising microscopic electric and magnetic
dipoles tied together with their moments either parallel or antiparallel. Such media
clearly exhibit enantiomorphism corresponding to false chirality. Although much
discussed (Post, 1962; Lindell et al., 1994; Raab and Sihvola, 1997; Weiglhofer
and Lakhtakia, 1998), Tellegen media have never been observed in nature and do
not appear to have been fabricated.

In fact the basic requirement for two collinear vectorial influences to generate
chirality is that one transforms as a polar vector and the other as an axial vector,
with both either time even or time odd. The second case is exemplified by the mag-
netochiral phenomena described in Section 1.7 above, where a birefringence and a
dichroism may be induced in an isotropic chiral sample by a uniform magnetic field
B collinear with the propagation vector k of a light beam of arbitrary polarization.
Thus parallel and antiparallel arrangements of B and k, which are interconverted by
space inversion, are true chiral enantiomers because they cannot be interconverted
by time reversal since k and B are both time odd.
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The new definition of chirality described here has proved useful in areas as diverse
as the scattering of spin-polarized electrons from molecules (Blum and Thompson,
1997) and absolute enantioselection (Avalos et al., 1998). A new dimension has been
added to the physical background of these areas by the suggestion that processes
involving chiral molecules may exhibit a breakdown of conventional microscopic
reversibility, but preserve a new and deeper principle of enantiomeric microscopic
reversibility, in the presence of a falsely chiral influence such as collinear electric
and magnetic fields (Barron, 1987). The conventional microscopic reversibility of a
process is based on the invariance of the quantum mechanical scattering amplitude
under time reversal so that the amplitudes for the forward and reverse processes
are identical. The enantiomeric microscopic reversibility of a process, which is
only relevant when chiral particles are involved, is based on the invariance of the
scattering amplitude under both time reversal and parity so that the amplitude for
the forward process equals that for the reverse process involving the mirror-image
chiral particles. In other words, the process is not invariant under P and T separately
but is invariant under the combined PT operation. This exposes an analogy with
CP violation in elementary particle physics, mentioned in the next section, in which
the concept of false chirality also arises but with respect to CP-enantiomorphism
rather than P-enantiomorphism and CPT-invariance rather than P7-invariance.

1.9.6 Symmetry violation: the fall of parity and time reversal invariance

Prior to 1957 it had been accepted as self evident that handedness is not built into the
laws of nature. If two objects exist as nonsuperposable mirror images of each other,
such as the two enantiomers of a chiral molecule, it did not seem reasonable that
nature should prefer one over the other. Any difference between enantiomeric sys-
tems was thought to be confined to the sign of pseudoscalar observables: the mirror
image of any complete experiment involving one enantiomer should be realizable,
with any pseudoscalar observable (such as optical rotation angle) changing sign but
retaining exactly the same magnitude. Then Lee and Yang (1956) pointed out that,
unlike the strong and electromagnetic interactions, there was no evidence for parity
conservation in processes involving the weak interaction. Of the experiments they
suggested, that performed by Wu ef al. (1957) is the most famous.
The Wu experiment studied the S-decay process

0Co — ONi e +vF

in which, essentially, a neutron decays via the weak interaction into a proton, an
electron e~ and an electron antineutrino v}. The nuclear spin magnetic moment I of
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Fig. 1.22 Parity violation in S-decay. Only experiment (a) is observed; the space-
inverted version (b) cannot be realized. Symmetry is recovered in experiment
(c), obtained from (a) by invoking the combined CP operation. Anti-Co is repre-
sented by Co*, and B* and I* are reversed relative to B and I because the charges
on the moving source particles change sign under C.

each ®°Co nucleus was aligned with an external magnetic field B, and the angular
distribution of the emitted electrons measured. It was found that the electrons were
emitted preferentially in the direction antiparallel to that of B (Fig. 1.22a). As
discussed in Section 1.9.2, B and I are axial vectors and so do not change sign
under space inversion, whereas the electron propagation vector k does because it is
a polar vector. Hence in the corresponding space-inverted experiment the electrons
should be emitted parallel to the magnetic field (Fig. 1.22b). It is only possible
to reconcile the opposite electron propagation directions in Figs. 1.22a and 1.22b
with parity conservation if there is no preferred direction for electron emission (an
isotropic distribution), or if the electrons are emitted in the plane perpendicular to
B. The observation depicted in Fig. 1.22a provides unequivocal evidence for parity
violation. Another important aspect of parity violation in 8-decay is that the emitted
electrons have a left-handed longitudinal spin polarization, being accompanied by
right-handed antineutrinos.
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In fact symmetry is recovered by invoking invariance under the combined CP
operation in which charge conjugation and space inversion are applied together. This
would mean that the missing experiment is to be found in the antiworld! In other
words, nature has no preference between the original experiment depicted in Fig.
1.22a and that depicted in Fig. 1.22¢, generated from the original by CP, in which
anti-®*Co decays into a right-handed spin-polarized positron moving antiparallel
to the antimagnetic field. This has not been tested directly in the decay of nuclei
due to the unavailability of antinuclei, but CP invariance has been established
experimentally for the decay of certain elementary particles (however, as outlined
below, it has been shown to be violated in the neutral K meson system). This result
implies that P violation is accompanied here by C violation: absolute charge is
distinguished since the charge that we call negative is carried by electrons, which
are emitted with a left-handed spin polarization.

Following the Wu experiment described above, the original Fermi theory of
the weak interaction was upgraded in order to take account of parity violation.
This was achieved by reformulating the theory in such a way that the interaction
takes the form of a left-handed pseudoscalar. However, a number of technical
problems remained. These were finally overcome in the 1960s in the celebrated
work of S. Weinberg, A. Salam and S. L. Glashow, which unified the theory of
the weak and electromagnetic interactions into a single electroweak interaction
theory. The conceptual basis of the theory rests on two pillars; gauge invariance and
spontaneous symmetry breaking (Gottfried and Weisskopf, 1984; Weinberg, 1996).
In addition to accommodating the massless photon and the two massive charged
W™ and W™ particles, which mediate the charge-changing weak interactions, a new
massive particle, the neutral intermediate vector boson Z°, was predicted which
can generate a new range of neutral current phenomena including parity-violating
effects in atoms and molecules. In one of the most important experiments of all
time, these three particles were detected in 1983 at CERN in proton—antiproton
scattering experiments.

It is clear from Section 1.9.3 that optical rotation in vapours of free atoms would
violate parity (but not time-reversal invariance). In fact tiny optical rotations and
related observables are now measured routinely in atomic vapours of heavy atoms
such as bismuth and thallium (Khriplovich, 1991; Bouchiat and Bouchiat, 1997).
One source of such effects is a weak neutral current interaction between the nucleus
and the orbital electrons. Hegstrom et al. (1988) have provided an appealing pictorial
representation of the associated atomic chirality in terms of a helical electron prob-
ability current density. Such experiments are remarkable in that they address issues
in particle physics from ‘bench top’ experiments. For example, they are uniquely
sensitive to a variety of ‘new physics’ (beyond the standard model) because they
measure a set of model-independent electron—quark electroweak coupling constants
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that are different from those that are probed by high energy experiments requiring
accelerators (Wood et al., 1997).

Chiral molecules support a unique manifestation of parity violation in the form
of a slight lifting of the exact degeneracy of the energy levels of mirror-image
enantiomers (Rein, 1974; Khriplovich, 1991). Being a time-even pseudoscalar, the
weak neutral current interaction largely responsible for this parity-violating en-
ergy difference is the quintessential truly chiral influence in molecular physics. It
lifts only the degeneracy of the space-inverted (P) enantiomers of a truly chiral
system; the P-enantiomers of a falsely chiral system such as a nontranslating spin-
ning cone remain strictly degenerate (Barron, 1986a). Although not yet observed
experimentally, this tiny parity-violating energy difference between enantiomers
may be calculated (Hegstrom, Rein and Sandars, 1980) and has attracted consider-
able discussion as a possible source of biological homochirality (see, for example,
MacDermott, 2002 and Quack, 2002). Initial results appeared to support the idea,
but these are contradicted by the most recent and sophisticated studies (Wesendrup
et al.,2003; Sullivan et al., 2003). Much more theoretical and experimental work is
needed to find out whether or not there is any connection between parity violation
and biological homochirality.

Since, on account of parity violation, the P-enantiomers of a truly chiral object
are not exactly degenerate, they are not strict enantiomers (because the concept
of enantiomers implies the exact opposites). So where is the strict enantiomer of
a chiral object to be found? In the antiworld, of course! Just as symmetry is re-
covered in the Wu experiment above by invoking CP rather than P alone, one
might expect strict enantiomers to be interconverted by CP; in other words, the
molecule with the opposite absolute configuration but composed of antiparticles
should have exactly the same energy as the original (Barron, 1981a,b; Jungwirth,
Skala and Zahradnik, 1989), which means that a chiral molecule is associated with
two distinct pairs of strict enantiomers (Fig. 1.23). Since P violation automatically
implies C violation here, it also follows that there is a small energy difference
between a chiral molecule in the real world and the corresponding chiral molecule
with the same absolute configuration in the antiworld. Furthermore, the P- and
C-violating energy differences must be identical. This general definition of the
strict enantiomer of a chiral system is consistent with the chirality that free atoms
display on account of parity violation. The weak neutral current generates only one
type of chiral atom in the real world: the conventional enantiomer of a chiral atom
obtained by space inversion alone does not exist. Clearly the enantiomer of a chiral
atom is generated by the combined CP operation. Thus the corresponding atom
composed of antiparticles will of necessity have the opposite ‘absolute configura-
tion” and will show an opposite sense of parity-violating optical rotation (Barron,
1981a).
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Fig. 1.23 The two pairs of strict enantiomers (exactly degenerate) of a chiral
molecule that are interconverted by CP. The structures with atoms marked by
asterisks are antimolecules built from the antiparticle versions of the constituents
of the original molecules. The strict degeneracy remains even if CP is violated
provided CPT is conserved. The absolute configurations shown for CHFCIBr were
determined by Raman optical activity and specific rotation (Costante et al., 1997;
Polavarapu, 2002a).

The P-enantiomers of objects such as translating spinning electrons or cones that
only exhibit chirality on account of their motion also show parity-violating energy
differences. One manifestation is that left-handed and right-handed particles (or
antiparticles) have different weak interactions (Gibson and Pollard, 1976; Gottfried
and Weisskopf, 1984). Again, strict enantiomers are interconverted by CP: for
example, a left-handed electron and a right-handed positron. Notice that, since a
photon is its own antiparticle (Berestetskii, Lifshitz and Pitaevskii, 1982; Weinberg,
1995), right- and left-handed circularly polarized photons are automatically strict
enantiomers.

Violation of time reversal was first observed in the famous experiment of Chris-
tenson et al. (1964) involving measurements of rates for different decay modes of
the neutral K -meson, the K° (Gottfried and Weisskopf, 1984; Sachs, 1987; Branco,
Lavoura and Silva, 1999). Although unequivocal, the effects are very small; cer-
tainly nothing like the parity-violating effects in weak processes which can some-
times be absolute. In fact T violation itself is not observed directly: rather, the
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observations show CP violation from which T violation is implied via the CPT
theorem of relativistic quantum field theory. As remarked by Cronin (1981) in his
Nobel Prize lecture, nature has provided us with an extraordinarily sensitive system
to convey a cryptic message that has still to be deciphered.

The CPT theorem itself was discovered in the 1950s by L. Liiders and W. Pauli
and states that, even if one or more of C, P and T is violated, the combined
operation of CPT is always conserved (Gibson and Pollard, 1976; Berestetskii,
Lifshitz and Pitaevskii, 1982; Sachs, 1987; Weinberg, 1995). The CPT theorem
has three important consequences: the rest mass of a particle and its antiparticle
are equal; the particle and antiparticle lifetimes are the same (even though decay
rates for individual channels may not be equal); and the electromagnetic properties
such as charge and magnetic moment of particles and antiparticles are equal in
magnitude but opposite in sign.

One manifestation of CP violation is the following decay rate asymmetry of the
long-lived neutral K-meson, the K :

rate(K, — n~ e} vy)

A= - ~ 1.00648.
rate(K; — mte; vF)

As the formula indicates, Ky can decay into either positive pions 7 plus left-
helical electrons e; plus right-helical antineutrinos v;; or into negative antipions
7~ plus right-helical positrons e/ plus left-helical neutrinos v;. Because the two
sets of decay products are interconverted by CP, this decay rate asymmetry is a
manifestation of CP violation. Since a particle and its antiparticle have the same
rest mass if CPT invariance holds, the CP-violating interaction responsible for
the decay rate asymmetry of the Ky does not lift the degeneracy of the two sets
of CP-enantiomeric products. This type of CP violation therefore falls within the
conceptual framework of chemical catalysis because only the kinetics, but not the
thermodynamics, of the decay process are affected (Barron, 1994).

The original proof of the exact degeneracy of the strict (CP) enantiomers of a
chiral molecule which appear in Fig. 1.23 was based on the CPT theorem with the
assumption that CP is not violated. However it was subsequently shown, using an
extension of the proof that a particle and its antiparticle have identical rest mass
even if CP is violated provided CPT is conserved, that the CP-enantiomers of a
chiral molecule remain strictly degenerate even in the presence of CP violation
provided CPT invariance holds (Barron, 1994). This suggests that forces respon-
sible for CP violation exhibit false chirality with respect to CP-enantiomorphism:
the two distinct enantiomeric forces that are interconverted by CP (only one of
which exists in our world, hence CP violation) are also interconverted by 7 due
to CPT invariance. This perception is reinforced by a remark by Okun (1985) that
CP-violating interaction terms used in quantum chromodynamics transform with
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respect to CP and T in the same way as E.B. (In fact E.B transforms in the same
way under CP and T as it does under P and T because E and B are both C odd.)
Hence if P-violating forces are regarded as quintessential truly chiral influences,
CP-violating forces may be regarded as quintessential falsely chiral influences!

Another consequence of the CPT theorem, that particles and antiparticles have
electromagnetic properties equal in magnitude but opposite in sign, immediately
reveals a fatal flaw in the suggestion that a circularly polarized photon supports a
static magnetic field parallel or antiparallel to the propagation direction depending
on the sense of circular polarization, thereby introducing the concept of a ‘light
magnet’ which can generate a new range of magneto-optical phenomena (Evans,
1993). This is because, since a photon is its own antiparticle, any such magnetic
field must be zero. The nonexistence of the photon’s static magnetic field may also
be proved from pictorial arguments based on conservation of charge conjugation
symmetry (Barron, 1993).

Despite being the cornerstone of elementary particle physics, the possibility that
even CPT symmetry might be violated to a very small extent should nonetheless be
contemplated (Sachs, 1987). The simplest tests focus on the measurement of the
rest mass of a particle and its associated antiparticle, because any difference would
reveal a violation of CPT. Also, the photon’s static magnetic field might be sought
experimentally as a signature of CPT violation. However, the world of atoms and
molecules might ultimately prove the best testing ground (Quack, 2002). For ex-
ample, if antihydrogen were to be manufactured in sufficient quantities, ultrahigh
resolution spectroscopy could be used to compare energy intervals in atomic hy-
drogen and antihydrogen as a test of CPT invariance to much higher precision than
any previous measurements (Eades, 1993; Walz et al., 2003). Cold antihydrogen
atoms suitable for precision spectroscopy experiments were first produced in 2002
at CERN. Looking even further ahead to a time when chiral molecules made of anti-
matter might be available, detection of energy differences between CP-enantiomers
might be attempted since, as mentioned above, CPT violation would lift their
degeneracy.

1.9.7 Chirality and relativity

It was demonstrated in Section 1.9.5 that a spinning sphere or cone translating along
the axis of spin possesses true chirality. This is an interesting concept because it
exposes a link between chirality and special relativity. Consider a particle with a
right-handed helicity moving away from an observer. If the observer accelerates to
a sufficiently high velocity that she starts to catch up with the particle, it will then
appear to be moving towards the observer and so takes on a left-handed helicity.
In its rest frame, the helicity of the particle is undefined so its chirality vanishes.
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Only for massless particles such as photons and neutrinos is the chirality conserved
since they always move at the velocity of light in any reference frame.

This relativistic aspect of chirality is in fact a central feature of modern elemen-
tary particle theory, especially in connection with the weak interaction where the
parity violating aspects are velocity dependent. A good example is provided by the
interaction of electrons with neutrinos. Neutrinos are quintessential chiral objects
since only CP enantiomers corresponding to left-helical neutrinos and right-helical
antineutrinos exist. Consider first the extreme case of electrons moving close to
the velocity of light. Only left-helical relativistic electrons interact with left-helical
neutrinos via the weak force; right-helical relativistic electrons do not interact at
all with neutrinos. But right-helical relativistic positrons interact with right-helical
antineutrinos. For nonrelativistic electron velocities, the weak interaction still vio-
lates parity but the amplitude of the violation is reduced to order v/c (Gottfried and
Weisskopf, 1984). This is used to explain the interesting fact that the 7~ — e~ v}
decay is a factor of 10* smaller than the 7~ — p~v* decay, even though the avail-
able energy is much larger in the first decay. Thus in the rest frame of the pion, the
lepton (electron or muon) and the antineutrino are emitted in opposite directions
so that their linear momenta cancel. Also, since the pion is spinless, the lepton
must have a right-handed helicity in order to cancel the right-handed helicity of
the antineutrino. Thus both decays would be forbidden if e and u had the veloc-
ity ¢ because the associated maximal parity violation dictates that both be pure
left-handed. However, on account of its much greater mass, the muon is emitted
much more slowly than the electron so there is a much greater amplitude for it
to be emitted with a right-handed helicity. This discussion applies only to charge-
changing weak processes, mediated by W or W™ particles. Weak neutral current
processes, mediated by Z° particles, are rather different since, even in the relativis-
tic limit, both left- and right-handed electrons participate but with slightly different
amplitudes.

1.9.8 Chirality in two dimensions

Chirality in two dimensions arises when there are two distinct enantiomers, confined
to a plane or surface, that are interconverted by parity but not by any rotation within
the plane about an axis perpendicular to the plane (symmetry operations out of the
plane require an inaccessible third dimension). In two dimensions, however, the
parity operation is no longer equivalent to an inversion through the coordinate
origin as in three dimensions because this would not change the handedness of the
two coordinate axes. Instead, an inversion of just one of the two axes is required
(Halperin, March-Russel and Wilczek, 1989). For example, if the axes x, y are
in the plane with z being perpendicular, then the parity operation could be taken
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as producing either —x, y or x, —y, which are equivalent to mirror reflections
across the lines defined by the y or x axes, respectively. Hence an object such as
a scalene triangle (one with three sides of different length), which is achiral in
three dimensions, becomes chiral in the two dimensions defined by the plane of
the triangle because mirror reflection across any line within the plane generates a
triangle which cannot be superposed on the original by any rotation about the z
axis. Notice that a subsequent reflection across a second line, perpendicular to the
first, generates a triangle superposable on the original, which demonstrates why
an inversion of both axes, so that x, y — —x, —y is not acceptable as the parity
operation in two dimensions.

Consider a surface covered with an isotropic layer (meaning no preferred ori-
entations in the plane) of molecules. If the molecules are achiral, there will be
an infinite number of mirror reflection symmetry operations possible across lines
within the plane, which generate an indistinguishable isotropic layer. But if the
surface molecules are chiral, such mirror reflections would generate the distinct
isotropic surface composed of the enantiomeric molecules and so are not symme-
try operations.

Such considerations are not purely academic. For example, chiral molecules on
an isotropic surface were observed by Hicks, Petralli-Mallow and Byers (1994)
to generate huge circular intensity differences in pre-resonance second harmonic
scattering via pure electric dipole interactions. This is a genuine chiroptical phe-
nomenon since it distinguishes between chiral enantiomers, and a plethora of re-
lated polarization effects can be envisaged (Hecht and Barron, 1996). The equivalent
time-even pseudoscalar observables in light scattered from chiral molecules in bulk
three-dimensional samples are approximately three orders of magnitude smaller be-
cause, as discussed in later chapters, electric dipole-magnetic dipole and electric
dipole—electric quadrupole processes are required. Similar effects should exist in
linear Rayleigh and Raman scattering from chiral surfaces and interfaces (Hecht
and Barron, 1994) but have not been observed at the time of writing. In another
manifestation of two-dimensional chirality, a rotation of the plane of polarization
and an induced ellipticity have been observed in light diffracted from the surface of
artificial chiral planar gratings based on chiral surface nanostructures (Papakostas
et al., 2003), with intriguing polarized colour images also observed (Schwanecke
etal.,2003).

Natural optical activity in reflection from the surface of a chiral medium has
been an elusive and controversial phenomenon, but it has now been observed for
a chiral liquid, namely a solution of camphorquinone in methanol, by Silverman,
Badoz and Briat (1992), and for a chiral crystal, namely «-HgS (cinnabar) which
belongs to the D3 (32) point group, by Bungay, Svirko and Zheludev (1993). The
phenomenon was subsequently observed in certain nonchiral crystals such as zinc
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blende semiconductors belonging to the Ty (43 m) point group, GaAs being an
example (Svirko and Zheludev, 1994; 1998).

Arnaut (1997) has provided a generalization of the geometrical aspects of chiral-
ity to spaces of any dimensions. Essentially, an N-dimensional object is chiral in an
N-dimensional space if it cannot be brought into congruence with its enantiomorph
through a combination of translation and rotation within the N-dimensional space.
As a consequence, an N-dimensional object which is N-dimensionally chiral loses
its chirality in an M-dimensional space where M > N because it can be rotated in the
(M—N)-subspace onto its enantiomorph. Arnaut (1997) refers to chirality in one, two
and three dimensions as axi-chirality, plano-chirality and chirality, respectively, and
provides a detailed analysis of plano-chirality with examples such as a swastika, a
logarithmic spiral and a jagged ring.

The concept of false chirality arises in two dimensions as well as in three. For
example, the sense of a spinning electron on a surface with its axis of spin per-
pendicular to the surface is reversed under the two-dimensional parity operation
(unlike in three dimensions). Because electrons with opposite spin sense are non-
superposable in the plane, a spinning electron on a surface would seem to be chiral.
However, the apparent chirality is false because the sense of spin is also reversed
by time reversal (as in three dimensions). The enantiomorphism is therefore time
noninvariant, the system being invariant under the combined PT operation but not
under P and T separately.
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Molecules in electric and magnetic fields

Are not gross bodies and light convertible into one another; and may not
bodies receive much of their activity from the particles of light which
enter into their composition? The changing of bodies into light, and light
into bodies, is very comformable to the course of Nature, which seems
delighted with transmutations.

Isaac Newton (Opticks)

2.1 Introduction

The theory of optical activity developed in this book is based on a semi-classical
description of the interaction of light with molecules; that is, the molecules are
treated as quantum mechanical objects perturbed by classical electromagnetic fields.
Although quantum electrodynamics, in which the radiation field is also quantized,
provides the most complete account to date of the radiation field and its interactions
with molecules (Craig and Thirunamachandran, 1984), it is not used in this book
since the required results can be obtained more directly with semiclassical methods.

The present chapter reviews those aspects of classical electrodynamics and quan-
tum mechanical perturbation theory required for the semiclassical description of
the scattering of polarized light by molecules. The methods are based on theories
developed in the 1920s and 1930s when the new Schrodinger—Heisenberg formu-
lation of quantum mechanics was applied to the interaction of light with atoms
and molecules. Thus close parallels will be found with works such as Born’s Optik
(1933), Born and Huang’s Dynamical Theory of Crystal Lattices (1954), Placzek’s
article on the theory of the Raman effect (1934) and also parts of the Course
of Theoretical Physics by Landau and Lifshitz (1960, 1975, 1977), Lifshitz and
Pitaevskii (1980) and Berestetskii, Lifshitz and Pitaevskii (1982). The extension
in this chapter of this classic work to the higher-order molecular property tensors
responsible, among other things, for optical activity, follows a treatment due to
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Buckingham (1967, 1978). Like all of these works, this book makes considerable
use of a cartesian tensor notation, which is elaborated in Chapter 4: this is essential if
the delicate couplings between electromagnetic field components and components
of the molecular property tensors responsible for optical activity are to be manipu-
lated succinctly. For further details of the many complexities of Raman scattering,
the recently published comprehensive treatise on the theory of the Raman effect by
Long (2002) should be consulted.

2.2 Electromagnetic waves
2.2.1 Maxwell’s equations

A charge density p and current density J = pv generate electromagnetic fields. The
sources and fields are related by Maxwell’s equations

V-D=p, (2.2.1a)
V-B =0, (2.2.1b)
oB
VXE=——, 2.2.1
X ” ( c)
oD
VxH=J+¥. (2.2.1d)

E and B are the electric and magnetic fields in free space and D and H are the
corresponding modified fields in material media. If the medium is isotropic the
fields are related by

D = ¢¢oE, (2.2.2a)
1
H=—B, (2.2.2b)
Hio

where € and u are the dielectric constant and magnetic permeability of the medium,
and €y and pg are the permittivity and permeability of free space.

Maxwell’s equations summarize the following laws of electromagnetism:
(2.2.1a) is the differential form of Gauss’s theorem applied to electrostatics; (2.2.1b)
is the corresponding result for magnetostatics since magnetic charges do not exist;
(2.2.1¢) is Faraday’s and Lenz’s law of electromagnetic induction; and (2.2.1d) is
Ampere’s law for magnetomotive force with the important modification that the
displacement current, which arises when the electric displacement D changes with
time, is added to the conduction current J which is simply the current flow due to
the motion of electric charges.
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In an infinite homogeneous medium (including free space) containing no free

charges and having zero conductivity, Maxwell’s equations reduce to

V:-D=0,
V-B=0,
oB
VXE=——,
ot
oD
VxH=—.
dt

Using the vector identity

V x (V xF) = V(V-F) — V?F,

these four equations reduce to two equivalent wave equations:

Vg 9’E
= €€g—,
M MUOEEQ Y

9’B
VB = €§—.
MHo€€ 072

The wave velocity is
v = (poeep)
with a free space value of
¢ = (jo€o) 2.
In fact v = c¢/n, where
n = (ne):

is the refractive index of the medium.

2.2.2 Plane monochromatic waves

(2.2.3a)
(2.2.3b)

(2.2.3¢)

(2.2.3d)

(2.2.4a)

(2.2.4b)

(2.2.50)

(2.2.5b)

(2.2.6)

Of particular importance is the special case of electromagnetic waves in which the
fields depend on only one space coordinate. Such waves are said to be plane, and
if propagating in the z direction the fields have the same value over any plane,

z = a constant, normal to the direction of propagation. This means that all partial
derivatives of the fields with respect to x and y are zero so that, from (2.2.3a) and

(2.2.3b),

0E, B 0B,
9z 0z

=0,
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and from (2.2.3¢) and (2.2.3d),
0E, 0B,

o ot
Thus the waves are completely transverse, with no field components in the direction
of propagation. The wave equations (2.2.4) now take the form

*E 1 9’E
922 o
If the plane wave is associated with a single frequency, it is said to be monochro-
matic, and a solution of (2.2.7) is

(2.2.7)

E = E© cos(wr — 27z/2), (2.2.8)
which is conveniently written as the real part of the complex expression
E — E(O)e—i(wt—ZHZ/l)’ (229)

where w, the angular frequency of the wave, is related to the wavelength by w =
2mv/A. The sign of the exponent in (2.2.9) is a matter of convention since it does
not affect the real part. Although most works on classical optics choose a plus sign,
the choice of a minus sign is universal in quantum mechanics (it leads to a positive
photon momentum) and is therefore advantageous in a work on molecular optics
such as this. We also use a tilde throughout the book to denote a complex quantity.

We now introduce a wavevector k, with magnitude w/v, in the direction of
propagation. It is convenient to write k in terms of a propagation vector n with
magnitude equal to the refractive index in the direction of propagation:

k= "n. (2.2.10)
C

n becomes a unit propagation vector in free space. Equation (2.2.9) can now be
written

E = EOgilkr—en, (2.2.11)

Since the momentum of individual photons in a plane wave is /ik, the reason for
the choice of the minus sign in the exponent of (2.2.9) is now clear, for it gives a
positive photon momentum.

From (2.2.3¢), (2.2.3d) and (2.2.11) we obtain the following important relation-
ships between the electric and magnetic field vectors in a plane wave:

B=-nxE, (2.2.12a)

E=—SnxB. (2.2.12b)
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2.2.3 Force and energy

The Lorentz force density acting on a region of charge and current density in an
electromagnetic field is

F = pE+J x B. (2.2.13)

The rate at which the Lorentz forces within a finite volume V' do work is
/F-VdV I/p[V-E—l-V-(V x B)]dV = /J-EdV.

This power represents a conversion of electromagnetic energy into mechanical
or thermal energy, and must be balanced by a corresponding rate of decrease of
electromagnetic energy within V. Use (2.2.1¢) and (2.2.1d) and the vector identity

V-ExH)=H-(VXE)—E-(V xH)

to write

aD oB
/J-EdV=—/|:E-¥+H-¥+V-(EXH):|dV

= —lif(D-E—i—B-H)dV —/(E x H) - dS.
2 0t
The last term has been transformed into an integral over the surface S bounding V.
The rate at which the fields do work can now be equated with the rate at which the
energy stored in the field diminishes plus the rate at which energy flows into V.
Thus we take

U=31D-E+B-H) (2.2.14)
to be the electromagnetic energy density, and
N=ExH (2.2.15)

to be the rate at which electromagnetic energy flows across unit area at the boundary.
N is called the Poynting vector, and gives the instantaneous rate of energy flow in
the direction of propagation of an electromagnetic wave.

The intensity / is the mean rate of energy flow, which is the average of the
magnitude of N over a complete period of the wave. For a plane wave, the magnitude
of N is

1
IN|= —IE xB| =

1
€€y \?2
IE x (n x E)| = (—0) EO”,
“o HoC

Hio
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Since a plane wave is sinusoidal, the intensity, which is the time average of |N]|, is
simply

1

1 2

=3 (%) EO*, (2.2.16)
0

2.2.4 The scalar and vector potentials

The four Maxwell equations (2.2.1) can be reduced to two equations involving a
scalar potential ¢ and a vector potential A. Thus since V - B = 0 and the divergence
of a curl is always zero, we can write B in terms of A:

B=V xA. (2.2.17)

Equation (2.2.1¢) now becomes

0A
V x (E—I——):O
ot

so the electric field vector can be written

0A
E=——+a,
ot +

where a is a vector whose curl is zero. But since the curl of the gradient of a scalar
function is zero, we can write

0A

E=-V¢ - —. 2.2.18
¢ o7 ( )
The four Maxwell equations now reduce to
1 3 9°A
VIA-V(V-A) - = (VZ+—)=- , 2.2.19
( ) UZ( o T aﬂ) pitoJ ( a)
d
V2 + —(V-A) = -2 (2.2.19b)
ot €€y

These two equations are uncoupled by exploiting the arbitrariness in the definition
of the potentials.

Two electromagnetic fields are physically identical if they are characterized by
the same B and E, even though A and ¢ are different for the two fields. Consider
the potentials A and ¢ determined from Ay and ¢q by the gauge transformation

A=Ay —-V4, (2.2.20a)

A
¢ =¢o+ TR (2.2.20b)



2.2 Electromagnetic waves 59

where A is an arbitrary function of the coordinates and time. The B and E calculated
from (2.2.17) and (2.2.18) using A and ¢ are the same as the B and E calculated
using Ag and ¢. This enables restrictions to be placed on A and ¢ which simplify
the Maxwell equations (2.2.19).

If we choose A so that

VZA =V - Ao, (2.2.21)
we obtain
V-A=0 (2.2.22)
and (2.2.19) become
VA — % <v2—‘f + %ZT?) = —uuod, (2.2.23a)
V2= L (2.2.23b)
€€p

Any choice of gauge which has V - A = 0 is called a Coulomb gauge since ¢ is
then determined from Poisson’s equation (2.2.23b) by the charges alone, as if they
were at rest.

If we choose A so that

1 3°4 1 3¢y
VIA— —— =V A+ —=—, 2.2.24
v2 912 o+ v2 Ot ( )
we obtain
1 9¢
V- A+ —-—=0, 2.2.25
+ v? 3t ( )
and (2.2.19) are now uncoupled completely:
VA 1 oA J (2.2.26a)
_ S , .2.26a
02 912 Ho
1 0% p
Vip— —— =———. 2.2.26b
v2 012 €€ ( )

In most books equation (2.2.25) is called the Lorentz condition and any choice
of gauge which satisfies it is called a Lorentz gauge. However, it was pointed out
recently that this is a case of mistaken paternity. This condition and the associated
gauge should really be attributed to the Danish physicist L. Lorenz rather than the
Dutch physicist H. A. Lorentz (van Bladel, 1991).

In free space, or in a medium without sources, p and J are zero. ¢ is then
automatically zero in the Coulomb gauge, and can be made to vanish in the Lorentz
gauge by a further specialization of A in (2.2.20). The field is then determined by
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Fig. 2.1 The system of vectors used to specify the position of a point P at which are
detected the electromagnetic fields generated by a volume element dV' containing
charge and current density.

A alone, and is entirely transverse:

V-A=0, (2.2.27a)
1 9%A
VA — —— =0. 2.2.27b
v? 912 ( )
The corresponding electric and magnetic field vectors are simply
0A
E=— (2.2.28a)
ot
B=V xA. (2.2.28b)

General solutions of the uncoupled equations (2.2.26) are now required in order
to find the electromagnetic fields generated by the charge and current density p
and J. If these sources are static, A and ¢ are independent of time and the general
solutions have the form

AR) = i) Jdv , (2.2.294q)
47 R —r|
$(R) = ! pdv (2.2.29b)

4meeg /] IR—=r|’

where R is the position vector of the point P at which the fields are determined, r
is the position vector of the volume element containing p and J, and |R — r| is the
distance from the volume element to P, as illustrated in Fig. 2.1. If the charge and
current densities are functions of time, the solutions are

_ Mo [ [J1dV
AR, 1) ="~ R 1’ (2.2.30a)
dR, 1) = L1 dv (2.2.30b)

4reey ] IR —r|’

where the square brackets mean that p and J are to be taken atthe timet — |[R — r|/v.
This is because the disturbances set up by p and J propagate with velocity v and
take a time |R — r|/v to travel the distance |R — r|. Thus the potentials at R at a
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time ¢ are related to what happened at the element of charge and current density at
an earlier time r — |R — r|/v, and are known as retarded potentials.

2.3 Polarized light
2.3.1 Pure polarization

A plane monochromatic wave travelling in the z direction can be written as a sum
of two coherent waves linearly polarized in the x and y directions,

E=E,i+E,j, (2.3.1)

where i, j, k, the unit vectors along x,y,z, form a right-handed system such that
i x j = k. The polarization of the wave is determined by the relative phases and
magnitudes of the complex amplitudes £, and E y. For example, if E,and E y have
the same phase the polarization is linear and, if they are equal in magnitude and
7 /2 out of phase, the polarization is circular. Using the traditional convention that
right- or left-circular polarization is a clockwise or anticlockwise rotation of the
electric field vector in a plane when viewed by an observer receiving the wave, we
can write

- 1 ) )
E]E = —E(O)(i + e:Flﬂ/Zj)el(/cszr)

V2

= \%E(O)(i Fij)elre, (2.3.2)
Notice that the sign of ij in (2.3.2) is determined by the choice of sign in the
exponent of (2.2.9).
The most general pure polarization state is represented by an ellipse, illustrated
in Fig. 2.2. The ellipticity n is determined by the ratio of the minor and major axes
of the ellipse, b and a, through

b
tann = —. (2.3.3)
a

The orientation of the ellipse is specified by the angle 6, called the azimuth, between
the a and the x axes. Since a and b are the relative amplitudes of two waves that are
7 /2 out of phase, a phase factor exp (i /2) = iis associated with the b axis: with this
choice of sign, a positive 1 corresponds to a right-handed ellipticity (remembering
that the wave function is exp(—iwt)). If a> + b> = 1, a and b can be regarded as
the real and imaginary parts of a complex unit polarization vector IT such that

E = EOULi + IT,j)e =", (2.3.4)
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Fig. 2.2 The polarization ellipse referred to space-fixed axes x and y. The prop-
agation direction z is out of the plane of the paper. 7 is the ellipticity, 6 is the
azimuth and IT is the complex unit polarization vector. The ellipticity and azimuth
so defined are in accord with the conventions for a positive ellipticity and angle of
optical rotation used in Chapter 1.

Projecting IT onto the real @ and imaginary b axes, and then onto the x and y axes,
gives the following expressions for its complex components:

II, =cosncosf —isinnsind, (2.3.5a)
IT, = —cosnsinf — isinn coso. (2.3.5b)

On substituting # = 0 and n = & /4 into (2.3.5) and (2.3.4), (2.3.2) is recovered.
Three quantities are required to specify the state of a monochromatic plane
wave light beam: the intensity /, the azimuth 6, and the ellipticity n. These can be
extracted from the complex representation (2.3.4) of the wave by taking suitable
real products of components such as the four Stokes parameters (Stokes, 1852)

So=E E; + EE3, (2.3.60)
S1 = EE; — E\E}, (2.3.6b)
Sy =—(E.E;+ EEY), (2.3.6¢)
S3 = —i(ELE} — EE). (2.3.6d)

Our notation and sign convention follows that of Born and Wolf (1980), except for
our definition of a positive azimuth, which leads to a sign difference in S,. For a
completely polarized beam only three of the Stokes parameters are independent
since

So =St + S5+ S5 (2.3.7)
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From (2.3.4) and (2.3.5), the Stokes parameters can be written

So = EO(IIT; + 11,11;) = E, (2.3.84)
S; = EO (M1, 0T — I1,IT%) = E“ cos 21 cos 26, (2.3.8b)
Sy = —EO ([ AT + 1,1%) = E® cos 21 5in 26, (2.3.8¢)
Sy = —iEO (I IT: — 11,11} = E™ sin2n, (2.3.84)
from which the intensity, azimuth and ellipticity can be extracted:
1
1 2
== (ﬂ> So, (2.3.9)
2\ upo
1 S>
0 =—tan ' =), 2.3.9h
L (2) 239
1 S
n=tan"' | — 2| (2.3.9¢)
2 (SP +53)°

It might be thought that 1 is given more directly by

= lsin_1 53
T=3 So)”

This is certainly true if the wave is completely polarized, but it is shown below that
when the wave is only partially polarized this quantity is no longer the ellipticity.

The Stokes parameters correspond to the set of four intensity measurements
required to determine completely the state of a light beam. Two optical elements
are required: an analyzer, such as a Nicol prism, for which the emergent beam
is linearly polarized along the transmission axis of the analyzer; and a retarder,
such as a quarter-wave plate, which alters the phase relationship between coherent
orthogonal polarization components of the beam. If / (o, t) denotes the intensity of
the light transmitted through a retarder which subjects the y component of the light
to a retardation T with respect to the x component, followed by an analyzer with
its transmission axis oriented at an angle o to the x axis, the Stokes parameters are
given by the following measurements:

So o 1(0,0) + I(r/2,0),

Si oc 1(0,0) — I(7/2, 0),

S, o I(7t /4, 0) — [(37/4, 0),

Ss o< I3 /4, 7/2) — 1(m/4, 7 /2).

Thus Sy gives the total intensity, S; gives the excess in intensity transmitted by
an analyzer which accepts linear polarization with an azimuth 6 = 0 over that
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transmitted by an analyzer which accepts linear polarization with an azimuth 6 =
/2. S> has a similar interpretation with respect to the azimuths 6 = 7 /4 and
6 = 3m/4. S5 is the excess in intensity transmitted by a device which accepts
right-circularly polarized light over that transmitted by a device which accepts
left-circularly polarized light.

An alternative method of specifying the polarization, entirely equivalent to the
Stokes parameters, involves a Hermitian polarization density matrix, called a co-
herency matrix by Born and Wolf (1980) and a polarization tensor by Landau and
Lifshitz (1975), with elements

Pap = Zoe = HQH;. (2.3.10)
Using (2.3.5), these elements can be written in terms of the Stokes parameters or
in terms of the azimuth and ellipticity:

B 1 (So—i—Sl —Sz+iS3>
Paf = T

280 \—=S —183 So — S
_ 1 1 + cos 2n cos 26 — cos2nsin20 +isin2n 23.11)
" 2 \—cos2nsin20 —isin2n 1 — cos2n cos 26 T

2.3.2 Partial polarization

Strictly monochromatic light is always completely polarized, with the tip of the
electric field vector at each point in space moving around an ellipse, which may
in particular cases reduce to a circle or a straight line. In practice, we usually
have to deal with waves which are only approximately monochromatic, containing
frequencies in a small interval Aw centred on an apparent monochromatic fre-
quency w. Such waves are called quasi-monochromatic, and can be represented
as a superposition, such as a Fourier sum, of strictly monochromatic waves with
various frequencies. Quasi-monochromatic light has an extra ‘dimension’ in its
range of possible polarizations, because the component monochromatic waves can
have different polarizations and phases. At one extreme, the net electric field vector
of quasi-monochromatic light can have the polarization properties of a completely
monochromatic wave, and the light is said to be completely polarized. The opposite
extreme is unpolarized or natural light, where the tip of the net electric field vector
moves irregularly and shows no preferred directional properties. In general, the
variation of the electric field vectors is neither completely regular nor completely
irregular, and the light is said to be partially polarized. This is usually the condition
of scattered light.
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If w is the average frequency of a quasi-monochromatic wave, its electric field
vector at a fixed point in space can be written

E = EQ(t)elcr—on, (2.3.12)

where the complex vector amplitude E©(¢) is a slowly varying function of the time
(E© would be a constant if the wave were strictly monochromatic). In fact both
the polarization vector and the scalar amplitude can vary with time:

EQ) = IO EQ (). (2.3.13)

Complete polarization results when only the amplitude of the polarization ellipse
varies over a long time, that is E©(t) varies and f[(t) is constant. The wave is
unpolarized if IT (¢) shows no preferred azimuth or ellipticity over a long time. These
distinctions apply only when the duration of the observation is large compared with
the reciprocal of the frequency width Aw of the quasi-monochromatic wave, which
is usually the case.

Measured intensities are time averages of real quadratic functions of the fields.
Thus the Stokes parameters and the polarization tensor of a quasi-monochromatic
beam are defined in terms of time averaged products of electric field vectors. If the
light is completely polarized, the time averages of the products of components of
II are

T, 0T, = IT,1T,, (2.3.14)

so the time-averaged Stokes parameters of a completely polarized quasi-
monochromatic wave are still related by

S =S+ S5+ 53,

the same as (2.3.7) for amonochromatic beam. If the light is completely unpolarized,
all orientations of IT in the xy plane are equally probable, so the time average is
effectively an average over all orientations in two dimensions:

11,1y = 58ap. (2.3.15)

(Averages of tensor components are developed in Section 4.2.5.) The time-averaged
Stokes parameters of a completely unpolarized beam are therefore

S2=EO, (2.3.16a)
§?=87=57=0. (2.3.16b)

Consequently, partial polarization must be characterized by
Sg > ST+ S5+ 53, (2.3.17)

the inequality arising from the presence of an unpolarized component.
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It is convenient to introduce a degree of polarization P, which takes values
between 0 for unpolarized light and 1 for polarized light, such that

So = E©, (2.3.18a)
S; = PE© cos 21 cos 20, (2.3.18b)
S, = PE® cos 27 sin 26, (2.3.18¢)
S; = PEY sin2n, (2.3.18d)
P = (82 +S2+82)°/So. (2.3.18¢)

Evidently P is the ratio of the intensity of the polarized part of the beam to the
total intensity. Thus a partially polarized beam can be decomposed into a polarized
and an unpolarized part, and its Stokes parameters are simply the sums of the
Stokes parameters of the polarized and unpolarized components. The azimuth and
ellipticity of the polarized part are given by (2.3.9b and c), but the ratio S3/S¢ now
gives the degree of circularity, which is the ratio of the intensity of the circularly
polarized component to the total intensity, rather than the ellipticity.

The polarization tensor can also be used to specify partial polarization. Equation
(2.3.11) is now generalized to

1 (1 + P cos2ncos 20 P(—cos 2nsin 20 + isin 27)

oy = — ‘ o . (231
Pap 2 \ P(—cos2nsin20 —isin2n) 1—Pcoschos20) 2.3.19)

The determinant is

|I00l)6| = PxxPyy — PxyPyx = %(1 _ P2)

Thus for completely polarized light | p.g| = 0, and for completely unpolarized light
|oapl = i. A convenient representation of the polarization tensor is

Pap = 5liaip + jujp + (iaip — jujp)P cos2ncos 26
— (i jp + ig ju) P c0s 20 sin 20 + i(ig jg — igju) P sin 2], (2.3.20)

where i, and j, are the o« components of the unit vectors i and j.
The representation

E = TTE@¢i(cr—on (2.3.21)

is known as the Jones vector description of polarized light (Jones, 1941). Since
the Jones vector carries the absolute phase of the wave, the state of a combination
of coherent light beams is obtained by first summing the individual Jones vectors,
then extracting /, 6, n and P from the Stokes parameters formed from the net Jones
vector. This procedure is the basis of the calculation in Chapter 3 of birefringent
polarization changes, which originate in interference between the transmitted and
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the forward-scattered waves. In contrast, the state of a combination of incoherent
beams is obtained by summing immediately the Stokes parameters of the individual
components and then extracting /, 6, n and P.

The Stokes parameters constitute a vector of length PSj in a three-dimensional
real space; the locus of the tip of the vector is a sphere, called the Poincaré sphere,
and all possible polarization conditions are encompassed by its surface. Alterna-
tively, the three components of the Stokes vector in Poincaré space, together with
PSy, can be regarded as a vector in a four-dimensional real space. The latter view-
point exposes the mathematical connection between the Stokes parameters and the
polarization tensor, for p,g has the form of a second-rank spinor, and therefore
represents a real four-dimensional vector in a two-dimensional complex space. The
Jones vector, on the other hand, has the mathematical form of a first-rank spinor.

The Jones vector is analogous to a wave function description, and the Stokes
vector or polarization tensor is analogous to a density matrix description, of the
state of a system in quantum mechanics. Thus the Jones vector can only specify
a pure polarized light beam, and a quantum mechanical wave function can only
specify a pure state. A partially polarized light beam is an incoherent superposition
of pure polarized beams and must be specified by a Stokes vector or polarization
tensor, and a mixed quantum mechanical state is an incoherent superposition of pure
states and must be specified by a density matrix. Light is usually generated as a
result of a transition between two quantum states of an atom or molecule. Complete
polarization results if the quantum states of the emitter are precisely defined both
before and after the transition; if either is incompletely defined, the emitted light is
incompletely polarized. Fano (1957) has discussed this question in detail.

2.4 Electric and magnetic multipole moments

The structures of charge and current distributions giving rise to scalar and vector
potentials are now investigated. Charge distributions are developed in terms of
electric multipole moments, and current distributions in terms of magnetic multipole
moments.

2.4.1 Electric multipole moments

Our treatment of electric multipole moments follows Landau and Lifshitz (1975)
and Buckingham (1970). The zeroth moment of a collection of point charges e; is
the net charge or electric monopole moment

q = Zei, (2.4.1)
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(0}

Fig. 2.3 The effect of shifting the coordinate origin from O to O’ on the position
vector of a point charge e;.

where e; = +e for the proton and —e for the electron (in SI, e = 1.603 x 10~1°C).
The first moment of a collection of charges is the electric dipole moment vector

n=>y e, (2.4.2)

where r; is the position vector of the ith charge. Notice that if the net charge is zero,
the electric dipole moment is independent of the choice of the origin. Thus if the
origin is moved from O to a point O’ = O + a, where a is some constant vector,
the position vector r; in the old coordinate system becomes r; = r; — a in the new
(Fig. 2.3), and the electric dipole moment becomes

u = Ze,-r’,- = u—gqa. (2.4.3)
i

If g is not zero there is a unique point, called the centre of charge, relative to which
u=0.
The second moment of a collection of charges is the electric quadrupole moment

tensor
1
©=: > ei(3rri —r1), (2.4.4)

i
where rl.2 is the scalar product r; - r; = xiz + yl-2 + 21-2, and 1 is the symmetric unit
tensor ii + jj + KK. In cartesian tensor notation, (2.4.4) is written

1

Oup = 5 D& (Briarip —rldup). (245

1
It is clear that ©,4 is a symmetric second-rank tensor,

Oup = Opq, (2.4.6)
with zero trace,

O = Oy + Oyy + O-. =0, (2.4.7)
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so that it has five independent components:

Oyxx 8xy Oy
©=|6,=0, 6, Oy, . (2.4.8)
@zx = sz @zy = 9yz @zz = _@xx - @yy

The electric quadrupole moment is only independent of the choice of origin if the
net charge and the dipole moment are both zero. Thus, on moving the origin from
OtoO' =0+a,

1
;ﬂ =5 Zei (3ri’ari/ﬂ — ri’zéaﬁ)
i
= @aﬂ - %,U«xaﬂ - %Mﬁaa + Myay(saﬂ + %61(3%0;3 - a280¢,3)'
(2.4.9)

If g is zero but u is not zero, a centre of dipole exists relative to which O, = 0.
The electric quadrupole moment is sometimes defined as % D eirigli 5" However,
the traceless definition (2.4.5) is preferred here since it automatically emerges as
the source of a well-defined part of the scalar potential generated by a static charge
distribution (see Section 2.4.3). Another related reason for preferring the traceless
definition is that it vanishes for a spherical charge distribution.
The general nth order electric multipole moment is defined as

(n) . (_l)n 2n+1 1
Eufyn = Ze,-;i Via Vig Viy -+ Vi ) (2.4.10)
l

where V;, = 0/0r;,, and is symmetric in all n suffixes. It is instructive to evaluate
explicitly

1 3
Vo Vgr ™' = Vo Vg(ryr,)) 2 = V[ — rg(r, )" 2]
5 3
= 3rgrp(ryr,)) 2 — 8ap(ryry) 2 = Brorg — r28up)r >, (2.4.11)
and also the Laplace equation

V,Vr ' =vVvil=0. (2.4.12)

This enables us to verify that S(iz) = BOyp, and to see that if any tensor suffix in
(2.4.10) is repeated (with summation over repeated suffixes implied), the corre-
sponding multipole moment vanishes. In general, the maximum number of inde-
pendent components of £ é’;)y“_v is2n + 1, though symmetry may reduce this number.
Such a tensor is said to be irreducible because the vanishing on contraction (sum-
ming over repeated suffixes) means that no tensor of lower rank can be constructed

from the components.
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Instead of real multipole moments expressed as cartesian tensors, it is possi-
ble to define complex multipole moments expressed as spherical harmonics. But
molecules have a natural cartesian frame rather than a natural polar frame (except
linear molecules), so for our purposes the real form is preferable.

2.4.2 Magnetic multipole moments

Magnetic monopoles have not been observed. The first moment of a circulating cur-
rent distribution is the magnetic dipole moment; in the absence of external magnetic
fields this is

m= —T; X Pi, (2.4.13)

where m; and p; are the mass and linear momentum of the i/th charge. On moving
the origin from O to O’ = O + a, the magnetic dipole moment changes to

e; 1
m = —r; X p,=m— —ax [, 2.4.14
25T Jaxi (2.4.14)
where [1 = du/dt, so the magnetic dipole moment is independent of the choice of
the origin only in the absence of a time-dependent electric dipole moment.

The vector product r x p is the orbital angular momentum I of the particle. Spin
angular momentum s also contributes to the magnetic moment, and in general

m=3

where g; is the g-value of the ith particle spin (g = 2.0023 for a free electron).
When the particles are electrons, the factor e/2m is often replaced by —pug/hi,
where g = efi/2m = 9.274 x 10724 JT~! is the Bohr magneton.

The definition of the magnetic quadrupole moment is not clear-cut, and several
different versions have been proposed. The following definition in the absence of
external magnetic fields has been given by Buckingham and Stiles (1972):

i + 8isi), (2.4.15)

Mg = 5(3map — myy8ap), (2.4.16)
where

€i
Mag = ZI: 2—m,~[ria( llﬂ + g,s,ﬁ) + r,ﬂ( i, + g,s,a)] (2.4.17)
While this definition is satisfactory for ‘static’ classical current distributions, Raab
(1975) has shown that the symmetry with respect to exchange of the suffixes leads
to an uncharacteristic form for the electromagnetic fields radiated by an oscillating
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magnetic quadrupole moment. This point is not pursued here since we do not invoke
magnetic quadrupole moments.

2.4.3 Static electric multipole fields

We now consider the electric field generated by a stationary charge distribution. If
the charge density is written, with the aid of a § function, in terms of point charges
as

p=> edr—r), (2.4.18)

the static scalar potential (2.2.29b) becomes

€

1
OR) = > T (2.4.19)

i

where |R — r;| is the distance from the ith charge to the point P where the potential
is required. We are interested in values of |R| sufficiently large that |[R| > |r;|. We
can then use the following expansion:

1 1
= RaRoz - 2Ra i ialio 2
R_r| ( ri, +riti)
1 Raria 1 <3RaRﬁriariﬂ I‘iz ) n

R R "2 RS R3

(2.4.20)

The scalar potential (2.4.19) can now be written in terms of the electric multipole
moments of the collection of charges:

1 q RO!/-'LOI RaRﬂ@aﬁ
R) = = ). 2.4.21
oR) 4mee (R+ R3 * R’ * ( )
Using E, = —V,¢, the associated static electric field is
1 Raq 3RotRﬂ/‘Lﬂ - Rz,ua
E,(R) =
R®) dree ( R3 + R>
5Ry,RsR,Op, —2R*R40
ey ﬁ;w Fep +) (2.4.22)

The physical interpretation of (2.4.21) is as follows. At very large distances, the
collection of charges looks like a point charge and we can set |R — r;| = R so that
the potential is given by the first term, a point charge potential. But if the collection
of charges is neutral, the first term vanishes. Since all the charges are not at one
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point, there should still be a residual potential, and the successive terms correspond
to using an increasingly accurate expression for |[R — r;]|.
This is an appropriate point at which to introduce the tensors

T =R, (2.4.23a)

T, =VyR'=—R,R3, (2.4.23b)

Tup = Tgo = Vo VR ™' = BR,Rs — R*8,5)R ™, (2.4.23¢)
Tupy = VaVsV,R™' = =3[SR.RsR, — R*(R,3p,

+ Rg8ay + R, S8ap)IR ™, (2.4.23d)

Toupyv = VaVgV, ---V,R7L. (2.4.23¢)

These tensors are symmetric in all suffixes, and (2.4.12) shows that a repeated suffix
reduces a tensor to zero.

The scalar potential (2.4.21) and electric field (2.4.22) due to a charge distribution
can now be given succinct forms:

1
(R )— p— (Tq — Tapta + 3TapOup + -+ ). (2.4.24)

E,(R) =

—T, T, — 2To8,0 2.4.25
471660( q + laglp sy sy + ) ( )

2.4.4 Static magnetic multipole fields

We now turn to the corresponding static magnetic field generated by a system of
charges in ‘stationary’ motion. If the current density is written in terms of point
charges moving with velocity r,

J= Z eifid(r —r;), (2.4.26)
i
the static vector potential (2.2.29a) becomes

Mo e;r;
ARR) = : 2.4.27
R) ="~ Z Ror (2.4.27)

Here we are interested in a constant current which generates, through some circu-
latory character, a static vector potential and a corresponding static magnetic field.
The field will be a function only of the coordinates, not of the time, so a time average
is required:

—= Mo e;r;
AR) = : 2.4.28
®) ="~ Z Try— (2:4.28)
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where the average includes the position vectors |R — r;|, which change during the
motion of the charges. Using the expansion (2.4.20), this becomes

eS|

eif; | e (ri-R
ar +L)+--}. (2.4.29)

R R3

The first term of (2.4.29) vanishes since the time average of the linear velocity of
a particle constrained to move within a small volume is zero. Since R is constant
with time,

i(r-R)

%%r(r-R) + 1[i(r-R) — r(# - R)]
= %%r(r-R) — IR x (r x ). (2.4.30)

The time average of the first term of (2.4.30) vanishes for the same reason as the first
term of (2.4.29). However, the time average of the angular velocity of a particle
constrained to move within a small volume is not zero, so (2.4.29) can now be
written in terms of the magnetic dipole moment (2.4.13):

R
AR) = % (m; +.. ) . 2.431)

Using B = V x A, the associated magnetic field is

Mo <3RaR,gm,g — Rzma + )

BaR) =740 RS

(2.4.32)

For simplicity, we have derived only the magnetic dipole contribution to the mag-
netic field. The general expression is analogous to (2.4.25) for the electric field,
except that there is no magnetic analogue of the net electric charge:

Ko
B,(R) = H(Talgmlg — Tupy Mpy + ). (2.4.33)

2.4.5 Dynamic electromagnetic multipole fields

Of particular importance are the electromagnetic fields generated by a system of
time-varying charges and currents; we formulate this radiation field in terms of
specific contributions from particular time-varying electric and magnetic multipole
moments. Our basic assumption is that the charge and current densities vary har-
monically with time. Such is the case if a monochromatic light wave is incident on
the system, with the fields radiated by the induced oscillating charges and currents
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constituting scattered light. Hence we write

o(r) = pQe it (2.4.34a)
J(t) = JOe e,

(2.4.34b)
For simplicity, we omit the tildes over complex quantities in this section.

The radiated fields are determined by the retarded potentials (2.2.30), which
require p(¢) and J(¢) to be evaluated at the retarded time t' = ¢t — |[R — r|/v:

1 pOgilcIR=rI—n 41/
R,t) = , 2.4.35
oR.1) dmeeg / IR —r| ( %)
0) i(K\R—rI—wt)dV
AR, 1) = HH0 / I7e
4 IR —r|
If the dimensions of the charge and current system are small compared with the
wavelength, these retarded potentials can be developed in powers of . We use the
expansions

(2.4.35b)

R =R|1 R,ry 1 (RyRgrqrg r? .
—r| = — [ - —_— e
R? 2 R4 R? ’
1

_ . R,rg n 1 (3RoRpgrqrg r?
R—rl R R2

A _R_)+]
to write
oikR—1| kR Rure 1 (3RyRprarg 12 KR,y
= I+ = (- — ) -
R—r| R R* 2 R* R? R

1K 3Rangl’al’/3 r? KzRozRﬁrar,B

-— = |-+ |. (2436
2 ( R3 R) 2R? + ( )
Writing the charge density in terms of point charges, and using (2.4.36) in
(2.4.35a), gives the following multipole expansion for the dynamic scalar potential
part of the radiation:

. 0 .
o= (R““E?) RoRpOL ik Ruped)

dmeegR

o
R2 R R
0) (0
ikRyR30") K RuRp Y eirr)
- ok E oy ). 437
R3 2R?

The development of the dynamic vector potential is more delicate since it is

necessary to relate the current to the moments of the charge distribution. Our starting
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point is the equation of continuity, which expresses the conservation of charge
within a body. The rate at which charge leaves a volume V' bounded by a surface S
is f¢ J - dS. Since charge is conserved,

d 5
/J'dS=——q:—/ % av,
S dr v ot

where ¢ is the net charge contained in V. From Gauss’ theorem,

/J-dS:/V-JdV,
s v

from which the equation of continuity follows:

0
v+ o (2.4.38)
ot
Invoking the harmonic time dependence of J and p, this becomes
V-J =iwp.
Now multiply by an arbitrary scalar or tensor function f of position:

/f(VaJa)dV :/Va(fja)d\/ —/Ja(Vaf)dV =ia)/,ode.

From Gauss’ theorem,

/ Va(fJ)dV = / FIudSa.
\% S

which is zero if the surface of integration is taken beyond the boundary of the charge
and current distribution. Therefore

/Ja(Vaf)dV = —iw/ pfdVv. (2.4.39)

Putting f = 1, we find from (2.4.39) that /' pdV = 0, so we must assert that the
system is neutral overall for this treatment to be consistent. Putting f = rg and
f =rpry in (2.4.39) we find
/JadV = —iwly, (2.4.40a)
/ Jarp + Jpro)dV = =i Y eirigrig, (2.4.40b)
i

/(Jarﬂ — Jpro)dV = —&4p, €y 8¢ / rsJedV = —2e48,m,. (2.4.40c)
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Using (2.4.40) together with
1 1
/Jal”ﬂdv = 5 / (Jar,g-i—Jﬁra)dV + E / (Jo,}’ﬁ — Jﬁ}’a)dv

and (2.4.36) in (2.4.35b) gives the following multipole expansion for the dynamic
vector potential:

m(o) ick ;Lg))

AR, 1) =

MMO oilcR—o) gaﬁVRﬁ
4 R

. : .(0) (0)
iKceapy Rpm'” 1K Rpg D il Tig
R 2nR?

2 (0) 0)
ck*Rg ) eir o Tig )
+... ).

(2.4.41)

+ 2nR

The radiated electric field can be calculated using (2.4.37) and (2.4.41) in
E = —0A/dt — V¢. Since the direction of propagation is along R, it is conve-
nient to write R in terms of the propagation vector n, R, = Rny/n, and we find

2 2
MO eR— w 1wc c
E R,l — PPV GikeR wt) (ON il I
R, =" ¢ P \ R T2 T 2R
w2 . 2 W2 .
3iwc 3c 1w
_ ) _ (0)
Hallplp (an TR n4R3) Capy oMty ( R nR2>
3w? iw’ 3w?
_ .00 _ .0),.(0) _
”*“Ze' io Tig (ZCR 2nR2)+”“‘”’3"VZe‘ ip "ty <2n2cR 2n3R2)

o) { 2iwc 2¢? (0) w? Siwc 5¢?
+ 15O 2R3 p3R: ) T elBly O n3R2+n4R3_n5R4 Tl

(2.4.42a)
Similarly, using B = V x A, the radiated magnetic field is found to be
2 .
_ Rio QilkR— 1w
; 2 2
_ ) w? ngns  iw(3ngns — n-dgs) B (Bngns — n-dgs)
Eyseh [ R + R IR (2.4.42b)

.0),.(0) iw’ngns  3w’ngns  3iwngns
Zel iy ’6 2¢2R - 2nc R? - 272R3 + -7

We now consider two important limits of (2.4.42).
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Atdistances large compared with the wavelength (« R >> 1), we retain only terms
in 1/R in (2.4.42):

2
E (R, 1) = ZHHO itr—on) |:<l/«(0) _ Mang M(O))

47 R « n2 P
_ésaﬂynﬂmg/o) _ ;‘Z ( @(0) naziﬂy @(0)) ] . (2.4.43q)
By(R, 1) = %ew“’%aﬁynﬂ
(Mf) 18%%nynw> ;Cn6@g2+_”.)_ (2.4.43D)

The meaning of the terms

0 _ Nallg () ©  Nallghy )
(fo) - Mﬂ) and (nﬂéaﬁ— P O,

is that the components of the vectors 1% and ng @( parallel to the direction of
propagation of the radiated field are subtracted out, so that only the perpendicular
components remain. Consequently, E(R, ¢) given by (2.4.43a) is entirely transverse;
B(R, ¢) is always transverse since V - B = 0. This is consistent with the fact that
the electric and magnetic field vectors in (2.4.43a and b) are related by

1
Ba = ;8a5yn/3Ey,

which was shown in Section 2.2.2 to be a property of a plane wave. This transversal-
ity has also enabled 2 5D el -0 (O) to be replaced by the traceless electric quadrupole
moment @< ). The reglon of space at sufficiently large distances for the radiated
wave to be cons1dered a plane wave over small regions of space is called the wave
zone.

At distances small compared with the wavelength (¢« R < 1), we can neglect
terms in 1/R and 1/R? in (2.4.42) and set exp(ik R) ~ 1:

E,(R, 1) = < 3R°‘RﬂM530) R + SRO‘R’SRVQ%OJ)' _ 2R2Rl3@f’2‘; +---
o 4mee RS R7 ’
(2.4.44a)
B (R t) _ MMOe_iwt 3RaR/3m530) — Rzmg)) iw&?aﬁyRﬂR(;@;Oa) L.
T 4 R3 R3 '
(2.4.44b)

The electric field (2.4.44a) is analogous to the static field (2.4.22) of stationary
electric dipole and electric quadrupole moments. In this approximation there is no
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contribution to the radiated electric field from the magnetic dipole moment. Notice
that an oscillating electric quadrupole moment contributes to the radiated magnetic
field (2.4.44b) in this approximation, whereas there is no analogous contribution
to the static magnetic field (2.4.32) from a stationary electric quadrupole moment.

It can be useful to write the wave zone fields (2.4.43) in terms of time derivatives
of the oscillating electric and magnetic multipole moments as follows:

Ko . Nghg 1 .
E,(R,1) = —melm |:<Ma - nzﬂﬂﬂ) - Eeaﬁynﬁmy

1 NgNghy, ..
+ 5 (n,g@aﬂ - @ﬂy) +o, (2.4.45q)

Ko
Ba(R, l) = —memRSaﬁynﬂ

1 1 ..
X (,bl,y — ESygengl;l;le + §n5@),5 + - > . (2.4.45b)

These are the same as the expressions used in Buckingham and Raab (1975),
for example, and are equivalent to those derived in Landau and Lifshitz (1975).
They are useful, among other things, for checking that each term has the correct
behaviour under space inversion and time reversal (see Chapter 4). This is because
the propagation vector n has well-defined transformation properties (it is P-odd
and T -odd). Similarly for other equations such as (2.4.37) for the scalar potential
and (2.4.41) for the vector potential.

2.5 The energy of charges and currents in electric and magnetic fields

We now consider the energy of a system of charges and currents bathed in both static
and dynamic external electric and magnetic fields and develop expressions which,
in operator form, constitute convenient Hamiltonians for subsequent quantum-
mechanical calculations.

The equation of motion of a charged particle in an electromagnetic field is actually
the Lorentz force equation

F =¢E + ev x B. (2.5.1)

An equation of motion is generated from a Lagrangian function L =T — V , where
T and V are the kinetic and potential energies, through the Fuler—Lagrange equa-
tion,

d oL

L———=0. (2.5.2)
dr ov
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It is easily verified that the Lagrangian
L=1mv+ev-A—ep (2.5.3)

generates the required equation of motion (2.5.1).
From the Lagrangian (2.5.3) we can find the Hamiltonian H for a charged particle
in an electromagnetic field using

H=v.-——-1L, (2.54)

where dL /9v is the generalized momentum p’ of the particle. The generalized mo-
mentum will only equal the Newfonian momentum p = mv when V is independent
of velocity, which is not the case for a charged particle moving in an electromagnetic
field. The generalized momentum is therefore

, 0L
p = - =mv+eA, (2.5.5)
ov
and the Hamiltonian, expressed in terms of the generalized rather than the Newto-
nian momentum, is

H= L(p/ —eA) +eg. (2.5.6)
2m

(Writing the square of a vector expression implies a scalar product.) In applying
this result to the interaction of a quantum system with an electromagnetic field, it
must be remembered that the operator —i/i'V replaces p’, not p; also p’ and A do
not necessarily commute.

2.5.1 Electric and magnetic multipole moments in static fields

The Hamiltonian (2.5.6) is now developed to obtain expressions containing explicit
multipole terms for the interaction energy between a system of charges and currents
and static electric and magnetic fields produced by external sources.

From (2.5.6) the potential energy of the ith charge at r; in a static electric field
characterized by a scalar potential is e;¢(r;). We expand ¢(r) in a Taylor series
about an origin O within the system of charges:

P(r) = (o + ra(Va o + 37ars(Va Voo + - - -
= (@) — ra(Ea)o — 3rarp(Eap)o + -+, (2.5.7)

where E g is used to denote the field gradient V,, Eg and a subscript O indicates that
a field or field gradient is taken at the origin. The potential energy of a system of
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charges in a static electric field is now obtained in multipole form:

V=>"eip(r) = q(®)o — ta(Eado — 30up(Eapo + -+ (25.8)

The introduction of the traceless electric quadrupole moment G4 is permissible
here since the origin is far removed from the external charge distribution producing
¢ so that

p(0)

8up(Vu Ved)o = (V) = e 0. (2.5.9)

The vector potential describing a static uniform magnetic field may be written
A= %(B X T) (2.5.10)

since this satisfies B = V x A (because B is independent of r in a uniform field). In
expanding (p’ — eA)? in the Hamiltonian (2.5.6), notice that, if p’ is the quantum-
mechanical operator —i2V, p’ and A do not commute unless V - A = 0, which
holds for the vector potential (2.5.10). From (2.5.6), the potential energy of a system
of currents is a static uniform magnetic field is therefore

2
Z € Z ¢ 2
V = — i m_lpl .A(I‘,’)+ i 2_m,A(r’)
e eiz 2

=- E p; . [B(r;) xr;]+ E [B(r;) x r;]

2m; 8m;

= —myBa — 3 %45 BaBp. (2.5.11)

In developing the second term, we have used the tensor relation
Eapy€asi = 0850y; — 8p10ys,

introduced later (Section 4.2.4), to expose the diamagnetic susceptibility tensor

2
e:
X = 2 e s = 170). @5.12)
i 1

This can be thought of as generating a magnetic field induced magnetic moment
% X(%)Ba that opposes the inducing field. The magnetic potential energy (2.5.11)
contains only dipole interactions because it was derived for a uniform magnetic
field. If the field is not uniform and higher multipole interaction terms are required,
a general expansion about the origin must be used in place of (2.5.10). For example,

although

Ao(r) = Yeap, (Bpory + eaysrs(VeBy)ors + -« - (2.5.13)
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is not itself a Taylor expansion, it leads to the correct Taylor expansion for B(r)
using B =V x A.

The interaction energy between a system of charges and currents and static
electric and magnetic fields is therefore obtained quite naturally in multipole form.
But we shall see below that when the fields are dynamic, as in a radiation field, the
development of the interaction energy in multipole form is more difficult.

We now consider the interaction energy of two widely separated charge dis-
tributions 1 and 2. This is given by an expression similar to (2.5.8) obtained by
developing the Coulomb interaction energy between the constituent charges:

1 el-l 6,’2 1
= tree Z R, = OR — ag(Ea) = 302, (Eapla o 25.14)
where R; ;, is the distance between the charge elements ¢;, in distribution 1 and ¢;, in
distribution 2; g», ua,, O3, etc. are the electric multipole moments of distribution
2; and (@)2, (Eq)2, (Eqp)a, etc. are the fields and field gradients at the coordinate
origin of 2 due to the instantaneous charge distribution 1. Reversing the roles of 1
and 2 gives the same interaction energy. Using (2.4.24) and (2.4.25), the interaction

energy becomes

V= [T219192 + To1o (G120 — G211,

dree
+ o105 (30102,5 + 5020145 — tagitzg) +-- ], (25.19)

where the subscript 21 on the T tensors indicates they are functions of the vector
R;; = R, — R; from the origin on 1 to that on 2. Clearly T = (—1)"T,, where
n is the order of the tensor.

The interaction energy of two current distributions is similarly given by

V = —mza(Ba)z + - (2.5.16)
Using (2.4.33), this becomes
o
V= 4—7T0(—T21aﬂmlam2ﬁ +e0). (2.5.17)

Magnetic analogues of the lower order terms in (2.5.15) do not arise since magnetic
monopoles do not exist.

2.5.2 Electric and magnetic multipole moments in dynamic fields

We now turn to the development of the Hamiltonian (2.5.6) for the important case
of charges and currents in dynamic electric and magnetic fields, particularly a
radiation field. There are several methods of exposing the multipole interaction
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terms. The most widely used method in molecular optics is to expand the operator
equivalent of (2.5.6) and invoke the quantum mechanical commutation relations
between the coordinates and the Hamiltonian of the charges and currents. It was
shown in Section 2.2.4 that if the sources of the radiation field are far removed, the
condition V - A = 0 and ¢ = 0 hold in both the Coulomb gauge and the Lorentz
gauge. In this case, therefore, the potential energy part of (2.5.6) can be written

2
€ ¢
V= _Zm—ip,. .A(ri)+Zz—WA(r,-)2. (2.5.18)

If the wavelength of the radiation field is large compared with the dimensions of
the system of charges and currents, A(r) can be expanded in a Taylor series about
an origin O within the system of charges and currents. The first term of (2.5.18)
then becomes

— —lAal',' A— L Aoz ! Aot i !
,Zmi ri)Pi zZm,- [(Aadopi, + (Apadorigpig + -]
¢i 1 ’
-2 [Awopi, + S Apadol iy, +ia )y
+(igPiy —Tia Pig)] + - } (2.5.19)

The electric dipole nature of the first term of (2.5.19) is exposed using the commu-
tation relation

in
reH — Hry = —p, (2.5.20)
m
where
hZ
H=——V>4+V() (2.5.21)
2m

is the Hamiltonian for a particle bound in the molecule. The electric quadrupole
nature of the symmetric part of the second term of (2.5.19) is exposed using the
commutation relation

i
FargH — Hrory = —(rapl + raply — ihdup). (2.5.22)
m

Actually, the commutation relations (2.5.20) and (2.5.22) are only valid if the
potential energy V (r) in the Hamiltonian (2.5.21) commutes with the coordinate;
as shown later, this is not always true, particularly when spin—orbit coupling is
significant. The antisymmetric part of the second term of (2.5.19) already has the
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form of a magnetic dipole interaction:
€ , e
- Z o (Apadorig Py = TiaPiy) = ) o
l

= - Z eeysr,yp,seéﬁa(Aﬁa)o = —mq(Bao. (2.5.23)

; (8)//38501 - 8)/0586/3)-

The interaction Hamiltonian (2.5.18) can therefore be written in the following
multipole operator form:

1 i
V= _ﬁ(Hl‘LOt - MaH)(Aa)O - E(H@aﬂ - @aﬂH)(Aﬂa)O
2
€; 2
—mg(By)o + -+ + Z 2 AT (2.5.24)

where we have introduced the traceless electric quadrupole moment operator since
A =V -A=0.
If the real vector potential is written explicitly as

Ao (r) = JAO[IT,e® s~ 4 [Tre itprs=en], (2.5.25)
the interaction Hamiltonian (2.5.24) becomes
vV =1A0 [—%(Hua — o H)(ITye ™" + ITie™)
+ iTwgwﬂynlgmy(]NL,[e_i“” — ITte")

+ 37”!/3(1‘180,5 — @aﬂH)(ﬁaeiiwt — ﬁZeiwf) + .. ]

+AO? Z el I 201, 0T 4, (25.20

which is a convenient form for subsequent applications.
Although the dynamic interaction Hamiltonian (2.5.24) is effectively in mul-

tipole form, it is not as ‘clean’ as the static multipole interaction Hamiltonians
(2.5.8) and (2.5.11); also the dynamic diamagnetic interaction has not emerged ex-
plicitly. It is possible, however, to transform the fundamental Hamiltonian (2.5.6)
into an exact dynamic analogue of the static multipole interaction Hamiltonian that
is applicable to both classical and (with an operator interpretation) quantum formu-
lations, and we refer to Woolley (1975a) for a review of the various transformation
methods that have been proposed. Here we give a particularly simple method due
to Barron and Gray (1973) which shows, by means of a judicious choice of gauge,
that the fundamental interaction Hamiltonian (2.5.6) is simply equal to the multi-
pole Hamiltonian. As discussed in Section 2.2.4, provided that a scalar and vector
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potential generate the correct electric and magnetic fields through

9A
E=-V¢——. (2.5.27a)
B=V xA, (2.5.27b)

there is ‘gauge freedom’ in the choice of ¢ and A. We make an explicit choice with
the expansions

P(r) = (@)o — ra(Ea)o — 3rarp(Eaglo + -+, (2.5.28a)
Ag(r) = 58ap, (Bp)ory + 38aystp(Bpydors + - - (2.5.28h)

which satisfy (2.5.27) if E(r) and B(r) can be Taylor expanded:

Eo(r) = (Eg)o +1p(Egalo+ -+, (2.5.29a)
By (r) = (By)o +rg(Bga)o + - . (2.5.29b)

It is easy to see how the constant terms (E,)o and (By)o arise, but to see how the
term rg(Egy)o in (2.5.29a) arises requires further explanation: in fact we use the
relations

%Va [rgry(Egy)o]l = %rﬂ[(Eaﬂ)O + (Egadols

a
%Esaﬂy(Bﬁ)Ory = _%Saﬂy[gﬂée(Eﬁe)O]ry = %rﬁ[(Eaﬁ)o — (Ega)ol,
the second of which makes use of the Maxwell equation V x E = —0B/0¢. Sub-
stituting (2.5.28) into (2.5.6) now gives the dynamic multipole interaction Hamil-

tonian
V =q(@#) — ta(Ea)o — $Ous(Eapo
— ma(Ba)o — 3155 (Bo)o(Bpo + -+ - (2.5.30)

which parallels exactly the static one.

There has been much discussion as to the relative merits of the two dynamic
interaction Hamiltonians (2.5.26) and (2.5.30), particularly with regard to the con-
tribution of the term in A2. However, if applied consistently, the two Hamiltonians
should give identical results. An early example of this equivalence was given in-
directly by Dirac (1958) in a derivation of the Kramers—Heisenberg dispersion
formula for the scattering coefficient of a photon by an atom or molecule. The same
dispersion formula is obtained from the interference of two ‘p - E’ interactions,
describing the separate absorption and emission processes, as is obtained from the
interference of two ‘p + A’ interactions, again describing separate photon absorption
and emission processes, added to a single ‘A?’ interaction describing simultane-
ous photon absorption and emission. However, this feature appears to arise only
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in formulations using a quantized radiation field. In the semi-classical theory of
molecular light scattering developed below, the Hamiltonians (2.5.26) and (2.5.30)
give identical results even though the A? term makes no contribution. This is be-
cause we describe light scattering in terms of the radiation emitted by electric and
magnetic multipole moments induced in the molecule by the incident light wave
and oscillating at the incident frequency; and the A? term has no components at the
frequency of the incident light wave.

It should be mentioned that, if the Hamiltonian contains the spin—orbit interac-
tion, the transformation to a multipole form is more delicate and new terms arise.
Barron and Buckingham (1973) have discussed this matter in detail.

2.6 Molecules in electric and magnetic fields

In this section, perturbation theory is used to derive quantum mechanical expres-
sions for the molecular property tensors that characterize the response of a molecule
to a particular electric or magnetic field component. These property tensors appear
later in the expressions for the observables, such as the angle of optical rotation, in
optical activity experiments.

2.6.1 A molecule in static fields

The electric and magnetic multipole moments appearing in the expressions for the
interaction energy of a system of charges and currents with external electric and
magnetic fields can be permanent attributes of the system or can be induced by
the fields themselves. If the interaction is weak, the situation can be analyzed by
expanding the energy W of the system in a Taylor series about the energy in the
absence of the field.

Thus for an electrically neutral molecule in a static uniform electric field,

LR
—_— l A N arre N
WIE] = (W)o + (Eado [‘ausa)ol FalfenlEnh [3(Ea)03(Eﬂ)0]0
+ LWED(Ep)o(E,) [ il ] + (2.6.1)
o OB | S 0d (Epdod By |,

The field itself, (E)o, is taken at the molecular origin, and (W)q, [0W /d(E)o]o, etc.,
indicate the energy, its derivative with respect to the field, etc., evaluated for zero
field strength at the molecular origin. From (2.5.8) we also have

W =W) — na(Ex)o — %@aﬁ(Eaﬂ)O + -, (2.6.2)
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from which the electric dipole moment is given by

aw
a(Eot)O ‘

U = (2.6.3)

Thus from (2.6.1) and (2.6.3) we can write the molecular electric dipole moment
in the presence of a static uniform electric field as

Mo = Hog + 2ap(Ep)o + 3Bapy (Eg)o(Ey)o + -+, (2.6.4a)
where
14
= , (2.6.4b)
Ho _a<Ea>o]0
[ W
Ugp = — —:| , (2.6.4¢)
| 0(Eq)od(Eg)o |,
i 1>w
ﬁaﬂ}/ = - i| , (264d)
| 0(E)od(Eg)od(Ey)o g

are, respectively, the permanent electric dipole moment, the electric polarizability
and the first electric hyperpolarizability. Thus the tensors aqg, Bug, €tc., describe
the distortion of the molecular charge distribution by successive powers of the
electric field.

Similarly, for a molecule in a static electric field gradient,

ow
WI(Eapolo = (W)o + (Eap)o [8<E ,m]
o 0

+ 2(Eap)o(Eys) [—azw ] + (2.6.5)
5(Eap)olLys)o .6.
2R 9(Eap)od (Eyo)o
From (2.6.2), the electric quadrupole moment is given by

ow
af — -3
d(Equ)o

(2.6.6)

and this, together with (2.6.5), gives the molecular electric quadrupole moment in
the presence of a static electric field gradient as

@aﬁ = Qoaﬂ + Caﬁ,yc?(E)/S)O + -, (26761)

where

W
6y, =-3 , (2.6.7b)
op d(Eqp)o |
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2
Capys = =3 [L] , (2.670)
(Eqp)od(Eys)o |
are the permanent electric quadrupole moment and the electric quadrupole polar-
izability. Thus Cg s describes the distortion of the molecular charge distribution
by an electric field gradient.
For a molecule in a static uniform magnetic field,

WI(B)] = W)o+ (By) [ oW }
o] = 0 )0 3B

+ 1(Ba)o(Bs)o [327W} . (2.68)
2 3(Ba)od(Bg)o |,

From (2.5.11) we can write
W = (W) — ma(Bo)o — 3 x5 (Ba)o(Bglo + -+ (2.6.9)

which gives the magnetic dipole moment, including the diamagnetic contribution,
as

ow
d(Bu)o
From this, together with (2.6.8), we can write the molecular magnetic dipole mo-
ment in the presence of a static uniform magnetic field as

ml, = mqy + x5 (Bpo = — (2.6.10)

m(/x — moy + Xap(Bg)o + - (2.6.11a)
where
ow
mo, = — ’ (2.6.11b)
d(Bg)o Jo
RRa%
(] (d
- -7 | 2.6.11
Xap = Xap + Xag [B(Ba)Oa(Bﬂ)O:L ( !
(P

are the permanent magnetic dipole moment and the magnetic susceptibility. X,
is the temperature-independent paramagnetic susceptibility and is the magnetic
analogue of the electric polarizability o, whereas the diamagnetic contribution
X;‘;) has no electrical analogue.

Time-independent perturbation theory is now introduced to give the static molec-
ular property tensors a quantum mechanical form. We require approximate solutions
of the time-independent Schrédinger equation

HY' =H+ V' =Wy, (2.6.12)
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where H is the unperturbed molecular Hamiltonian (2.5.21), V' is the operator
equivalent of a static interaction Hamiltonian such as (2.5.8) or (2.5.11) whose
effect is small compared with that of H, and ¢' and W' are the perturbed molecular
wavefunction and energy. Perturbation theory provides approximate expressions for
the eigenfunctions j’ and eigenvalues W.;' of the perturbed operator H' in terms of
the unperturbed eigenfunctions v; and eigenvalues W of the unperturbed operator
H. We refer to standard works such as Davydov (1976) for the development of
these approximate expressions.

The perturbed energy eigenvalue corresponding to the nondegenerate eigenfunc-
tion v, is, to second order in the perturbation,

(n|V17){J1VIn)

, 2.6.13
oW (2.6.13)

W, =W, + nlVin)+ Y

JF#n

where the sum extends over the complete set of eigenfunctions with the exception
of the initial state ¥,,. Since the energy of a system correct to the (2m + 1)th order
in the perturbation is given by wave functions correct to the mth order, we need only

take the corresponding perturbed eigenfunction to first order in the perturbation:

{JIVin)
v =Y, + E (2.6.14)
J#n Wi = W

If the perturbation is due to a static uniform electric field, V = —puq(Eq)o. Apply-
ing (2.6.3) to (2.6.13) and comparing the result with (2.6.4), we find the following

expressions for the permanent electric dipole moment and the polarizability of a
molecule in the state 1,,:

Mo = (n|paln), (2.6.15a)
oy = _ZZ nlualj J|Mﬂ|”> = e (2.6.15b)
JF#n

These results can also be obtained by taking the expectation value of the electric
dipole moment operator with the perturbed eigenfunction (2.6.14), and comparing
the result with (2.6.4):

Mo = <n/|Moz|n/>

(el luwgln)
= (nlpaln) =2 “ /) J’“‘ﬂ (Ep)o. (2.6.16)
JF#n

Similar expressions can be found for the other static molecular property tensors,
but they are not reproduced here since only the dynamic versions are required in
what follows, and these are derived below. Buckingham (1967, 1978) has given a
full account of the static electric molecular property tensors to high order.
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2.6.2 A molecule in a radiation field

A radiation field induces oscillating electric and magnetic multipole moments in a
molecule. These moments are related to the electric and magnetic field components
of the radiation field through molecular property tensors which are now functions of
the frequency. The first procedure (involving energy eigenvalues) used for obtaining
the static induced moments, and hence the static polarizability (2.6.15b), is not
applicable here since eigenvalues are not defined in a dynamic field (Born and
Huang, 1954). But expectation values are still defined, so to obtain the oscillating
induced moments, and hence the dynamic molecular property tensors, we adopt the
second procedure of taking expectation values of the multipole moment operators
using molecular wave functions perturbed by the radiation field, and identifying
the dynamic molecular property tensors in the resulting series.

The periodically perturbed molecular wave functions are obtained by solving
the time-dependent Schrodinger equation

(ih% - H) v =V, (2.6.17)

where H is the unperturbed molecular Hamiltonian (2.5.21) and V' is a dynamic
interaction Hamiltonian such as (2.5.26) or (2.5.30). In the absence of V, the general
solution of (2.6.17) is the stationary state

Y=Y c;yPeion (2.6.18)
J

where the ¢; are time-independent expansion coefficients and v; and /iw; = W
are the eigenfunctions and eigenvalues of H . In the presence of the time-dependent
perturbation V, the general solution of (2.6.18) is no longer a stationary state since
the expansion coefficients can now be functions of time.

The details of the subsequent development depend on which of the two interac-
tion Hamiltonians (2.5.26) or (2.5.30) is used, although the final results should be
identical. Here we employ the multipole Hamiltonian (2.5.30) since it involves less
work.

A simple method of solution is to assume that, when the stationary non-
degenerate eigenfunction

U, = Vet (2.6.19)

of the unperturbed system is subjected to a small harmonic perturbation of angu-
lar frequency o from a plane-wave radiation field, the corresponding perturbed
eigenfunction can be written in the form (Placzek, 1934; Born and Huang, 1954;
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Davydov, 1976)
/ 0 ~ = - o ~ 5
v, = {W,(, '+ Z[ajnﬂ(Eﬁ)O +bjng(Eglo+ Cing(Bplo
J#n
+ ding (B3 + Eing o + Fing, (B o+ " fet. 2.620)
The first term satisfies (2.6.17) in the absence of V' and the other terms are first order
in the harmonic perturbation. The coefficients @ ;, g ClC., are now found by using the

perturbed eigenfunction (2.6.20) and the multipole interaction Hamiltonian (2.5.30)
in the time-dependent Schrodinger equation (2.6.17):

5 Z[(w/’n _ CL))djnﬂ(Eﬁ)O + (wjn + w)Ejnﬁ(EZ)o
j#n
+(@jn = ©)Cjng (Bp)o + (@jn + @)d juy (By)o

+ (a)jn - w)éjnﬁ (Eﬂy)o + (wjn + a))fj”ﬁy (E‘EV)O]wj(.O)efiw,,t
B {Mﬂ[(Eﬂ)o + (Ep)ol +mgl(Bp)o + (B ol

+ 308y [(Epy)o + (E Do) + - - } Ve iont (2.6.21)

where w;, = w; — w,. Multiplying both sides of (2.6.21) by w;o)* and integrat-
ing over all configuration space, it is found by equating coefficients of identical
exponential time factors that

amﬁ (Jlngln)20(w)n — o), (2.6.22a)
bjng = (Jjlupln)/2h(@jn + @), (2.6.22b)
cj’lﬂ (Jlmg|n) /2 (wjn, — w), (2.6.22¢)
djng = (jlmgln) /21 (@jn + w), (2.6.22d)
€ing, = (J1Opy|n)/6N(w)n — @), (2.6.22¢)
Fing, = {J1@pyIn) /61 () + w). (2.6.22f)

The oscillating induced electric and magnetic multipole moments of the molecule
in the nth eigenstate are now obtained from the expectation values of the corre-
sponding operators using the periodically perturbed eigenfunction (2.6.20). For
example, the first few contributions to the induced electric dipole moment are

Mo = (n/|ﬂa|n/>

= (litaln) + 2 3 2 Re((nlital /) lislm)NEp)
= tlftaln n#nwzn—wze”“"”“ﬂ” P

- = Z Im( nlua|1><1|u,sln>) (Eg)o + - (2.6.23)
/#n in
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In obtaining this result we have written
(nlpal j) CGlppln) = (nlpgl j)*(Jlnaln)®, (2.6.24)

which follows from the Hermiticity of the electric dipole moment operator, and
have used the following relationships between real and complex radiation field
components:

(Ego = SUEpo + (Ef)o] = S[EF e + EP" ], (2.6.25q)
@@w=—5w95w_ﬁyww1 (2.6.25b)

Extending this procedure, the following expressions for the real induced oscillating
electric and magnetic multipole moments are found (Buckingham, 1967, 1978):

1, . 1
Mo = aaﬂ(E,B)O + _aaﬁ(Eﬂ)O + _ACt ﬂy(E/Sy)O
1
+% aﬂy

1 R
90{;3 = Ay ot,B(E )o — 5A;,,a/3(Ey)O + Caﬂs}’a(EVS)O

(Egy)o + Gap(Bg)o + G ﬁ(Blg)O +- (2.6.26a)

1 .
+ C¢MWMM+DNABE—— L asByo+ -, (2.6.26D)
1. 1
m; = Xaﬂ(Bﬁ)O + ;Xo/[ﬁ(B,B)O + gDa,ﬁy(Eﬁy)O

I 1,
+ %Da,,gy(Eﬂy)o + Gpa(Ep)o — ZGﬁa(Eﬂ)O +--n, (2.6.260)

where the real dynamic molecular property tensors that multiply the real radiation
field components are

2 Wijn "
Uop == > ———Re((nlptal ) {jlpln)) = tpa (2.6.27a)
h 4 = w?
Jj#En jn
4 2 w g /
Gy =+ ; s Im((nlual ) ilign)) = e, (2.6.27b)
j#n T jn
2 w/n
Aapr =32 2 o Rl ) 19y 1) = A (2.6.27¢)
J#n
I 2 w . . /
Ay =7 ; (e )10y 1) = A (2:627d)
JFn
2 Wjn .
Gop == Y ———Re((n|talj){jlmpln)), (2.6.27¢)
h 47&” a)jn — 602
Gog=—+ Z s Im({nlug ) Imgln)). (2.6.27f)

l;ﬁn in
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Copys = o ; C()Z—]_a)zRe((n|9aﬁ|J)(J|@y8|n)) = Cys.ap> (2.6.27g)
J7Fn

n
, 2 w PR l
Capys = =5 2 7 — 5 M(n1Cusl ) (j1Oysln) = =Cls oy, (2:6.27h)
JFn n
2 wjn . . -
Da,/gy = ;—_l Z 2—2Re((n|ma|]><] |@ﬂy|n>) = Da,yﬁ’ (26271)
j#n @in T @
, 2 w o / -
Dipy = =5 20— mnlmal D{j10py Im) = Di, (2627
JFn n
2 Wi o
Xop = = ) ————Re((nlmal j){jlmgln)
j#n @in T @
2
e:
I Z y (|, 1y, — rF8ap|n) = Xpas (2.6.27k)
T i
, 2 w . . /
Xop = =5 D ———Im(nlmal /) (ilmg|n) = = xpe. (2.6.271)
j#n @jn — @

Notice that g is symmetric with respect to interchange of the tensor subscripts,
whereas 0‘&,3 is antisymmetric. This follows from (2.6.24), which enables us to
write

Re({n|peli){jlmpln)) = Re((nlmglj){jlnaln)), (2.6.284)
Im({n|pal ) (Jlpgln)) = =Im((nfwg| j){jlpaln). (2.6.28b)

Similarly for the other molecular property tensors involving products of the same
multipole transition moments. No analogous separation into symmetric and an-
tisymmetric parts exists for the property tensors involving products of different
multipole transition moments.

This is an appropriate point at which to introduce the dimensionless quantity

2mwy
3h

fin= [(jlrin) I, (2.6.29)

called the oscillator strength of the j < n transition between quantum states of
a single electron bound in an atom or molecule. The oscillator strength obeys the
following Kuhn—-Thomas sum rule,

Y fin=1, (2.6.30)
J

which can be derived as follows. Using the commutation relation (2.5.20) be-
tween coordinates and momenta, it is found that coordinate and momentum matrix
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elements are related by the velocity—dipole transformation
(J|pgln) = imw;,(jlraln). (2.6.31a)

Using this result, (2.6.29) can be written
fjn = 3_h(a)jn<n|roz|]><] [reln) — wnj(n|ra|]><]|ra|n>)

_ _%(<n|rd|j)(j|p;|n) — (nlpgl i) (ilreln)).

Invoking the closure theorem (X;]j)(j| = 1), the required sum is

/ i .
Z fin=— n|rapa Piraln) = — <§> (3in) = 1.

This applies to a single bound electron, but since every electron in the system
will contribute, the Kuhn—Thomas sum rule for an atom or molecule containing Z
electrons becomes

Y fin=2. (2.6.32)
J

The oscillator strength and its sum rule can be useful for writing the real polariz-
ability (2.6.27a) in other forms.

It is convenient to present the real oscillating induced electric and magnetic
multipole moments (2.6.26) in a complex form. This facilitates the application of
expressions such as (2.4.43) for the fields radiated by oscillating complex multipole
moments (the tildes over complex quantities were omitted in Section 2.4.5 in the in-
terests of economy). Introducing the complex dynamic molecular property tensors

Qop = Qgp — i05 = f,, (2.6.33a)
Aupy = Aapy =144 5, = Auyp, (2.6.33b)
Gop = Gop — 1G5, (2.6.33¢)
Cap.ys = Capys —iChg 5 = Clis g (2.6.33d)
Daqﬁy = Do,gy — 'D(; By — Da,yﬁy (2.6.33¢)
Xop = Xap — iXap = Xpa> (2.6.33f)

we obtain the following complex induced oscillating electric and magnetic
multipole moments:

o = 5‘0:,3(5/3)0 + lAa,ﬂy(Eﬁy)O + Gap(Bglo+ - -
1 -
= (Otaﬁ + 3 —n Aa vB + Sayﬂl/l Ga(; + - ) (Eﬁ)o, (2.6.34a)

Oup = A}, 5(E o + D} o5(B, >o+caﬂ ss(Eysdo+ -+, (2.6.34b)
i, = Fap(Bp)o + G (Ep)o + 3 Dupy(Epy)o + - (2.6.34¢)
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where the complex fields of the plane wave light beam are
E, = E((IO)ei(Kﬂr/gfwt)’
B, =BY elkprp=en) — %8(1/3),”,3 E,.

The minus signs in the complex tensors (2.6.33) arise from our choice of sign in
the exponents of these complex field vectors.

It is important to know how the dynamic molecular property tensors change on
moving the origin from O to O + a. In a neutral system, the changes in the electric
dipole, electric quadrupole and magnetic dipole moments were shown in Section
2.4.to be

Mo = Ha> (2.4.3)
Oup — Oup — %uaalg - %ulgaa + [y @y 8, (2.4.9)
My — My — 3Eqpydpily. (2.4.14)

If the operator equivalents of these multipole moment changes are used in the
property tensors (2.6.27) it is found, using

(J1italn) = iwm (jlnaln), (2.6.31b)

which is another version of the velocity—dipole transformation (2.6.31a), that
(Buckingham and Longuet—Higgins, 1968)

Gap — ap. (2.6.35a)
Ava”gy — Aa,ﬁy — %aﬂ&ay — %ay&aﬂ + a(;&mgz?ﬂy, (2.6.35b)
Ga,B —> Gaﬂ — %iweﬁygay&ag. (26356)

The contribution of a number of these dynamic molecular property tensors to
particular light scattering phenomena are discussed in detail in subsequent chap-
ters. We shall see that, for example, the symmetric polarizability «,g provides the
major contribution to light scattering and refraction; the antisymmetric polarizabil-
ity ozl;ﬂ, when ‘activated’ by a magnetic field, generates Faraday optical rotation
and circular dichroism; G/, 5 and A, g, generate natural optical rotation and circu-
lar dichroism, the latter contributing only in oriented media; and G4 and A, By
generate magnetochiral birefringence and dichroism when activated by a magnetic
field.

2.6.3 A molecule in a radiation field at absorbing frequencies

So far, the electronic energy levels of the molecule have been regarded as strictly
discrete, which, according to the uncertainty principle, implies that they have an
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infinite lifetime. One consequence is that the dynamic molecular property ten-
sors derived previously do not apply to the resonance situation, that is when the
frequency w of the plane-wave light beam coincides with one of the natural transi-
tion frequencies w, of the molecule. Near resonance, the polarizabilities can have
greatly enhanced values, and there is the possibility of absorption of radiation by
the molecule.

To take account of resonance phenomena, it is necessary to incorporate the
finite energy width of the excited states of the molecule, thereby allowing for a
finite lifetime. The finite lifetime leads to the spontaneous emission of radiation
by molecules in excited states. If the total probability for transitions to all lower
states is small, the excited state is called quasi-discrete and its amplitude decays
exponentially with time:

c(t) = c(O)e‘%”, (2.6.36)

where I is called the damping factor. 1/ I" has the dimensions of time and is called
the lifetime of the excited state. The stationary state

_ .0 —iw;t
Wj—wj e

now becomes the quasi-stationary state

. 1.
%‘ — w;())e_l(wj_ ElhI‘,)t/h’ (2.6.37)

so the lifetime of excited states can be incorporated into our formalism simply by
changing to complex energies:

W; — W; — Jilil;. (2.6.38)

For the purposes of this book, it is not necessary to have an explicit quantum
mechanical expression for I'; since we are only interested in the general form of
dispersion and absorption lineshape functions. We refer to Davydov (1976), who
follows Weisskopf and Wigner (1930), for further quantum-mechanical discussion
of the lifetimes of excited states and the widths of energy levels.

We are usually concerned with molecules whose initial state is the ground state
Y. Since the ground state is strictly discrete, its lifetime is infinite and I',, = 0. In
the property tensors (2.6.27) we therefore make the replacement

;. (2.6.39)

(1)]',, —> a)jn = a)jn )

Furthermore, at frequencies w close to a resonance frequency w;, we need only use

this replacement in the difference term (w%n — w?), so the property tensors (2.6.27)
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Fig. 2.4 The dispersion and absorption lineshape functions f and g in the region
of a resonance frequency wj,. I'; is approximately the width of the band g at half
the maximum height.

become valid in regions of absorption through the replacement
1 1 1

— ) — il — 112
w*) —iwl’; 41"j

2

a)jn

— = = =
—? @)@, t o) (@
(w%n —o?) + iwl;

T2 2 272°
(w7}, —w*)* + w?I';

(2.6.40)

It is convenient to introduce dispersion and absorption lineshape functions f and
g, where

(a)?n — o)+ ol

= f +1g; 2.641a
f= O~ : (2.6.41b)
(a)in —w?)? + a)zFf
F .
g © (2.6.41¢)

=5 0 2
(a)jn w?) —i—a)I‘j

These functions are drawn in Fig. 2.4. By substituting w;, & %I’ ; into the expres-
sions for f and g, and neglecting powers of I'; higher than the first, it can be
seen that I'; is approximately the width of the band g at half the maximum height,
and is approximately the separation of the maxima and minima of the band f. In
the region of an isolated absorption band from a particular transition j <— n, the
dynamic molecular property tensors (2.6.27) are now replaced by

Uap — dap(f) +iap(g), (2.6.42a)

2
dap(f) = - feRe((nlual j)(jl1pln), (2.6.42b)
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2
agp(g) = ﬁgwjnRe“nlMalj)(jll/bﬂm));
U —> g (f) + 0 5(2),
2
aus(f) = —ﬁfa)lm((nIualj)(jluﬂln)),

2
@p(8) = — gz 8eIm((nlual ) {ilmpln));
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(2.6.42¢)
(2.6.42d)

(2.6.42¢)

(2.6.42f)

The expressions for the complex induced oscillating electric and magnetic multi-
pole moments (2.6.34) now need to be modified slightly since in those property ten-
sors where the complex conjugate is specified we do not want the complex conjugate
taken of f + ig. Therefore we replace (2.6.34) by (Buckingham and Raab, 1975)

where

fia = Gop(Ep)o + 3 Aapy(Epydo+ Gap(Bglo + -+ -

(:)otﬂ = ﬂ/;,aﬂ(gy)o + gy,aﬁ(gy)o + Caﬂ,yb‘(EVS)O + -

m, = Xaﬂ(é,g)o + (Z/aﬂ(Eﬂ)O + %Da,ﬂy(éﬁy)o +o

~ 2 1
Top = = D ————[wpnRe((nlmal ){jlrgln)

,B =
R Wi
+iwIm((n|me|j)(jlmpln))]
= Gpo +iGp,,
. 2 1 N
My,aﬂ = }g Z m[&)lnRe(<n|8aﬂ|J}(}|/“’L7|n>)
j#n T jn
+iwIm((n|Oup! /) (j 111y |n))]
= A%aﬂ + iA;/,aﬂ’
_ 2 1 .
J#n @in — @
Haolm((n|Ougl j)(jlm, n))]
=Dy op +1D), 5.

(2.6.43a)
(2.6.43b)
(2.6.43¢)

(2.6.44a)

(2.6.44b)

(2.6.44c¢)

It is now shown that the dynamic molecular property tensors that are functions
of g are responsible for the absorption of radiation. For simplicity, we consider just
aqp(g), since this makes the largest contribution to absorption. It is shown later
that the much smaller contributions from oz(’xﬁ (2), Gfxﬂ (g) and A, g, (g) depend on
the degree of circularity of the polarization state of the incident light beam and
are consequently responsible for circular dichroism. Since the force exerted by an
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electric field E on a system of charges is Zi ¢;E;, in a time ¢ the field does work

SW = eiv; -Est = 1 Est (2.6.45)

on the system of charges. It is the real parts of [1 and E that must be used in (2.6.45),
so writing the real electric field in terms of the complex field (2.2.11),

EOt = %(EC( + Ea)7
and the real electric dipole moment in terms of the complex moment (2.6.43a),
Mo = Yo + 15) = Haap(E po + @s(E5)o),

the work becomes

SW = _%[daﬂ(éa)o(éﬂ)o — @s(EDo(Epo
+ap(Eo(E plo — g (Ea)o(E poldt. (2640

When averaged over the oscillation period the first two terms, which contain
exp(=% 2iwt), vanish and the mean energy absorbed in one second is simply the
corresponding mean work:

AW = LoE O (s IT: 1T5). (2.6.47)

If the incident light is linearly polarized and the medium is isotropic, containing N
molecules per unit volume, this becomes

AW = IN0E@ a0 (g). (2.6.48)

Thus a,g(g) is responsible for absorption. Since oug(f) = g (f)* and aep(g) =
age(g)*, we can say that absorption arises from the antiHermitian part icqg(g) of
the general complex symmetric polarizability tensor aag(f) + ictgp(g).

2.6.4 Kramers—Kronig relations

The molecular property tensors, both static and dynamic, that are developed above
belong to a class of functions known as response functions. Such functions have
some general properties which are independent of any particular theoretical model
(such as the semiclassical perturbation model used in this book) of the system which
they describe. We illustrate these properties initially for the case of the symmetric
polarizability og.

It is necessary to express aqg as a sum of dispersive and absorptive parts, as in
(2.6.42a), since its behaviour over the complete frequency range is required. Since
the dispersion and absorption lineshape functions f and g are functions of w, we
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shall now write

&aﬂ(a)) = aaﬁ(fw) + iaaﬂ(gw)- (2649)

By regarding w as a complex variable and using the theory of functions of a complex
variable, it is possible to derive the following Kramers—Kronig relations between
the dispersive and absorptive parts of any response function, here exemplified for

5[0“3 (a))

1 [ q,

Cup(fu) = —7 / “5’3_(‘?5)) de, (2.6.50a)
1 [®a,

Cap(80) = ——7 / O;‘f{i) dt, (2.6.50b)

where 2 denotes the Cauchy principal value integral. We refer to works such as
Lifshitz and Pitaevski (1980) or Loudon (1983) for a detailed derivation.

The range of integration can be restricted to positive frequencies, which are more
meaningful experimentally, by using the following crossing relations:

Aop(—w) = &;ﬂ(a)), (2.6.51a)
Aop(f-w) = Aap(fo), (2.6.51b)
aaﬁ(g—w) = _aaﬁ(gw)- (2.6.51¢)

These originate in the necessity for a real field in

Ha(@) = dap(@)[Ep(@)]o (2.6.52)

to induce a real moment, because E(—w) = E*(w), but they also follow directly
from the explicit form of the lineshape functions in (2.6.41). Thus, since a,p(ge) s
an odd function, we can write (2.6.50a) as

1  aap(ge) * agp(g )
aup(fo) =~ 2| L 5de + — g
4 0 E w JT 0 S — @
2 o
=2y tw(8e) (2.6.53a)
moJo &-—o?
Similarly, since aqg( f¢) is an even function, (2.6.50b) becomes
20 % agp(fe)
w8(8p) = ——2P dg. 2.6.53b
Lop(80) = —— N £ ( )

The Kramers—Kronig relations show that the dispersive and absorptive parts of a
response function are intimately connected. A knowledge of one part at all positive
frequencies provides, by evaluation of the integral in (2.6.53a) or (2.6.53b), a
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complete knowledge of the other part at all frequencies. Furthermore, since

< 1

the absorptive part of a response function is zero if the dispersive part is constant.
This means that there can be no absorption of energy from a static applied field.

An important application of Kramers—Kronig relations is to the derivation of sum
rules. For any molecule there exists some high frequency wpax, above which the
molecule does not absorb. The dispersive part of the symmetric polarizability then
has a simple form of frequency dependence which can be taken from the quantum
mechanical expression (2.6.27a):

2
tap(fo) = =75 > wpnRe((nlial ) jl1plnd), (@ > oma). (2.6.55)
Jj#n

Generalizing the development leading to the Kuhn—Thomas sum rule (2.6.30), we
have

> " wuRe((nlral ) {jlrsln))

Jj#n
=3%;wmmmmm—wmmmmm
= —ﬁ(mm’ﬂ — ppraln) — (nlre|n)(nlpgln) + (nlpgln)(nlre|n))
Sy

so that, for a molecule containing Z electrons,

Ze?
O‘aﬂ(fw) = _W&xﬁ» (0 > Wmax)- (2.6.56)

Also, we can approximate (2.6.53a) to

2 o0
Ola,B(fa)) = _ﬁ‘/o éaaﬂ(gé)dg’ (@ > Wmax), (2.6.57)
and comparison with (2.6.56) gives
00 7 2
/ Wtap(go)dow = 22 (2.6.58)
0 2m

Notice that, although in the derivation w was taken to be some fixed value greater
than wmax, the result (2.6.58) is quite general and refers to an integral over the
entire absorption spectrum. This can be regarded as an alternative statement of the
Kuhn-Thomas sum rule.
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Other treatments refer to Kramers—Kronig relations between the real and imagi-
nary parts of a complex response tensor. But here we have carefully refrained from
using this terminology, referring instead to the dispersive and absorptive parts. This
is to avoid confusion with complex dynamic molecular property tensors such as
Aop = Ogp — iot(’xﬂ, introduced earlier, which can contain both real and imaginary
parts even at transparent frequencies. Thus in general

&aﬂ(a)) = aaﬂ(fw) + iaaﬂ(gw) - iat;ﬁ(fw) + a;ﬂ(gw)- (2659)

However, complex response tensors in this general form are to be used with complex
fields, whereas the Kramers—Kronig relations apply to the real and imaginary parts
of a response tensor defined for real fields. Thus, just as Kramers—Kronig relations
for the symmetric polarizability o,g are developed using (2.6.52), the Kramers—
Kronig relations for the antisymmetric polarizability «, 4 are developed using

1 .
o) = a&é,,s(w)[E,s(w)]o, (2.6.60)

which is taken from the expression (2.6.26a) for the real electric dipole moment
induced by a real field. We must now take Ralg (w) = oz(’xﬁ (w)/w to be the response
tensor; in which case, since E(—w) = E*(w), crossing relations of the form (2.6.51)
obtain for Raﬂ (o) (but not for &, 8 (w)). This leads to the following relations between
the dispersive and absorptive parts of the antisymmetric polarizability:

2w o0 Ol;ﬂ(gg)

aaﬁ(fw) = 7 P A mdg, (2.6.61a)
/ _ 2w? o a(;ﬂ(fé)
%y5(80) = - P /0 mds. (2.6.61b)

We also require the sum rule for the antisymmetric polarizability, analogous to
(2.6.58) for the symmetric polarizability. We see from (2.6.27b) that, for frequencies
greater than wy,,y, the dispersive part of oc(’xﬁ becomes

;. 2 o
Cp(fo) = 2= 3 Im((nlal ) lipln), (@ > Oma). (26.62)
J#n
Since pu, and g are commuting Hermitian operators, we can invoke the closure
theorem (Zj [7/){j| = 1) and write

D m({nlal /) lugpln))
Jj#n
= Im(n|pqappln) — Im((n|paln)(nlugln)) = 0, (2.6.63)

which follows from the fact that the product of any two commuting Hermitian
operators is pure Hermitian, and that the expectation values of Hermitian operators



102 Molecules in electric and magnetic fields

are real. Thus

a(/xﬂ(fw) =0, (@ > Onax). (2.6.64)

Also, we can approximate (2.6.61a) to

2 o0
a;ﬁ(fw) = _ / a:xﬂ(gé)dév (@ > Wmax), (2.6.65)
Tw Jo

and comparison with (2.6.64) gives

f al5(ge)dg = 0. (2.6.66)
0

Care is needed in the extension of these sum rules to other molecular property
tensors in the series (2.6.27) because some of the operators specified in the transition
moment products do not commute. For example, for a single electron,

ieh
,mgl = —¢ . 2.6.67
[Moz B ] m afy My ( )

2.6.5 The dynamic molecular property tensors in a static approximation

Direct evaluation of the sum over all excited states in the dynamic molecular prop-
erty tensors (2.6.27) is often difficult. It can be avoided by invoking a static ap-
proximation that is useful in some situations. The tensors o, G:y,s and A, g, , for
example, are written

Cop = 22 Re((nl1al /)(j11g1n)). (2.6.684)
Jj#n Win
, 2w 1 o
Gop = =7 D mnlual )} jlmg m)), (2.6.68D)
Jaén n
Aapy = 22 —Re((nlialj)(j1Opy ), (2.6.680)
Hén n

where W, = W; — W,. This is a reasonable approximation for light scattering
at transparent frequencies with the exciting frequency w much smaller than the
molecular absorption frequencies .

Consider first the real polarizability tensor aqg. Following Amos (1982), the
wavefunction in the presence of a “fake” static electric field is written

Vn(Ep) = ¥\ + EgyrV(Ep) + - -- (2.6.69)
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where, from the perturbation theory result (2.6.14),

WEn =3 o

j#n in

(Jlmpln)l ). (2.6.70)

The approximate polarizability (2.6.68a) can then be written

op = 2\ | 1a | VS (Ep)). (2.6.71)

The final computational version is obtained by expressing the wavefunctions in
terms of molecular orbitals ¢, similarly perturbed by the static electric field:

dop =4 Y (00 1aldy (Ep)) (2.6.72)
k,occ.
where the summation is over all occupied molecular orbitals. The real electric
dipole—electric quadrupole optical activity tensor A, g, is treated in the same way,
giving
Aupy =4 (61”168 18" (Ed)). (2.6.73)

k,occ.

The imaginary electric dipole—magnetic dipole optical activity tensor G/, s needs to
be treated with more circumspection because it vanishes as @ — 0 and so does not
have a static limit (G, s 18 purely dynamic, whereas aqp and A, g, have both static
and dynamic counterparts). However, as pointed out by Amos (1982), (1 /a))wa
does have a static limit, which can be written in the form

(éG;ﬂ) = =21 Im((¢"(Eo) | ¥{"(Bp))). (2.6.74)
w=0

where z//,sl)(Bﬂ) is the corresponding wavefunction perturbed by a static magnetic
field. In terms of perturbed molecular orbitals,

1
(5 ;ﬂ) = —41 Y " Im((p(Ea) | 61 (Bp))). (2.6.75)
w= k,occ.

These results enable the polarizability and optical activity tensors to be obtained
from calculations of the molecular orbitals perturbed by a static electric field and a
static magnetic field. As mentioned in later chapters, they are especially useful for
ab initio calculations of optical rotation and Raman optical activity.

2.7 A molecule in a radiation field in the presence of other perturbations

To discuss field-induced optical activity phenomena such as the Faraday effect,
and also the generation of optical activity within molecules through intramolecular
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interactions between inactive groups, we need to formulate the effects of other
perturbations on the dynamic molecular property tensors. Although we exemplify
the perturbed tensors for the case of an external perturbation such as a static electric
or magnetic field, similar expressions are obtained for internal perturbations such
as spin—orbit coupling or vibronic coupling.

The dynamic molecular property tensors are first written as power series in
the perturbation; for example, in a static electric field the dynamic polarizability
becomes

Gop(E) = Aup + a4y By + 20040 E Es + - (2.7.1)
Quantum-mechanical expressions for the perturbed dynamic polarizability are
found using perturbed wavefunctions and energies in (2.6.27a) and (2.6.27b). The
eigenfunction 1//} and energy eigenvalue ij perturbed to first order in the electro-
static interaction —pu, E,, are

: E ! .

i=v— 5 )kl ), (27.2)
Kz Pk

Wi=W;—{jluy|))Ey. (2.7.3)

Such expressions are valid even if the unperturbed eigenfunction ¥ ; belongs to a de-
generate set, provided the degenerate eigenfunctions are chosen to be diagonal in the
perturbation, for then the eigenfunctions 1/ mixed in cannot belong to the degener-
ate set containing v ;. For example, if the degenerate set is the set of eigenfunctions
Yum of the n = 2 level of the hydrogen atom, and the perturbation is an electric field
along z, the functions (1/v/2) (Y200 + ¥210). (1/5/2) (Y200 = ¥210). Y211, Y211
are diagonal in the operator u.. In a magnetic field along z, the functions must be
diagonal in m, and are now V0, V210, Y211, ¥21—1. From (2.7.3), the frequency
separation of the perturbed levels is

: E,
w;, = 0jn — (Wj), — uny)f, (2.7.4)

where wj, = (jluy|Jj) is the electric dipole moment of the molecule in the unper-
turbed state ;. Using

(2.7.5)

1 1 20)‘” iy — Mn E
2|:1+ j (M‘]y My) yj|

WS —w h(a)in — w?)
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and (2.7.2) in (2.6.27a) and (2.6.27b), the perturbed dynamic polarizabilities
are

g/é)y = h2 Z

a) L, T w? o
[ 5 (ij, — oy Re((nltta| /) (1 12p17))
J#n

jn w)

+ )Re[<kluyIn)(<nlua|j><jluﬁ|k>

ktn @kn\@ ( — w?

+ (nlu5|1><J|Ma|k>)]

Wjn

+ - 4
k2j @kj (win - “)2)

e[{jluylk)(nlpal j) (klmpln)

+ <”|Mﬂ|j><k|ﬂa|n>)]} , (2.7.6a)

p 200 i, o
0, = hzg{ ’w) 5 (15, = ) () 1n)
jF#n

2 m I (k 1y 1) (12 1) i 12516)
ksn n\*jn

- (nluﬂlj)UIMalk))]

+

+ Z Im[(j|p, k)((n|pmelj) (klppln)
k] wxj (@ @)
- <n|u,s|j><k|ualn>)]} : (2.7.6b)

Expressions for the perturbed optical activity tensors are analogous to the above:
for example, G Ofg )y is given by (2.7.6b) with g replaced by mg; and A ﬂy s 1s given
by (2.7.6a) with ug replaced by Og,,.

The frequency dependence of these perturbed dynamic molecular property ten-
sors in the region of an isolated absorption band is easily deduced. In accordance

with the discussion in Section 2.6.3, we use the replacements

—— — f+ig, (2.7.7a)

— (2= g¢> +2ifg, (2.7.7h)
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Fig. 2.5 The lineshape functions fg and f?—g2. These are valid when the fre-
quency shifts induced by the peturbation are much smaller than the linewidth.

where f and g are given by (2.6.41) and

(a)z. — w2)2 — wzFf

2 2 jn
— g = - , (2.7.7¢)
7o [(a)in — w2)2 + a)zf‘ﬂ2
(@3, — o?)or,
fe=— i e ame——rE (2.7.7d)
[(a)jn a)) +w Fj]

These functions are sketched in Fig. 2.5. The perturbed polarizabilities (2.7.6) are
therefore replaced by

aly), — al) (f)+iels (o) (2.7.84)
aly (f) = {(f — (@, + )1y — tay IRl /) {fligIn))
- ; %Re[(kw|n><<n|ua|j><j|uﬁ|k> + (nlep) )i ttalK))]
fon

2

Re[(jlmy [k)({n|pmelj) (klnpln) + <n|Mﬂ|j><k|Ma|n))]] ,
krj @i

(2.7.8b)
al) (g) = {2fg<w,n + 0N j, — thn,) Re((nlal j)(jl1epln))

+ ; %Re[(kluyIn)(<nlua|j)<jluﬁlk> + (nlepl j) (Tl 1alk))]

3 S Rty )l ) klitpl) + (nlias ) kil |
iz ©ki
(2.7.8¢)



2.8 Molecular transition tensors 107
and

o, =l (f) + oy, (2); (2.7.8d)

: 2 .
k) (f) = {2(f — §)0w (1t j, — tay) I((nlpal /) (jlgln))

+Zf K1ty 1n) (it ) (151D — (a1l ) D)
k#n

Z —Im[ (Jlmy k)Y (nlpel j) (Kl pgln) — (nlu,sIJ')(klualn))]} ;
k#/
(2.7.8¢)

, 2 .
ah (&) =~ {4fgwwm<u,y ) T2 ) 12 51))

Yy

k;én

InY((nlial ) (T lnplh) — (gl j) (e k)]

+ Z —Im[ (Jlmy k) (nlpel j) (Kl pgln) — (nlu,slj)(klualm)]} .
k#]

(2.7.8f)

These results apply when the frequency shifts induced by the perturbation are
much smaller than the width of the absorption band; in a magnetic field, for example,
this corresponds to the Zeeman components being unresolved. When the frequency
shifts are much larger than the width of the absorption band (for example, well
resolved Zeeman components), the overall lineshape follows simply from the f
or g lineshape of each resolved component band. We shall encounter an important
example of the latter situation in the generation of characteristic rotatory dispersion
and circular dichroism lineshapes through large exciton splittings in chiral dimers
(Section 5.3.3).

2.8 Molecular transition tensors

The exposition so far has derived the multipole moments that are oscillating with
the same frequency as, and with a definite phase relation to, the inducing light wave.
Radiation from such moments is responsible for Rayleigh scattering. On the other
hand, the Raman components of the scattered light have frequencies different from,
and are usually unrelated in phase to, the incident light wave. Such inelastic light
scattering processes can be incorporated into the present semiclassical formalism
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by introducing dynamic molecular transition tensors which take account of the
different initial and final molecular states. These are developed by using, in place
of expectation values of multipole moment operators such as (2.6.23), transition
moments between initial and final molecular states v, and v, perturbed by the
light wave.

2.8.1 The Raman transition polarizability

Consistent Raman transition polarizabilities are obtained by developing the fol-
lowing real transition electric dipole moment (Placzek, 1934; Born and Huang,
1954):

(He)mn = (M| pa|n”) + (m'|paa|n)". (2.8.1)

We use perturbed wave functions of the form (2.6.20) to write the transition electric
dipole moment (2.8.1) as follows:

iwpnt

(Ma)mn = <m|ﬂa|n>
L1 Z[ m|Ma|J>(]|Mﬂ|”>E(O) —i(w—m)t

Jj#n @jn =@
4 <m|ﬂa|j><j|:uﬂ|n>E;O)*ei(w+wm,l)ti|
Wiy +w
L Z[ m|Mﬂ|]>(]|M¢x|n>E(0)* i(tm)t
o Wjm — ®
m o|n _ .
+ (mlpepl ) {ilHe] )E(O) (- ‘”V"”)’] + complex conjugate. (2.8.2)
Wjm + O
The first term,
(mlpgln) e mt 4 (m|jy|n)* e, (2.8.3)

is a transition moment that describes the generation of spontaneous radiation of
frequency w,,, when the molecule is initially in an excited state with w, > w,,.
The remaining terms fall into two types with a frequency dependence (v — ®,,,,)
or (w + wn,); these only describe the generation of scattered radiation when (v —
W) > 0or (0 + wy,,) > 0. Since wy,, = w, — w,, the condition on the first type
of term can be written 4+ w, > w,, and that on the second type can be written
w, — o < w,. Remembering that w, is the frequency of the initial molecular state,
this means that only terms of the first type describe conventional Raman scattering:
thus Stokes scattering, which is from a lower to a higher molecular energy level so
that ® — w,,, < w, obtains if w, > w,; and antiStokes scattering, which is from a
higher to a lower molecular energy level so that w — w,,,, > w, obtains if w, > w,,.
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According to Placzek (1934), terms of the second type describe an induced emission
of two quanta w + w,,, and w from an excited level of frequency w, to a lower level
of frequency w,,; these are not discussed further here.

The Stokes and antiStokes Raman part of (2.8.2) is therefore

1 (mlpalj){jlupgln)
(Ma)mn = ﬁ Z |: ’

j;ﬁn,m a)]n -
. <m|uﬂ|j><jma|n>] E D iw-onon
Wjm +
+ complex conjugate. (2.8.4)

For simplicity, we have specified j # n, m for both terms: this is a good ap-
proximation for vibrational Raman scattering since the term that is lost involves
(m|ug|m) — (n|uy|n), the difference in the permanent electric dipole moments of
the initial and final states. Using the relation

jm(Mm|pal ) (Tl1igln) + @jn(mlmwplj){(jlialn)
= 5(@jm + @) (mlpal )G l1pln) + (mligl i) l1eln))
+ 50w (1t ) l1eg1n) — (mlpg| ) (Glitaln)), (2.8.5)

we can write (2.8.4) in the form

L
(:U“a)mn = (aaﬂ)mnEﬂ(w - a)mn) + w—(aaﬂ)mnE,B(w - wmn)v (286(1)

where the Eg are functions of the frequency (@ — w,,,) of the Raman wave, and
the transition polarizabilities are

| |
(@) = 57
mn % et

X [(@jn + @jm) Re((m|palj)(jlrpln) + (mlwglj)(jlialn))
+ Qo + wpm) Re((mnal j) (Flipln) — (mlmglj){jlnaln))],

(2.8.6b)
) 1 1
(aaﬂ)mn = _ﬁ Z

G (@jn = O)@jm + @)
X [(@jn + @jm) Im((m| el j)(jlugln) + (mlwplj)(jlmnaln))
+ Qo + wpm) Im((m|pel j) (jlugln) — (mlwplj)(jlnaln))].
(2.8.60)

(wjn — o) wjm + w)

Similar expressions, but without the decomposition into real and imaginary products
of transition moments, have been derived by Placzek (1934). The real and imaginary
products are displayed explicitly here since this facilitates the application to Raman
optical activity phenomena.
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Notice that the first terms of both (eeg)m», and (o), 8 )mn are symmetric with respect
to the interchange of the tensor subscripts « and g8, and the second terms are anti-
symmetric. These should be compared with the ordinary dynamic polarizabilities
(2.6.27a) and (2.6.27b), the first of which is pure symmetric and the second pure
antisymmetric.

According to Placzek (1934), the static transition polarizability that obtains
when the frequency w of the oscillating electric vector of the incident light beam
tends to zero describes the effect of an external static electric field on the sponta-
neous transition amplitude when the molecule is initially in an excited state with
Wy > Wpy.

The transition polarizabilities (2.8.6) can be written in complex form by intro-
ducing a complex transition electric dipole moment:

(ﬁa)mn = (&aﬁ)mnEﬁ’ (28761)
(&aﬂ)mn = (aaﬁ)mn - i(a;ﬂ)mn- (2.8.7h)

Similar expressions are obtained for the transition optical activity tensors
(Gaﬂ)mn and (Aa, gy)mn> With g replaced by mg and Og,,, respectively, but now
there is no meaningful separation into symmetric and antisymmetric parts when
n=m.

To facilitate the discussion in subsequent chapters of polarization effects in
Rayleigh and Raman scattering, we introduce superscripts ‘s’ and ‘a’ to denote
symmetric and antisymmetric parts of a transition polarizability:

a .

mn’

(2.8.8a)

(&aﬁ)mn = (&aﬁ)im + (0701,3)2" = (O[aﬂ)sn + (aaﬂ)in - i(a(;ﬁ)im _i(a;ﬂ)

m.

1 (Wjin +©jm)
(aaﬂ),sznn — % Z jn jm

i (@jn = O) @) + @)
x Re({m|pa ) (jlpln) + (mlwgl j){jlialn)), (2.8.8D)

1 Z Cw + wum)
2% g (@jn — o) Wjm + )

x Re((m el j)(jlupln) — (mlwglj)(jlmaln)), (2.8.8¢)
/s 1 (Wjn +®jm)
(aaﬂ)mn = _E Z ! !

i (@jn = O)@jm + @)

x Im((m || ) (jlrepln) + (miwgl j) (jlinaln)), (2.8.8d)

(aaﬂ )21,1 =

a __1 Z Qw + wpm)

(O[;z )mn - T A
b 2h PG (Wjn — o) Wjm + )

x Im((m el ) (jlrpln) — (mlwglj)(jlitaln). (2.8.8¢)
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The case n = m in these transition polarizabilities corresponds to Rayleigh scat-
tering, and (2.8.6b) and (2.8.6¢) reduce to (2.6.27a) and (2.6.27b) as required, with
the real part pure symmetric and the imaginary part pure antisymmetric. The case
n # m usually corresponds to Raman scattering, and both real and imaginary parts
of the complex transition polarizability can contain symmetric and antisymmet-
ric parts. However, n £ m can also describe Rayleigh scattering between different
component states of a degenerate level; interesting possibilities for antisymmetric
Rayleigh scattering then arise, as discussed in later chapters.

We can now appreciate that antisymmetric Rayleigh scattering is only possible
from systems in degenerate states. As discussed later in Chapter 4, time reversal has
the effect of replacing the time-independent part of a wavefunction by its complex
conjugate. Since atoms and molecules in the absence of external magnetic fields
are invariant under time reversal, ¢ and i * describe states of the same energy, so if
the level is not degenerate, ¥ = 1™ and is pure real. The polarizability (2.6.27b),
which is the usual source of antisymmetric Rayleigh scattering, therefore vanishes
because it is pure imaginary. We also lose the possibility of antisymmetric Rayleigh
scattering from the real transition polarizability (2.8.8¢) because n and m must be
the same. However, there appears to be no fundamental reason why degeneracy is
required for antisymmetric Raman scattering.

It is convenient for some applications to introduce the following complex version
of the transition electric dipole moment (2.8.4):

(Bredmn = (@ep)n g 77 (2.8.9a)
where
1 mlpgl j){J n m N g |0
G = = 3 [( tali)(ilipln) | (mlpl i) (1ol >] (2.8.95)
j#En,m Wjn — W Wjm +

is a complex transition polarizability. This can be generated as the matrix element
of the following complex scattering operator (Berestetskii, Lifshitz and Pitaevskii,
1982):

- 1
Caﬂ = g(bﬂ,ufa - Mabﬂ)7 (2810)
where b,, is a polar vector operator satisfying
i +w)b (2.8.11)
I—+ow|by =gy 8.
dr a

Taking matrix elements of (2.8.10) and invoking the velocity—dipole transformation
(2.6.31b), we find

(klpalj) = (@ — wrj){klbalj). (2.8.12)
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So by writing

(Jlba|n) = (jlpaln) /(@ = wjn),
(mlbo|j) = (mlpalj) /(@ + @jm),

the complex transition polarizability (2.8.9) is generated as follows:

. 1
(m|Copln) = ﬁ<m|bﬂﬂa — Mabgln)
1
=z Z((mlb,sljﬂjlualn) — (m|pqelj)(Jjlbgln))
J
= (@ap)mn- (2.8.13)

The scattering operator (2.8.10) is exact; but we shall find more useful instead an
approximate operator which breaks down into parts with better defined Hermiticity

and time reversal characteristics. Following Child and Longuet—Higgins (1961) we
introduce the effective polarizability operator

Qup = Qo + Qg (2.8.14a)
Gop = 3(Ha O g + 11 O° o), (2.8.14b)
84y = —3(1ta O g — 1p0° 1a), (2.8.14¢)
where

0° = : + ! (2.8.14d)

T \H-W+hew H-W—-ho)’ e
o* : : (2.8.14¢)
= 3 - = . .8.14¢

H-—W+4+ho H-W —-ho

W is the average of the energies W, and W, of the initial and final states. By
summing over a complete set of states |j)(j| inserted after O and using the ap-
proximation w;, ~ wjn, it is easily verified that (m|&qpg|n) generates the complex
transition polarizability (2.8.9). The real transition polarizabilities (2.8.8) are now
given by

({mlass|n) + (mlagy|n)),
A A *
(Im]azs|n) + (mlags|n)").

m|&gs|n) — {mlazs|n)’).

(ap)n =
() =
(a(/xﬂ))snn = %1
(@ = 5i((m@Gs|n) — m]agy|n)").

Itis shown later (Section 4.3.3) that &, ; is a Hermitian time-even operator, whereas
@ 1s antiHermitian and time odd.

(2.8.15)
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Notice that O? in (2.8.14¢) vanishes when w = 0, which explains immediately
why there is no static antisymmetric polarizability.
We also introduce the effective optical activity operators

Gop =Gy + Gl (2.8.14f)

Gop = 3(1aO°mp + mp0°pq), (2.8.14g)
Gip = =3 (e O*mp —mgO* 1y); (2.8.14h)
Aa,ﬂy = Afx,ﬁy + AZ,M» (2.8.14i)

A gy = 31 0°Opy + O, 0°1a), (2.8.14))
A py = —3(1a 0O, — O, 0" ). (2.8.14k)

The superscripts ‘s’ and ‘a’ are retained to conform with the corresponding parts
of the effective polarizability operator even though there is no longer well defined
permutation symmetry. It is shown later that (A;Zﬂ is Hermitian and time odd, Ggﬂ
i1s antiHermitian and time even; A; By is Hermitian and time even, and Ag’ By 18
antiHermitian and time odd.

Itis worth recording that the effective polarizability and optical activity operators
can be derived from linear response theory. For example, (2.8.144) follows from
a consideration of temporal correlations between the electric and magnetic dipole
moment operators in the absence of the light beam (Harris, 1966).

In order to accommodate resonance phenomena, the transition frequencies w;,
and w j,,, in the energy denominators of the complex transition polarizability (2.8.95)
may be replaced by complex transition frequencies of the form (2.6.39) to allow for
the finite energy width of the excited states. According to Buckingham and Fischer
(2000), both the complex transition frequency and its complex conjugate should
appear in the following manner:

— o
Jj#n.m Wjn — @ Wiy + @

G =+ 7 {<m|ua|j><j|uﬁ|n> N <m|uﬁ|j><j|ua|n>] 25160

This leads to opposite signs for the damping factors in the two terms,

(&aﬂ)mn:_ 1. 1.
h wjp — o — 5il'; Wjm — o+ 5il;

L5 [<m|ua|j><jmﬂ|n> +<m|uﬁ|j><j|ua|n>} 2.8.16)

j#En,m

and yields results consistent with those used widely in nonlinear optics (Bloem-
bergen, 1996). That this choice of signs for the damping factors is correct may be
confirmed analytically using the causality principle (Hassing and N¢rby Svendsen,
2004).
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The effective polarizability and optical activity operators (2.8.14) exhibit singu-
larities at resonance frequencies. However, nonsingular versions of these operators
may be defined which in addition do not rely on the average energy approximation
and are therefore valid for all Raman processes, transparent and resonant. We refer
to Hecht and Barron (1993b,c) for further details.

2.8.2 The adiabatic approximation

Most studies of molecular quantum states start by invoking the adiabatic approxi-
mation (Born and Oppenheimer, 1927) which leads to a separation of the electronic
and nuclear motions. We first write the complete molecular Hamiltonian as

H=T@#)+TR)+V(E, R)+V(R), (2.8.17)

where r and R denote the sets of electronic and nuclear coordinates, 7' (r) and T (R)
are the electronic and nuclear kinetic energy operators, V (r, R) is the mutual poten-
tial energy of the electrons together with the potential energy of the electrons with
respect to the nuclei, and V (R) is the potential energy of the nuclei. An approximate
solution of the Schrodinger equation for the complete molecule, namely

HWY,,(r, R) = Wenlljen(r, R), (2818)

is sought by writing the true molecular wavefunction W, (r, R) in the approximate
form

\pen(n R) = l/fe(r, R)Wen(R)a (2819)

where e and n specify the electronic and nuclear quantum states.
The electronic eigenfunction ¥.(r, R) is a solution of the Schrédinger equation

[T(r) + VI, RIYe(r, R) = w.(R)Y.(r, R) (2.8.20)

which describes the motion of the electrons constrained by a potential energy
V (r, R) in which the electron—nuclear part arises from nuclei fixed in a particular
configuration R. The electronic energy eigenvalue w,(R) therefore depends on the
nuclear coordinates as parameters. Consequently ¥, (r, R) characterizes a particular
electronic quantum state for infinitely slow changes in the internuclear separations.
The electrons are said to follow the nuclear motions adiabatically. In an adiabatic
motion, an electron does not make transitions from one state to others; instead,
an electronic state itself is deformed progressively by the nuclear displacements.
Thus the molecule remains in the same electronic quantum state with energy w,(R)
during the course of a molecular vibration or rotation.
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The nuclear eigenfunction v, (R) is a solution of the Schrédinger equation
[T(R) + w.(R) — we(Ro) + V(R)Yen(R) = wenVen(R),  (2.8.21)

which describes the motion of the nuclei constrained by an effective potential energy
arising from the nuclear—nuclear interactions V (R) together with the difference
between the electronic energy w,(R) at some general nuclear configuration and the
electronic energy w,.(Ry) at the equilibrium nuclear configuration, the molecule
being in some adiabatic electronic eigenstate ¥, (r, R).

If the variation of ¥.(r, R) with R is sufficiently small that T (R)¥.(r, R) can
be neglected, we can use (2.8.20) and (2.8.21) to write the complete Schrodinger
equation (2.8.18) as

[T(r) + T(R)+V(, R) + V(R (r, R)Yen(R)
=[T(R) + we(R) + V(R)]Ye(r, R)Yen(R)
= [We(Ro) + Wen]e(r, R)Yen(R). (2.8.22)

Thus the energy eigenvalue for the state represented by the adiabatic eigenfunction
(2.8.19) is

Wen = wF(RO) + wgn, (2823)

which is the electronic energy at the equilibrium nuclear configuration plus the
energy due to the nuclear motion. The justification for the adiabatic approximation
lies in the slow nuclear motion compared with the electronic motion resulting from
the large disparity between the nuclear and the electronic masses, so that the nuclear
motion constitutes an adiabatic perturbation of the electronic quantum state.

In general, the nuclear motion has vibrational, rotational and translational con-
tributions which can be separated to a good approximation. Translational motion is
eliminated by working in a molecule-fixed set of axes. The adiabatic eigenfunction
and energy eigenvalue now become

Wepr = Ye(r, Q) Wer(Q)Yerr (0, @, X), (2.8.24a)
Wevr = we(QO) + Wey + Wepr, (2825b)

where subscripts v and r denote vibrational and rotational quantum states, Q de-
notes the particular set of internal nuclear coordinates known as normal vibrational
coordinates, and 6, ¢, x are the Euler angles that specify the orientation of the
molecule-fixed axes relative to space-fixed axes.

In ket notation, the jth electronic—nuclear state, prior to invoking the Born—
Oppenheimer approximation, we write as |j) = |e;v;r;); after invoking the ap-
proximation this can be written as |e;)|v;)|r;), provided that the electronic part is
not orbitally degenerate. The complete specification of the vibrational part is rather



116 Molecules in electric and magnetic fields

messy because it is necessary to specify the number of vibrational quanta in each
normal mode. Thus the vibrational part of the jth state is written

lvj) = |ny,na;, Ny REN-6),)s

where n), is the number of vibrational quanta in the normal mode associated with
the normal coordinate Q P there being 3N—6 normal modes in all in a nonlinear
molecule. We shall often use simplified notations that are clear from the particular
context. For example, |1) is used to denote a vibrational state associated with an
electronic state |e;) in which one of the normal modes contains one quantum and
all the others no quanta. We do not bother to specify which normal mode is excited
because this is usually clear, as in the vibrational transition moment (1;|Q ,|0) for
example. Elsewhere, |1,) is used to denote a singly-excited vibrational state cor-
responding to the normal coordinate Q , and associated with the ground electronic
state.

The fundamental approximation (2.8.19) is only valid when the electronic func-
tion ¥, (r, R) is orbitally nondegenerate at all points in the relevant R space. The
extension to orbitally-degenerate states is outlined in Section 2.8.4 in the simplified
context of the ‘crude’ adiabatic approximation.

2.8.3 The vibrational Raman transition tensors in Placzek’s approximation

The adiabatic approximation can be used to simplify the Raman transition tensors
derived in Section 2.8.1. Since we are concerned only with vibrational Raman scat-
tering, the adiabatic wavefunction and energy (2.8.24) are employed first to isolate
the vibrational parts of the general Raman transition polarizabilities in (2.8.6). Up
until now we have used », j and m to denote initial, intermediate and final quantum
states: we now append these as subscripts to e, v and r to specify the corresponding
electronic, vibrational and rotational parts. Thus in the adiabatic approximation,
the general molecular eigenstate is written as a product of separate electronic,
vibrational and rotational parts:

17) = lejvjrj) = lej)v;)lr), (2.8.25a)
the second equality holding only if |e;) is not orbitally degenerate, with energy
Wevir; = We; + Wy, + wy,. (2.8.25b)

This means that the frequency separation of two general molecular eigenstates ¥
and ¥, can be written as the sum of the frequency separations of the electronic,
vibrational and rotational parts:

We w7 jeqvary = Peje, T Dvjv, + Orjr, - (2.8.26)
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The real transition polarizability (2.8.6b), for example, now becomes

(Cas) 1 1
QoB)emvmrmenvara = Az E
2 ejv;r;# (we_/v_/rje,,vnz‘" - w)(a)e/'v/'"./“’mvmrm + Cl))
€pUnlp,
CmUmlm

X [(@e;v;rie0v,ry T @ejvjrjenvrn RE ((€mVnTm|Ualejvjrj){evir|nplenvarn)
+ (emvmrm|ppglejvirj)e;v;r;lialenvarn))
+ Qo + @e, v, ep v, RE (mUnlm| o lejv ri)(e;jvirlingle,vary)
— {emvmrm|inplejv;ri)(e;v;r;|ptalenvarn))].
(2.8.27)

For incident radiation at transparent frequencies, it is a good approximation to
neglect the rotational contributions to the transition frequencies except for the terms
with e;jv; = e,v, = 00. These terms, which involve pure rotational virtual excited
states, will only be significant for incident radiation at microwave frequencies. In
the remaining terms, we can therefore invoke the closure theorem with respect to
the complete set of rotational states associated with every electronic—vibrational
level:

Zlejvjrj)(ejvjrjl = |€jUj>(€jUj|- (2828)

Ty

Neglecting the microwave term, the transition polarizability (2.8.27) can now be
written

(aotﬂ )em UnFm€nUnln — (rm |(O[a/3 )em Um€n Uy Irn ) s (2829)

where (0tgg)e,,vpe,v, 18 simply (2.8.27) with all rotational states and energies
removed. The same approximation should also be good at absorbing frequencies
if the lifetimes of the excited states are taken into account. If we were interested
in rotational Raman scattering, we would relate the space-fixed axes «, B8, - - - to
molecule-fixed axes «’, B/, - - - using direction cosines such as /,, between the «
and the o’ axis and write

(azxﬁ)em VU lmCnUnln — (aa’ﬁ’)e,,,vme,,v” (rm |laa’lﬁﬁ’ |rn> (2830)

since only direction cosine operators can effect pure rotational transitions. However,
since we are concerned only with vibrational Raman scattering from fluids and
solids, the rotational states are dropped henceforth. In the case of fluids, isotropic
averages of intensity expressions are ultimately taken: this gives results identical
with those that would be obtained by retaining the complete transition polarizability
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(2.8.30) and ultimately summing the intensity expressions over the complete set of
initial and final rotational states (Van Vleck, 1932; Bridge and Buckingham, 1966).

At ordinary temperatures a molecule is usually in a quantum state belonging to
the lowest electronic level, taken here to be e,, so for vibrational Raman scattering
we need only consider the vibrational transition polarizability (@eg)e,v,e,v, given

by

(Cas) 1 1
Uapleyvmenvs = 5z §
Qh ejvﬂé (a)e‘,-vjenvn - w)(wejvjenvm + 0))
envns
envm

X [(@e,vje,0, + Dejvje,v, ) RE(€nUm|1hale;v;){e;v;liplenvn)
+(envmlupglejv)e;vi|gle,va))

+ Cw + we,v,e,v, RE(€n V| halejv))(e;v;|nple,v,)

— (enumluplejvi){e;jviluale,va))l. (2.8.31)

We now split the summation over ¢ into two parts corresponding to the two cases
ej = e, and e; # e,. For the latter part at transparent frequencies it is a good
approximation to neglect vibrational contributions w,,, and w,,,, to the virtual
transition frequencies we,y;¢,v, ad We;y¢,v,,» I Which case (2.8.31) becomes

1 1
(@ape,vpens = 57
aplenvmenv 2 Z (@0, = @)@y, + @)

X [(@y;v, + @u;v, )RE(€1Vm|1alenv;){€av)|iplenvn)
+ (envmlpplenvy){envjlinalenvn))

+ Q2w + wy, v, )Re((en vl Lalenv) (env)linple,vn)
—(envmlupglenvj)envi|glenvn))]

1 1
+ J— —
% 2 @

x [2%,6” > " Re((envmlialev;)ev;l plenva)
vj

+<envm|:u,3|ejvj>(ejvj|l"va|envn>)

+20 ) Re((exvnlttalejv;) (e vl nplenva)

vj

_<envm|,uﬁ|ejvj>(ejvj|ﬂa|envn>):|a (2.8.32)

where @y, , Wy 4, and @y,,,, in the first part denote transition frequencies between
vibrational states belonging to the lowest electronic level. In the antisymmetric term
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of the second part, we have neglected the vibrational Raman transition frequency
wy, v, relative to w.

In these expressions, the electric dipole moment operator w, is a function of
both electronic and nuclear coordinates; and the matrix elements are to be formed
with complete adiabatic wavefunctions of the form (2.8.25a). To simplify these
expressions, we now introduce the adiabatic permanent electric dipole moment and
adiabatic dynamic polarizability of the molecule in the lowest electronic level, the
nuclei being held fixed in a configuration Q so that only the electrons are free to
move. Both quantities are evidently functions of Q and will be denoted by 1, (Q)
and o,(Q) respectively. Thus

me(Q) = (Yo(r, Q)| pal¥o(r, Q)), (2.8.33)
and from (2.6.27a)

2 eie,
clp(Q) = = ; S Re((olr. Q)i Ve, Q)

X (e, (r, Dliglvo(r, Q))), (2.8.34)

which is only valid at transparent frequencies.
Using (2.8.33), the first part of the vibrational transition polarizability (2.8.32)
becomes

- 1 1
(ionic) _
(Olotﬂ)v,,,v" ) v;n (@y0, — O) Wy, + ©)
X [(a)vjv,, + a)vjvm)Re“Uml/La(Q)lvj)<Uj|/~/“ﬂ(Q)|vn>
+ (Ul g (@) (vl na(Q)lvn))
+ (20) + wvnvn,)Re(<vm |Ma(Q)|vj><vj|/‘Lﬂ(Q)|vn>
— (Ul (D) (v 1a(Q)Va))]. (2.8.35)

This is usually known as the ionic part of the vibrational transition polarizability
and describes Raman scattering through virtual excited vibrational states alone, the
molecule remaining in the ground electronic state. Except when the frequency of
the exciting light is in the infrared region or below, this term can be ignored.

In the second part of the vibrational transition polarizability (2.8.32) the closure
theorem with respect to the complete set of vibrational states can be invoked, leaving

~ 2 We e,
@)l ™ = = 3 | ——"— (vmIRe({enlialej el ieplen))vn)

6/'75911 €jén

= (vm|aaﬂ(Q)|vn>a (2.8.36)
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where we have assumed that v, and v, are real and have introduced the adiabatic
dynamic polarizability (2.8.34). Notice that in this approximation the antisymmetric
part vanishes (because the real part of a quantity minus its complex conjugate, which
is pure imaginary, is specified). The vibrational part (o, ﬂ)vm v, Of the imaginary
transition polarizability may be developed in a similar fashion except that, since o, s
is time odd, it is necessary to consider its dependence on the conjugate momentum
O of the normal coordinate rather than on Q itself (see Section 8.2). Now the
symmetric part vanishes (because the imaginary part of a quantity plus its complex
conjugate, which is pure real, is specified).

The discussion in this section has followed that given by Born and Huang (1954)
and Placzek (1934), and is usually known as Placzek’s approximation. Thus within
this approximation, when visible or ultraviolet exciting light far from any electronic
absorption frequency of the molecule is used, the real and imaginary vibrational
parts of the complex transition polarizability (2.8.7b) are written

(O[otﬂ)vmu,1 = <vm|aaﬂ(Q)|vn> = (aﬁa)vmvnv (2837a)
(a&ﬁ)vmvn = (Umla(;f}(Q)lUn) = _(a;sa)v,,,vn, (2837b)

and are pure symmetric and pure antisymmetric, respectively.
Similar developments are possible for the vibrational transition optical activity
tensors leading to, for example,

(Gopluu, = (UnlGlg(O)|vn), (2.8.38a)
(Aw.y)vv, = (UmlAa,py (D)) = (Aa.yp)u,v,- (2.8.38b)

As in the case of Rayleigh scattering, there is no meaningful separation of the
vibrational transition optical activity tensors into symmetric and antisymmetric
parts at transparent frequencies in Placzek’s approximation.

2.8.4 Vibronic interactions: the Herzberg—Teller approximation

The adiabatic wavefunction and energy (2.8.24) were arrived at through the ne-
glect of coupling between electronic and nuclear motions. This coupling can have
important consequences: of relevance here is vibrational—electronic (‘vibronic’)
coupling, which is responsible for certain vibrational Raman transitions, and also
gives rise to some of the vibrational structure of electronic absorption and circular
dichroism bands. Vibronic coupling can be taken into account at various levels of
sophistication, as discussed in reviews such as Longuet—Higgins (1961), Englman
(1972), Ozkan and Goodman (1979) and Ballhausen (1979).

Here we shall be content with the grossest approximation, due to Herzberg and
Teller (1933), which starts by invoking the crude adiabatic approximation in which
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the complete molecular wavefunction is written

W, (r, Q) = Y (r, Qo)¥SM(Q). (2.8.39)

Apart from our neglect of the rotational part and the particularization to nor-
mal vibrational coordinates, this differs from (2.8.19) in that the electronic fac-
tors V.(r, Qo) now apply to the equilibrium nuclear configuration Q¢. The Q-
dependence is now contained solely in the vibrational functions ¥ S*(Q), which
are not quite the same as the v,,(Q), being obtained as solutions of

[T(Q)+ (e, Qo) He(r, D)W, Q0)) — we(Q0) + V(WS (Q)
wCh Y CA(), (2.8.40a)
rather than (2.8.21), where
H(r,Q)=T@) +V(, Q) (2.8.41)

is the electronic Hamiltonian whose functional dependence on Q may be repre-
sented by an expansion in the nuclear displacements around Q:

H(Q>—<H>O+Z<8Qp) 2Z<8Qp8Qq> 0,0, +
(2.8.42)

Notice that, since the total vibronic energy is W,, = w.(Qp) + w,.,, We can write
(2.8.40a) more simply as

[T(Q) + (Yelr, Q) Ho(r, Q) We(r, Qo)) + V(QIYSM(0)
= Wy Ch ). (2.8.40b)

Although the numerical aspects of the crude adiabatic approximation are not
even qualitatively correct (Ozkan and Goodman, 1979), we shall persist with the
Herzberg—Teller method because it provides a simple framework on which to hang
symmetry arguments, which is our main concern.

The perturbation that mixes the electronic states is taken to be the second and
higher terms in the expansion (2.8.42) of the electronic Hamiltonian in the normal
coordinates. Taking as our electronic basis the set of electronic functions . (r, Qo)
at the equilibrium nuclear configuration, the Q-dependence of the electronic func-
tions is considered to arise from the vibrational perturbation mixing the . (r, Q¢);
that is

wej(Q)—‘/‘/ (QO)
lﬂq E oH,/d W,
( 0) Z (Q0)| ( / Qp)OQp| /(QO»

exFe; We; — Wey

=V Ve (Qo)+ -

(2.8.43)



122 Molecules in electric and magnetic fields

In the case that the nuclear motion mixes orbitally-degenerate electronic states
(Jahn—Teller effect) or near-degenerate states (pseudo Jahn—Teller effect) the elec-
tronic and nuclear motions are closely intertwined and the Herzberg—Teller ap-
proach must be reformulated. A general vibronic wavefunction for a doubly-
degenerate electronic state, for example, is written

U(r, Q) = Ve, (r, Q)Y V(D) + Ve, (r, Q)Y SV(Q), (2.8.44)

where V,, (r, Qo) and ¥,,(r, Qo) are the two electronic wavefunctions which are
degenerate at some preselected symmetrical configuration Qo, and ¥{SV(Q) and
¥ {SM(Q) are vibrational wavefunctions, or component vibrational amplitudes, as-
sociated with the two electronic states. In fact, Q is not necessarily an equilibrium
configuration, but must have sufficient symmetry for the degeneracy to be non-
accidental. Thus (2.8.44) allows heavy mixing of v, (r, Qo) and v, (r, Qp), but
ignores mixing with all other electronic states.

The pair of degenerate electronic wavefunctions are solutions of the

Schroodinger equation

H(r, Qo)Ye(r, Qo) = we(Qo)¥e(r, Qo), (2.8.45)

where H,(r, Qo) is the electronic Hamiltonian at the symmetric configuration Qg,
being the first term in the expansion (2.8.42). Taking the second and higher terms in
(2.8.42) to be the perturbation that mixes the degenerate wavefunctions, degenerate
perturbation theory yields the following secular determinant:

Hy —w.(Q) Hy, _
Hy; Hy — w.(0)

where H;; = (Y, (r, Qo)|H.(r, Q)|¥.,;(r, Q)). If there are nonzero off-diagonal ma-
trix elements linear in Q ,, that is arising from the operator X ,(0H,/00 ,)0Q, in
the expansion of H,(r, Q), the electronic degeneracy will be lifted so that Qy is not
an equilibrium configuration. The solution of (2.8.46) to determine the electronic
potential energy surfaces constitutes the static aspect of the Jahn—Teller effect. In
the dynamic aspect the vibrational wavefunctions, here regarded as amplitudes of
the degenerate electronic wavefunctions in (2.8.44), are determined by the coupled
equations

(T(Q)+H11—W§§A>+V(Q) Hyp > YiEN0)
Hy T(Q)+Hn-WSN+V(0)) \yCh0)

0, (2.8.46)

k]

(2.8.47)

which can be viewed as a generalization of (2.8.40b).
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Molecular scattering of polarized light

Edward VII to Lord Rayleigh and Augustine Birrell at a palace party:
‘Well, Lord Rayleigh, discovering something I suppose? You know, he’s
always at it.’

(Diana Cooper in her autobiography, reporting conversations with Augustine
Birrell)

3.1 Introduction

This chapter constitutes the heart of the book. In it, the theoretical material devel-
oped in Chapter 2 is used to calculate explicit expressions, in terms of molecular
property tensors, for the polarization and intensity of light scattered into any direc-
tion from a collection of molecules. These expressions, which are applied in detail
in subsequent chapters, therefore contain the basic equations for all of the optical
activity phenomena under discussion.

Polarization phenomena have always been an important part of light scattering
studies. For example, Tyndall’s early investigations with aerosols (1869) showed
that linear polarization was an important feature of light scattered at right angles,
and he pointed out that (quoted by Kerker, 1969) ‘The blue colour of the sky, and the
polarization of skylight . . . constitute, in the opinion of our most eminent authorities,
the two great standing enigmas of meteorology.” This enigma was resolved by Lord
Rayleigh (1871) who showed that the intensity of light scattered by a uniform
sphere much smaller than the wavelength is proportional to 1/4*, the component
scattered at right angles being completely linearly polarized perpendicular to the
scattering plane, indicating that the colour and polarization of skylight originates
in the scattering of sunlight by air molecules. In fact imperfections are observed
in the polarization of skylight scattered at right angles, and these were ascribed at
first to factors such as dust and multiple scattering, but since imperfections are also
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observed in dust-free molecular gases, it was realized that departure from spherical
symmetry in the optical properties of the molecules is also an important factor.

3.2 Molecular scattering of light

When an electromagnetic wave encounters an obstacle, bound charges are set into
oscillation and secondary waves are scattered in all directions. Within a medium,
the ‘obstacles’ responsible for light scattering can be gross inclusions of foreign
matter such as impurities in crystals, droplets of water or dust particles in the
atmosphere, and colloidal matter suspended in liquids. But light scattering also
occurs in transparent materials completely free of contaminants on account of in-
homogeneities at the molecular level. As indicated previously, molecular scattering
in which the frequency is essentially unchanged is known as Rayleigh scattering,
whereas molecular scattering with well defined frequency shifts is known as Raman
scattering. These frequency shifts in scattered light were first observed by Raman
and Krishnan in 1928, and shortly afterwards, quite independently, by Landsberg
and Mandelstam (1928). In the Russian literature, Raman scattering is often referred
to as combination scattering.

It should be realized that a perfectly transparent and homogeneous medium
does not scatter light. Consider a plane wave propagating in a medium in which
identical numbers of molecules of one type are found in equivalent volume elements
at any instant. If the dimension of each volume element is small compared with
the wavelength of the incident light, the waves scattered by different parts of any
one volume element have the same phase. The part of the wave scattered from a
particular volume element V at an angle & to the direction of propagation of the
incident beam can be assigned a particular amplitude and phase. Since the medium
is completely uniform, a second volume V' at a distance / from V along the incident
plane wavefront can always be found which radiates a wave in the same direction,
with the same amplitude, but with opposite phase, as illustrated in Fig. 3.1. The
condition for phase opposition is that the two scattered waves have a path length
difference of 1/2, so that

P
"~ 2siné’

(3.2.1)

Consequently, for any & except £ = 0, one can find within the plane wavefront
two volumes radiating waves which destructively interfere, so there is no light
scattered away from the forward direction in a perfectly homogeneous medium.
Only forward scattering survives, and gives rise to refraction through interference
with the unscattered component of the incident wave.
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Fig. 3.1 Destructive interference of waves scattered from volume elements V
and V.

Rayleigh scattering in pure transparent samples arises because no medium can
be perfectly homogeneous. For example, in the limiting case of a rarified gas, the
molecules execute disordered thermal motions with a mean free path length much
greater than the wavelength of the light. The phase difference between the waves
scattered by any one pair of molecules is as often positive as negative, so on the
average destructive interference occurs half the time and constructive interference
the rest of the time, and the total scattered intensity is the sum of the individual
scattered intensities. This conclusion is due to Lord Rayleigh. A more general
theory, applicable to dense media, was developed by Smoluchowski and Einstein,
and explains the origin of light scattering in terms of optical inhomogeneities arising
from local density fluctuations: the number of scatterers in the volume element V
is constant only on the average, so the destructive interference with waves in phase
opposition from a second volume V' is not complete at any instant. Einstein’s
equation for the scattered intensity reduces to that of Rayleigh for an ideal gas.
The total scattering power per molecule decreases with increasing density, and in a
liquid it can be an order of magnitude smaller than in a gas. The fluctuation theory
was extended by Cabannes to include light scattering by anisotropy fluctuations
produced by irregularities in the orientations of the molecules. For theories of light
scattering in dense media, we refer to works such as Bhagavantam (1942), Landau
and Lifshitz (1960) and Fabelinskii (1968).

On the other hand, vibrational Raman scattering is completely incoherent (except
in the case of stimulated Raman scattering in intense laser beams), and the total
vibrational Raman scattered intensity from N molecules is simply N times that
from a single molecule at all sample densities. This is because the phase of a Raman
scattered wave depends on the phase of the molecular vibration, which, to a good
approximation, varies arbitrarily from molecule to molecule, so the molecules act as
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independent sources of radiation irrespective of the degree of correlation between
their positions.

We shall not incorporate the general fluctuation theory of light scattering into
our treatment, but will assume that the total scattered intensity is the sum of the
scattered intensities from each molecule. This simplified model actually provides
valid results for most of the optical activity phenomena discussed in this book.
Expressions for the polarization properties of Rayleigh and Raman scattered light
involve quotients of sums of isotropic and anisotropic scattering contributions. The
isotropic and anisotropic contributions to Rayleigh scattering depend differently
on sample density (the isotropic part is usually much more dependent than the
anisotropic part), so the polarization results for Rayleigh scattering apply only to
ideal gases. But the results for vibrational Raman scattering are true for all sam-
ples since both isotropic and anisotropic vibrational Raman scattering are always
incoherent.

That part of the scattered light in the forward direction is fully coherent at all
sample densities, and there is complete constructive interference from all of the
scatterers. Consequently, the polarization results for birefringence effects such as
optical rotation, derived from a model involving interference between the forward-
scattered and unscattered components of the incident light wave, are basically
correct at all sample densities. We need only correct for the modification of the
optical fields by the internal fields of the sample using a relation such as

E =1’ +2)E, (3.2.2)

where %(nz + 2) is the Lorentz factor.

3.3 Radiation by induced oscillating molecular multipole moments

We consider the origin of scattered light to be the characteristic radiation fields
generated by the oscillating electric and magnetic multipole moments induced
in a molecule by the electromagnetic fields of the incident light wave. Equation
(2.4.43a) gives the electric field radiated by time-dependent multipole moments at
distances large compared with the wavelength. The scattered electric field detected
in the wave zone at a point d at a distance R from the molecular origin is therefore
the real part of

Ed = @eiw(le/c—t)[(%o) _ pdy,d 5O
* " Ax R Mo a’lptp

1 iw, 4~ N
d ~(0) d 20 d d d 0
- ;8aﬂynlgm§, 3 (nﬂ@aﬂ — nanﬂny@ﬂy) + -], (3.3.1)
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where n¢ is the propagation vector in the direction of the detected wave. The terms
in ndng i and ndndnd @g); ensure that the wave is transverse. Since this wave is
travelling in the free space between the molecules, i and € are taken as unity and
n’ is now a unit propagation vector. The complex induced moments are given in
terms of the dynamic molecular property tensors by (2.6.43); these moments are
best written in terms of the electric vector of the incident plane wave light beam,

so the required amplitudes are

_ _ iw . - 1 e =

fxo) = (aaﬁ + 3_0”;/’4&,1//3 + ;gyaﬂ”:SGaV +- ) EE“O)’ (3.3.2a)
65 = (Fyup + - IEY, (3:3.20)
MO = (s + - - .)Eg)), (3.3.2¢)

where n' is the propagation vector of the incident wave. Equation (3.3.1) can now
be written

2
~ W~ Lo io(R/e—1) ~ =~ (0)
Ed = —ZZloWR/e=ng ED 3.3.3

“7 AxR op = p (3.3:3)

where d,g is a scattering tensor for particular incident and scattered directions given
by the unit vectors n' and n:

iw

dop = Qop + 5(”;/11#5 — nypya)
—i—l(s G4 d@)_dd~ _iﬁdd(iA _ i )
- y88MsUay T Eysalls Jyp) — NyM, Qyp 3C”a”y NsAy.sp — Nsp.sy
Laa, g
Mty Eeoplly Fye +--- (3.34)

The last three terms are required for calculations of electric field gradient-induced
birefringence (Section 3.4.5) and related phenomena, and also for the dependence
of Rayleigh and Raman scattering phenomena on the finite cone of collection.

A penetrating discussion of the realm of validity of this ‘local multipole’ ap-
proximation to spatial dispersion in molecular light scattering has been given by
Baranova and Zel’dovich (1979b).

3.4 Polarization phenomena in transmitted light
3.4.1 Refraction as a consequence of light scattering

The polarization changes in a light beam passing through a transparent medium are
usually accounted for in terms of circular and linear birefringence which refer, re-
spectively, to different refractive indices for right- and left-circularly polarized light



128 Molecular scattering of polarized light

and light linearly polarized in two perpendicular directions. Additional polarization
changes can occur in an attenuating medium, and are usually described in terms of
circular and linear dichroism, which refer to different absorption coefficients for
the corresponding polarized light.

Lord Rayleigh pointed out that the refraction of light is a consequence of light
scattering. Modern treatments are given in the books by van de Hulst (1957), Newton
(1966) and Jenkins and White (1976). The individual molecules scatter a small part
of the incident light, and the forward parts of the resulting spherical waves combine
and interfere with the primary wave, resulting in a phase change which is equivalent
to an alteration of the wave velocity. We call this process refringent scattering. Very
little of the nonforward scattered light is actually lost from the transmitted wave
if the medium is optically homogeneous on account of destructive interference: in
contrast, waves scattered into the forward direction from any point in the medium
interfere constructively. It is therefore natural to formulate a molecular theory of
‘refringent polarization effects’ directly from Lord Rayleigh’s scattering model,
without introducing an index of refraction. Kauzmann (1957) was the first to present
such a scattering theory of optical rotation, but this was restricted to small angles of
rotation at transparent wavelengths. We consider a light beam of arbitrary azimuth,
ellipticity and degree of polarization incident on an infinitesimal lamina of a dilute
molecular medium which may be oriented and absorbing. Expressions in terms of
components of dynamic molecular property tensors are derived for the infinitesimal
changes in azimuth, ellipticity, degree of polarization and intensity of the emergent
light beam. Integration of these infinitesimal changes over a finite optical path
provides the standard equations for the finite polarization and intensity changes in
well known phenomena such as natural and magnetic optical rotation and the Kerr
and Cotton-Mouton effects, together with some newer effects such as magnetochiral
birefringence and dichroism

The conventional theories of refringent polarization effects start from the circular
and linear birefringence and dichroism description. The transition to a molecular
theory is made by relating the refractive index to the bulk electric polarization and
magnetization of the medium, which are related in turn to an appropriate sum of the
electric and magnetic multipole moments induced in individual molecules by the
light wave. Although such use of an index of refraction has proved invaluable for
deriving expressions for refringent polarization effects, it can obscure some of the
fundamental processes responsible. The infinitesimal scattering theory automati-
cally includes the general case of circular and linear birefringence and dichroism
existing simultaneously, together with changes in the degree of polarization, all of
which can be interdependent. The refractive index theories can accommodate this
general stituation within the Mueller or Jones matrix techniques. The Mueller calcu-
lus (Mueller, 1948) describes the effects of particular optical elements on a polarized
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light beam characterized by the four Stokes parameters: the properties of an optical
element are represented by a real four-by-four matrix, the elements of which are
functions of refractive index components, which multiplies the input real Stokes
four-vector; and by applying successively matrices corresponding to infinitesimal
optical elements, the effect of a medium showing simultaneous circular and linear
birefringence and dichroism can be calculated. The Jones calculus (Jones, 1948)
is similar, but involves complex two-by-two matrices operating on the complex
Jones two-vector. Since the Jones vector can only describe a pure-polarized beam,
whereas the Stokes vector can accomodate partial polarization, only the Mueller
calculus can incorporate changes in the degree of polarization. For further discus-
sion of the Mueller and Jones methods, we refer to Ramachandran and Ramaseshan
(1961).

It should be mentioned that there is a procedure intermediate between the basic
scattering theory used in this book and the refractive index theory outlined above.
Instead of calculating the refractive indices through the bulk electric polarization
and magnetization, the refractive indices for linearly and circularly polarized light
can be calculated using Lord Rayleigh’s scattering model, and the results used in
the Mueller or Jones matrices.

3.4.2 Refringent scattering of polarized light

Consider a quasi-monochromatic light wave propagating along z and incident on
an infinitely wide lamina in the xy plane in a dilute molecular medium, as shown in
Fig. 3.2. The thickness of the lamina is infinitesimal relative to the wavelength of
the light. If only a small fraction of the wave is scattered, the disturbance reaching a
point f at R a large distance from the lamina in the forward direction is essentially

drdydz [

—_
-

dz

Fig. 3.2 Geometry for forward scattering by a thin lamina.
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the original wave plus a small contribution due to scattering by the molecules in
the lamina. From (3.3.3) the electric field of the scattered wave at f from a volume
element dxdydz at (x, y, 0) in the lamina is

N Nw?podxdydz .
f _ iw(R/c—t) ~
o= 47 R © e

where N is the number density of molecules. Only molecules within the base of a
narrow cone with apex at f will contribute effectively to forward scattering, since

sEY (34.1)

waves scattered from molecules outside this area tend to interfere destructively at f.
This means that we may calculate the total scattered electric vector at f by integrating
(3.4.1) over the infinite surface of the lamina since only those molecules close to the
axis of the cone will contribute coherently. The propagation vector in the direction
of the detected wave may be written

d d oy d v d x. y. Ro
= . . ‘Kk=——i— =j+ —k 342
n" =" i+ @ -j)j+ o -k TRt R (3.4.2a)
which, for Ry > x or y, may be approximated by
d X, y.
~—-——i——j+k 3.4.2b
n Rl RS + ( )

For simplicity we shall consider explicitly only the contributions to n depending
on the third term, K, in (3.4.2b). Writing

12 1
R=[R+ ()]~ Ro+ (07 457,
0

the required integral is

oo o0 .
L / / drdy e+ 2R _ 127E (3.4.3)
R() w

—00 —00
The total wave at f is the sum of the primary wave and the wave scattered from the
lamina:

Ef = (8up +iMal,) EY el FRo/emn), (3.4.4q)
where
M = {Nopgcdz (3.4.4b)

and aj, the forward part of the scattering tensor, is given by (3.3.4) with n* = n'.
Since the incident and transmitted waves are transverse, the tensor subscripts o
and S in (3.4.4a) can only be x or y so that the last three terms of (3.3.4) vanish
in the present approximation. The polarization and intensity changes associated
with refringent scattering arise from cross products of the first and second terms in
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(3.4.4a). Since i in the second term may be replaced by exp(irr /2), (3.4.4a) reveals
that the net plane wave front in the forward direction obtained by summing the
scattered wavelets from molecules in the lamina is shifted in phase by 77 /2 relative
to the transmitted wave. This phase shift is crucial in generating the polarization
changes characteristic of linear birefringence, optical rotation, etc. developed below.
First, however, it is useful to derive an expression for the complex refractive
index i = n + in’ of the dilute molecular medium from this refringent scattering
formalism. Taking z = 0 at the front face of the thin lamina, we can take account of
the retardation resulting from propagation of the light wave through the lamina by
writing the electric field at f, for linearly polarized light (along x, say), in the form

B — FOgiollidz +(Ro—d2)/c—1)
X X

— E&O)eiw(fl—l)dZ/Ceiw(Ro/C—t). (345)

Since exp(x) = 1 + x + - - -, (3.4.4a) can be rewritten as

E! = M@ EOgioRo/c=n (3.4.6)

X

Comparing this with (3.4.5), the complex refractive index is found to be
i~ 14 INpoc*al 3.4.7
~ ) /J,OC Clxx. ( o e )

The refractive index n and absorption index n’ are then given by the dispersive and
absorptive parts, respectively, of the property tensors within &’ :

n~14 INuoc?at (f), (3.4.8q)
n' ~ INpoc*at (g). (3.4.8D)

The Stokes parameters of the transmitted wave can be found in terms of the
scattering tensor components and the Stokes parameters of the incident wave by
substituting (3.4.4) into (2.3.6). Since very little scattering occurs, Ma « 1, and
we can neglect terms in M2a?. For example, the first Stokes parameter is

S = EVEY + EVE™
= [(8xp +iMay,) (8., — iMay)
+ (88 + iMayy) (8, —iMal, )| EgE?
~ E.E;+ EE}
—2M Im(a} E,E% + &l E\E
~ So— M Im[ (@, +a,)0-+ (@, —al,)s
—(a,, +a,)$ —i(al, —ay,)S). (3.4.9a)
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The others are found to be
St = ELEY — BT
~S—-M Im[(Nf V)SO + ( ayy t+ diy)sl
— (@}, — a,,) S, —i(ay, + a,,)Ss). (3.4.9b)
Sy =—(ELEY + EVEY)
~SH+M Im[(&iy + &;C)SO - (&)fcy - aiX)Sl

— (@5, +ay,) S +i(@,, —a),)S], (3.4.9¢)
)
~ S+ M Re[(&f a,)So — (al, +a.,) s
— (@3, —a),) 8 + 1( ay, +a,,)Ss]. (3.4.9d)

The intensity, azimuth, ellipticity and degree of polarization of the transmitted
wave are now found by using (3.4.9) in (2.3.9) and (2.3.18¢). The corresponding
changes are effectively infinitesimal so we can write IT — I = dI, etc. The changes
as a function of the azimuth, ellipticity and degree of polarization of the incident
wave are found to be

dI ~ IM[Im(a,, + @) + Im(a,, — @) P cos 2n cos 26
— Im(axy + a )P cos2nsin 26 — Re(~f — ~;X)P sin 277], (3.4.10a)
do ~ 5 {[Re(&fm - y}) cos 260 — Re(a + a )sin29] tan 2n
[Im(~f — i}) sin 26 + Im(axy + ayx) cos 26| /(P cos 2n)

—Im(a,, — @, )} (3.4.10b)
dn ~ EM{—Re( it ) sin 26 — Re(axy + a ) cos 260

+ [Im(d ;) cos 20 — Im( 4+ ayx) sin 29] sin2n/P

+Re(ay, — dy,) cos2n/P}, (3.4.10¢)
dP ~ M(P* — D{[Im(a,, — a! 4y) €0820 — Im(&iy + E’;x) sin 20| cos 27

—Re(al, — aj,) sin2n}. (3.4.10d)

In obtaining the azimuth and ellipticity changes we used the relations

tan 20" — tan 20 ~ 2d6/ cos> 20,
tan 25" — tan 25 ~ 2dn/ cos’ 2.
In developing these equations for the refringent intensity and polarization

changes in terms of explicit dynamic molecular property tensors, it is convenient
to group together appropriate components of the optical activity tensors Gaﬁ and
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A, gy 1nto a single third-rank tensor defined by

- 1oy, o~ . ~ 8
Cupy = ;[glw(Aa,ﬂy — Ap.ay) + €5y8Gas + Esya Tip . (3.4.11)

Like @y, Lup, can be decomposed into symmetric and antisymmetric parts with
respect to the first two suffixes:

Capy = Capy — 100p, - (3.4.12)
where
1 /
1 /
go/tﬂy = _E[%a’(AayﬂV — Apay) T SéyaG/ﬂg - 88yﬂGa5]- (3.4.13b)

The forward part of the scattering tensor (3.3.4) in the present approximation now
simplifies to

aiﬁ = 6(0!/3 + Zaﬂyny +---, (3.4.14)

where n is the unit vector in the propagation direction of the incident light beam.
Using (2.6.42) to write these property tensors in terms of dispersive and absorp-
tive parts, we have

Re Gy = ctap(f) + Lapy (Fy + () + L (@)ny +--+,  (3.4.150)
Using these results in (3.4.10), we obtain finally the following expressions for
the rate of change of intensity, azimuth, ellipticity and degree of polarization of a

quasi-monochromatic light wave on traversing a dilute optically active birefringent
absorbing medium:

d/
d_ ~ _%INCUMO C{lex(g) + ayy(g) + gxxz(g) + {yyz(g)

’ + [(2ax(8) — @yy(8) + Laxz(8) — &yy(g)) cos 20
— 2(atxy(8) + &xy:(8)) sin 20] P cos 2n
— 2(t,,(8) + &1, (8)) P sin 21}, (3.4.16a)
T~ INoso 2, () + € )
+ [(exx (f) — ayy(f) + Laxz(f) — Eyye(f)) cOs 26
— 2(axy(f) + Cxyz(f)) sin 20] tan 2n
+ [(@2x(8) — ayy(8) + Laxz(8) — &yy:(8)) sin 26

+ 2(0xy(8) + 8xy2(8)) cos 20] /(P cos 2m)}, (3.4.16b)



134 Molecular scattering of polarized light

T~ INowo cl—(@n(f) = ayy(F) + Lexs(f) = Lyye(£)) 5in 26

dz
— 2y () + Gaye(f)) €08 20 + 2(ar; (8) + &y, (8)) cos 2n/ P
+ [(axx(g) — ayy(g) + Caxz(8) — é‘yyz(g)) cos 20
— 2(axy(8) + Cxyz(g))sin20]sin2n/ P}, (3.4.16¢)

P
5~ aNoo e(P? = D{[(@s(8) = yy(8) + Lura(8) = Eyye(g) c05.260

— 2(otxy(8) + &xyz(g)) sin20] cos 2
— 2(et,(8) + &4, (8)) sin 2n). (3.4.16d)

Notice that equation (3.4.16a) for the differential change in intensity contains only
the absorptive (or antiHermitian) parts of the dynamic molecular property tensors,
as required. Also equation (3.4.16d) for the differential change in the degree of
polarization shows that if the incident beam is completely polarized, the transmitted
beam is also completely polarized under all the circumstances relevant to this
model: any change can only occur in the direction of an increase in the degree of
polarization, and then only at absorbing frequencies.

We shall not apply these equations in detail to every one of the large number of
phenomena which they embrace, but will use them to obtain the macroscopic po-
larization and intensity changes for the basic refringent optical activity phenomena,
together with a few other related effects. The criteria for deciding whether or not
a particular component of a particular property tensor can contribute to a certain
polarization or intensity change are elaborated in detail in subsequent chapters,
particularly Chapter 4 in which symmetry classifications are developed.

3.4.3 Simple absorption

The simplest application of these results is to an unpolarized light beam (or lin-
early polarized taking, for convenience, the azimuth 6 = 0) traversing a system of
randomly oriented molecules that can support only components of the real polariz-
ability aqg. This would obtain in the case of a fluid composed of achiral molecules
in the absence of applied magnetic fields. Using the unit vector average (4.2.48),
we obtain the isotropic averages

T2 X, (3.4.17a)
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dl 1
E ~ —3INopocdae(g)- (3.4.17b)

The only change is therefore a reduction in intensity due to absorption, being a
function of that part of the polarizability tensor involving the absorption lineshape
function g, in agreement with the conclusions at the end of Section 2.6.3. Integration
over a finite path length / provides the following expression for the final attenuated
intensity:

1
I ~ [y e 3NeHocloa(®) (3.4.18)

where Iy is the initial intensity. Comparing this result with (1.2.12), the absorption
index is found to be

n' & §N o daa(g). (3.4.19)

3.4.4 Linear dichroism and birefringence (the Kerr effect)

If the molecules, while still supporting only components of the real polarizability
Qqp, are now completely oriented, as in a crystal, or partially oriented, as in a fluid in
a static external field, there is the possibility of polarization changes through linear
dichroism and birefringence. It is convenient to take the incident light beam to be
completely linearly polarized with an azimuth 8 = = /4, in which case (3.4.16)
reduce to

dI

=~ —LINwpoc(o(g) + ayy(g) — 20,(2)), (3.4.20a)
o

& ~ Nopoc(o(g) — ayy(g)), (3.4.20b)
dn o _1y 3.4.20
d_Z ~ =7 wpoc( (f) — ayy(f))s (3.4.200)
dpP

= ~0. (3.4.20d)
dz

The first equation describes absorption via the absorptive parts of the appropriate
dynamic polarizability tensor components; the second describes an azimuth change
due to linear dichroism brought about through a differential absorption of the two
linearly polarized components of the incident light beam resolved along the x and
y directions; the third describes the corresponding ellipticity change due to linear
birefringence; and the fourth shows that the beam suffers no depolarization.

We now develop (3.4.20c) to obtain an expression for the ellipticity change in the
Kerr effect in which a static uniform electric field is applied to a fluid perpendicular
to the propagation direction, and at 45° to the azimuth, of an incident linearly
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polarized light beam (so here the electric field is applied along the x direction). But
first we note that, since the ellipticity change at transparent frequencies does not
depend on the initial ellipticity, the macroscopic ellipticity (in radians) developed
along a finite path length / (in metres) is simply

N~ —INopocl (e (f) — oy (). (3.4.21)

The electric field generates anisotropy in the fluid on account of a partial orientation
of the molecular electric dipole moments, both permanent and induced. According
to (2.6.4a), the electric dipole moment in the presence of a static uniform electric
field is

Mo = Moy +apEp +-- -,

where o, is the static polarizability. There is no need to specify (Eg)o, the field at
the molecular origin, because the field here is uniform. A further contribution to the
Kerr effect originates in the perturbation of the dynamic molecular polarizability
by the electric field, in accordance with (2.7.1):

0op(E) = o + oty Ey + Sald ) EVEs + -

Thus in (3.4.20c), a weighted average must be taken of the polarizability tensor
components perturbed by the static electric field.

For our purposes, the classical Boltzmann average for a system in thermodynamic
equilibrium at the temperature T is adequate:

X(Q) = / dQ X (Q)e~ /KT / / dQeVE/KT (3.4.22)

where X (€2) is the value of a particular component, in space-fixed axes, of a molec-
ular property tensor when the molecule is at some orientation €2 to the field, and
V(£2) is the corresponding potential energy of the molecule in the field. If V(£2) is
much smaller than k7, we can use the expansion

— 1
X(@) = (X(Q) — =L (X(@V(Q) — (X @){V(Q)]
+ 573 X @V@)) - HX @) V(@)
— (X(QV( NV Q)]+ - (3.4.23)

The potential energy here is the interaction between the static field and the perma-
nent and induced molecular electric dipole moments, so from (2.6.1) and (2.6.4),

V(Q) = —po, Ex — ja Bl 4+ - (3.4.24)
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Using the unit vector averages (4.2.53), we obtain terms such as

((axx(f) — O‘yy(f))“xx) = O‘otﬂ(f)a;/(S (iaiﬁiyiB - jajﬁiyi(S)
= %(3aaﬁ(f)aa,3 - aaa(f)aﬂﬂ)s

and the complete expression for the ellipticity is found to be (Buckingham and
Pople, 1955)

1~ = omoc N 230l (f) = ol (1)
2 (2w 1
= (B0 L (Fng, — o y(Pboy) + = Batap(Natep = o Fetss)

+ ];7(3%3(]‘)#0“ o — daa(Nttogitay) | (3.4.25)
It is stressed that this result for the macroscopic ellipticity is strictly valid only at
transparent frequencies. To facilitate comparison with standard molecular expres-
sions for the Kerr birefringence (Buckingham and Pople, 1955; Buckingham, 1962),
note that the phase difference between transmitted light waves linearly polarized
along x and y is

27l
5= %(n — ) (3.4.26)

and that the ellipticity (using the present sign convention) is equal to — tan(§/2)
(Fredericq and Houssier, 1973) so that, for small ellipticities,

ml !
n = _T(HX —n’). (3.4.27)

Buckingham (1962) has discussed the detailed application of this equation at
absorbing frequencies. However, such discussions of the frequency dependence of
the Kerr effect only apply to ellipticity changes that are effectively infinitesimal
for, once an ellipticity develops, (3.4.16¢) shows that additional changes can be
generated through terms in aqg(g) since these depend on sin 27. Furthermore, as
outlined below, the simultaneous presence of linear dichroism can lead to additional
complexity.

The development of an expression for the azimuth change at absorbing fre-
quencies due to Kerr linear dichroism proceeds in an analogous fashion. However,
integration over a finite path length to derive an expression for a macroscopic az-
imuth change is no longer trivial because, according to (3.4.16b), the differential
azimuth change depends on both the ellipticity and azimuth of the light beam inci-
dent on the lamina. We refer to Kuball and Singer (1969) for further discussion of
this complicated situation.

Similar expressions can be developed for the Cotton—Mouton effect, with a static
uniform magnetic field replacing the electric field.
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3.4.5 Electric field gradient-induced birefringence: measurement of
molecular electric quadrupole moments and the problem of origin invariance

It is of considerable interest to extend the development of linear birefringence in
the previous section to allow for a static electric field gradient. This provides the
theoretical background for the experimental determination of molecular quadrupole
moments in fluids. Although taking us a little outside the realm of optical activity
phenomena, this example reveals the power and generality of the refringent scatter-
ing formalism and provides a glimpse of one of the great achievements of molecular
optics. A similar treatment has been given independently by Raab and de Lange
(2003).

The static electric field is now taken to be inhomogeneous with gradient
E.. = —E,,. By allowing for the perturbation of the dynamic molecular polar-
izability by this static electric field gradient,

tap(VE) = 1al3) sEys+ -+,

and adding the interaction between the static field gradient and the permanent elec-
tric quadrupole moment, namely — %(@OM — 6y,,) E, to the orientation-dependent
potential energy (3.4.24), the following additional contribution to the Kerr ellipticity
(3.4.25) is found (Buckingham, 1958):

e~ —350pocl N Exy (o) o5 + apOo,s /ET). (3.4.28)

The perceptive reader will notice a problem with this result: if the quadrupolar
molecule also possesses a permanent electric dipole moment, then according to
(2.4.9) the electric quadrupole moment will be origin dependent. This situation is
unsatisfactory, for it requires a bulk observable, the electric field gradient-induced
birefringence, to depend on an arbitrary molecular origin. The problem was resolved
by Buckingham and Longuet-Higgins (1968) who realized that, in addition to the
partial alignment of the quadrupolar molecules by the electric field gradient, there
will be a nonuniform distribution of dipolar molecules as a result of the interaction
of their permanent electric dipole moments with a position-dependent electric field
that is proportional to the displacement of the molecule along x or y from the z axis
where the field is zero. The associated temperature-dependent birefringence then
arises from a combination of electric dipole scattering by the aligned quadrupolar
molecules with magnetic dipole plus electric quadrupole scattering from molecules
with locally oriented electric dipoles displaced slightly from the z axis. There is also
a temperature-independent contribution from the electric dipole-magnetic dipole
and electric dipole—electric quadrupole tensors G&ﬂ and A, g, perturbed by the
position-dependent electric field, again from molecules displaced slightly from the
axis.
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To accommodate these features, the refringent scattering formalism of Section
3.4.2 must be extended: specifically, the last three terms of the scattering tensor
(3.3.4) must be retained along with the small components along x and y in the
propagation vector (3.4.2b) for the waves scattered from the molecules within the
thin lamina. The present treatment is equivalent to the original treatment of Buck-
ingham and Longuet-Higgins (1968) who also employed a molecular scattering
approach. Because of the additional complexity we shall not calculate the elliptic-
ity directly via the Stokes parameters, but instead will calculate the refractive index
difference for light linearly polarized along the x and y directions. We therefore
require the following components of the scattering tensor:

w -~ . 1 - ~
&xx = &xx + %(Ax,zx - ~Q/x,zx) + ;(ny + gyx)

X 1w - - - -
+ — 0 + (XA x — X g + XA ax yv‘%x,yx)

R() 3CRO
1 ~ -
TGy +y )+ (3.4.29a)
CR() :
- . ORI - 1 - -
Qyy = Qyy + %(Ay,zy - My,zy) - E(ny + (ﬁxy)
y . iw - ~ . .
+ R_Oazy + ?Ro(yAz,zy - yv%y,zz + y&/y,yy + xx{y,xy)
1 ~ o
- C—RO(szx +Xx )+ (3.4.29b)

It is now necessary to consider the arrangement by which the electric field
gradient is generated in the experiment. Typically, the sample is contained in a long
tube within which are two fine wires running parallel to the axis of the tube. When a
potential difference is set up between the walls of the tube and the wires (which are
at the same potential), an inhomogeneous electric field is established between the
wires. The probe light beam is directed along the tube between the two wires. If the z
axis is taken to be the axis of the tube and the wires lie along the lines (x = a, y = 0)
and (x = —a, y = 0), the nonzero electric field components near the z axis are E, =
gx and E, = —qy, and the nonzero electric field gradient components are E,, = g
and E,, = —q (Buckingham and Longuet-Higgins, 1968). In these expressions g
is proportional to the associated line charge (charge per unit length). The potential
energy of a molecule at (x, y, 0) is then

V(x,y,0) = —po, Ea — %@%ﬂEaﬁ ...
= —q(po,x = 1o,y + 360, — 360y, +---).  (3:4.30)

The integration over the surface of the lamina of the scattered waves, detected
at f, from molecules within the lamina must now take account of the probability
distribution of molecules in the xy plane. We make the artificial assumption that the
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molecules remain in a fixed orientation: the rotational averaging will be performed
at the end. The probability that there is a molecule in the volume element dxdydz
at equilibrium in small fields is then

P(x,y,z)dxdydz = Ne_V(x’y’Z)/dexdydz

_ q 1 1
— N [1 + 2 (Hoex = oy + §60,, — 160y, + - --)] drdydz, (3.4.31)

where N is the number density of molecules in the absence of the field. This
expression replaces Ndxdydz in (3.4.1). The required electric fields of the scattered
waves at f are now

B Nw? o dxdydz

q 1 1
x 47 Ry [1 + —— (Koxx — Koy Y + 3600, — 360y, + - )]

kT
. iw - ~ 1 . -
X [ 14y + %(Ax,zx - vQ{x,zx) + E(ny + g}x)
x _ iw - - - .
+ R_Oazx + E(XAZ,ZX - x%c,zz + xt%x,xx + y&{x,yx)
+ %(x(;zy +yG)+ - ] EO ity 2RocgiolRo/e=n (3 4 304)
CKXo

B No?podxdydz

q 1 1
y = 47 R, [1 + = ('“Oxx — 1oyY + 3600, — 560y, +-- )]

kT
5 iw - ~ 1 - -
x [ 14 ayy + §(Ay,zy — Sy 7y) — ;(ny + %)

+2a, +

w - - - -
Ro (yAz,zy - y&{y,zz + y&{y,yy + xt%y,xy)

1
3CRO
- %(yéu +xGy) + - } EOeiottyD2Ruceioto/e= —(3.432p)

CRo

Using the integral (3.4.3) together with

1 00 00 . 20T 2
— / f drdyxZe@ 2R - 220 (3.4.33)
Ry J - J-oo w

andexp(x) = 1 + x + - - -, and comparing with (3.4.5), the temperature-dependent
birefringence is found to be
q

3kT (90” - 9Oyy)((’)zxx - &yy)

X ~ 1 2
n —nyNENuoc{

_4
kT

+ Koy, Az,zy - I/LOva/;,zz + MO}:%,W - MOXVQ{;,xy)

1 ~ - ~ -
_Z(MOX Gzy — Moy Yx — Mo,y G+ Moy gzy)] + - } , (3.4.34)

[%(MOX Az,zx — Moy d&,zz + M0, JZ/');,)cx - I/LOy'Q/;,yx
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where we have retained only those terms which provide nonzero averages over all
molecular orientations. As shown in Chapter 4, in the absence of a static magnetic
field, Au.py = Awpys Dupy = Aapy,1Gap = Gip i Gup = —G},,. Performing the
orientational averaging using the unit vector averages (4.2.49) and (4.2.53), the fol-
lowing expression for the temperature-dependent contribution to the birefringence
is obtained:

* s Nﬂoczq 5 ’
" 15kT Oogpap — Hog | Ap.ap + ;mﬁyGﬁy . (3.4.35)

By allowing for the perturbation of the dynamic molecular property tensors in
the scattered electric fields (3.4.32) by the electric field and field gradient,

aa,g(E VE) = aa,g +al) E,+1al) sEys+---.  (3436a)
Aapy®) = Aopy + AL S Es+ -+, (3.4.36b)
Gup(B) = Gop + Gl Es+---, (3.4.36¢)

and similarly for M; gy (E) and %,g (E), the temperature-independent contribution
is produced. The final complete result for the birefringence due to the electric field
gradient is

5
(n) /(1)
aaﬂ,aﬁ Aot ,Ba, B wgaﬁyGaﬂ,y

1 5 ,
toT [@Oaﬂa“ﬁ 1og (Ap.ap + ;SaﬂyGﬂy)“ . (34.37)

which is equivalent to the result of Buckingham and Longuet-Higgins (1968). de
Lange and Raab (2004) have recently shown how a very different theory based on
the solution of a wave equation derived from Maxwell’s macroscopic equations
may be refined to give the same result, thereby resolving a long-standing puzzle.

Using (2.6.35) for the origin dependencies of aqg, Ay g, and G;,B’ it is readily
verified that this expression is independent of the choice of molecular origin, as
required. The point at which the origin-dependent vector

5
Apap + ~tupy Gy = (3.4.38)

is called the effective quadrupole centre. Hence the apparent electric quadrupole
moment given by (3.4.28) has its origin at the point which satisfies (3.4.38).

3.4.6 Natural optical rotation and circular dichroism

To determine the natural optical activity contributions to the refringent intensity
and polarization changes, we retain only terms in Gz and A, g, since in Chapter 4
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(Section 4.4.4) it is shown that only chiral molecules can support the appropriate
components in most situations. These tensors always contribute to refringent scat-
tering in the antisymmetric combination (3.4.13b). The required component for
light propagating along z is

LY L PR G +G 3.4.39
gxyz - E[ga)( X,yz y,xz)+ XX + yy]' ( o )

According to (2.6.35), general components of A, g, and G|, 5 are origin dependent.
However, it is easily verified that the combination of components in (3.4.39) is such
that ¢, is independent of the choice of origin, as required for a term contributing
to observables such as optical rotation and circular dichroism.

In isotropic samples such as fluids in the absence of static fields, the unweighted
average of ¢;  over all molecular orientations must be taken. Using the unit vector
averages (4.2.48) and (4.2.49), we find

@-;yz) = _E[%wAa,,By (lakﬂ]y - ]txkﬂly> + G(/Xﬁ (lalﬂ + ]a]ﬁ)]

2 /
e (3.4.40)

_3_6‘ aa

since Ay gy = Aq,yp. Thus only electric dipole-magnetic dipole scattering con-
tributes to the natural optical rotation and circular dichroism of isotropic samples,
the electric dipole—electric quadrupole contribution averaging to zero. Although,
according to (2.6.35), a general component of G;ﬁ is origin dependent, the trace
is independent of origin and so can contribute by itself to optical rotation in an
isotropic sample.

It should be mentioned that the results of this section give the complete po-
larization changes only for nonmagnetic samples which are isotropic in the plane
perpendicular to the direction of propagation. Thus they are valid for light propa-
gating along the optic axis of uniaxial crystals and, after averaging, to fluids. For
other propagation directions in anisotropic media additional terms can contribute.

Thus (3.4.16b) indicates that a chiral medium generates an azimuth change which
depends on the dispersion lineshape function f:

de ,
o A %a),uocNCXyZ(f). (3.4.41)

Since this is independent of the polarization of the light beam incident on the lamina
dz, the macroscopic natural optical rotation (in radians) for a finite path length / (in
metres) along the z direction in an oriented medium can be written immediately as
(Buckingham and Dunn, 1971)

A9~ —Lopol N [o(Ar o (f) = Ay (1) + G + Gy ()] . (3.442)
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In an isotropic sample, we use the average (3.4.40) and so recover the celebrated
Rosenfeld equation (Rosenfeld, 1928) for natural optical rotation:

A ~ —3wpol NG, (f). (3.4.43)

From (3.4.16¢) we see that a chiral medium generates an ellipticity change which
depends on the absorption lineshape function g and on the ellipticity and degree of
polarization of the light beam incident on the lamina:

d |
dz LomoeNg],.(g)7 cos2n. (3.4.44)

Assuming that the degree of polarization remains unity, the macroscopic ellipticity
change is obtained from an integral of the form

n l
/ secann:C/ dz,
1o 0
where C = a)/,L()CN{

vy2(8) and no and 7, are the initial and final ellipticities. If
the incident hght is linearly polarized, o = 0 and

n = tan~! e2¢! — /4= tan~! tanh C1.
The macroscopic ellipticity developed over the path length [ is thus
n ~ tan”' tanh (3 wpocINEL,(8)).- (3.4.45)
For very small ellipticities, this reduces to
n= a),uoclN{xyZ( ). (3.4.46)

Equation (3.4.16a) shows that, in addition to the usual absorption due to a,g(g),
a chiral medium can generate a loss of intensity which depends on the absorption
lineshape function and on the ellipticity and degree of polarization of the incident
light:

d/

T~ Hon0eN (@ (@) + an(e) = 20, ()P sin2y).  (3.447)

If the degree of polarization remains unity, the macroscopic loss of intensity is
obtained from an integral of the form

h dr
/ / (C'+2Csin2n)dz

Io

= / [C" + 2C sin 2(tan™! tanh Cz)] dz,
0
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where C' = —%a),uocN (axx(g) + ayy(g)). We have assumed that the incident light
is linearly polarized and used (3.4.45). Therefore

I, = Ioec/l cosh2Cl,

and the final attenuated intensity is given by

1
I~ I e—§wMOL'lN(Dt.xx(g)+(7tyy(g)) cosh (wMoClNé“;yZ(g)) (3.4.48)

which is a generalization to oriented samples of the modified Beer—Lambert law for
the passage of an initially linearly polarized light beam through an absorbing chiral
medium (Velluz, Legrand and Grosjean, 1965). If the incident light beam is right-
or left-circularly polarized, (3.4.44) shows that no further change in ellipticity can
occur, and the final attenuated intensity is found from (3.4.47) to be

1 '
I]]j ~ III}C—§wMOClN(Ol“(g)-ﬁ-Olyy(g):F2§,m(g))' (3.4.49)
l 0

Using (1.2.11), this last result immediately provides an expression, in terms of the
absorptive parts of the dynamic molecular property tensors, for Kuhn’s dissymmetry
factor (1.2.15):

el —e® A, (9)
%(EL+ER) lex(g)‘i‘ayy(g)'

From (3.4.16d) we see that the degree of polarization increases in an absorbing
chiral medium:

g= (3.4.50)

dpP / 2 :
e ~ —wpg cNE. (g)(P° — 1)sin2n. (3.4.51)
v4

xyz

The macroscopic change in the degree of polarization is obtained from an integral

P dpP 1
= —ZC/ sin2n dz.
/PO Pz—1 0

If the incident light is unpolarized, we can take sin 2n = =1 (the sign being given
by the sign of C) since (3.4.44) shows that the polarized component that is acquired
is circular. The final degree of polarization is therefore

of the form

P, = |tanh (wpocINE,, ()] - (3.4.52)

Notice that an equivalent result is obtained by calculating directly the degree of
circularity of the transmitted light using (3.4.49):

S3 IRI — ILI /
5= g = A @meNEL() (3.4.53)
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In his early experiments on circular dichroism, Cotton actually found that unpo-
larized light becomes partially circularly polarized in an absorbing chiral medium
(Lowry, 1935). Measurement of the degree of circular polarization of transmitted
light could be useful in situations where it is not possible to prepare the polarization
state of the incident light; for example, in the search for resolved chiral molecules in
interstellar gas clouds by looking for circular polarization, at characteristic absorp-
tion frequencies of the particular molecules, in light transmitted from a star behind
the gas cloud. Of course other possible sources of circular polarization, such as
magnetic fields and light scattering by dust particles (Whittet, 1992), would have
to be investigated carefully.

3.4.7 Magnetic optical rotation and circular dichroism

In the general expressions (3.4.16) for the refringent intensity and polarization
changes, it is seen that the imaginary dynamic polarizability tensor component oz;y
contributes in just the same way as the natural optical activity tensor component
g‘;yz. However, as discussed in Chapter 4, a(;ﬁ is time odd and therefore requires
the presence of some other time-odd influence such as a static magnetic field in
order to contribute to refringent scattering; although it can contribute to incoherent
phenomena such as the nonrefringent antisymmetric scattering discussed in Chapter
8. In the Faraday effect, parity arguments (Section 1.9.3) require the magnetic field
to be applied along the direction of propagation of the light beam. A fluid, for
example, then becomes effectively a uniaxial medium.

Thus all the basic results of the previous section apply if ;‘;yz is replaced by «
so magnetic optical rotation is given by

/!
xy?

A6 ~ jopocI N, (f), (3.4.54)
and the ellipticity associated with circular dichroism by
n = tan”! tanh (%wuoclNa;y(g)). (3.4.55)

We must now bring the magnetic field into these expressions. Clearly we seek
a linear dependence on B,. This could come about through a partial orientation
of any permanent molecular magnetic moments (but, unlike the Kerr effect, not of
magnetic moments induced by the field since such contributions would be quadratic
in B.), and also through a linear perturbation of o, :

o, (B) =, +a) B+ (3.4.56)

Xy,z
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We consider first the Faraday effect in a fluid. Applying the classical Boltzmann
average (3.4.23) with a potential energy

V(Q)=-mo.B;+---,
we find, using the unit vector average (4.2.49),
al, = (%) + aaﬂmoy /KT ) (i jsky) B:

xy %ap.y
= 1 B.eapy (), + mo, o, /KT) + (3.4.57)

This shows that only a field along the propagation direction can generate nonzero
contributions after spatial averaging, which is consistent with the parity arguments.
This result is now used in (3.4.54) taking the dynamic molecular property tensors
as functions of the dispersion lineshape f, and in (3.4.55) taking the tensors as
functions of the absorption lineshape g. Thus the Faraday optical rotation, for
example, becomes

A0 ~ LouocIN B eag, (s, (f) + mogay (f)/KT).  (3.4.58)

If the quantum-mechanical expressions for o4 o (the magnetic analogue of
(2.7.8)) and oz(’xﬂ are introduced, the standard express10ns for Faraday optical ro-
tation and circular dichroism in fluids are recovered (Buckingham and Stephens,
1966). But we shall not write them out explicitly until Chapter 6.

Unlike permanent electric dipole moments, permanent magnetic dipole moments
are not necessarily tied to a molecule’s frame and can exist, for example, in free
atoms, and in atomic ions in molecular complexes (the first excited state of the
hydrogen atom is the only atomic system showing a permanent electric dipole mo-
ment on account of the accidental near degeneracy of electronic states of opposite
parity). Consequently, a uniform static magnetic field can induce anisotropy in a
collection of ionic or molecular magnetic moments in a crystal. It is now necessary
to use a quantum-statistical average in place of the classical Boltzmann average
(3.4.22) since it is the relative populations of quantum states with nonzero spin or
orbital angular momentum projections onto the magnetic field direction that deter-
mines the induced magnetic anisotropy. Consider a molecule in a quantum state
¥, where n specifies a complete set of quantum numbers including the magnetic
quantum number defining the projection of any nonzero angular momentum vector
(so that v, could be one component of a degenerate set). If the system is perturbed,
the number of molecules per unit volume in the perturbed state 1/, is related to the
number in the unperturbed state i, by

N"l — Nne—(Wn/—Wn)/kT‘
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In the case of a weak magnetic field and ‘high’ temperatures,
W, — W, =—m, B, K kT
so that
N, = N,(14+m, B, /kT +--). (3.4.59)

In equations (3.4.54) and (3.4.55) for Faraday optical rotation and circular dichro-
ism, we replace N by (3.4.59), and for o, which pertains to a molecule in the
quantum state i,,, we use the expansion (3.4.56) in the magnetic field. If i, is a
component eigenstate of a degenerate set we must sum the contributions from all
such components. The Faraday optical rotation, for example, then becomes

A0 ~ Lopgcl (g) B, Z( ) + maal (F)/KT),  (3.4.60)
where d, is the degeneracy and N = N,d,, is the total number of molecules per
unit volume in the degenerate set. The molecules themselves may be completely
oriented as in a crystal; if in a fluid, an average over all orientations produces an
expression equivalent to (3.4.58) derived from a consideration of a collection of
classical magnetic moments in a fluid, namely

A0 ~ Lopugcl ( ) B.&apy Z (cps ), (f) + mugay (f)/KT).  (3.4.61)

3.4.8 Magnetochiral birefringence and dichroism

Equations (3.4.16) for the general refringent intensity and polarization changes
contain contributions from components of the symmetric tensor g, defined in
(3.4.13a). This contains components of A/, gy the imaginary part of the electric
dipole—electric quadrupole dynamic property tensor, together with G.g, the real
part of the electric dipole-magnetic dipole dynamic property tensor. As shown in
Chapter 4, both of these tensors are time odd and so g, can only contribute in
the presence of a time-odd influence such as a magnetic field. As elaborated in this
section, up, 18 responsible for magnetochiral phenomena.

In the expression (3.4.16a) for the rate of change of intensity of a light beam
traversing an absorbing dilute molecular medium along z, terms in £, (g) + &yy2(8)
are specified which are completely independent of the polarization state of the
incident light beam. These generate magnetochiral dichroism. If the incident light
beam is unpolarized, and we assume it remains so over the sample path length, only
the conventional absorption terms and the magnetochiral terms survive. Integration
over a finite path length / then provides the following expression for the final
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attenuated intensity:

I ~ Ioe—%wMOClN[axx(g) + Olyy(g) + Caxz(8) + é'yyz(g)]. (3.4.62)

Comparing this result with (1.2.12), the associated absorption index is found to be

0~ Loc? Nlo(8) + oty (8) + Lave(8) + Eyyz ()] (3.4.63)

The same result may be deduced directly from the expression (3.4.8b) for the
absorption index in linearly polarized light by taking unpolarized light to be an
incoherent superposition of light beams linearly polarized along x and y. The
expression (3.4.8a) for the refractive index may similarly be used to deduce the
following result for the associated refractive index in unpolarized light:

n & 1+ o Nl () + ayy () + Cee(F) + 6y (] (3.4.64)

In isotropic samples such as fluids in the absence of static fields, the magne-
tochiral terms ¢, and ¢yy, give zero when averaged over all orientations. They do,
however, give nonzero averages in the presence of a static magnetic field along z.
This may be seen by using (3.4.13a) to write them out in terms of components of
Gup and Aq gy,

2 /
Coxz = ;(éwa,xz + Goy), (3.4.65a)
2., .,
Lyy: = E(gwAy,yZ — Gyy), (3.4.65b)
and considering a perturbation linear in B:
A;xz(B) = A;c,xz + A;(’Z)ZZBZ + - ) (34666!)
GiyB) =Gy + G B+, (3.4.66b)

and similarly for A’y, yZ(B) and G,(B). The classical Boltzmann average (3.4.22)

with potential energy
V(Q) = —mg,B, + -
is then applied, and using the unit vector averages (4.2.49) and (4.2.53) we find that
the magnetochiral terms give the following average:
- o 2 m m
Cxxz t8yyz = ;Bz {%w[:SAg,azﬁ,ﬂ - Ag,ﬂ}ﬁa
+(BAL ygmo, — AL, ﬁﬁmoa)/kT]

+4eapy (GU, + Gupmo, [KT) +---} . (3.467)

ap,y

This expression reverses sign if the direction of B is reversed relative to the propa-
gation direction of the light beam. Hence the required magnetochiral birefringence



3.4 Polarization in transmitted light 149

is found to be (Barron and Vrbancich, 1984)

n'™ —n™ &~ ueeNB, {%w[mgﬁfﬁgﬁ(f) ~ Autsa(f)

B g FImoy — Al s Fmo,)/AT]

+e0s (G () + Gup(FIma, /kT)} . (3.4.68)

where, as defined in Section 1.7, n'" and n™ are the refractive indices for an
unpolarized light beam (or a beam of arbitrary polarization) propagating parallel
and antiparallel to the static magnetic field. A similar expression obtains for the
magnetochiral dichroism n’'" — n’™ in which the dispersion lineshape function f
is replaced by the absorption lineshape function g.

It was indicated in Chapter 1 that magnetochiral birefringence and dichroism
require chiral samples. This is discussed in more detail in Chapter 6, where it is
shown that the components of A/, g, and Gp specified in (3.4.68) are supported
only by chiral molecules.

Using (2.6.35) for the origin dependencies of A[, gy and Gg, it may be verified
that (3.4.68) is independent of the choice of molecular origin (Coriani et al., 2002).

3.4.9 Nonreciprocal (gyrotropic) birefringence

Equations (3.4.16) for the general refringent intensity and polarization changes
contain contributions from components of the symmetric tensor g, defined in
(3.4.13a). This contains components of A, gy the imaginary part of the electric
dipole—electric quadrupole dynamic property tensor, together with G.g the real
part of the electric dipole—magnetic dipole dynamic property tensor. As shown in
Chapter 4, both these tensors are time odd and so g, can only contribute in the
presence of a time-odd influence such as a magnetic field.

Brown, Shtrikman and Treves (1963), and Birss and Shrubsall (1967), sug-
gested that certain magnetic crystals could show an effect called non-reciprocal
or gyrotropic birefringence, the origin of which Hornreich and Shtrikman (1968)
ascribed to property tensors equivalent to our G4 and A[, gy Thus o, generates
gyrotropic birefringence, and it is seen from (3.4.16) that g, contributes to polar-
ization and intensity changes in just the same way as the real symmetric dynamic
polarizability o which is responsible for conventional linear birefringence. So,
like linear birefringence, gyrotropic birefringence can only exist in oriented me-
dia, and the associated polarization changes are subject to all the complications
indicated in Section 3.4.4. But in addition, since there must be a static magnetic
field, or bulk magnetization in the case of a magnetic crystal, parallel to the light
beam, any polarization changes associated with gyrotropic birefringence add on
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reflecting the light beam back through the sample: this contrasts with polarization
effects associated with linear birefringence, which cancel.

3.4.10 The Jones birefringence

In the development of his optical calculus, mentioned in Section 3.4.1, Jones (1948)
predicted the existence of a new kind of linear birefringence together with its
corresponding dichroism. These two new properties arose from the two-by-two
matrix that Jones derived for determining the effect of a nondepolarizing medium
on a polarized monochromatic light beam incident on it in certain directions. Having
four complex elements, the Jones matrix represents in general eight distinct optical
effects, namely refraction, absorption, circular birefingence and circular dichroism,
linear birefringence and linear dichroism with respect to a pair of orthogonal axes,
and linear birefringence and linear dichroism with respect to a second pair of
orthogonal axes that bisect the first.

The last two properties were the new ones. They have since been predicted
to occur naturally in certain magnetic and nonmagnetic crystals, and in fluids by
the simultaneous application of uniform static electric and magnetic fields parallel
to each other and transverse to the light beam (Graham and Raab, 1983; Ross,
Sherbourne and Stedman, 1989). Observation of the Jones birefringence in crystals
is hampered by the presence of conventional birefringence, but is favourable in
fluids due to its dependence on EB whereas the conventional birefringence depends
on E? for the Kerr effect and B? for the Cotton—Mouton effect. This magnetoelec-
tric Jones birefringence has been observed by Roth and Rikken (2000) in para-
magnetic molecules such as the organometallic complex methylcyclopentadienyl-
manganese-tricarbonyl, CoH;MnO3, in the neat liquid state.

A molecular theory of the magnetoelectric Jones birefringence in fluids has been
given by Graham and Raab (1983), who showed that it depends on Gg, the real
part of the electric dipole-magnetic dipole dynamic property tensor and A, By
the imaginary part of the electric dipole—electric quadrupole dynamic property
tensor, perturbed by the static electric and magnetic fields simultaneously. The
magnetoelectric Jones birefringence therefore shares a kinship with magnetochiral
birefringence and nonreciprocal birefringence since in all three cases an essential
element is the activation of the same time-odd property tensors by a time-odd
influence, a static magnetic field.

There is another distinct magnetoelectric birefringence, this time induced by
perpendicular static electric and magnetic fields transverse to the light beam. It has
been observed by Roth and Rikken (2002) in fluids and compared with the Jones
magnetoelectric birefringence where it was found to have the same magnitude, as
predicted (Graham and Raab, 1984; Ross, Sherbourne and Stedman, 1989).
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A third distinct magnetoelectric optical phenomenon, an anisotropy in the re-
fractive index for an unpolarized light beam, propagating parallel and antiparallel
to E X B using perpendicular static electric and magnetic fields transverse to the
light beam, has also been observed (Rikken, Strohm and Wyder, 2002). This effect
is related to the Cotton—Mouton effect through special relativity.

It has been shown that origin invariance of the expressions describing Jones
birefringence requires the diamagnetic contribution to the magnetic dipole moment
interaction with the static magnetic field in (2.5.1) to be retained in developing G g
(Rizzo and Coriani, 2003). This may also be necessary for other phenomena that
depend on G4, although it is not required in the particular case of magnetochi-
ral birefringence of fluids, described by (3.4.68), since the extra terms vanish on
averaging over all orientations (Rizzo and Coriani, 2003).

3.4.11 Electric optical rotation (electrogyration) and circular dichroism

The simple pictorial symmetry arguments in Section 1.7.3 demonstrate that no direct
electric analogue of the Faraday effect exists in fluids, even of chiral molecules. An
electric analogue of the Faraday effect can exist in certain crystals, however, and
we refer to Buckingham, Graham and Raab (1971), Gunning and Raab (1997) and
Kaminsky (2000) for further details.

It is easy to understand one particular source of linear electric optical rotation. In
Section 3.4.7, the Faraday effect was formulated in terms of a linear perturbation of
the imaginary dynamic polarizability component o/, , by a magnetic field along the
z direction. So one source of an electric analogue is the activation of the same tensor
component by an electric field along z in crystals which exhibit the magneto-electric
effect, which is the generation of a small magnetization in the direction of an applied
electric field. The electrically-induced magnetization may be regarded as arising
from an imbalance in the fluctuations associated with the two equal and opposite
spin lattices in antiferromagnetic crystals (Hornreich and Shtrikman, 1967).

Returning briefly to fluids, it is easy to show that an additional optical rotation
and circular dichroism can exist in an isotropic collection of chiral molecules
in perpendicular electric and magnetic fields, at right angles to the direction of
propagation, that varies linearly with the strength of each field (Baranova, Bogdanov
and Zel’dovich, 1977; Buckingham and Shatwell, 1978). This effect originates in
the simultaneous electric and magnetic field perturbation of c,, 'z

3.5 Polarization phenomena in Rayleigh and Raman scattered light
3.5.1 Nonrefringent scattering of polarized light

We now consider polarization effects in light scattering processes other than
those involving interference between the forward-scattered and the unscattered
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Fig. 3.3 The system of unit vectors used to describe the incident (i, j, k) and
scattered (i%, j¢, k%) waves. £ is the scattering angle.

components. These include Rayleigh and Raman scattering in any nonforward di-
rection, and also Raman scattering in the forward direction since interference with
the unscattered wave does not occur on account of the different frequencies.

Figure 3.3 shows a molecule at the origin O of a right-handed coordinate system
X, y, z associated with unit vectors i, j, kK in an incident quasi-monochromatic light
wave propagating along n' = k. We require the polarization and intensity in the
wave zone of light scattered at an arbitrary angle & away from the forward direction.
The unit vectors i, j, k are chosen so that the scattered direction is always in the jk
plane, called the scattering plane. If a unit vector k¢ is assigned to the direction of
the propagation vector n of the detected wave, the characteristics of the detected
plane wave in the wave zone can be specified in terms of a coordinate system
x4, yd, z9 associated with unit vectors id, jd, k. From Fig. 3.3, the two sets of unit
vectors are related by

i' =1, (3.5.1a)
j* =jcosg —ksing, (3.5.1b)
k! = Kkcos& + jsiné. (3.5.1¢)

: ~d .
The Stokes parameters of the scattered electric vector E- in the x9, y9, z9 system
are

8§ = EGWES + ESES,
St = EGES — ES.ESE,
Sy = —(ESESE + ESES),
Sg - —I(EngSj - ESdEij)
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We require these parameters in the system x, y, z used to describe the incident
wave; from (3.5.1),

S§ = EYEY + E‘;Eg* cos’& + EYE% sin® &

— (EYEY + EYE") cos € sin, (3.5.24)
S¢ = EAES — BYEY cos” £ — ESEY sin’ ¢

+ (ESEY + E{ES) cos€ sing, (3.5.2b)
S§ = —(EJES cos§ — E{EY sing

+EYEY cosE — EYEY sin§), (3.5.2¢)
Sg = —i(EiE‘;* cos& — Eiﬁf* sin&

—EJE( cos§ + ELEY sing). (3.5.2d)

The electric vector of the scattered wave is given by (3.3.3) in terms of the scattering
tensor and the electric vector of the incident wave, so using

2 2
fd frd WHOY ~ s f(0) O
EaEﬁ* = (471R) aayagaE;)E(S ,

the Stokes parameters (3.5.2) of the scattered wave can be written in terms of the
scattering tensor and the Stokes parameters of the incident wave:

2\ 47 R

— 2Re(@xxd},)Ss — 2Im(@yrdi},)Ss

(. l? 4 1@y 1)So + (ay > — 1y, 1*)S)

— 2Re(@y2d1},) Sy — 2Im(Gy.di}, ) S3] cos” &

+ [z + lazy 1) So + (e |* = lazy 1)S)

— 2Re(@:d%,) S, — 2Im(d.,aZ,)Ss] sin® &

— 2[Re(@y. ], + dyydily)So + Re(lydl, — dyydly)S)

—Re(@y,al, + a..a;,)S: — Im(d@y,a;, + d..ay,)S31cos & sink},
(3.5.3a)

1 (@?uo 2 N . . .
S5 —( ){<|axx|2+|axy|2>So+<|axx|2—|axy|2>sl

1 a)z,uo 2 - o - ~
S¢ = 3 ( = R) {(Gx |* 4 1axy 1D S0 + (x> = 1dxy|)S:

— 2Re(@,},)Sy — 2Im(d @}, )Ss
— [y |* + 1ayy|))So + [y |* — 1y PSS
— 2Re(@y,d},) Sy — 2Im(dy.di}, ) S3] cos” &

— (@ |* + gy |*)So + (| ]* — |y |*)S)
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— 2Re(@d%,) S, — 2Im(d.,aZ,)Ss] sin® &

+ 2[Re(@yx 7, + dyyds,)So + Re(lyrdil, — ayydl,)S)

— Re(&yx&;‘y + Ezzx&;fy)Sz — Im(&yx&;‘y + Zzzx&;fy)Sﬂ cos & siné&},
(3.5.3b)

2 2
W™ [o SO -~ SO -~
Sy =— (47rR ) {[Re(@xxay, + Gryy,)So + Re(lxxdy, — dxydy,)S)

— Re(&”&;y + Ezyx&;y)Sz — Im(&“&;y + Ezyxﬁ:y)&] cos &

— [Re(@y @}, + dyyal,)So + Re(an,al, — ryal,)Si

—Re(ay ar, + Zzzxc”z;‘y)Sz — Im(&xx&;y + &Zx&;‘y)Sg] sing},  (3.5.3¢)

zy

2
w~ Lo s~ o~ ~  ~ G. . a .l
S$ = (m) {Im(ayxay, + drydy,)So + Im(axdy, — dyyay,)Si

—Im(a,a*

Yy
— My 2, + Gy @) So + 1M, — dayd?)Sy

)S) + Re(dxxiz:y - lexfl;‘y)Sﬂ siné}. (3.5.3d)

— Zlyx&j:y)Sz + Re(&”d;"y — Zzyxd:y)&] cos &

*

— Im(axxdzy

- &zxa:y

By considering the various contributions to the complex scattering tensor dqg
specified by (3.3.4), these equations can be used to derive explicit expressions, in
terms of dynamic molecular property tensors, for the intensity and polarization of
light scattered into any direction from an incident beam of arbitrary polarization by
a gaseous, liquid or solid medium which can be transparent or absorbing, oriented
or isotropic, and also optically active. However, such general expressions are of
overwhelming complexity, so we shall extract explicit expressions for particular
situations as required. Notice that the last three terms in (3.3.4) do not contribute
here since the scattered waves are purely transverse, and we are not considering a
finite cone of collection.

Most Rayleigh scattered intensity originates in g, the real symmetric dynamic
polarizability, so the dominant polarization effects which it generates are discussed
first. Polarization effects arising from other tensors are then discussed in turn, and
expressions presented which must be added to those in a,p since the additional
effects usually have to be measured in the presence of the dominant contributions
from o, 8. We consider explicitly only fluid samples that are isotropic in the absence
of external fields.

The same expressions apply to Raman scattering if the dynamic molecular prop-
erty tensors are replaced by the corresponding transition tensors, so terms in the
real symmetric and imaginary antisymmetric property tensors oqs and o,z apply
equally well to scattering through the real symmetric and imaginary antisymmetric
transition tensors (o)}, and (a&ﬂ)‘,’nn defined in (2.8.8b) and (2.8.8¢). But there
is also the possibility of scattering through the real antisymmetric and imaginary
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symmetric transition tensors (@qg)j,, and (a‘;ﬂ)fnn, defined in (2.8.8¢) and (2.8.8d):
as shown in Chapter 8, these can be important in resonance Raman scattering.

Furthermore, the same expressions apply to scattering at both transparent and
absorbing frequencies. In the former case the dynamic molecular property tensors
or transition tensors are written as functions of just the dispersion lineshape f,
whereas in the latter case the complete complex lineshape f + ig must be used
(for an isolated transition we can then write, for example, o G(’;“ﬁ = a;ﬁ G&ﬂ).
Discussion of the variation of the scattered intensity with the frequency of the
incident light in the region of an electronic absorption frequency, known as an
excitation profile in the case of resonance Raman scattering, is postponed until
Chapter 8 since the internal molecular mechanism generating the scattering tensor
exerts a considerable influence.

3.5.2 Symmetric scattering

The situation most commonly encountered is Rayleigh or Raman scattering at
transparent frequencies from randomly oriented achiral molecules in the absence
of external static fields. The scattering is then usually dominated by the real dynamic
polarizability g, which is always symmetric, or by (atep);,,, the symmetric part of
the real transition polarizability. In equations (3.5.3) for the Stokes parameters of the
scattered wave, the specified products of tensor components must be averaged over
all orientations of the molecule. Using the unit vector averages (4.2.53), together

with aqg = oy, we find the following types of nonzero average:

(axxa;kx> = aaﬂa;:a (iaiﬁiyi(S)

= 15 (Caa @)y + 20ap0tly), (3.5.40)
(axxeryy) = dapatysliaip jy js)

= 1520y — Aaptly), (3.5.4b)
<0‘xy°‘:y> = aayo‘Zs (ialpfyJs)

= %(3010‘/3“;/3 - O‘aa“;;ﬁ)- (3.5.4¢)

The Stokes parameters for Rayleigh light scattered into the forward direction
(¢ = 0°) are then

50(0°) = K (Taapory + dlaatyp), (3.5.5q)
S‘f(OO) = K(3aaaal§ﬂ + aaﬂazﬁ)P cos2ncos 20, (3.5.5b)
53(0°) = K (Betaa sy + tapatiss) P cos 21 sin 26, (3.5.5¢)

Sg(OO) = 5K (Qaa0zs — Qapdyp) P sin 21; (3.5.5d)
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for light scattered at right angles (¢ = 90°),

56(90°) = 3K [(130tap0ts — Qe )

+ (aaﬂa;ﬁ + 3awa;§ﬂ)P cos 21 cos 261, (3.5.6a)
51(90°) = 3K [(atapaty + 3aaaefy)(1 + P cos2ncos26),  (3.5.6b)
53(90°) = 0, (3.5.6¢)
53(90°) = 0; (3.5.6d)

and for backward-scattered light (§ = 180°),
S§(180°) = S5(0°), (3.5.7a)
59(180°) = $9(0°), (3.5.7b)
S5(180°) = —S5(0°), (3.5.7¢)
S$(180°) = —55(0°), (3.5.7d)
where
1 (& ueE®\’
= (A (35.8)
30\ 4nR

and P, 6 and n specify the polarization of the incident beam.

The same Stokes parameters apply to Raman scattering if «.g is replaced by
(@ap);,,- Infact the Stokes parameters (3.5.5) apply only to the Raman case; forward
Rayleigh scattering is not meaningful since forward-scattered waves with the same
frequency as the incident wave interfere with the transmitted wave and generate
refraction and birefringence phenomena. However, we can talk about near-forward
Rayleigh scattering.

A significant quantity in measurements on scattered light is the depolarization
ratio, defined as the ratio of intensities linearly polarized parallel and perpendicular
to the scattering plane. For 90° scattering,

I, Le  S§(90°) — S(90°)
P T Te T S990°) + 5990%)
6p ()

= , (3.5.9)
4502 + 7B8(a)? + [45a2 + B(a)?] P cos 21 cos 20
where the isotropic and anisotropic invariants
o = §uay, (3.5.10a)
B(@) = 3(3aaparyy — Aaalsp), (3.5.10b)

which are discussed in Section 4.2.6, are the only combinations of components
of agpa;s that can contribute to light scattering in an isotropic sample. Equation
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(3.5.9) generates the standard expressions for the depolarization ratio in incident
light of particular polarizations (Placzek, 1934). Thus for unpolarized incident light
(P = 0), and right-or left-circularly polarized incident light (P = 1, n = £m/4),

6 ()’

P = e 1 7B@R

(3.5.11)

for incident light linearly polarized perpendicular to the scattering plane (P = 1,
n=20,0=0),

3B(@)’

plx) = m;

(3.5.12)

and for incident light linearly polarized parallel to the scattering plane (P = 1,5 =
0,0 =m/2),

p(y) =L (3.5.13)

In the Raman case p depends on the effective symmetry of the molecule and
the symmetry species of the molecular vibration. Thus p(x) can vary between 0
for a totally symmetric vibration spanned only by the isotropic polarizability « (as
in the cubic point groups, for example), and % for nontotally symmetric vibrations
spanned only by the anisotropic polarizability B(«).

Another quantity of interest is the circularly polarized component of the scattered
light. This is given by S, and from (3.5.3d) it can be seen that, for randomly oriented
archiral molecules, a circularly polarized component only exists in the scattered
light if the incident light has a circularly polarized component and the scattering
angle is other than 90°. In the forward direction (or near-forward for Rayleigh
scattering) the fraction of the scattered light that is circularly polarized (the degree
of circularity) is found from (3.5.5) to be

$5(0°) 509 — B(@)*]

- P sin2x. 3.5.14
$40°) ~ 4502 + 7B G149

Thus if the incident beam is completely circularly polarized, the near-forward
Rayleigh component is also completely circularly polarized in the same sense if
the molecule is isotropically polarizable; polarizability anisotropy reduces the cir-
cularly polarized component. The Raman light scattered into the forward direction
from circularly polarized incident light is completely circularly polarized in the
same sense if the vibration is spanned only by «, and is partially circularly polar-
ized in the opposite sense (with a degree of circularity %) if the vibration is spanned
only by B(«). Equations (3.5.7) show that in the backward direction the degree of
circularity of the scattered light is the same as (3.5.14) for the forward direction,
but with opposite sign.
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The use of circularly polarized light in conventional Rayleigh and Raman scat-
tering was discussed by Placzek (1934), who defined a reversal coefficient R as the
ratio of the intensity of the component circularly polarized in the same sense as the
incident beam to that polarized in the reverse sense. Thus for backward scattering
in right-circularly polarized incident light, for example,

R(ISO°) — I _ S§(1800) + S%(lSOO)
I S§5(180°) — S5(180°)
6@ 2p()
4502 4 B(@)? 1 —p(x)

(3.5.15)

where I and [ are the scattered intensities with right- and left-circular polarization,
and for forward scattering

_50(0°) + 85(0°) 1

ROV= 5405y Zsé0r) = R180°)

(3.5.16)

This technique enables totally symmetric and nontotally symmetric Raman bands
to be distinguished in striking fashion since they have opposite signs in an Ix — I,
spectrum (Clark et al., 1974). But, as discussed in the next section, in the absence
of antisymmetric scattering it gives no more information than the depolarization
ratio.

3.5.3 Antisymmetric scattering

Rayleigh and Raman scattering can occur also through the imaginary dynamic po-
o.n» the antisymmetric
part of the imaginary transition polarizability, and through ()3, the antisym-
metric part of the real transition polarizability. Since c,, 5= —oe;g «» the only type of

nonzero average 1S now

larizability a;ﬂ, which is always antisymmetric, through (o), 5)

(yas) = o gy, (3.5.17)

The corresponding contributions to be added to the Rayleigh Stokes parameters
(3.5.5) to (3.5.7) are

56(0°) = 5K ooty (3.5.18q)
51(0°) = —5K a gorly P cos 21 cos 26, (3.5.18b)
55(0°) = —SKa;ﬁozs};P cos 27 sin 20, (3.5.18¢)

$5(0°) = 5Kazal, P sin2n; (3.5.18d)
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56(90°) = 3 Kajzaliy(3 — P cos 21 cos 26), (3.5.19q)
S51(90°) = —3 Ko g0y (1 + P cos 21 cos 26), (3.5.19b)
59(90°) = 0, (3.5.19¢)
55(90°) = 0; (3.5.19d)
S56(180°) = S5(0°), (3.5.20a)
$9(180°) = S7(0°), (3.5.20h)
55(180°) = —55(0°), (3.5.20¢)
53(180°) = —S5(0°). (3.5.20d)

The general depolarization ratio for pure antisymmetric scattering at 90° is

therefore
2

P =1 Pcos 2ncos20 (3:5:21)
Thus if the incident light is unpolarized or circularly polarized,
pn) =2; (3.5.22)
if linearly polarized perpendicular to the scattering plane,
p(x) = o0; (3.5.23)

and if linearly polarized parallel to the scattering plane,
p(y) = 1. (3.5.24)

The phenomenon described by (3.5.23) is called inverse polarization and was first
predicted by Placzek (1934).

The degree of circularity for pure antisymmetric scattering in the forward direc-
tion is

— = P sin2n. (3.5.25)

In the backward direction, the degree of circularity is the same but with opposite
sign. Thus, as for pure isotropic scattering, if the incident beam is completely
circularly polarized, the near-forward Rayleigh and the forward Raman components
arising from pure antisymmetric scattering are also completely circularly polarized
in the same sense. The corresponding reversal coefficient is

R(0°)

_ = 0. (3.5.26)
R(180°)

In fact antisymmetric scattering is usually encountered in the form of anomalous
polarization (co > p(x) > %), rather than pure inverse polarization (p(x) = 00).
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This arises because symmetric and antisymmetric scattering contribute to the same
band.

Antisymmetric Rayleigh scattering can produce large ‘anomalies’ in the depo-
larization ratio of light scattered from atoms (such as sodium) in spin-degenerate
ground states when the incident frequency is in the vicinity of an electronic ab-
sorption frequency. Antisymmetric resonance Rayleigh and Raman scattering is
also possible from molecules in degenerate states; but it can also arise without
degeneracy in resonance Raman scattering associated with modes of vibration that
transform as components of axial vectors. These questions are discussed in detail
in Chapters 4 and 8.

If isotropic, anisotropic and antisymmetric scattering contribute simultaneously
to the same Raman band, it is necessary to measure both the depolarization ratio
in 90° scattering and the degree of circularity or reversal coefficient in 0° or 180°
scattering in order to separate them (Placzek, 1934; McClain, 1971; Hamaguchi,
1985). General expressions for the depolarization ratio (incident light linearly po-
larized perpendicular to the scattering plane) and the reversal coefficient (backward
scattering) are

 3B@)? + 5A@)?
P = S B (3.5.27)
2
R(180°) = 6 (@) (3.5.28)

4502 + B(a)? + 5B(a’)?’
where ? and B(«)? are the isotropic and anisotropic invariants (3.5.10), and
B = Jagz0., (3.5.29)

is the corresponding antisymmetric invariant.
Thus the relative magnitudes of o, B(cr)? and B(«’)? can be determined from the
three independent expressions given by the following three intensity measurements:

1. Intensity of light scattered at 90° and linearly polarized parallel to the scatter-
ing plane, in incident light linearly polarized perpendicular to the scattering plane:
[38()* 4 58(')’].

2. Intensity of light scattered at 90° and linearly polarized perpendicular to the scatter-
ing plane, in incident light linearly polarized perpendicular to the scattering plane:
[450% + 4B(a)*].

3. Intensity of the component of light scattered at 180° with the same sense of circular
polarization as the incident light: 68(c)?.

Complete polarization measurements such as these have been reported for res-
onance Raman scattering from ferrocytochrome c (Pézolet, Nafie and Peticolas,
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1973; Nestor and Spiro, 1973), and provide information about the effective sym-
metry of the haem group.

Since the shapes of the Raman bands generated by isotropic, anisotropic and
antisymmetric scattering are different, it is worth noting that the relative contribu-
tions to a particular Raman band could be determined just from 90° scattering by
decomposing the lineshape into the three characteristic parts.

3.5.4 Natural Rayleigh and Raman optical activity

Rayleigh and Raman scattering from chiral samples can show additional polariza-
tion effects that originate in the slight difference in response to right- and left-
circularly polarized light. The main contribution to ‘optically active’ Rayleigh
scattering arises from interference between waves generated by a.g and waves
generated by G/ op Plus Aq gy, Similarly, the main contribution to optically active
Raman scattering arises from interference between waves generated by (aug);,,
and waves generated by (Gfxﬁ)mn plus (A, gy )mn- The averages over all molecular
orientations of products of components of a,g with components of G;ﬂ are similar
to (3.5.4), but in addition we must use the unit vector average (4.2.54) to obtain the
following type of nonzero average:

<azxAZ,zy> = a)/OlA:Sk’gﬁ<i0tjﬂk)/k8k€>
= %(eaﬂyo{mA;';,a,S + Eapslya Al g + Eapetya Al ). (3.5.30)

The first and third terms of this expression are in fact zero because aqs = g, and

Aa.py = Aa.yp-
The corresponding contributions to be added to the Rayleigh Stokes parameters
(3.5.5) to (3.5.7) are

de 4K

S§(0°) = —(3awGﬂﬂ + s Gy — 300apEays A 55) Psin2n, (3.5.31a)
540°) =0, (3.5.31b)
55(0°) =0, (3.5.31¢)
55(0°) = 4—K(3a Gy + aap Gy — 300apEays AL 5): (3.5.31d)
2 - aaJgp ap aBcaysily sp)>

K
$6(90°) = —(130ap Gy — daa Gy — 500apEays A} 35) P sin 21, (3.5.32a)

K .
51(90°) = — (Beaa Gy + epGijs + 0apays Ay 55) Psin2n, - (3.5.32b)
55(90°) = 0, (3.5.32¢)
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55(90°) = §[13aaﬂng‘ﬁ — 0o Gy — 500upEays A g5
+ (3050,0,G:§k/8 + agp Gf;"ﬁ + Wapays A, 55) P €OS 21 oS 20];
(3.5.32d)
d o 8K /% I 1 * :
$p(180%) = 7(3(3101,3G0”3 — aaaGﬂﬂ + gwaaﬂsaygAy’aﬁ)P sin 27,

(3.5.33a)
5¢(180°) = 0, (3.5.33b)
55(180°) = 0, (3.5.33¢)
S$(180°) = STK(saa,gG;fﬂ — oGy + §00apEays AL g5).- (3.5.33d)

These equations show that the optically active contribution to the scattered intensity
depends on P sin 25 (Atkins and Barron, 1969), and is therefore zero if the incident
light is unpolarized or linearly polarized; they also show that optical activity gives
rise to a circularly polarized component in the scattered light. Notice that in the
forward and backward directions there is no change in azimuth, and the azimuth of
the light scattered at 90° is always perpendicular to the scattering plane (although
optical rotation of the scattered light leaving an optically active sample can occur
subsequently).

An appropriate experimental quantity in Rayleigh and Raman optical activity is

a dimensionless circular intensity difference
IR _ IL

where IR and I are the scattered intensities in right- and left-circularly polarized
incident light. From (3.5.31) to (3.5.33) and (3.5.5) to (3.5.7) we find the following
As for scattering at 0°, 180°, and 90° (Barron and Buckingham, 1971):

1
4(3%“0;;;3 + oGy — gwaaﬁgaﬁA;)w)'

A(0°) = . (3.534)
c(Toyyof, + azar,)
8(3cepGlly — tea G + Loaygey, s A*
A0y = 232 G i ety Ayon) (35 35,
c(7awaj{M + a“a;M)
2(TaapGlly + aga Gy + Lwoggeq, s A*
AL(90°) = (o Gy pp 7 37 abrevs ”’3), (3.5.364)
c(Tazpof, + oaf,,)
43003 G, — e G — Lw0tgpeq, s A*
A007) = 2B Gy = o Gy = s0tptursAyg) (o 5 3y

20(3am(x;‘# — aMaZM)
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Only in scattering at 90° is it meaningful to define components polarized perpen-
dicular and parallel to the scattering plane and we refer to A,(90°) and A,(90°)
as the polarized and depolarized circular intensity differences; the circular inten-
sity difference with no analyzer in the scattered beam is obtained by adding the
numerators and denominators in (3.5.36a) and (3.5.36b). Notice that the degree of
circularity of the scattered light wave gives information equivalent to that from the
circular intensity difference. For example, Sgl (90°)/ Sg (90°) equals (3.5.36a) if the
incident light is linearly polarized perpendicular to the scattering plane, and equals
(3.5.36D) if linearly polarized parallel to the scattering plane.

The symmetry requirements for optically active Rayleigh and Raman scattering
are discussed in detail in Chapter 7. For the moment, we note that only chiral
molecules can support such scattering. This is because the same components of
Qqp, a second-rank polar tensor, and G:xﬁ, a second-rank axial tensor, are specified
in each cross term, and polar and axial tensors of the same rank only have the same
transformation properties in the chiral point groups. Furthermore, although A, g,
does not transform the same as G(’xﬁ, it always occurs in the cross terms with o in
the form 4,5 A, 5, which has transformation properties identical with G/, 5 Notice
that although A, g, only contributes to birefringent optical activity phenomena
such as optical rotation and circular dichroism in oriented media, it contributes
to natural Rayleigh and Raman optical activity even in isotropic media where its
contributions are of the same order of magnitude as those from G,.

Contributions to the Stokes parameters of the Rayleigh and Raman scattered light
from terms in G'* and A2 can be calculated from the general equations (3.5.3), but
are not written down explicitly here since they are expected to be about 10~° times
terms in o and 1073 times terms in oG’ and @ A, which is probably too small to
be detected at present. Furthermore, they do not describe optically active scattering
since they do not have the circular polarization dependence of the «G’ and « A
terms; this also makes them more difficult to isolate from the dominant > terms.
In addition, the molecules do not necessarily need to be chiral to support such
scattering; but if the molecules do happen to be chiral, racemic collections would
show the same G’* and A2 scattering as resolved collections since it is independent
of the sign of the optical activity tensor (Pomeau, 1973). This topic has been revisited
in the context of fluctuations in achiral, rather than racemic, systems which generate
fleeting chiral configurations (Harris, 2001).

Although the results for optically active scattering presented above apply to most
Raman scattering situations, we have not included contributions from cross terms
between the real antisymmetric transition polarizability (op);,, and the transition
optical activity tensors (G, P )mn and (Ag, gy Jmn - Such cross terms could be important
in certain resonance Raman scattering situations. There is also the possibility of
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optically active scattering involving cross terms between o, op a0d Gop plus A, By
which could be important in resonance Rayleigh and Raman scattering from odd-

electron chiral molecules.

3.5.5 Magnetic Rayleigh and Raman optical activity

Just as all samples in a static magnetic field parallel to the incident light beam can
show Faraday optical rotation and circular dichroism, so all samples in a static mag-
netic field can show Rayleigh and Raman optical activity. The main contribution
to optically active magnetic Rayleigh scattering arises from interference between
waves generated by g unperturbed by the external magnetic field and waves gen-
erated by a4 perturbed to first order in the external magnetic field; and vice versa.
Similarly, the analogous contribution to optically active magnetic Raman scattering
arises from interference between waves generated by (op);,, unperturbed by the
external magnetic field and waves generated by (oz(;ﬁ )i, perturbed to first order in
the external magnetic field; and vice versa. It is emphasized that the perturbation
must arise from an external magnetic field: although a magnetic perturbation arising
within a molecule can generate nonzero components of O‘fxﬁ’ this does not give rise
to optically active scattering in isotropic samples.

The complex dynamic polarizability is written as a power series in the external
magnetic field:

Gop(B) = otop — iatlyg + oty B, — oy By + - (3.5.37)
The quantum mechanical expressions for a%?y and a;f/'g";/ are the magnetic ana-

logues of (2.7.8). In view of the almost overwhelming complexity of some of the
results of this section, we shall omit the superscripts () and the commas sepa-
rating tensor subscripts. We now apply a weighted Boltzmann average in the form
(3.4.23), with V(€2) = —m,,, B, and obtain expressions such as

= ~x 4 * /x
OOy = 1B <axxaxw Oy Oy, T Oy O

, 1
_O{xxya:y_'_ (lexOl My, — 0y x)mny)'i' > (3538)

xy

Nonzero terms occur here only for B, = B; for example,

(oxayy) = oo os(ukpiyisic)

= 3_1()(2‘)‘0!;980:)/505,/3*;/5 + aotagﬂy&a;*gﬂ)- (3.5.39)
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The corresponding contributions to be added to the Rayleigh Stokes parameters
(3.5.5) to (3.5.7) are

S3(0°) = —2KB, [Zaa,gsw(soz};*ya + Caabpysysp + 2058ays0 85

1
+ a(’xﬁsaﬁyag‘sy + k—T(Z(Xa;;Say(sO{gymna

+aweﬁy3a;*5m,,ﬂ]1) sin 27, (3.5.40a)
5%0°) =0, (3.5.40b)
$5(0°) = 0, (3.5.40¢)

S5(0°) = —2KB, [Zaaﬂeay‘sagys + Caafpystysg + 20 580y50 55

+ papy iy, + k—T(zaaﬂ%ys(xgymna + OlaagﬂySa;*amnﬁ];

(3.5.40d)
SH90°) = — KB [ 40apearstfys + Qauysyss — Wapearsi
+ 4“;;38011/60‘;)/5 - “&ﬁgwﬁa;ay - za;ﬁgaﬂy“;w
+ k_T(4aaﬂ8ay6a§<an5 + Qaabpystly s
— 2Wtapayst)siag) | P sin 21, (3.541a)

S?(900) = —KB, |:Olaa8ﬂy50[;*5ﬂ + 20105138“],50[;%}3

/ * / *
— Ulyp€aypllss, + 200,gEapy oy g5

a0ty + 2Waays p)|Psin2n, (35416)
55(90°) = 0, (3.5.41¢)
5$(90°) = 0; (3.5.41d)

S5(180°) = S5(0°), (3.5.42a)
59(180°) = 0, (3.5.42b)
$5(180°) = 0, (3.5.42¢)
S$(180°) = —S5(0°). (3.5.42d)

Notice that magnetic optical activity does not lead to a circularly polarized compo-
nent in the light scattered at 90° if the magnetic field is parallel to the incident beam;
it follows from (3.5.3d) that such a component is only generated by a magnetic field
parallel to the scattered beam. On the other hand, the intensity of the scattered light
is only dependent on the degree of circularity of the incident light (which leads
to a circular intensity difference) if the magnetic field is parallel to the incident
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beam. This contrasts with natural optical activity in which the light scattered at any
angle shows a circularly polarized component and a circular intensity difference
simultaneously.

From these equations, together with (3.5.5) to (3.5.7) and (3.5.18) to (3.5.20), we
find the following magnetic circular intensity differences for scattering at 0°, 180°
and 90° (Barron and Buckingham, 1972):

A0°) = —2B, [2aaﬂ8w5agy3 + O[aaé‘ﬂ],ga;kaﬁ
+ Zafxﬂgayéa;ﬁs + “&ﬂgtxﬁyo‘;{w
1 /% k
+ ﬁ(Zaaﬁsaygocﬁymné + Olaaé"gyga;amnﬂ )i| /
(To0, + apon,, + Sajmaf;); (3.5.43)
A(180%) = A(0%); (3.5.44)
Ax(900) = _ZBZ |:2aa58ay30{g(y5 + Olaaé‘/gyga;*aﬂ
+ 201(;580”/50(;),5 + a;ﬂeaﬂyag‘ay
1 2 /% %
+ ﬁ( aaﬁeamaﬂymns + awalgy(;ozyamnﬂ)

(To0, + ana,, + 5,077, (3.5.45a)
A.(90°) = —2B, [aaﬂewgagy(s — aaﬂsay(gafw

/ * / *
T Applayslp,s = Uagapy®yss

1 *
+ k_T(aotﬂgayéal/g*ymn(; - aaﬁgayéa;gmnlg)]/
Gopay, — oy, + Sajma,f;). (3.5.45b)

The symmetry aspects of magnetic Rayleigh and Raman optical activity are
discussed in detail in Chapter 8. For the moment, we note that all molecules can
support such scattering, because the components of the unperturbed and perturbed
dynamic polarizabilities specified in each temperature-independent term always
have the same transformation properties. For example, in (Xa/gsay(;()l;%’ 8 both aqg
and eqy505 5 are symmetric second-rank polar tensors; and in &,5€q, 5055 , both
s and g4,p055 , are antisymmetric second-rank polar tensors.

So far, we have not included cross terms containing the real antisymmetric tran-
sition polarizability (oap);,,, and cross terms containing the imaginary symmet-
ric transition polarizability (ozl;ﬂ )b+ Such terms are important in certain resonance
Raman scattering situations. The Stokes parameter contributions (3.5.40) to (3.5.42)
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are therefore generalized to

85(0°) =

540°) =
53(0°) =
53(0°) =

55(90°) =

5$(90°) =

S /S* S Jax S rax
—2KB, [4040[580,],50(/3]/8 + 200580y50 5,5 T UgaEpys Aysp
a /S% a /S% /S S3k

/S ax /S ax ra Sk
— Zaaﬂeay(gaﬂﬂ — oo Epyslysp + Z%ﬂswgayﬂs

1
+a;f;38a,3ya§§y + ﬁ(4a;ﬂ8ay5a§;mn5 + ZOz;ﬂsaygoeg‘;mna
+ Qg €80y My — 20gEays sy Mng — agfasﬂy(ga;’gmnﬁ)]P sin 27,
(3.5.46a)
0, (3.5.46b)
0, (3.5.46¢)

_ 2KBZ[ A0S a5+ 205y sty Ay

— Zagﬂeayaa)’fga — a;ﬂeaﬁyag%*y + 4045580,)/505;”;8

— 2asﬁ8ay5a§>§,a — asasﬁwga;’gﬂ + 2053380”,50{;’;3

+ a%salgya;;y + k_T( — 4a;ﬂeay5a§;mns + 2azﬂ8w5a;§’;mn8

+ a;asﬁyga;j‘g‘mnﬂ — 20y s Mg — a;fasﬁyga;’gm”ﬁ)};
(3.5.46d)

—KB, [6a;ﬂ8ayga§;5 + 4a;ﬂeay5a§;8 + azaeﬂyga;f‘;ﬂ

— 40 58ays0ygs + Qapayplssy, + 20058apy Usys

+ 200580y U5 + 200,580,505 — 20580y 5055

— 2a3ﬁsay,got§‘;3 — 6015/38&),5(1;;/8 — 40{:;/38(1),50{;);5

— gy 805 + A0l gpEay s ps — Clopaypllys,

/a Sk /a axk /S ask
- 2“aﬁ5aﬂyaaya - 2O‘aﬁ5aﬂy“ay3 - 2%5811)/80‘5;43

1
/a ax a ax S /S%
+ 2%,38&,,50:5),/3 + 2aaﬂsay5aﬁV5 + k—T(6040(/3sm,(;(xﬂymn(S
S /axk S rak /8 axk
—I—40{0“3,so,y,gozﬂymn(S + 0y Epyscty,s Mg — 40‘0:/350!1/50‘/3;/’""5
/S ax a /S% a rax
— Oy Epy sy 5TMng F 200880y Us, Mng + 200 8E0py s, s
S /ak a rax a rax .
+ 20(a/38ay50l5y Mg _2%,380:1/80‘3;/ Mg —2aaﬂ8ay5aﬂymn8)] P sin2n,
(3.5.47a)
S /8% S rax a /S%
—KB, |:2(Xaﬂ8aV30{/3y5 + Qo 8y 50,58 + QgpEaypliss,
a ISk a rax S rax
— 20t,5Eapy Uy s — 20ypEapy Usys — 20gpEayslsyp

a Jaxk a lax /S Sk
+ 20,580y, + 205E0y 505, 5 — 20 5Eay 50,5
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/S rax a Sk ra Sk

— Uy 850y, 55 — UopEayplss, + 200,pEapy s s

/a ax /S ax /a ax
+20,580py U5y 5 T 200pEay 80,5 — 20,80y 505 g

1

/a ax S /8% S Jax

_ 2aaﬁ8ay5aﬁy8 + k—T(201003(*90”,5(:»1/3)/mn(S + oy Epystys Mg

/s ak a /S% a Jax
— Qo By, sMMng — 2QygEapy sy Mg — 20ggEapy s, Mg

S rax a /axk a rax :
— Zaaﬂgay(g(xay Mg +2“a,35w6°‘5y Mg +2aaﬂsay5a ﬁymna)] P sin2pn,

(3.5.47b)
55(90°) = 0, (3.5.47¢c)
5$(90°) = 0; (3.5.47d)

S3(180°) = S3(0), (3.5.484)

59(180°) = 0, (3.5.48b)

85(180°) = 0, (3.5.48¢)

S$(180°) = —55(0°), (3.5.48d)

where again, for simplicity, we have written (¢gp),,,, etc. as a,; etc. The superscripts
s and a in og, and a&ﬂy refer to the symmetry with respect to interchange of the
first two tensor subscripts.

The generalized magnetic circular intensity differences follow immediately, but
we shall not write them down explicitly because of their complexity. However, it
is shown in Chapter 8 that they simplify considerably when applied to a specific
situation.

3.5.6 Electric Rayleigh and Raman optical activity

It was shown in Section 1.9.3 that, except in certain magnetic crystals, there is
no simple electric analogue of the Faraday effect (optical rotation and circular
dichroism induced by, and proportional to, a static electric field parallel to the
light beam) because such an effect would violate parity and reversality. However,
as demonstrated in Section 1.9.4, Rayleigh and Raman optical activity is allowed
for light scattered at 90° from all molecules in a static electric field perpendic-
ular to both the incident and scattered directions. The circular intensity differ-
ence changes sign if one of the following is reversed: the electric field direction,
the incident beam direction or the direction of observation. No electric Rayleigh
or Raman optical activity exists for light scattered in the forward or backward
direction.

Electric Rayleigh optical activity depends on cross terms between the unper-
turbed ot and G5 plus Ay gy, perturbed to first order in the electric field, together
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with cross terms between o perturbed to first order in the electric field with the
unperturbed G;ﬁ plus A, gy, the calculation proceeding in an analogous fashion to
the magnetic case discussed in the previous section. Similarly for electric Raman
optical activity with the dynamic molecular property tensors replaced by corre-
sponding transition tensors. The resulting contributions to the Stokes parameters
are complicated and are not given here. We refer to Buckingham and Raab (1975)
for explicit expressions for the electric Rayleigh circular intensity difference in a
number of molecular symmetries; although it is worth quoting here the expressions
for the temperature-dependent contribution in highly polar molecules in isotropic
media since this is likely to be the most important case:

Ax(900) = 2(Ex,ua/kT)[8a'3VOl55G§;/ — 385y5(¥a5G;k8 — 8(1/3},0{33(;2}

1
+ 561)((){,3),14;'3), - ao{ﬂA;,ﬂy + O[ﬁVA;fki,yot - aﬂﬂA;’:’ya)]/

c(Tozuay, + a0,,), (3.5.49a)
Az(900) = (Exﬂa/kT)[gaﬂyayéG;g*g - 8;3;/50[05/3(;;68
1 * * * *
+ gw(ZaﬁyAa’ﬂV — 20[0,,314],’/3}, - OlﬂyAﬁ,ya =+ aﬂﬂAy,ya)]/
(3.5.49b)

c(3ozwozjfu - oz,uazﬂ).
Although the natural optical activity tensors G, and Ag g, are involved, it is
emphasized that the molecules do not need to be chiral to show electric Rayleigh
and Raman optical activity.

De Figueiredo and Raab (1981) have given a molecular theory of a number
of other differential light scattering effects that are of the same order as electric
Rayleigh optical activity.
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Symmetry and optical activity

Ubi materia, ibi geometria. Johannes Kepler

4.1 Introduction

This chapter is a rambling affair. It collects together a number of disparate topics, all
of which have some bearing on the application of symmetry arguments to molecular
properties in general and optical activity in particular.

Optical activity is a splendid subject for the application of symmetry principles.
As well as conventional point group symmetry, the fundamental symmetries of
space inversion, time reversal and even charge conjugation have something to say
about optical activity at all levels: the experiments that show up optical activity
observables, the objects generating these observables and the nature of the quantum
states that these objects must be able to support. There are also technical matters
such as the simplification and evaluation of matrix elements using irreducible tensor
methods, a topic of great importance in magnetic optical activity. One topic set
apart from the others is the application of permutation symmetry to ligand sites
on molecular skeletons: this generates an imposing algebra based on ‘chirality
functions’ which gives mathematical insight into the phenomenon of molecular
chirality.

4.2 Cartesian tensors

In this book, considerable use is made of a cartesian tensor notation, and the sym-
metry aspects of various phenomena discussed in terms of the transformation prop-
erties of the corresponding molecular property tensors. A review of the relevant
parts of the theory of cartesian tensors is therefore appropriate. More complete ac-
counts can be found in works such as Jeffreys (1931), Milne (1948), Temple (1960)
and Bourne and Kendall (1977). A knowledge of elementary vector algebra is
assumed.

170
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4.2.1 Scalars, vectors and tensors

A scalar physical quantity, such as density or temperature, is not associated in any
way with a direction and is specified by a single number.

A vector physical quantity, such as velocity or electric field strength, is associated
with a single direction and is specified by a scalar magnitude and the direction. A
vector is specified analytically by resolving the components along three mutually
perpendicular directions defined by unit vectors. Thus ifi, j, k are unit vectors along
the axes x, y, z and V,, V,, V, are the corresponding components of a vector V, we
write

V=Vi+ V,j+ Vik 4.2.1)

Alternative representations include the triad

V=(,V, V), 4.2.2)
which is not meant to be a row matrix, and the column matrix
Vi
V = Vy s (42361)
V:
with the row matrix
Vi =, v, V) (4.2.3b)

as its transpose. Thus in matrix notation, the scalar product of two vectors V and
W is
V-W=V'W=VW,+V,W,+V,W,. (4.2.4)
The magnitude of a vector is defined as
V=V = (V24 V24 VD) 4.2.5)

A physical quantity associated with two or more directions is called a tensor.
Thus the electric polarizability & of a molecule is a tensor since it relates the induced
electric dipole moment vector to the applied electric field vector through

u=o-E. (4.2.6)

The directions of the influence E and the response p are not necessarily the same
on account of anisotropy in the electrical properties of the molecule. If pu and E are
written in the form (4.2.1), then & must be written as the dyad

O = Qi + @y dj + 0K + ay i + oy Jj
+ aijk + Olzxki + O‘z)’kj + o kk. 4.2.7)
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If the vectors p and E are written in the column matrix form (4.2.3a), then o must
be written as the square matrix

Uxx Oyy Oy
= |ay oy ay|. (4.2.8)
Oz Oy O

Whatever representation is used, if the components of (4.2.6) are written out ex-
plicitly, the same result obtains:

Mx = a Ex + O[xyEy + aszza
my =0y Ey +oayEy +ay E,
M =0 Ex +oayEy+a E,. (4.2.9)

Tensor manipulations are simplified considerably by the use of the following
notation. The set of equations (4.2.9) can be written

Moo= Y aapEp a=xy.z. (4.2.10)
B=x,y,z

The summation sign is now omitted, and the Einstein summation convention intro-
duced: when a Greek suffix occurs twice in the same term, summation with respect
to that suffix is understood. Thus (4.2.10) is now written

[ta = tapEp. 4.2.11)

In these equations, « is called a free suffix and 8 a dummy suffix. u, denotes the
array of three numbers that specifies the vector p, and a4 denotes the array of nine
numbers that specifies the tensor «. In this book, Greek letters are used for free or
dummy suffixes, whereas Roman letters or numerals are used for suffixes which
denote specific tensor components.

Although the word tensor is often reserved for physical quantities associated
with two or more directions, we shall see that it is more systematic to generalize the
definition of a tensor so as to include scalars and vectors. Thus a scalar is a tensor
of rank zero, being specified by a number unrelated to any axis. A vector is a tensor
of the first rank, being specified by three numbers, each of which is associated
with one coordinate axis. A tensor of the second rank is specified by nine numbers,
each of which is associated with two coordinate axes. Tensors of higher rank may be
introduced as natural extensions: thus a third-rank tensor is specified by 27 numbers
which form, not a square array as in (4.2.8), but a cubic array. Notice that, except
in the case of a tensor of zero rank, the actual values of the numbers in the array
specifying a tensor will change as the coordinate axes are rotated because they are
associated with both the axes and with the tensor quantity itself, which is a physical
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entity that retains its identity however the axes are changed. We shall see that a
study of the relationships between the components of a tensor in one coordinate
system and those in another will provide an indication of the essential character of
a particular tensor.

The operation, implied in the Einstein summation convention, of putting two
suffixes equal in a tensor and summing, is known as contraction and gives a new
tensor whose rank is less by two than that of the original tensor. Thus contraction
is the tensor equivalent of the scalar product in vector analysis. So we can write the
scalar product of two vectors V and W as

V-W=V,W, = VW, + V,W, + V.W.. (4.2.12)

Hence contraction of the second-rank tensor VW (a dyadic product) has given a
tensor of rank zero (a scalar).
A tensor with components that satisfy

Top = Tpa (4.2.13)
for all & and B is said to be symmetric. On the other hand, if
Tup = —Tpq (4.2.14)

for all « and B, the tensor is said to be antisymmetric. Clearly the diagonal el-
ements of a second-rank antisymmetric tensor are zero. This definition may be
extended to tensors of higher rank, the symmetry or antisymmetry being defined
with respect to a particular pair of suffixes. Notice that any second-rank tensor
can be represented as a sum of a symmetric tensor 7, and an antisymmetric
tensor T

Top = Tyy + Ty, (4.2.15a)
ws = 3(Tup + Tpa), (4.2.15b)
ws = 3(Tup — Tpa). (4.2.15¢)

This decomposition is a step towards the construction of irreducible tensorial sets,
to be encountered later.

4.2.2 Rotation of axes

Consider two sets of cartesian axes x, y, z and x’, y’, z/ with a common origin O.
The relative orientation of the two sets may be specified by a set of nine direction
cosines l;, where, for example, cos™! L,y is the angle between the x’ and the y
axes. (Although summation would not be implied in a direction cosine such as
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Fig. 4.1 The direction cosines specifying the orientation of a rotated axis system
(primed) relative to the original axis system.

o > P’

r

Fig. 4.2 The relative positions of two points P and P'.

lyo because o’ and « are components of different axis systems, in order to avoid
possible confusion we shall use suffixes A, u’, v'... for the primed axis system,
and suffixes «, B, y ... for the unprimed system.) Thus the direction cosines of a
particular axis z’ with respect to x, y, z are I/, [/, [, (Fig. 4.1); and the direction
cosines of z with respect to x’, y', z" are Ly, Iy, L.

Important relations exist between direction cosines. Consider a point P defined
by a position vector r from the origin. Denoting the direction cosines between r
and the x, y, z axes by [, m, n, we can write

l=x/rrm=y/r,n=2z/r. 4.2.16)

2

Since r? = x? 4+ y? + z2, we have

P4+m?+n*=1, 4.2.17)

which can be regarded as a normalization relation. Now consider a second
point P’ defined by a position vector ¥’ with orientation specified by the direc-
tion cosines /', m’, n’ and making an angle 6 with r. Applying the cosine rule
with reference to Fig. 4.2, taking r =+’ = 1 and using (4.2.16) and (4.2.17),
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we find
cosf = (r*+r*— | —r)/2rr =1 -4 — x|
=1 =3[0 =)+ (' =y + (@ = 2]
=1 =3[ =D+ —m)* + (' —n)’]
=1-1*+m? +n?) + @ +m* +n*) = 2(I' + mm' + nn')]
=1lI"+mm' + nn'. (4.2.18)

Thus if r and r’ are perpendicular to each other, the following orthogonality relation
obtains:

'+ mm' +nn" =0. (4.2.19)

We now apply these relations to the direction cosines that specify the relative
orientation of the two sets of axes x, y, zand x’, y’, 7. From (4.2.17), the sum of the
squares of the direction cosines relating a particular axis in one coordinate system
to the three axes in the other system are unity. Thus, concentrating on each of the
axes x’, y’, 7/ we obtain

2 2 2
lx’x + lx’y + lx’z = 1’
2 2 2
ly/)( + ly/y + ly/z = 1,
2 2 2
L+, +1, =1 (4.2.20)
Also, since x’, y’, 7’ are mutually perpendicular, we can use (4.2.19) to write
Loylye + Loylyy + 1l =0,
ly’XZZ’x + ly/yIZ’y + ly’zlz’z =0,
Loclyy + Loyley + 1000, = 0. (4.2.21)
The six equations (4.2.20) and (4.2.21) are called the orthonormality relations.
Equivalent orthonormality relations can be obtained by concentrating on the other
set of axes x, y, z:
2 2 2
Lo+ 05, +1, =1,
2 2 2 _
Loy + 05, +1, =1,
2 2 2 .
Lo, + 0, + 1, =1, (4.2.22)
lX’leC’y + ly’xly’y + lz’xlz/y =0,
Loyloy +1yylyy + Lyl = 0,
Lol + 1y dyy + 100 =0. (4.2.23)
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Introducing the Kronecker delta defined by

{O when o # B,
Sup =

4.2.24
1 whena = 8, ( )

together with the summation convention, the orthonormality relations can be em-
bodied in the single equations

lvalwa = Sypws (4.2.25a)
Lyalyp = Sap. (4.2.25b)
For example, taking ' = u’ = x’, (4.2.25a) becomes
G+, +0,. =1
as in (4.2.20); and taking A’ = x’, ' = y’, (4.2.25a) becomes
Loylyy +Loylyy +1ogly, =0

asin (4.2.21).

The direction cosines enable the components (V,, V,/, V1) of a vector V ex-
pressed in a new coordinate system x’, y’, 7’ to be written immediately in terms
of its components (Vy, V,, V) expressed in an original axis system x, y, z. Thus
resolving each of Vy, V,, V; along each of x’, y’, 2’ in turn, we obtain

Ve = lx’x Ve + lx’y Vy + lx’z Vza
Vy =1y Ve + 1y, Vy + 1.V, (4.2.26)
Vo =1V + 1V, + 1. V..
Using the summation convention, these equations can be written
Vi =1lpaVy. (4.2.27a)
The corresponding inverse transformation is
Vo =1liaVy. (4.2.27b)

These equations show how the components of a vector transform under a rotation
of the axes.

We can now go on and write the components of a second-rank tensor expressed
in the new axis system x’, y’, 7’ in terms of the components in the original system
x, y, z. For example, the defining equation (4.2.11) for the polarizability tensor can
be written in the x’, y’, z’ system as

iy = oy Ey. (4.2.28)
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Successive application of (4.2.27a) and (4.2.27b) yields
my = lyatta = lpatapEg = Lyoaaplyg Ey, (4.2.29)
and comparing (4.2.29) with (4.2.28) gives
o = Lyl gag. (4.2.30)

This result illustrates the economy of the dummy suffix notation since the single
equation (4.2.30) represents nine equations, each with nine terms on the right hand
side.

Direction cosines should not be confused with second-rank tensors. Although
Iy« and aqp are both arrays of nine numbers, they are very different quantities. The
[y« relate two sets of axes, whereas the o, represent a physical quantity referred
to one particular set of axes. It would be meaningless to speak of transforming the
1/, to another set of axes.

The existence of the transformation law (4.2.27a) for the components of a vector
and (4.2.30) for the components of a second-rank tensor, together with the fact that
a scalar is invariant under a rotation of the axes, suggests that a tensor be defined
as a quantity which transforms according to

Tiww - =Lialplyy - Tagy - ... 4.231)

The number of suffixes attached to Ty, ... determines the rank of the tensor. This is
the reason behind our earlier statement that scalars and vectors are to be regarded
as tensors of rank zero and rank one, respectively. It is emphasized that although,
according to this definition, we cannot describe a tensor without reference to some
coordinate system, the tensor itself is to be distinguished from any one of its descrip-
tions. No meaning attaches to asking whether a particular set of numbers constitutes
a tensor or not. It is only when we are given a rule for obtaining the corresponding
set of numbers in any other coordinate system that we can compare the rule with
(4.2.31) and so answer the question.

4.2.3 Polar and axial tensors

In order to generalize further the transformation law (4.2.31), it is necessary to
distinguish between polar and axial tensors. We saw in Section 1.9.2 that a polar
vector such as a position vector changes sign under space inversion, whereas an
axial vector such as angular momentum does not. If, instead of actually inverting
the vectors, we invert the coordinate axes, then the components of a polar vector
will change sign and the components of an axial vector will not. An inversion of the
axes, or reflecting them in a plane, is equivalent to changing the hand of the axes, as
illustrated in Fig. 4.3. Consequently, the generalization of the tensor transformation
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(a) b () y

y X

Fig. 4.3 (a) aright-handed and () a left-handed axis system.

law (4.2.31) to a polar tensor of any rank is
Pouwv ... =liglwglyy ... Pogy ..., (4.2.32a)
and to an axial tensor of any rank is
Ay oo = Dpalwplyy .. Agpy ... (4.2.32b)

The negative sign in (4.2.32b) is taken for transformations such as reflections and
inversions which change the sign of the axes (improper rotations), and the positive
sign for transformations which do not change the sign of the axes (proper rotations).

As an illustration, we use these transformation laws to determine the effect
of an inversion of the coordinate axes on a polar and on an axial vector. The
direction cosine corresponding to an inversion is [;,, = cosw = —1, since the angle
between the new axis A’ and the old axis « is 180°. Thus, applying (4.2.32a), the
new components P, of a polar vector after inversion are related to the original
components P, by

Py = ll’aPoz = —P,;
applying (4.2.32b), the new components of an axial vector are
Aﬂ’ = _ll’aAot - Aav

as required.

The scalar product P, P, of two polar vectors, or A, A/, of two axial vectors,
is clearly a number that does not change sign under inversion: a scalar. But the
scalar product P, A, of a polar and an axial vector is a number that does change
sign under inversion, and this is called a pseudoscalar.

Vector analysis defines the vector product P x P’ of two polar vectors P and P’/
as a vector with magnitude equal to the area of the parallelogram defined by the
two vectors and with direction n perpendicular to the parallelogram in the direction
which makes P, P/, n a right-handed set. Thus if i, j, k are unit vectors associated
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with a right-handed axis system, the vector product is written analytically as
PxP = (PP — PzPy’)i + (P, P; — P.P))j
+ (Py Py/ — PPk =A. (4.2.33)

The components of this axial vector A are equivalent to the components of the
second-rank antisymmetric polar tensor

Pus = Py Py — P3P, = — Py, (4.2.34)

The explicit components are

Pxx ny sz
Py, Pyy P\,Z =
sz zy zz
(PcP, — P,P)) (P.P,— P.P)
(PXP’ P)) 0 (P,P] — P.P))
—(P. P! — P P)) —(PyP!—P.P)) 0
z _Ay
= |- Az 0 Al (4.2.35)
A, —A, 0

In general, an axial tensor can be represented by an antisymmetric polar tensor
of higher rank, which usually provides a more fundamental description of the
corresponding physical entity.

Vector products are formulated in tensor notation by means of the alternating or
Levi-Civita tensor €4, Which is a completely antisymmetric unit axial tensor of the
third rank. The only nonvanishing components of &,4, are those with three different
suffixes. We set £,,, = 1 and the other nonvanishing components are either +1 or
—1 depending on whether the sequence oy can be brought to the order xyz by a
cyclic or a noncyclic permutation. Thus we define

Exyz = Ezxy = Eyzx = 1,
Exzy = Eyxz = Ezyx = -1, (4.2.36)
all other components zero.
This definition applies whether x, y, z are axes of a right- or left-handed coordinate
system, because components of axial vectors of odd rank do not change sign under

an inversion of the coordinate axes. The tensor formulation of the vector product
(4.2.33) is therefore

Aa = Eupy Pﬂ P): . (4237)
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For example, taking « = x, summing over pairs of repeated suffixes, and remem-
bering the definition (4.2.36), we find
Ay = ExxxPxP)é + gxxnyP; + 8xszxPz/
+ Exyx Py Py + €xyy Py Py’ + &1y P, P]
+8xszzP; + 5xzszP): + sxzszpé
= P,P, — P, P}f.

An important term in the theory of optical activity is €4,,5A, 58, Where A, sg is
the electric dipole—electric quadrupole tensor (2.6.27¢) (it is unfortunate that we
use the same symbol for a general axial tensor). Since &4,5 is a third-rank axial
tensor and A, s is a third-rank polar tensor, and contraction with respect to two

pairs of suffixes is specified, the complete term transforms as a second-rank axial
tensor just like the electric dipole-magnetic dipole tensor G|, 5 (2.6.27f).

4.2.4 Some algebra of unit tensors

The Kronecker delta 84 defined in (4.2.24) is a symmetric unit polar tensor of
the second rank. The alternating tensor &q4, defined in (4.2.36) is a completely
antisymmetric unit axial tensor of the third rank. We now collect together a few
useful relationships involving 8, and g4, .

Consider first contraction with respect to the two suffixes in the delta tensor:

Swa = Oxx + 8y + 8., =3. (4.2.38)
This is actually equivalent to the product

Sapup = OxxOxx + OxyOxy + Ox70x;
+8yx8yx +8,y8yy + 8528,
+ 80820 + 82382y + 808,
= 3. (4.2.39)

In view of (4.2.38),
Saadpp = 9. (4.2.40)

Since a component of the alternating tensor having any two subscripts the same is
zero, we find

aaﬁgaﬁy = Eqay = 0. (4241)
A most useful relation between the alternating and delta tensors is

EaByEsiy = (30,55/3,1 — 50[1555. (4242)
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This may be established as follows. If « = 8 or § = 1 both sides of (4.2.42) vanish
independently. Without loss of generality we may now choose « = x and 8 = y.
The left-hand side of (4.2.42) then becomes

ExyxE8ix + ExyyEsay + Exyz€8az = E8iz-
The right-hand side becomes
8x38y/1 - 5x/18y8 = Aa say.

Asé # Athere are just the following possibilities: § = z,in which case A = Oforall
A;A = z,in which case A =0 forall §;8 =x,A =y, givingA =1;6 =y, 1 =x,
giving A = —1. Hence A = ¢;,;, and the identity (4.2.42) is proved. Notice that
this identity is the tensor equivalent of the vector identity

(TxU)-(VxW) =T -V)(U-W)—(T-W)U-V).
By contraction of (4.2.42) we have

EapyEspy = Oasbpp — Sapdps
— 38,5 — 8us = 2845 (4.2.43)

Further contraction yields
EapyEapy = 8aa8ﬁﬂ — 80,/350[/3 =9-3=6. (4244)

Notice that the components of the unit tensors 8,4 and €44, are identical in all
coordinate systems. Such tensors are called isotropic tensors, or tensor invariants,
and play a fundamental role in the study of isotropic materials such as fluids. This
is because in a collection of freely rotating molecules, all proper transformations
between molecule-fixed and space-fixed axes are possible so that, on the average,
only the tensor invariants survive. General higher-rank tensor invariants are written
in terms of 8,4 and &,g,, : thus fourth-rank and fifth-rank tensor invariants are linear
combinations of products such as 8,88,5 and &qg, s, respectively. We shall see
in the next section that the isotropic averages of tensor components are always
expressed in terms of isotropic tensors.

4.2.5 Isotropic averages of tensor components

A problem encountered frequently in the theory of light scattering from isotropic
collections of molecules such as fluids is the evaluation of isotropic averages of
tensor components. This problem reduces to the evaluation of products of direction
cosines, between particular pairs of axes in a molecule-fixed and a space-fixed coor-
dinate system, averaged over all possible relative orientations of the two coordinate
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systems. Thus an expression for an observable, such as a polarization change, is first
written in terms of molecular property tensor components specified in space-fixed
axes: since we want to relate the observable to intrinsic molecular properties, we
must transform to a set of axes fixed to the molecule’s frame. Then if the molecule
is tumbling freely, the expressions must be averaged over all orientations.

If the primed suffixes refer to space-fixed and unprimed to molecule-fixed axes
we have, from the polar tensor transformation law (4.2.32a), the following general
expression for the isotropic average of a general tensor component:

(Pyuny ) = (Ualyplyy . ) Papy - .. (4.2.45)

Notice that we do not need to invoke the axial tensor transformation law (4.2.32b),
even when averaging axial tensor components, because no improper rotations are
involved. The first few averages can be obtained from a simple trigonometric anal-
ysis. It is now necessary to consider explicit tensor components, and in order to
produce results in a notation conforming with that used in the rest of the book,
we shall take x, y, z and X, Y, Z as the space-fixed and molecule-fixed coordinate
systems, respectively (while still using general Greek subscripts A/, i/, v’ ... and
a, B,y ... for the former and latter). It is also convenient to use the replacements
o = lias Jo = lya, ke = [4 for direction cosines between the space fixed axes x,
v, z and a molecule fixed axis «, where, as usual, i, j, k are unit vectors along x,
¥, z. Thus the isotropic average of a tensor component such as Py,.,, for example,
would be written

(nyzy> = (iajﬂkyj8>POlﬂV5’

for which the problem reduces to evaluating (iy jgk, js).

It is first necessary to note the form of the average of certain trigonometric func-
tions over a sphere. If we denote the angle between a space-fixed and a molecule-
fixed axis by @, and identify 6 with the polar angle in spherical coordinates, then
isotropic averages of products of the same direction cosine take the form

fozr[ d¢ [ cos" 6 sin6 do
J57dg [T sin6 do

(cos" 0) =

since the volume element in spherical coordinates is sinf df d¢, where ¢ is the
azimuthal angle. On integration, the following general result obtains:
1
——  forn = 2k;
(cos" @) = { 2k + 1
0 forn =2k +1; withk =0,1,2,3.... (4.2.46)
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Consider first the isotropic average of a single direction cosine, say iy. Taking
the angle between the x axis and the X axis to be 6, we have

(ix) = (cosB) =0

since, according to (4.2.46), the average of cos 6 over a sphere is zero. The same
result obtains for any single direction cosine, so we may write

(ia) = (Ja) = (ko) = 0. (4.2.47)

Consider next the isotropic average of a product of two direction cosines. If the
two are the same, say iy, we have from (4.2.46)

(i2> = (cos20) = %

The same result obtains for any pair of identical direction cosines. Notice that the
same result can be deduced by writing out a scalar product in the X, Y, Z coordinate
system of a unit vector in the x, y, z coordinate system with itself and averaging
both sides: for example, from i i, = 1 we can write

(i) +{i7) +{i2) = 1,

and since the three averages are all equal, each has the value % The isotropic average
of any pair of different direction cosines is zero. For example, from i, j, = 0 we
can write

(ixjx) + (ivjy) +{izjz) =0,

and since the three averages are all equal, they must separately be zero. This analysis
can be summarized neatly in terms of the second-rank tensor invariant §ug:

(iaip) = (Juip) = (kakp) = 38ap, (4.2.48)

with all other types of average equal to zero.

Consider now the isotropic average of a product of three direction cosines. This
can be deduced by considering expressions such as (i x j) - k = 1. Writing this out
in terms of components in the X, Y, Z coordinate system, we have

(iyjz —izjv)kx +(izjx —ixjz)ky + (ixjy —iyjx)kz = 1.

Averaging both sides, and recognizing that the averages of the three terms are all
equal, yields the result

(ivjzkx) = —lizjvkx) = (izjxky) = —(ixjzky) = (ixjrkz) = —(ivjxkz) = &

By considering expressions such as (i x j) - j = 0 it can be shown that all other
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types of isotropic average are zero. These results can be summarized in terms of
the third-rank tensor invariant €, ;

(iajpky) = $€apy (4.2.49)

with all other types of average equal to zero.
We turn now to the isotropic average of a product of four direction cosines. If
the four are the same, say iy, we have from (4.2.46)

(ix) = (cos*0) = 1. (4.2.50)

Similarly for the product of any other four identical direction cosines. We can obtain
the isotropic averages of products of pairs of identical direction cosines from the
orthonormality relations (4.2.25). For example, taking a particular normalization
relation such as

i +iy+iz=1,
squaring both sides and averaging, gives
3(iy) +6(ixiy) =1

since (i%) = (iy) = (i%) and (i%i3) = (i%i2) = (i7i2). Using (4.2.50), we then
obtain averages such as

(ixiy)=1(1-2)= L. (4.2.51)

Similarly, starting with
iy +Jx +hx =1,
we obtain averages such as
(ixj%) = (4.2.52)
Taking a product such as
(i + i3+, + i +k) =1,
we can write
3(i3i7) + 633 = 1.

and using (4.2.51), we obtain averages such as

(kv =5(1=15) = &
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Finally, taking a particular orthogonality relation such as
ixjx +ivjy +izjz=0
and squaring both sides enables us to write
3(i§j;2(> + 6(inXinY) =0
from which, using (4.2.52), we obtain averages such as
(ixjxiviy) = §(=15) = —5-
All other types of isotropic average are zero. These results can be summarized in
terms of the fourth-rank tensor invariant .86, s (Buckingham and Pople, 1955;
Kielich, 1961):
(iaiiyis) = (JajpiyJs) = (kakpkyks)
= L (Supdys + SaySps + Sasdpy), (4.2.53a)
(iaipjyJs) = (Jajpkyks) = (iaipkyks)
= 3‘—0(48a58y5 — Say 885 — Sas0py), (4.2.53b)
with all other types of average zero.

The last isotropic average required in this book is of a product of five direction
cosines. This is obtained by considering expressions such as (i x j) -k -i) = 1.
However, the trigonometrical analysis now becomes very complicated, and we
simply quote the general result in terms of the fifth-rank tensor invariant &g, 8¢
(Kielich, 1968/69):

(iajﬁkykaks> = (kaiﬁjyj8js> = (jakﬁiyi8i5>
= 35(8apySse + EapsSye + Eapedys), (4.2.54)
with all other types of average equal to zero. Boyle and Matthews (1971)

have provided a general discussion of fifth-rank tensor invariants and isotropic
averages.

4.2.6 Principal axes

It was shown in Section 3.5.2 that isotropic averages such as (o5, ), (otxrry,) and
(axyacy,) contribute to conventional light scattering in fluids, and equations (3.5.4)
gave these averages in terms of o @ps and payp. All resulting expressions for
observables such as the depolarization ratio can be written in terms of o and B()?,
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where

o = §laattpp = §laxx + oy + zz)’, (4.2.554)

Bla) = 1 (Batapltap — Clagtlpp)

=1 [(oxx — am)? + (@xx — a)* + (ayy — @z)*  (4.2.55b)
+6(agy + oz, + o) |-

These are effectively the invariants of the fourth-rank tensor oy, 5, being the only
combinations of components that contribute in isotropic media. The mean polariz-
ability itself, o = %ot,m, is the invariant of the second-rank tensor o,g. Although X,
Y, Z refer to a particular set of axes attached to the molecule’s frame, the values of
«? and B(«)? are invariant to a rotation of these axes.

A famous theorem, too long for proof here, is that for any second-rank symmetric
cartesian tensor, it is always possible to choose a set of axes, called principal axes,
such that only the diagonal components are nonzero (Nye, 1985). The anisotropy

invariant then takes the simple form
Bla)* = %[(lex — ayy)” + (oxx — 0z2)” + (oyy — az)’]. (4.2.56)

The principal axes are associated with any symmetry elements present in amolecule.
Thus a proper rotation axis is always a principal axis and a reflection plane always
contains two of the principal axes and is perpendicular to the third.

Consider, for example, an axially-symmetric molecule. This has a threefold
or higher proper rotation axis (which we take to be the Z axis), and its physical
properties are isotropic with respect to rotations about this axis. This isotropy in
the plane perpendicular to the principal rotation axis is obvious if the molecule is
linear (Csop OF Doop), but is not immediately apparent in the case of a symmetric
top molecule such as NHj3 having C3, symmetry. A simple argument for this case
runs as follows: if it is accepted that a reflection plane always contains two principal
axes and is perpendicular to the third, the fact that there are three vertical reflection
planes at 120° to each other is only consistent with the presence of two principal
axes (which we take to be X and Y) at 90° to each other if X and Y can have any
orientation in the plane perpendicular to Z.

The polarizability tensor of an axially-symmetric molecule can be written as
follows in terms of components referred to principal axes:

Ugp = (XJ_SO,'B + ((X” — OlJ_)KaK’B, 4.2.57)

where «| = axx = ayy and o) — otz denote polarizability components perpendic-
ular and parallel to the threefold or higher rotation axis Z, and K is the unit vector
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along Z. It is convenient to write (4.2.57) in the form
Qop = (1 — K)8up + 3ak Ky Kg, (4.2.58a)
where
a=3Qa +ay) (4.2.58b)

is the usual mean polarizability, and

_(X”—(XJ_
3«

is a dimensionless polarizability anisotropy. It will be seen in subsequent chapters
that the polarizability written in the form (4.2.58) facilitates the development of the-
ories of optical activity and Rayleigh and Raman scattering in molecules composed
of axially symmetric bonds or groups.

We can also write useful expressions for G5 and Aq, g, in certain cases of axial
symmetry. For example, for the point groups Cy4, and Cg,, Tables 4.2, developed
later in this chapter, tell us that the only nonzero components are Gy, = —G'y, Az 7z
and Az xx = Az yy. Writing Ay = Az zzand A| = Ay xx, we have

K (4.2.58¢)

G;ﬂ = Gy €apy Ky, (4.2.59)
Aapy = (%AII - ZAL)KaKﬂKV
+ AL (Kpday + Ky8up) — 1A Kopy . (4.2.60)
These results also apply to linear dipolar molecules (C,), and were first derived
for this case by Buckingham and Longuet-Higgins (1968). Furthermore, (4.2.59)

also applies to C3,, but (4.2.60) does not because additional components of A, g,
can be nonzero.

4.3 Inversion symmetry in quantum mechanics

The classification of quantum states and operators with respect to space inversion
and time reversal is a cornerstone of atomic and molecular physics. Here we review
some aspects that are relevant to optical activity and light scattering.

4.3.1 Space inversion

We introduce a parity operator P that changes the sign of the space coordinates in
the wavefunction:

Py (r) = ¢ (-). (4.3.1a)
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P is a linear unitary operator with eigenvalues p determined by

Py (r) = pyr(r). (4.3.2)

The eigenvalues are found by noticing that a double application amounts to the
identity:

Py (r) = p*¥(r) = ¥(r)
so that
pP=1, p==L (4.3.3)

The wavefunction (and the corresponding state) is said to have even or odd parity
depending on whether p = +1 or —1. Thus for even and odd wavefunctions (+)
and ¥ (—) we have

Py(+) =9¥(+)., PW)(=) =—-v¥(-). (4.3.4)

It is emphasized that P is an inversion with respect to space-fixed axes and can be
applied to all systems. It should not be confused with the inversion operation with
respect to molecule-fixed axes in systems with a centre of inversion which leads to
the ‘g’ or ‘u’ classification of quantum states.

The development so far refers to orbital parity which describes the sym-
metry properties of motions of particles. But in order to understand the pro-
cesses in which elementary particles are created and destroyed, it has been
found necessary to introduce the notion of the intrinsic or internal parity of a
particle (see, for example, Gibson and Pollard, 1976; Berestetskii, Lifshitz and
Pitaevskii, 1982). This is incorporated by generalizing the transformation law
(4.3.1a) to

Py (r) = ny(—r), (4.3.1b)

where 7 is the intrinsic parity of the particle described by the wavefunction v (r).
Since two inversions restore the original coordinate system, and

Py (r) = nPy(—1) = n*Y(r),

n* may at the most be a phase factor of unit magnitude, and it can be shown that
n*> = +1 or £1 depending on whether the spin of the particle is integral or half
odd-integral. Thus for particles with integral spin, = +1; and for particles with
half odd-integral spin, n = %1 or =+i. Particles for which n = 41 and —1 are said
to be scalar and pseudoscalar, respectively. The intrinsic parity of the photon is de-
fined absolutely from theoretical considerations to be negative; whereas the intrinsic
parities of electrons and nucleons are relative and are taken by convention to be
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positive (with negative parities for the corresponding antiparticles). Notice that in-
trinsic parities can be assigned to particle wavefunctions that are not eigenfunctions
of the parity operator.

If two eigenfunctions ¥ (+) and ¥ (—) of opposite orbital parity have energy
eigenvalues that are degenerate, or nearly so, the system can exist in states of mixed
parity with wavefunctions

1
= =l 435
Vi ﬁ[l//(-i-)-{-l//( )] ( a)
1
= Py = — — Y ()] 4.3.5b
V2 Y1 ﬁ[lﬁ(ﬂ V()] ( )

Since the conventional Hamiltonian operator is unaffected by inversion of the co-
ordinates we can write

H = PHP~ ' or PH — HP = 0. (4.3.6)

It then follows from a consideration of the time derivative of an operator that the
expectation value of P is constant in time (Landau and Lifshitz, 1977). Equation
(4.3.6) expresses the law of conservation of parity: if the state of a closed system has
definite parity, that parity is conserved. It follows that definite parity states (%)
are stationary states with constant energy W (%).

All observables can be classified as even or odd depending on whether their
operators do not or do change sign under inversion of the coordinates. Even and
odd operators A(+) and A(—) are thus defined by

PA(H)P' = A(+), PA(—)P'=—A(-). 4.3.7)

Since integrals taken over all space are only nonzero for totally symmetric inte-
grands, the expectation values of these operators in a state such as (4.3.5a) are

WlABIY) = 5[ (AP ()

+ (Y (DIADI ()], (4.3.8a)
WlAE)Y) = 5[ (HIAG)IY ()

+ (U (DAY ()], (4.3.8b)

from which we deduce immediately that the expectation value of any odd observable
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vanishes in any state of definite parity, that is, a state for which either ¥ (+) or
Y(—) is zero. It also follows that the expectation values of an odd parity oper-
ator have equal magnitude but opposite sign for the pair of mixed parity states
Y and Y, = Piry. Consequently, a system in a state of definite parity can pos-
sess only observables with even parity, examples being electric charge, magnetic
dipole moment, electric quadrupole moment, etc.; whereas a system in a state of
mixed parity can, in addition, possess observables with odd parity, examples being
linear momentum, electric dipole moment, etc. (Kaempffer, 1965). A well known
example of a system with states of mixed parity is the hydrogen atom. Here the
special dynamical symmetry leads to degenerate eigenstates of opposite parity: for
example, the states withn =2, [ = 0and n = 2, [ = 1 are degenerate, and since
the parity of the spherical harmonic function Y, is (—1), the first excited state of
the hydrogen atom has mixed parity and therefore supports a permanent electric
dipole moment, evidenced by a first order Stark effect (Buckingham, 1972). In fact
these states are not exactly degenerate because of a small relativistic splitting, and
in very weak electric fields only a second-order Stark effect is observed (Woolley,
1975b).

We saw in Section 1.9.2 that the natural optical rotatory parameter is a pseu-
doscalar and so has odd parity. It was shown, furthermore, that the optical ro-
tation experiment conserves parity, because if one inverts the entire experiment
(light beam plus active medium) the resulting experiment is also realized in na-
ture. Consequently, resolved chiral molecules exist in quantum states of mixed
parity.

The origin of the mixed parity states of a chiral molecule can be appreciated
by considering the vibrational wavefunctions (associated with the inversion coor-
dinate) of a molecule such as NH3; which is said to invert between two equivalent
configurations, as shown in Fig. 4.4., although this motion does not in fact cor-
respond to inversion through the centre of mass (Townes and Schawlow, 1955).
If the planar configuration were the most stable, the adiabatic potential energy
function would have the parabolic form shown on the left with simple harmonic
vibrational energy levels equally spaced. If a potential hill is raised gradually in
the middle, the two pyramidal configurations become the most stable and the en-
ergy levels approach each other in pairs. For an infinitely high potential hill, the
pairs of energy levels are exactly degenerate, as shown on the right. The rise of
the central potential hill modifies the wavefunctions as shown, but does not destroy
their parity. The even and odd parity wavefunctions ¥ (4) and v¥(—) describe
stationary states in all circumstances. On the other hand, the wavefunctions v
and YR, corresponding to the system in its lowest state of oscillation and localized
completely in the left and right wells, respectively, are not true stationary states.
They are obtained from the following combinations of the even and odd parity
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Fig.4.4 The vibrational states of a molecule that can invert between two equivalent
configurations. YO (4) and @ (—) are two definite parity states for which there
is complete uncertainty, and v and ¥ are two mixed parity states for which there
is complete certainty, about whether the molecule is in the left or right well.

wavefunctions:
1
Y = E[WH) + O, (4.3.9q)
1
YR = E[WO)H) — O, (4.3.9b)

which provide explicit physical realizations of the mixed parity wavefunctions
(4.3.5). The wavefunctions (4.3.9) are in fact specializations of the general time-
dependent wavefunction of a degenerate two-state system (see Section 4.3.4 below).
To be precise, we assume that the system is in the left well at # = 0. Then at a later
time ¢ we have

Y = %[w<°><+>e—iW<+>f/ﬁ oy O(—yem Wy
1

ﬁ[w“”(ﬂ + Y O(—)e i@ e WA (4.3.10)
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where iw = W(—) — W(+) is the energy separation of the opposite parity states,
which in this context is interpreted as a splitting arising from tunnelling through the
potential energy barrier separating the two wells. Thus at r = 0 (4.3.10) reduces to
(4.3.9a) corresponding to the molecule being found in the left well, as required; and
att = m/w it reduces to (4.3.9b) corresponding to the molecule being found in the
right well. The angular frequency w is interpreted as that of a complete inversion
cycle. The tunnelling splitting is determined by the height and width of the barrier,
and is zero if the barrier is infinite.

One source of confusion in this model is that the parities of the vibrational
wavefunctions illustrated in Fig. 4.4 have been defined with respect to a reflection
across the plane of the nuclei, whereas the basic definition of the parity operation is
an inversion with respect to space-fixed axes. Consider the planar configuration on
the left of Fig. 4.4. The parity operation corresponds to an inversion of all the particle
positions (nuclei plus electrons), and may be achieved by rotating the complete
molecule through 7 about the threefold axis, followed by a reflection across the
plane containing the nuclei. Since the rotation does not affect the electronic and
vibrational wavefunctions, their parities may be determined from their behaviour
under reflection across the plane of the nuclei.

Since i and g are states of mixed parity, the origin of the mixed parity states
of a resolved enantiomer is now obvious, for a potential energy diagram with a
very high barrier separating the left and right wells can be drawn for any resolv-
able chiral molecule: the horizontal axis might represent the position of an atom
above a plane containing three different atoms, or the torsion coordinate in a chi-
ral biphenyl, or some more complicated collective coordinate of the molecule. If
such a state is prepared, but the tunnelling splitting is finite, its energy will be
indefinite because it is a superposition of two opposite parity states of different
energy. From the discussion above (or, more generally, using AW =1//t, where
t is the average lifetime and AW is the width of the level corresponding to a
quasi-stationary state), the splitting of the two definite parity states is seen to be in-
versely proportional to the left-right conversion time. A crucial point is therefore
the relation between the time scale of the optical activity measurement and the
lifetime of the resolved enantiomer. A manifestation of the uncertainty principle
appears to arise here which has been stated loosely as follows (Barron, 1979q): ‘If,
for the duration of the measurement, there is complete certainty about the enan-
tiomer, there is complete uncertainty about the parity of its quantum state; whereas
if there is complete uncertainty about the enantiomer, there is complete certainty
about the parity of its quantum state.” Thus experimental resolution of the definite
parity states of an enantiomer of tartaric acid, say, which has a lifetime proba-
bly greater than the age of the universe, is impossible unless the duration of the
experiment is virtually infinite; whereas for a nonresolvable chiral molecule such
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as H,O,, spectroscopic transitions between states of definite parity are observed
routinely.

4.3.2 Time reversal

Although it is possible to classify time-even and time-odd Hermitian operators and
the corresponding time-even and time-odd observables, depending on whether they
do not or do change sign under time reversal, the division of quantum states into
even and odd reversality, by analogy with the division of states into even and odd
parity, is obscure for several reasons.

Since the Hamiltonian is time even, the simple time reversal operation of replac-
ing ¢ by —t everywhere changes the time-dependent Schrodinger equation

0
Hy(r, 1) = ihgl//(r, t) 4.3.11a)
into
0
Hy(r,—t) = —mgt//(r, —1), (4.3.11b)
which is not satisfactory because 1 (r, t) and ¥ (r, —t) do not obey the same equa-

tion. However, by taking the complex conjugate of both sides as well, for real H
and ignoring any spin variables, we obtain

dy
a1

This shows that, if ¥ (r, ¢) is a solution of the Schrodinger equation, then so is
Y*(r, —t). For example, the stationary state eigenfunction

0) .—iW,t/h
wn(l', t) = W,(, )e Wat]

gives HY'Y = W, ¢ from (4.3.11a); and

Hy*(r, —t) = ii

(r, —1). (4.3.12)

1//:(1', —t) — wéO)*eﬂW,,t/h

gives HyV* = W, O* from (4.3.12). Hence ¥? and v(?* belong to the same
energy level with energy eigenvalue W,.

Considerations such as these lead to the following definition of the time reversal
operator in quantum mechanics:

0 =UK, (4.3.13)

where U is a unitary operator and K is the operator of complex conjugation (Wigner,
1959; Abragam and Bleaney, 1970; Sachs, 1987). The unitarity condition on U
follows from the requirement that the probability of finding a particle must be
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conserved under time reversal, that is (Y|y) = (O |Oy). This is only true if
Ulu = 1:
(Oy|0y) = (UKY|UKY) = (Ky|UTU|K)
= (YY) = (¥ly). (4.3.14)

For the case of a spinless particle, U is the unit operator so that @ is simply the
operation of complex conjugation, as may be verified by applying K to both sides
of the Schrodinger equation (4.3.11a):

KIHY (. 0] = K [ih%z/f(r, r)} ,

d
HKy(r, t) = —ihEKw(r, 1).
Replacing t by —¢, this may be rewritten as
d
HKy(r,—t) = —ihaKw(r, —t), (4.3.15)

which is the same as (4.3.12). For the more complicated case of a particle with spin,

U =io, where
o — 0 —i
Y7\l 0

is one of the Pauli spin matrices (Wigner, 1959; Abragam and Bleaney, 1970; Sachs,
1987). This is consistent with the result (4.3.22) below if a spinor representation
in the form of a column matrix is used for the spin states « and §. Since K is an
antilinear operator and U is a unitary operator, © is called an antiunitary operator.

We recall here for convenience a few definitions. Two functions are linearly
dependent if they are proportional to each other: a set of functions is therefore
linearly independent if the identity

ayi+ovr+---cf, =0

can only be satisfied by taking c; = c¢; =--- = ¢, = 0. A unitary operator A is
one whose inverse A~! equals its Hermitian conjugate Af, the latter being the
complex conjugate of the transpose. Linear and antilinear operators A and B have
the properties
Aayry + byrn) = aAy + bAy,, (4.3.16a)
B(ayry + byr) = a* By + b*By. (4.3.16b)

Thus, whereas a linear unitary operator satisfies

(Ay|Ad) = (y|ATAlp) = (¥9), (4.3.17a)
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an antiunitary operator satisfies

(BY|Bo) = (Vlp)" = (1¥). (4.3.17b)

We shall see below that, unlike the parity operator, it is not possible to characterize
a quantum state by an eigenvalue of the operator ©. We can, however, characterize
a quantum state by the eigenvalue of the linear unitary operator @2. This follows
from the physical requirement that the operation © applied twice should result in
the same state (within a phase factor):

Y =€y |e] = 1. (4.3.18)
Since K2 = 1, we may use (4.3.18) to write
@ =UKUK =UU*K*=UU* =. (4.3.19)
Furthermore, since U is unitary, we have
U71 — UT*
where the superscript 7 denotes the transpose, so that the last equality in (4.3.19)
may be written
U* — GUT*
which, transposing again, becomes
UT* — GU* — €2UT*.
This can only be true if
=1, e==l. (4.3.20)

The possible eigenvalues of ©? are therefore 41 and —1.

It can be shown quite generally (see, for example. Wigner, 1959; Heine, 1960;
Kaempffer, 1965; or Abragam and Bleaney, 1970) that, for a system containing an
even number of electrons (or a system with an integral total angular momentum
quantum number J), the quantum state belongs to the eigenvalue € = +1 of @2, and
for an odd number of electrons (or half odd-integral J) the quantum state belongs
to the eigenvalue € = —1:

©?y = ¥ (integral J), (4.3.21a)
©*y = — (half odd-integral J). (4.3.21b)

Equation (4.3.21b) leads to an important theorem. Consider a system with an odd
number of electrons, and assume that the Hamiltonian commutes with © (as in the
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absence of a magnetic field, for the kinetic and potential energy, as well as spin—
spin and spin—orbit interactions, are invariant under time reversal). Then if ¥ is an
eigenstate with energy W, the function ¢ = @V is also an eigenstate with the same
energy. For this to lead to a degeneracy, we have to show that y» and ¢ are linearly
independent. Suppose that

Oy = Ay,
where A is some constant. Then
O*Y = OIY = A OY = 1* .

For a system with an odd number of electrons, this contradicts (4.3.215) since
A*A must be positive. Thus O # Ay and so ¥ and O are linearly independent.
Since ©%*y = —1, the degeneracy of every energy level is even. Hence Kramers’
theorem: in the presence of any electric potential but in the absence of an external
magnetic field, every energy level of a system with an odd number of electrons is
m-fold degenerate, where m is an even number (not necessarily the same for each
level). ©yr is called the Kramers conjugate of .

Notice that, if @ = |% - %) and 8 = |% — %) are the two orthogonal spin states
|smy) for a single electron, the following statements, for a particular choice of
phase, are consistent with the foregoing:

Oa=p, OB =—a. (4.3.22)

We now develop the eigenstates of &7 a little more. Consider first eigenfunctions
¥ (+) with eigenvalue € = +1,

O*Y(+) = Y(+). (4.3.23)

First notice that ©y(+) is also an eigenfunction of ©* with eigenvalue +1; and so
is

Veven = c[Y(+) + OV ($H)]. (4.3.24)

If ¢ is real, and Oy (4) # —¥(+), we have
OYeven = Yeven- (4.3.25)
If it should happen that, for a particular state, ©y'(+) = —y'(+), we can choose
Veven = 1Y/ (+) (4.3.26)

and (4.3.25) is again valid. Similarly, we can construct

Vodd = c[Y(+) — OY(+)] (4.3.27)
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where, if ¢ is real and Oy (+) # ¥ (+),

OVodd = —Vodds (4.3.28)
and if it happens that ©¢/'(+) = ¥'(4), we can choose
Vodd = Y/ (+). (4.3.29)

This possibility of finding even and odd states under time reversal is not equivalent
to labelling the states by a physically meaningful quantum number, characteristic
of ©, such as parity in the case of space inversion P, because an even state can
be transformed into an odd state, and vice versa, simply by multiplication with a
physically unobservable phase factor i. The quantum number €, characteristic of
©?, however, is not affected by such a phase change.

Now consider eigenfunctions ir(—) with eigenvalue € = —1:
Y (=) = —¥(-). (4.3.30)
It follows that ©y(—) is also an eigenfunction of ©? with eigenvalue € = —1.

However, one feature that did not arise in the € = +1 case is that @y (—) is always
orthogonal to ¥ (—) (like & and B in (4.3.22). This follows from

(Y (IOY(=) = (O*Y ()Y (=)
==Y ()Ne¥(-) =0, (4.3.31)

where (4.3.17b) provides the first equality and (4.3.30) the second. This is equivalent
to the earlier demonstration that, for odd electron systems, a state and its Kramers
conjugate are linearly independent, leading to an even-fold degeneracy. Unlike the
€ = +1 case, it does not appear to be possible to construct even and odd states with
respect to ©. However, it is shown below that states can be constructed for which
the expectation values with time-even and time-odd operators, respectively, vanish.

Operators can be classified as time even or time odd according to the following
criteria (Abragam and Bleaney, 1970):

OA(HO ! = A, BA(—)O = —A(-). (4.3.32)

This follows from a development similar to (4.3.34) below. Some important state-
ments about matrix elements can now be made.

(a) If e = —1, a time-even operator has no matrix elements between Kramers
conjugate states:

(YIA(D)IOY) = (Y|A(H)OY) = (OA(+)OV|OY)
= (QA(HO'O*Y|0Y) = —(A(+H) ¥ |6Y)
= —(Y|A(H)|OY) = 0. (4.3.33)
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If e = +1, atime-odd operator has no matrix elements between Kramers conjugate
states, the proof being similar to (4.3.33).

(b) For both ¢ = +1 and —1, a time-even operator has the same expectation value
in two Kramers conjugate states:

(YIADIY) = (Y|A(H)V) = (OA(H)Y|OV)
= (OA(HO~'Oy|6Y) = (A(+H) oy|6y)
= (OY|A(+H)|OV). (4.3.34)

(c) For both ¢ = 41 and —1, a time-odd operator has opposite expectation values
in Kramers conjugate states. The proof is similar to (4.3.34).

We can now see that for the invariant states Veyen (4.3.24) and Yoqq (4.3.27),
which can always be constructed when € = 41, the expectation value of a time-odd
operator vanishes. This is true for any general invariant state for which Oy = el*¥
with arbitrary «. Invariant states cannot be constructed for the e = —1 case, but
states such as

V' = c[y (=) +i0y ()], (4.3.35q)
V" = c[Y (=) —i0y(-)], (4.3.35b)

can be constructed for which the expectation values of Hermitian time-odd and time-
even operators, respectively, vanish (see Kaempffer, 1965, p. 110 for the proof).

Although the well known selection rules for matrix elements between component
states of different levels are unchanged whatever the behaviour under time reversal
of the operators and eigenfunctions, the selection rules must be modified for matrix
elements between component states of the same degenerate level (Griffith, 1961;
Landau and Lifshitz, 1977; Abragam and Bleaney, 1970; Stedman and Butler,
1980). We follow Abragam and Bleaney (1970), who consider matrix elements of
the form (Ov; |V [), where ¥ ; and v are component eigenfunctions of the same
basis set spanning an irreducible representation I". According to these authors, since
the ©y; form a set of orthonormal functions spanning the same manifold as the
Y, the vanishing of all of the (©v;|V [) implies that of the (v;|V [x), and vice
versa. We now transform (©y;|V [) as follows:

(O |V IYr) = (OV;|V k) = (OV Yyl O*Y;)
= (OVO 'Oyl O Y;) = (VIO Y))
= ez(@wkwwj), (4.3.36)

where A equals +1 or —1 depending on whether the operator V is time even or time
odd, and e, being the eigenvalue of @2, equals +1 or —1 depending on whether
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there are an even or odd number of electrons. We can now write

(O 1V i) = 5OV |V ¥k) + €1{OYxlV [¥;)). (4.3.37)

Thus depending on whether €4 is positive or negative, (v;|V %) belongs to
the representation [[?] x T'y or {T'?} x I'y, the square and curly brackets denot-
ing the symmetric and antisymmetric parts of the direct product. It is stressed
that, in the odd electron case, the representations refer to the appropriate dou-
ble group. The result (4.3.37) applies whether V is Hermitian, antiHermitian or
nonHermitian.

A simple but important example of the application of the generalized selec-
tion rule (4.3.37) is to the existence of permanent electric and magnetic dipole
moments in atoms and molecules (Landau and Lifshitz, 1977). Since the electric
dipole moment p is a time-even polar vector, it follows that a permanent electric
dipole moment can exist in a system with an even number of electrons (or integral
J) in a state ¥, if [sz.] x I'p contains the totally symmetric irreducible represen-
tation, and in a system with an odd number of electrons (or half odd-integral J) if
{FJZ.} x I' p contains the totally symmetric irreducible representation, where I'p is a
representation spanned by a polar vector component. Similarly, since the magnetic
dipole moment m is a time-odd axial vector, a permanent magnetic dipole moment
can exist in a system with an even number of electrons (or integral J) if {1"?} X Tz
contains the totally symmetric irreducible representation, and in a system with an
odd number of electrons (or half odd-integral J) if [Ff] x "4 contains the totally
symmetric irreducible representation, where "4 is a representation spanned by an
axial vector component.

Consider an octahedral molecule. Its electronic states can be classified with
respect to the single point group O if it has an even number of electrons, and the
double point group O* if it has an odd number of electrons. Looking first at the
even electron case, since both (P, Py, P;) and (A, A, A;) span T}, and [E 2 =
A+ E E>Y = Ay, [T =A+E+ T, (T} =T, [Tf]1= A+ E+ Tand
{T?} = T\, we conclude that a permanent electric dipole moment is not supported by
any of the electronic states, but a permanent magnetic dipole moment is supported by
states belonging to the 77 and 75 sets. Turning to the odd electron case, since [E’ 2=
Ti, {E?} = Ay, [E" =T, {E"™} = A, [U%1= A+ 2T\ + T and {U"?} =
A1 + E + T,, we conclude that a permanent electric dipole moment is not supported
by any of the electronic states, but a permanent magnetic dipole moment is supported
by states belonging to the E’, E” and U’ sets.

It will prove useful in later applications to have an expression for the effect
of the time reversal operator on a general atomic state of the form |JM). Our
derivation is based on one given by Judd and Runciman (1976), and we adhere to
their choice of phase factors. The effect of time reversal on pure spin and orbital
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states is straightforward. For a spin eigenstate |s m;) we have, using the phase
choice of (4.3.22),

Ols mg) = (—1)"""|s —my). (4.3.38)

The part +m; in the exponent of the phase factor is crucial; whereas the part s
is included merely to avoid complex phase factors. (It is worth noting that Heine
(1960) writes Oa = —fB and OB = «, which implies a phase factor of (—1) ™",
but this is unconventional). For an orbital eigenstate |/m;), the phase factor chosen
in

Ollm;)) = (=)™l —my) (4.3.39)

is consistent with that in (4.3.38). We now investigate how the coupled states | jm)
behave under time reversal by performing an uncoupling and using the following
property of the real vector coupling coefficients (Edmonds, 1960):

(jimyjama| jams) = (=) —my jo —malj3 —ms).  (4.3.40)
Thus

Oljm) =0 > {smslmy| jm)|smy)|im;)

mg,my
= D (smylmy| jm) (=1 "5 —mg)|l —m))
mg,my
=Y (s —mg L —my]j —m)(=1)/"|s —m)|l —m))
= (=1)/""|j —m). (4.3.41)

In the second line we have used m = m; + m,;, and in the third line we have used
the fact that, since the phase factor is real, it satisfies (—1)tm = (—1)~GH=m),
By considering a sequence of couplings we obtain the following result for a many
electron system whose various spin and orbital angular momenta are coupled to a
resultant J:

OlIM) = (=1 ™M|J —M). (4.3.42)

This result presupposes that the orbital functions behave as in (4.3.39). But in fact
the usual form used for orbital functions is that of the spherical harmonics Y}, with
the following phase convention of Condon and Shortley (1935):

Yiew = (=1)"Y},. (4.3.43)
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Since the action of © on a spherical harmonic is equivalent to complex conjugation,
we have

Y = (=1)""Y_p. (4.3.44)

Compared with (4.3.39), which was used to derive (4.3.42), there is a missing part
(—1)" in the phase; so if the orbital part of our general atomic state |J M) is based
on spherical harmonics, (4.3.42) must be changed to

OlIM) = (=1)!M*r| 7 — M), (4.3.45)

where p is the sum of the individual orbital quantum numbers [ of all the electrons
in the atom.

4.3.3 The parity and reversality classification of optical activity observables

By considering the helical pattern of the electric field vectors of a linearly polarized
light beam established in an optical rotatory medium, it was deduced in Section
1.9.2 that the optical rotation observable is a time-even pseudoscalar. This classi-
fication seems reasonable for natural optical rotation in an isotropic collection of
chiral molecules because the direction of propagation of the light beam is immate-
rial. But the classification becomes slippery when we apply it to magnetic optical
rotation because the direction of the light beam relative to the magnetic field is
crucial.

In order to properly classify the natural and magnetic optical rotation observ-
ables we must get away from the approach used in Section 1.9.3 in which the
complete experiment was subjected to space inversion and time reversal (this was
to demonstrate that the laws of conservation of parity and reversality are obeyed by
the natural and magnetic optical rotation experiments). Now we leave the observer
and his linearly polarized probe light beam alone and apply space inversion and
time reversal to just the sample and any applied fields.

Under space inversion, an isotropic collection of chiral molecules is replaced by
a collection of the enantiomeric molecules, and the observer will measure an equal
and opposite optical rotation. This indicates that the observable has odd parity, and
itis easy to deduce that it is a pseudoscalar (rather than, say, a polar vector) because
it is invariant with respect to any proper rotation in space of the complete sample.
Under time reversal, an isotropic collection of chiral molecules is unchanged (even
if paramagnetic), and so the optical rotation is unchanged. Thus the natural optical
rotation observable in an isotropic sample is a time-even pseudoscalar.

Consider now a collection of achiral molecules in a static uniform magnetic
field. Under space inversion, the molecules and the magnetic field direction are
unchanged, so the same magnetic optical rotation will be observed. This indicates



202 Symmetry and optical activity

that the observable has even parity, and we can further deduce that it is an axial
vector (rather than a scalar) by noticing that a proper rotation of the complete
sample, including the magnetic field, through 7 about any axis perpendicular to
the field reverses the relative directions of the magnetic field and the probe beam
and so changes the sign of the observable. Under time reversal, the collection of
molecules can be regarded as unchanged provided it is isotropic in the absence of the
field (even though individual paramagnetic molecules will change to their Kramers
conjugates, there will be the same number of Kramers conjugate pairs before and
after), but again the relative directions of the magnetic field and the probe beam
are reversed and so the optical rotation changes sign. Thus the magnetic optical
rotation observable is a time-odd axial vector.

These conclusions accord with the explicit expressions for the optical rotation
angle obtained in Chapter 3:

AO ~ —Lwugl NG, (f), (3.4.43)
A6, ~ Jopocl Na, (f). (3.4.54)

Thus (3.4.43) shows that the natural optical rotation in an isotropic sample is pro-
portional to G/,,, which transforms as a time-even pseudoscalar; and (3.4.54) shows
that the magnetic optical rotation for light propagating in the « direction is propor-
tional to 80(/3),01}’3)/, which transforms as a time-odd axial vector (this classification
of molecular tensors is discussed in Section 4.4.1).

Similar arguments may be used to demonstrate that the magnetochiral birefrin-
gence observable transforms as a time-odd polar vector (Barron and Vrbancich,
1984).

In order to apply quantum mechanical arguments to the symmetry classifica-
tion of natural and magnetic optical rotation observables, it is necessary to specify
corresponding operators with well defined behaviour under space inversion us-
ing (4.3.7), and time reversal using (4.3.32). A good start has already been made
with the introduction of effective polarizability and optical activity operators in
(2.8.14). Consider first the product of two noncommuting Hermitian operators
A and B:

AB =3(AB+ BA)+ 3(AB— BA) = p+q. (4.3.46)

Recalling that a Hermitian operator satisfies A = A'; an antiHermitian operator
satisfies A = —A'; and that (AB)' = BTA; it is clear that p = 1(AB + BA) is
Hermitian and g = %(AB — BA) is antiHermitian. Extending this to the product
of three Hermitian operators, it is found that

(AB)C + C(BA) = pC 4+ ¢qC + Cp F Cq, (4.3.47)
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where pC + Cp and gC — Cq are Hermitian, and pC — Cp and qC + Cq are
antiHermitian. Since u, and g are Hermitian and have odd parity, and O® and
O* are Hermitian and have even parity, it follows that both &, and &, have even
parity, but the first is Hermitian and the second is antiHermitian. To determine the
behaviour under time reversal, it is necessary to appreciate that the product of two
noncommuting Hermitian operators A and B of well defined reversality does not
itself have well defined reversality but is the sum of a time-even and a time-odd
operator (Abragam and Bleaney, 1970). This can be seen by developing p and ¢ in
(4.3.46) as follows:

OpO~' = 3(0A07'6BO™! + OBO'0AO™)

— L(ATB + BT AT) = L(AB + BA) = pf, (4.3.484)
00~ = 3(0A0~'0BO™ —OBO'0AO™)

= 1(ATBT — BiAT) = —L(AB — BA) = —¢f.  (4.3.48p)

Thus p is time even but g is time odd! By extending these considerations to (4.3.47)
and using the fact that /i, g, O® and O are time even, we deduce that &, is time
even and & is time odd.

Consider next the effective optical activity operators Ga,g and Aa, gy also given
in (2.8.14). Repeating the same procedure as for &qg but now using the fact that
mg is Hermitian, has even parity and is time odd, we deduce that GZ ) is Hermitian,
has odd parity and is time odd; and that Ggﬁ is antiHermitian, has odd parity and
is time even. Similarly, since ©g,, is Hermitian, has even parity and is time even,
we deduce that A;’ p, 1s Hermitian, has odd parity and is time even, and that Ag) By
is antiHermitian, has odd parity and is time odd.

Finally, we generate the required natural and magnetic optical activity tensors
by taking diagonal matrix elements of the appropriate operators:

G, = i{n|Giy|n), (4.3.49a)
g = i{n|@hs|n). (4.3.49b)

Since the operators are antiHermitian, the expectation values are pure imaginary
(Bohm, 1951). These results are consistent with the symmetry classifications in-
troduced earlier: thus natural optical rotation, being a time-even pseudoscalar
observable, is generated by a time-even odd-parity operator; and magnetic op-
tical rotation, being a time-odd axial vector, is generated by a time-odd even-
parity operator. The magnetic result is also consistent with the statement given
in the previous section that, for both even and odd electron systems, a time-odd
operator has opposite expectation values in Kramers conjugate states: hence the
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result that Kramers conjugate states generate equal and opposite magnetic optical
rotation.

It was shown in Section 4.3.1 that, since the natural optical rotation observable
has odd parity, a resolved chiral molecule must exist in a state of mixed parity.
Now that it has been shown that the magnetic optical rotation observable has even
parity, we can understand why an atomic state such as |J M), which has definite
parity, can also show optical rotation, provided the degeneracy with its Kramers
conjugate state ©|J M) is lifted by a magnetic field (or a pure | J M) state is prepared
in, say, a molecular beam). But notice that a state such as |J M) does not have
definite reversality because ©|J M) is a new state orthogonal to | J/ M). For an even-
electron system, it is always possible using (4.3.24) and (4.3.27) to write | J M) as a
combination of states that have definite reversality; but this is not possible for odd
electron systems since invariant states cannot be constructed for them. Thus natural
optical rotation is supported only by systems in states with indefinite space parity,
and magnetic optical rotation is supported only by systems in states with indefinite
time parity.

It was shown in Section 4.3.1 that both natural optical rotation and a perma-
nent space fixed electric dipole moment are odd-parity observables and so require
mixed parity quantum states. We are now in a position to appreciate that time re-
versal invariance provides a fundamental quantum mechanical distinction between
these two different odd-parity observables. It is well known in elementary parti-
cle and atomic physics that both parity conservation and time reversal invariance
lead independently to the vanishing of a permanent electric dipole moment in a
stationary state (see, for example, Sandars, 1968, 2001; or Gibson and Pollard,
1976). Taking an atom as a simple example, this means that observation of a per-
manent electric dipole moment in, say, a pure |J M) state would violate both P
and T.

Since | J M) is a state of definite parity (—1)”, where p is the sum of the individual
orbital quantum numbers / of all the electrons in the atom (and using the standard
convention that the intrinsic parity of an electron spin state is +1 (Heine, 1960)),
the vanishing of the electric dipole moment through P invariance follows from
the discussion in Section 4.3.1 which shows that the expectation value of any odd-
parity observable vanishes in any state of definite parity. In the present context we
can use

P|JM) = (=D?|IM)
and

P:uaP_l = —Ha,
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together with P~'P = 1 and PTP = 1 (since P is unitary) to write
o = (S M|pe|J M)
= (JM|P'(Pua P~YP|I M)
=—(IM|uslJM) =0. (4.3.50)

The argument showing that 7" invariance also requires the electric dipole moment
to vanish is less straightforward. Since the electric dipole moment operator is time
even,

OO0 "' = ul, = pa.

Therefore, using the methods of the previous section, we can write the expectation
value of the electric dipole moment operator with respect to a time reversed state
O|JM) as

(OIM || OTM) = (OJ M |11, ©J M)
= (O OIM|O* I M) = (O, 0~ '0* I M|6*J M)
= (ul IM|IM) = (J M|y |J M). (4.3.51)

We now invoke a unitary operator R which rotates the axes through 7 about an axis
perpendicular to the quantization axis z, say the y axis. This operation therefore
retains the handedness of the axis system with x - —x,y — y,z — —z, and it
can be shown, using Wigner rotation matrices (Silver, 1976), that it has the same
effect on |J M) as time reversal, given in (4.3.45), at least within an inessential
phase factor. Thus we can write

(OIM|u;|©IM) = (RIM|p;|RIM)
= (JM|R ", RIIM) = —(J M| .| T M) (4.3.52)

because a rotation through 7 about y changes the sign of the polar vector operator
component p,. Since we can choose z arbitrarily in the absence of external fields,
(4.3.52) and (4.3.51) are only compatible if p, = 0.

The effective optical activity operator Gga responsible for natural optical rota-
tion in isotropic collections of chiral molecules is, like 1., time even, and so a
development of its expectation value for an atomic state can be written analogous
to (4.3.51). But since Gga is a pseudoscalar operator, rather than a polar vector
operator, it is invariant to the rotation by 7 about y and so

(0IM|G3,|0IM) = (IM|R™'G R|J M)
= (JM|G3,|IM). (4.3.53)

Thus T invariance does not prohibit natural optical rotation in atoms! A somewhat
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different proof has been given by Bouchiat and Bouchiat (1974). What does prevent
natural optical rotation, of course, is P invariance. This confirms that the tiny optical
rotations observed in free atoms, described in Section 1.9.6, are manifestations of
P but not T violation.

So far, the discussion of parity and reversality requirements has been confined to
atoms. In order to discuss the effect of parity and reversality on rotating molecules,
we must ascertain the behaviour of the molecule-fixed axes when the space-fixed
axes are transformed. Consider the simple case of a linear dipolar molecule (with
zero angular momentum about its symmetry axis) and use the polar tensor transfor-
mation law (4.2.32a) to write the molecule-fixed electric dipole moment in terms
of space-fixed axes:

My = ll’a,uvou

where primed and unprimed components now refer to space-fixed and molecule-
fixed axes. Then in place of (4.3.50) we have

wr = (J Mev|lygptalJ Mev)
= (I M|lyalJ M)(pha)ev

where (y)ey = (ev|iy|ev) is the molecule-fixed electric dipole moment for a
given internal vibrational-electronic state, and so only the direction cosine part of
the electric dipole moment operator affects the rotational states. We take the internal
axestobe X, Y, Z, with Z parallel to the symmetry axis and pointing in the direction
of the electric dipole moment. As a result of the inversion operation, the directions
of the space-fixed axes are reversed, thereby changing the handedness. The system
X, Y, Z must also change its handedness, but since the Z axis is rigidly connected
to the nuclei, it retains its former direction. Hence the direction of either one of
the axes X, Y must be reversed. Thus the operation of inversion of the space fixed
axes must be accompanied in the molecule-fixed (rotating) axes by a reflection in a
plane passing through the symmetry axis of the molecule. This important point is
elaborated in Landau and Lifshitz (1977) p. 307, and in Judd (1975) p. 134. Having
seen that all the A’ change sign under inversion whereas Z does not, we can now
write

PlyzP ' =147 = —lyz,
and so

wy = (I M|lLyz|J M)(1Lz)en
= (JM|P'(PLyizP™)PITM)(1z)e
= (JM|lyz|J M)(iuz)ey = 0.
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Thus parity prevents a dipolar molecule in a rotational quantum state |J M)
from showing a space-fixed electric dipole moment. The arguments embodied in
(4.3.51, 2) can be extended in a similar fashion to show that this is also prohibited
by reversality. On the other hand, it is easy to see that a molecule in a rotational
quantum state |J M) is allowed by reversality, and by parity if it is chiral, to show
natural optical rotation.

These arguments cover linear tops in nondegenerate electronic states, and asym-
metric tops, because their rotational quantum states depend on only the two quantum
numbers J and M. Symmetric tops, on the other hand, have an additional quan-
tum number K and a degeneracy of states with angular momentum + K% about
the molecular symmetry axis. Since the symmetric top wave function has the form
(see, for example, Eyring, Watter and Kimball, 1944)

Wykm = Orkm@)eMPe X (4.3.54)

where 6, ¢, x are the Euler angles and ©;k, is a complicated function of 6 (and
is not to be confused with the time reversal operator), it follows that the time
reversal operator transforms a state |J K M) into a different state |J — K —M)
(times an inessential phase factor). Since this state cannot be generated by any spatial
symmetry operation that changes the sign of u, (for example, inversion followed
by a rotation through m about the y axis transforms |J K M) into |J —K —M),
but does not change the sign of u,), arguments of the sort embodied in (4.3.51,
52) cannot be applied, and so reversality does not prohibit a space-fixed electric
dipole moment in a symmetric top (unless K = 0). The parity operator transforms
|JKM) into |J — K M), which therefore has mixed parity, and so parity does not
prohibit a space-fixed electric dipole moment either. Thus only dipolar symmetric
tops with K # 0 can show first-order Stark effects: despite the fact that many
asymmetric tops and certain linear tops have molecule-fixed permanent electric
dipole moments, they usually do not show first-order Stark effects. But it should
not be thought that |/ K M) and |J — K M) are enantiomeric states, for neither can
show natural optical rotation: this follows because time reversal generates the same
state from |J K M) as inversion followed by a rotation through 7 about y, namely
|/ —K — M), yet time reversal does not change the sign of (A}gm while the second
combined operation does. States |J K M) and |J —K M) will, however, generate
the same magnetic optical rotation, which is equal and opposite to that generated
by |JK —M) and |J — K —M).

4.3.4 Optical enantiomers, two-state systems and parity violation

We saw in Section 4.3.1 how the mixed parity states of a resolved chiral molecule can
be pictured in terms of a double well potential. This aspect is now developed further
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by considering the quantum mechanics of a degenerate two-state system in order
to gain an insight into the apparent paradox of the stability of optical enantiomers
which was recognized at the beginning of the quantum era since the existence of
optical enantiomers was difficult to reconcile with basic quantum mechanics. In the
words of Hund (1927):

If a molecule admits two different nuclear configurations being the mirror images of each
other, then the stationary states do not correspond to a motion around one of these two
equilibrium configurations. Rather, each stationary state is composed of left-handed and
right-handed configurations in equal shares . . . The fact that the right-handed or left-handed
configuration of a molecule is not a quantum state (eigenstate of the Hamiltonian) might
appear to contradict the existence of optical isomers.

Similarly Rosenfeld (1928):
A system (state) with sharp energy is optically inactive.
And Born and Jordan (1930):

Since each molecule consists of point charges interacting via Coulomb’s law, the energy
function (Hamiltonian) is always invariant with respect to space inversion. Consequently
there could not exist any optically active molecules, which contradicts experience.

These translated quotations are taken from a critical review by Pfeifer (1980).

Hund’s resolution of the ‘paradox’ involves arguments of the type given in Sec-
tion 4.3.1, namely that typical chiral molecules have such high barriers to inversion
that the lifetime of a prepared enantiomer is virtually infinite. In this section Hund’s
approach is brought up to date by injecting a small parity-violating term into the
Hamiltonian, which results in the two enantiomeric states becoming the true sta-
tionary states (Harris and Stodolsky, 1978).

We start by reviewing the perturbation treatment for two interacting degenerate
states v and v, following a treatment given by Bohm (1951) which is particularly
appropriate. The usual result for the perturbed energy is

Wi =W=x|Vpy, (4.3.55)

where W is the unperturbed energy shared by | and y», and V is the perturbation
Hamiltonian (for simplicity we have assumed that V}; = V,, = 0). The amplitudes
of the corresponding perturbed wavefunctions can be written

1 .

Y= Ssn ey, (4.3.56)
with Vi, = |Vi2|e ™ so that, if V5 is real and positive, o« = 0, and, if V, is real
and negative, « = . These approximate wavefunctions have two important prop-
erties: they are orthogonal, and the matrix elements of V between wfro) and tﬂ(_o)
vanish. (Do not confuse the subscripts £, which denote higher and lower energy
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solutions, with the notation (%) used in Section 4.3.1 to denote even- and odd-parity
wavefunctions.)

We now consider how the wavefunction changes with time. Take Vj, to be real
and negative so that « = 7. The amplitudes of the two perturbed wavefunctions
are then

o L s (4.3.57)
V2

The Wf ) are the amplitudes of stationary states with time-dependent wavefunctions
Ya(r) = Y e I WEVRDI, (4.3.58)

The general time-dependent wavefunction for the two-state system is now given by
the sum of the two stationary state wavefunctions:

1
V2

This can be rewritten in terms of v, and y,:

Y (t) = [ cos(|Vialt /l) + it sin(|Violt /R)]e ™/, (4.3.60)

w(t) — (l[/f)efiIVn\t/h + llli())eiIV12|t/h)efth/h‘ (4359)

Thus at ¢t = 0 the system is entirely in the state i, and at t = 7w/ /2| V)] it is
entirely in the state 1/, which is seen to have a phase e /2 relative to ;. This
oscillation of amplitude between the two states ¥ and v, is formally similar to
that between two resonant classical harmonic oscillators, such as pendulums, that
are weakly coupled. If just one of the pendulums is made to swing, the energy is
transferred back and forth between the two pendulums at a rate proportional to
the strength of the coupling force. But if the two pendulums are made to swing
simultaneously with identical energies, two possible states of stationary oscillation
are possible (stationary in the sense that each pendulum retains constant energy)
corresponding to the in-phase and out-of-phase local oscillations. The transforma-
tion from a description in terms of local pendulum coordinates to the stationary
combinations of the local coordinates is simply a transformation to the normal co-
ordinates of the vibrating system: the local coordinates are not ‘diagonal’ in the
sense that they couple with each other; whereas there is no coupling between the
normal coordinates so they oscillate independently of each other. Likewise the set
of quantum states (Y1, ¥») couple with each other whereas the set (wf ), w(_o )) do
not and are true stationary states.

Thus if no external perturbation is applied to a two-state system, any ‘perturba-
tion” which couples i, and v, is internal and is simply an ‘artifact’ of the chosen
representation: the Hamiltonian is the same for (v, ¥») and (wf), w(_o)). It might
be appropriate in some situations to set up the problem in terms of perturbation
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theory, as above, if the chosen representation is ‘almost diagonal’ in the sense that
the coupling is weak, or indeed if an external perturbation is present. But for a
general two-state system (not necessarily degenerate) the exact energy eigenvalues
and eigenfunctions are, in place of (4.3.55) and (4.3.56),

Wi = 3(Hiy + Hyp) £ J[(Hy — Hp)® +41HplP1, (43.61)
O = cosgp y” + sing ", (4.3.62q)
@ = —sing v'\” + cos p ¥?, (4.3.62b)
with
tan2¢ = 2|Hy»|/(H11 — Ha). (4.3.62¢)

If ¥, and v, happen to be degenerate and are interconverted by a particular sym-
metry operation of the Hamiltonian, Wf) and w(_o) transform according to one or
other of the irreducible representations of the group comprising the identity and
the operation in question. Thus if a two-state system is prepared in a nonstationary
state, it might appear (falsely) to be influenced by a time-dependent perturbation
lacking some fundamental symmetry of the internal Hamiltonian of the system.

We now identify the two enantiomeric states i and ¥ of a chiral molecule
with ¥; and . Since these states are interconverted by a fundamental symmetry
operation of the Hamiltonian, the inversion, they couple with each other; whereas
the stationary states wf) and w(_o) transform according to one or other of the ir-
reducible representations of the inversion group, ¥ = y©(—) having odd par-
ity and energy W, = W(—), and ¥* = ¥ ©(+) having even parity and energy
W_ = W(+). This identification enables (4.3.10) to be recovered from (4.3.59).
The Born—Oppenheimer approximation is invoked in order to envisage this cou-
pling in terms of an overlap of ¥ and g due to tunnelling through the barrier in
the double well potential (Fig. 4.4), but it is emphasized that this is a convenience:
the coupling is independent of any model of molecular structure. It happens that,
because we are able to distinguish the left- and right-handed forms of a chiral object,
we can prepare a chiral molecule in a state i or g, but these are not the stationary
states (neglecting for the moment a small parity-violating term in the Hamiltonian):
having prepared v, or Y, if the molecule is isolated from all external influences,
it will oscillate forever between i, and vy in accordance with (4.3.60).

The natural optical activity observables shown by this oscillating system are
time dependent and are given by the expectation values of the effective optical
activity operators Gaﬂ and A, gy, defined in (2.8.14), for the general time-dependent
wavefunction (4.3.60). Isotropic optical rotation, for example, is proportional to the
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imaginary part of

(w]Ga ) = (vi| G2, [y ) cos (8t /h)
+ (yr| G2, |YR) sin®(8t /)
Fi[ (0| Gy [vr) — (Wr| G [¥)] cos(t /R) sin(st /), (4.3.63)

where § = [(YL|H|yr)|. Using the fact that Ggﬁ has odd parity, together with
P~'P =1and P'P =1, we find

(VL] Gllvn) = (| PI(P G, PP [yn)
= (PyL|PGL, P |PyL) = —(yr|G3, [Yr). (4.3.640)

Similarly,

(V]G [¥R) = —(r |G, ¥L)- (4.3.64b)

But since Gzﬁ is antiHermitian, we also have

(W] G vR) = —(uw|Gay | vL)". (4.3.64¢)

The last two results show that (| Gga |Y/Rr) is real; whereas time reversal arguments
in Section 4.4.3 below show that it is imaginary (at least for even electron systems).
We therefore conclude that both real and imaginary parts of (| Gza |[WR) are zero.
Thus (4.3.63) becomes

(¥|Gaelw) = (vo

and so the time-averaged natural optical rotation angle is zero.

We now introduce a small parity-violating term into the Hamiltonian of the
chiral molecule that lifts the exact degeneracy of the mirror image enantiomers, as
described in Section 1.9.6. The weak neutral current interaction generates parity
violating interactions between electrons, and between electrons and nucleons. The
latter leads to the following electron—nucleus contact interaction (in atomic units
where i = e = m, = 1 in atoms and molecules (Bouchiat and Bouchiat, 1974,
Hegstrom, Rein and Sandars, 1980):

Go
4v2

where { } denotes an anticommutator, G is the Fermi weak coupling constant, « is the
fine structure constant, o, and p, are the Pauli spin operator and linear momentum
operator of the electron, py(r,) is a normalized nuclear density function and

G2, | W) cos(281 /) (4.3.65)

Vel;\\/ = QW{Ue~pe7 ;ON(re)}a (4366)

Ow = Z(1 —4sin’*6w) — N
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is an effective weak charge which depends on the proton and neutron numbers Z and
N together with the Weinberg electroweak mixing angle 8y which relates the weak
and electromagnetic unit charges g and e through gsin 6y = e. The much smaller
electron—electron interaction is usually neglected. Since o, and p, are time-odd
axial and polar vectors, respectively, and all the other factors are time-even scalars,
VEY transforms as a time-even pseudoscalar, as required, and so can mix even- and
odd-parity electronic states at the nucleus. Hence

PV P =V}, (4.3.67)

so parity violation shifts the energies of the enantiomeric states in opposite direc-
tions:

(WL VY [vL) = —(we | ViV [¥r) = €. (4.3.68)

Attempts to calculate € are faced with the following difficulty. The electronic co-
ordinate part of Vj\‘,’ in (4.3.66) is linear in p, and is therefore purely imaginary.
Since, in the absence of external magnetic fields, the molecular wavefunction may
always be chosen to be real, Vef;\\,’ has zero expectation values. Also the presence
of o, means that only matrix elements between different spin states survive. Con-
sequently, it is necessary to invoke a magnetic perturbation of the wavefunction
that involves spin, such as spin—orbit coupling. This leads to a tractable method
for detailed quantum chemical calculations of the tiny parity-violating energy dif-
ferences between enantiomers. Results at the time of writing are summarized by
Quack (2002) and Wesendrup et al. (2003).

Since, on account of parity violation, the two enantiomeric states of the chiral
molecule are no longer degenerate, the energies and wavefunctions of the two
stationary states g//f) and wf) are given by the general two-state results (4.3.61)
and (4.3.62) with H now containing Ve};\\,’ from which it follows that (Harris and
Stodolsky, 1978; Harris, 1980)

W, — W_ =22+ 8%, (4.3.69q)
tan2¢ = §/e€. (4.3.69b)

When € =0, W, — W_ =25 and is interpreted as the tunnelling splitting
W(—) — W(+) between the definite parity states /' (—) and ¥ ©(+), as discussed
in Section 4.3.1. When € # 0, the Hamiltonian lacks inversion symmetry so the
stationary states Wf) and wf) may no longer be identified with the definite parity
states @ (—) and ¥ ©(+), respectively. Thus ¢, and ¥ are no longer equal
combinations of i and yg. If the system is prepared in ¥, say, it will never
become completely ygr: the optical activity oscillates asymmetrically. This can be
shown explicitly by inverting (4.3.62a and ) (and multiplying each stationary state
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amplitude by its exponential time factor),

Y = cos ¢ Y Ve WM _gin g 3y Qe IW-1/1 (4.3.70q)
Y = cos Yy VeV sing Ve W/ (4.3.70b)

and working out the appropriate expectation value. Thus, for a system prepared
in Y, the time dependence of the isotropic optical rotation is proportional to the
imaginary part of

€2 + 82 cos[2(8% + €221 /h]
& +e)

(| Galy) = (v | G2, [v1”) (4371

As discussed just after (4.3.64), terms in (w(0)|G |1//(0)) are zero, at least for even
electron systems. Taking the time average, we can write

AG €2
Abmax (82 +€2)
Thus parity violation causes a shift away from zero of the time-averaged optical
rotation angle Af.

It follows from (4.3.61) and (4.3.62) that, as §/e¢ — 0, ¥ and Y become
the true stationary states. In fact for typical chiral molecules, § corresponds to
tunnelling times of the order of millions of years: Harris and Stodolsky (1978)
have estimated € to correspond to times of the order of seconds to days, so at low
temperature (to prevent thermal ‘hopping’ over the barrier) and in a vacuum (to
minimize interaction with the environment) a prepared enantiomer will retain its
handedness essentially for ever. These considerations therefore suggest that the
ultimate answer to the ‘paradox’ of the stability of optical enantiomers lies in the
weak interactions. However, the situation is more complicated because the influence
of the environment must also be considered (Harris and Stodolsky, 1981).

Because any observable quantities are expected to be so very small, the detection
of manifestations of parity violation in chiral molecules and the measurement of the
parity-violating energy differences between enantiomers remains a major challenge
for molecular physics. There has been much discussion of possible experimental
strategies that exploit different aspects of the quantum mechanics of the two-state
system perturbed by parity violation (see, for example, Quack, 2002 and Harris,
2002).

(4.3.72)

4.3.5 Symmetry breaking and symmetry violation

The appearance of parity-violating phenomena is interpreted in quantum mechanics
by saying that, contrary to what had been previously supposed, the Hamiltonian
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lacks inversion symmetry due to the presence of pseudoscalar terms such as the
weak neutral current interaction (4.3.66). This means that P and H no longer
commute, so the associated law of conservation of parity no longer holds. Such
symmetry violation must be distinguished from symmetry breaking: current usage
in the physics literature applies the latter term to the situation which arises when a
system displays a lower symmetry than that of its Hamiltonian (Anderson, 1972,
1983; Michel, 1980; Blaizot and Ripka, 1986). More specifically, a state has broken
symmetry if it cannot be classified according to an irreducible representation of the
symmetry group of the Hamiltonian or, equivalently, if it does not carry the quantum
numbers of the eigenstates of the Hamiltonian, such as parity, angular momentum,
etc. Natural optical activity is therefore a phenomenon arising from parity breaking
since, as we have seen, a resolved chiral molecule displays a lower symmetry
than that of its associated Hamiltonian. If the small parity-violating term in the
Hamiltonian is neglected, the symmetry operation that the Hamiltonian possesses
but the chiral molecule lacks is parity, and it is the parity operation that interconverts
the two enantiomeric parity-broken states. In the context of nuclear physics, broken
symmetry states are often called deformed states (Blaizot and Ripka, 1986).

A symmetry violation may often be conceptualized as a symmetry breaking with
respect to some new and previously unsuspected deeper symmetry operation of the
Hamiltonian. For example, parity violation was found to imply a violation of charge
conjugation symmetry, with the combined CP symmetry being conserved overall
(Section 1.9.6). Hence the P violation that lifts the degeneracy of the P-enantiomers
of a chiral molecule is associated with a symmetry breaking with respect to CP,
since CP generates a distinguishable system (the mirror-image molecule composed
of antiparticles) with identical energy to the original. Likewise, assuming CPT is
conserved, CP violation is associated with symmetry breaking with respect to CPT,
although now the physical interpretation is more subtle. For example, a process
which violates CP, such as the decay of the neutral K-meson where CP violation
is manifest as an asymmetry in the decay rates to the two sets of CP-enantiomeric
states (Section 1.9.6), will be invariant under CPT. This means that the rate from
the initial state to the final state will be identical to the rate for the reverse process
from the final state to the initial state but now with all the particles replaced by their
CP-enantiomers.

The conventional view, formulated in terms of the double well model in Section
4.3.1, is that parity violation plays no part in the stabilization of chiral molecules.
The natural optical activity remains observable only so long as the observation
time is short compared with the interconversion time between enantiomers, which
is proportional to the inverse of the tunnelling splitting. Such parity-breaking optical
activity therefore averages to zero over a sufficiently long observation time. These
considerations lead us to an important criterion for distinguishing between natural
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optical activity generated through parity breaking from that generated through parity
violation. The former is time dependent and averages to zero, at least in isolated
chiral molecules; whereas the latter is constant in time (recall from the previous
section that the handed states become the stationary states when §/e¢ — 0). Since
it is due entirely to parity violation, the tiny natural optical rotation shown by a free
atomic vapour is constant in time.

There is considerable interest in the development of quantitative measures of
the degree of chirality of individual chiral molecules (Mislow, 1999). While such
measures are of mathematical interest in the context of static geometry and topol-
ogy and may have practical applications in chemistry, it should be clear from the
discussion above that the degree of chirality of individual molecular structures in
the form of some fundamental time-even pseudoscalar quantity analogous to, say
energy (a time-even scalar) is a Will o’ the wisp (Barron, 1996). This is because the
degree of chirality evaporates under close quantum mechanical scrutiny: neglecting
parity violation, chiral molecules are not in stationary states of the Hamiltonian so
any pseudoscalar quantity will average to zero on an appropriate timescale.

In condensed matter physics symmetry breaking is associated with phase transi-
tions in which large numbers of particles cooperate to produce sudden transitions
between symmetric and asymmetric states of the complete macroscopic sample,
as in ferromagnetism. The Hamiltonian of an iron crystal is invariant under spatial
rotations. However the ground state of a magnetized sample, in which all the micro-
scopic magnetic dipole moments are aligned in the same direction, is not invariant:
it distinguishes a specific direction in space, the direction of magnetization. This
nonzero magnetization in zero applied field also breaks time reversal symmetry.
When the temperature is raised above the Curie point, the magnetization disappears
and the rotational and time reversal symmetries become manifest. A vestige of the
rotational symmetry still survives in the ferromagnetic phase in that the sense of
magnetization with respect to space-fixed axes is arbitrary. Temperature is a central
feature here, because behaviour reflecting the full symmetry of the Hamiltonian
can be recovered at sufficiently high temperature. Molecules behave rather differ-
ently from macroscopic systems in that they do not support sharp phase transitions
between symmetric and asymmetric states (Anderson, 1972, 1983). There has been
much discussion on the relationship between the microscopic and macroscopic
aspects of the broken-parity states of chiral systems (see, for example, Woolley,
1975b, 1982; Quack, 1989; Vager, 1997).

The expression ‘spontaneous symmetry breaking’ is usually employed in macro-
scopic systems (ideally in the limit of an infinite number of particles) to describe
phase transitions to less symmetric states (Binney et al., 1992). This expression
is derived from ‘spontaneous magnetization’ in the case of ferromagnetism. An
analogous type of spontaneous symmetry breaking occurs in gauge theories of
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elementary particles (Gottfried and Weisskopf, 1984; Weinberg, 1996). The bro-
ken symmetry phase is described by an order parameter, indicating that this phase
possesses the lower symmetry and hence greater order. The order parameter in
the case of ferromagnetism is the magnetization, which transforms as a time-odd
axial vector. A phase transition from an achiral (racemic) state to a chiral state of
a macroscopic system would be characterized by an order parameter transforming
as a time-even pseudoscalar.

4.3.6 CP violation and molecular physics

Heisenberg (1966) once made remarks to the effect that elementary particles are
much more akin to molecules than to atoms. This insight gains force from a con-
sideration of the curious behaviour of the neutral K-meson (Gibson and Pollard,
1976; Gottfried and Weisskopf, 1984; Sachs, 1987). The neutral K -meson displays
four distinct states: particle and antiparticle states |K°) and | K%*) which are inter-
converted by the operation CP, and two mixed states |K;) = (|K°) + |K%))/ V2
and |K,) = (|K°) — |K®*))/+/2 which have different energies because of coupling
between |K°) and |K®) via the weak force. This means that |K;) and |K>) are
even and odd eigenstates with respect to CP, and that |K%) and |K%*) are mixed
(symmetry broken) with respect to CP. Wigner (1965) has therefore likened these
four distinct states of the neutral K-meson to the four possible states of a chiral
molecule in the real world, namely the even- and odd-parity states ¥ (+) and (—)
and the two handed states v and yr of mixed parity, respectively. However, the CP
eigenstates |K) and | K;) are not pure since |K»), which is odd with respect to CP,
is occasionally observed to decay into products which are even with respect to C P.
This implies that the Hamiltonian contains a small CP-violating term that mixes
|K) and | K»), analogous to the P-violating term that mixes the definite parity states
of a chiral molecule. (The long-lived neutral K-meson K| mentioned in Section
1.9.6 is the same as | K>), and its decay rate asymmetry is another manifestation of
CP violation.)

There is, however, a subtle but fundamental difference between P violation in
a chiral molecule and CP violation in the neutral K-meson system: P violation
lifts the degeneracy of the P-enantiomers of a chiral molecule (the left- and right-
handed states), but CP violation does not lift the degeneracy of the CP-enantiomers
of the neutral K-meson (the particle and antiparticle states) because, as already
mentioned in Section 1.9.6, CPT invariance guarantees that the rest mass of a
particle and its antiparticle are equal. Similarly, CP violation does not lift the
degeneracy of the CP-enantiomers of a chiral molecule (a molecule and its mirror
image composed of antiparticles, as invoked in Figure 1.23) (Barron, 1994). But
it should not be thought that, if antimolecules were accessible, the type of CP
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violation observed in the neutral K-meson system might be observed in molecular
systems, with molecule—antimolecule superposition states analogous to |K;) and
|K>) as intermediates bridging the worlds of matter and antimatter. Among other
things, such molecule—antimolecule transformations would require a gross violation
of the law of baryon conservation, which does not arise in the neutral K-meson
system because mesons have baryon numbers zero.

4.4 The symmetry classification of molecular property tensors

In this section point group symmetry arguments are combined with time reversal
arguments to establish criteria for the nonvanishing of components of property
or transition tensors in a molecule with a given spatial symmetry and in a given
quantum state. The example of permanent electric and magnetic dipole moments
in Section 4.3.2 gives a preliminary idea of the considerations involved.

4.4.1 Polar and axial, time-even and time-odd tensors

We saw in Section 1.9.2 that it is possible to classify scalar and vector physical
quantities with respect to their behaviour under space inversion and time rever-
sal. This classification can be extended to general molecular property tensors by
considering relationships such as

Ha = aaﬂEﬂ

in which two measurable quantities are related by means of a property tensor. So if
the behaviour under space inversion and time reversal of the two measurable quan-
tities is known, the property tensor can be classified immediately. In this particular
example, since p and E are both polar time-even vectors, aqg is a second-rank
polar time-even tensor. By applying these considerations to the general expressions
(2.6.26) for the induced electric and magnetic multipole moments, the characteris-
tics listed in Table 4.1 are deduced (Buckingham, Graham and Raab, 1971).

4.4.2 Neumann’s principle

Neumann’s principle (Neumann, 1885) states that any type of symmetry exhibited
by the point group of a system is possessed by every physical property of the sys-
tem. A physical property of a system relates associated measurable quantities: for
example, density relates the mass and the volume; and electric polarizability relates
the induced electric dipole moment and the applied uniform electric field. Since a
point group symmetry operation can be defined as one that leaves the system indis-
tinguishable from its original condition, the same relation must hold between the
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Table 4.1 The behaviour of molecular property tensors
under space inversion and time reversal

Molecular property tensor Space inversion Time reversal
Uo polar even
My axial odd
QAop polar even
Uy polar odd
Ag. gy polar even
Ay py polar odd
Gap axial odd
Gus axial even
Cap.ys polar even
Capys polar odd
Dy gy axial odd
D, 4, axial even
Xap polar even
Xo 6 polar odd

measurable quantities before and after the symmetry operation, and the physical
property in question must therefore transform into +1 times itself under all the
symmetry operations of the system. Thus, re-expressed in group theoretical terms,
Neumann’s principle states that any tensor components representing a physical
property of a system must transform as the totally symmetric irreducible repre-
sentation of the system’s symmetry group. Curie (1908) provided the following
penetrating formulation of Neumann’s principle in terms of asymmetry rather than
symmetry: ‘C’est la dissymmetrie, qui crée le phenomene’. Thus no asymmetry can
manifest itself in a property tensor which does not already exist in the system. Birss
(1966) and Shubnikov and Koptsik (1974) have discussed Neumann’s principle at
length. See also Zocher and Torok (1953) and Altmann (1992).

Neumann’s principle also embraces time reversal symmetry provided the phys-
ical property under consideration is static, but it does not apply to transport prop-
erties; in other words, it does not apply to phenomena where the entropy of the
system is changing. The group theoretical approach is based on the nonmagnetic
and magnetic symmetry groups which are generated from the classical groups by
adding new operations generated by combining spatial transformations with time
reversal (Birss, 1966, Joshua, 1991). This approach, which is not elaborated here,
is most appropriate when considering the magnetic properties of crystals.

Since we are interested mainly in the quantum mechanical properties of individ-
ual atoms and molecules in this book, we incorporate time reversal into our sym-
metry arguments using an alternative approach based on the generalized symmetry
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selection rule (4.3.37). This takes account of the time reversal characteristics of a
physical property by specifying a corresponding time-even or time-odd operator,
and takes account of whether the molecule has an even or an odd number of elec-
trons by using a single or a double point group. The diagonal matrix elements give
the corresponding property tensor component in particular quantum states, and the
off-diagonal matrix elements give corresponding transition tensors. Thus an atom
or molecule in a degenerate quantum state that can, according to (4.3.37), support,
for example, a magnetic moment, would not have time reversal symmetry; but in
the absence of a time-odd external influence, such as a magnetic field that lifts the
degeneracy, each atom or molecule will exist in a time-even superposition of states
in which the magnetic moments associated with each component state cancel.

4.4.3 Time reversal and the permutation symmetry of molecular
property and transition tensors

Ithas been said that time reversal symmetry is responsible for the intrinsic symmetry
of matter tensors (Fumi, 1952). Here we show how time reversal arguments in a
quantum mechanical context can be used to glean more detailed information about
molecular property and transition tensors than is given by the classical method of
Section 4.4.1, particularly when the molecules are in degenerate electronic states. In
the case of the polarizability, powerful statements concerning the tensor permutation
symmetry emerge. Although analogous statements are not possible for the optical
activity tensors, other useful results are obtained.

Itis easy to prove the equality (within a phase factor) of the probability amplitudes
for the transitions |1) — |2) and |©2) — |©1), where |1) and |2) are any pair of
quantum states and |©1) and |©2) are the corresponding time-reversed states. Thus
using the methods of Section 4.3.2 we can write

(O1]A(£)|02) = (O1]|A(£)O2)
= (OA(£)02|6%1) = (OA(1)O~'6%2|6°1)
= +(A(H)2[1) = £2|A(H)[1). (4.4.1)

This result is independent of whether A (4) is Hermitian, antiHermitian or non-
Hermitian.

In order to apply (4.4.1) to light scattering, it is necessary to specify a scattering
operator with well defined behaviour under time reversal. As shown in Section
4.3.3, the effective polarizability operator &qs defined in (2.8.14) has a part @,
that is Hermitian and time even and a part &, that is antiHermitian and time odd.
Putting &g into (4.4.1) and recalling that a Hermitian operator satisfies (m|V|n) =
(n|V|m)* and an antiHermitian operator satisfies (m|V |[n) = —(n|V |m)*, we obtain
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the following fundamental property of the complex transition polarizability (Barron
and N¢rby Svendsen, 1981; Liu, 1991)):

(&aﬂ)mn = (dﬂa)(ﬂn(—)m = (&aﬁ)*em(gn- (442)

Despite the approximations used in the derivation of (4.4.2), the result may be
shown to be valid for all Raman processes, transparent and resonant (Hecht and
Barron, 1993c¢).

Within the present formalism, the generalization to absorbing frequencies is
accomplished by taking account of the lifetimes of the excited intermediate states
| j),as discussed in Section 2.6.3. This leads to the introduction of the real dispersion
and absorption lineshape functions f and g, and enables us to decompose the
(already) complex transition polarizability into dispersive and absorptive parts:

(&aﬁ)mn = (&aﬂ(f))mn + i(&aﬂ(g))mn- (443)

The fundamental relationship (4.4.2) can now be extended to the case of resonance
scattering by means of separate relationships between the dispersive and absorptive
parts of the complex transition polarizability:

(@ap(fNimn = @ap(f))omen- (4.4.4a)
(&aﬂ(g))mn = (&aﬁ(g))*(—)m(—)n- (444b)

Consider first the application of (4.4.2) to an even electron system (integral J).
The initial and final states can now be chosen to be either even or odd with respect
to time reversal; that is, states of the form (4.3.24) or (4.3.27). If we choose even
states (which we always can for integral J), |©n) = |n) and |©m) = |m) so that

(&aﬂ)mn = (daﬁ);n- (445)

This result shows that the transition polarizability is pure real, that is (&ug)mn =
(@ap)mn, but says nothing about its permutation symmetry, which implies that both
symmetric and antisymmetric parts are allowed by time reversal (unless m = n
when only the symmetric part survives).

The application of (4.4.2) to an odd electron system (half odd-integral J) reveals
additional richness. As discussed in Section 4.3.2, it is not now possible to construct
states that are even or odd with respect to time reversal since a single application of
the time reversal operator always generates a state orthogonal to the original one, as
demonstrated in (4.3.31). We consider explicitly the most common situation, when
the initial and final states are components of a twofold Kramers degenerate elec-
tronic level. The conclusions therefore apply immediately to atoms; for molecules
we must take the purely electronic part of the transition polarizability that results
when the zeroth order Born—Oppenheimer approximation is invoked and so, as
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discussed later (Section 8.3), the conclusions apply only to Rayleigh scattering and
to resonance Raman scattering in totally symmetric modes of vibration. Denoting
the two Kramers components by e, and e, there are four scattering transitions
possible: e, < e,, e, < e, e, < e, and e, < e,. From (4.3.22) we can write
|@e,) = |e)) and |Oe)) = —|e,), so from (4.4.2) we have

(&aﬂ)enen = (&ﬁa)e;e,’l = (&“ﬁ):;e,’l’ (446a)
(&aﬁ)e,’le,, = _(&,Boz)e;,e,, = _(&aﬁ):ne;z' (446b)

We deduce from (4.4.6a) that diagonal transitions can generate a complex transition
polarizability with a real symmetric and an imaginary antisymmetric part, that is

(aaﬂ)ene,, = (aaﬁ)e;e; = (aﬂa)enen = (aﬁa)e’ e s (446C)

n®n

(a(/xﬁ)e,,en = _(a(/xﬁ)e;e,’, = _(a;sa)ene,, = (a}/ga)e’ e (446d)

n®n

and from (4.4.6b) that the off-diagonal matrix elements can only generate an anti-
symmetric transition polarizability, but this can have both real and imaginary parts:

(aaﬂ)e;en = _(aﬂa)e;,e,, = _(a(xﬁ)ene;’s (4466)
(O‘(;ﬁ)e;e,, = _(a};a)e,’le,, = (a&ﬁ)e”e;- (4.4.6/)

In Section 2.8.1 it was shown that antisymmetric Rayleigh scattering is only
possible from systems in degenerate states. We are now in a position to offer a
better proof: having found that & is time odd, we deduce this result immediately
from the theorem (Section 4.3.2) that the expectation value of a time-odd operator
vanishes for states invariant under time reversal, which can always be constructed
for an even electron system and hence for any nondegenerate state. For even electron
systems, (4.4.5) tells us that the degeneracy must be such as to support transitions
that generate a real antisymmetric tensor, whereas for odd electron systems (4.4.6)
tell us that the degeneracy can be such as to support transitions that generate either
areal or an imaginary antisymmetric tensor. We now develop a general relationship
that embraces all these possibilities for the case of Rayleigh scattering from atoms.

We first use in (4.4.2) the result (4.3.39) for the effect of the time reversal operator
on a general atomic state of the form | J M) to write

(Gap) sy = (= 1) T =M=MEPE G N . (4.4.7)

Since we are considering only scattering transitions between components of a de-
generate level, we can take J = J’ and p = p’, in which case (4.4.7) becomes

@ap)smram = (=D MM Gy ag g (4.4.8)
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For the special type of off-diagonal transitions where M’ = —M,

(@ap)smom = (=D @) s am = (D @ap)ipr jys (4.4.9)

so the complex transition polarizability is symmetric if J is integral and antisym-
metric if J is half odd-integral, and both real and imaginary parts are allowed in
both cases. For diagonal transitions,

@ap)smam = (12" @pa) s gm = (DY M (@) sy (44.10)

which, for both integral and half odd-integral J, and M = 0, allows the complex
transition polarizability to have a real symmetric and an imaginary antisymmetric
part. Notice that (4.4.9) and (4.4.10) accord with (4.4.5). If M = 0, which is only
possible for integral J,

(@ap) 1050 = (=1)* @ap)i0.0s 4.4.11)

so the complex transition polarizability is pure real and, since it is diagonal, sym-
metric.

The conclusions in the previous paragraph were reached by considering a com-
plex atomic wavefunction which is neither even nor odd under time reversal. If
J is half odd-integral, the wave function cannot be transformed into a time-even
or time-odd form, and the conclusions in the previous paragraph stand. But if J
is integral, we can always transform the wavefunction into a time-even form, and
must therefore take account of the result (4.4.5), which stipulates that all com-
ponents of the complex transition polarizability must be pure real. By combining
this with the conclusions in the previous paragraph, we deduce that if J is inte-
gral, the complex transition polarizability is always real and symmetric both for
diagonal transitions, and for off-diagonal transitions where M’ = — M. Notice that,
since atoms are spherically symmetric, the symmetric transition polarizability will
always be diagonal with respect to its spatial components.

Finally, we note that for off-diagonal transitions where M’ %= M, there are ad-
ditional possibilities. For example, if J is integral, for transitions where M + M’
is odd we deduce from (4.4.5) that the complex transition polarizability is pure
real, and from (4.4.8) that an antisymmetric part is allowed. In these more general
situations, time reversal selection rules are not as restrictive as when M’ = +M
because the initial and final states on each side of (4.4.8) cannot be made equivalent.
The least restrictive situation is when J # J and M # M'.

These general results for the intrinsic symmetry properties of the transition polar-
izability are developed in more detail in Chapter 8 in the context of antisymmetric
scattering.



4.4 Symmetry of molecular property tensors 223

Relationships analogous to (4.4.2) can be written for the transition optical activity
tensors but without the first equality since the real and imaginary parts no longer
have well defined permutation symmetry. Using the Hermiticity and reversality
characteristics of the corresponding operators deduced in Section 4.3.3, we obtain

(Gtxﬁ)mn = _(Gaﬂ)gm@n’ (44120)
(Aa,ﬂy)mn = (Aa,ﬂy)*(_)m(_)n- (4.4.12b)
For an even electron system (4.4.12) become
(Gaﬁ)mn = _(Gaﬁ)::m’ (4413(1)
(Aa,ﬁy)mn = (Aa,ﬁy),tma (4413b)

which shows that (Gaﬁ)mn is pure imaginary and (AD,, gy )mn 18 pure real, that is
(Gaﬁ)mn = _i(G&ﬂ)mn and (Aoz,ﬂy)mn = (Aot,ﬂy)mn-

For an odd-electron system where the initial and final states are components of
a twofold Kramers degenerate electronic level we can write from (4.4.12)

(Gapleser = —(Gap)iyer (4.4.14a)
(Gap)er e, = (Gap) o1 » (4.4.14b)
(Aappdere, = (Aapy)iser (4.4.14¢)
(Aap)ee, = =Ry )i (4.4.14d)

The reality properties of (Aa, By ene, and (A~a, By )e,e, parallel those of (&p).,, and
(@ap)ese, and are not discussed further. The other optical activity tensor is more in-
teresting: we deduce from (4.4.14a) that the diagonal matrix elements can generate
both real and imaginary parts, that is

(Goplese, = —(Gapee,» (4.4.15q)

(Goplese, = (Glg)erers (4.4.15b)
and similarly from (4.4.14b) for the off-diagonal matrix elements:

(Gaﬂ)e,’len = (Gaﬂ)e,,e,’q, (44156)

(Goplee, = —(Glplese,- (4.4.15d)

In discussing natural and magnetic optical rotation (and indeed any birefringence
phenomenon) from systems in degenerate states, it must be remembered that only
diagonal transitions can contribute because the phases of the initial and final states
must be the same; although they do not need to be the same in Rayleigh and
Raman scattering. We see from (4.4.6d) that, although an odd electron atom or
molecule in a Kramers degenerate state |e) can support, say, (¢t ,).,e, and therefore
generate Faraday rotation in a light beam travelling along z, this is cancelled by
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the contribution (a;y )er e from the conjugate state |e): in order to observe Faraday
rotation, an external time-odd influence such as a magnetic field along 7 is required
to lift the degeneracy and prevent exact cancellation. On the other hand, (4.4.15b)
shows that natural optical rotation generated by an odd electron chiral molecule in
a Kramers degenerate state |e) is equal in sign and magnitude to that generated by
the state |e’).

The real optical activity G, has interesting properties because it is generated
by an odd-parity time-odd operator Gzﬂ, and it follows from the foregoing that it
can only be supported by a system in a degenerate state. It features in discussions
of magnetochiral birefringence (Section 3.4.8), gyrotropic birefringence (Section
3.4.9) and the Jones birefringence (Section 3.4.10). It can be seen immediately
from (4.4.15a) that a magnetic field (or some other external time-odd influence) is
required to observe any coherent phenomenon from this tensor because Kramers
conjugate states generate equal and opposite contributions. On the other hand f}fx s
can, like its polarizability counterpart &g, generate incoherent phenomena such
as Rayleigh and Raman scattering, and dispersional intermolecular forces, involv-
ing both diagonal and off-diagonal transitions between components of degenerate
sets of states. But unlike tensor components generated by &;,, which vanish at
zero frequency because of (2.8.14¢), those generated by (A}Zﬁ appear to describe
both static and dynamic properties because of (2.8.14d). Buckingham and Joslin
(1981) have discussed spin-dependent dispersional intermolecular forces generated
by &4, and analogous contributions generated by G;ﬂ could provide significant
discriminating contributions to intermolecular forces between odd electron chiral
molecules (Barron and Johnston, 1987). In the examples discussed in Chapter 8 it
emerges that, in the absence of vibronic coupling, spin—orbit coupling is an essen-
tial ingredient in systems that can support tensor components generated by &, and
the same requirement is anticipated for tensor components generated by G;ﬁ. Thus
crystals and fluids composed of odd electron chiral molecules with large spin—orbit
coupling could well show curious new properties.

Barron and Buckingham (2001) have reviewed the application of time reversal
symmetry to molecular properties that depend on motion such as those described

by ozl;ﬂ, Ggp, and A&,ﬂy.

4.4.4 The spatial symmetry of molecular property tensors

We now consider the application of Neumann’s principle, in conjunction with ex-
plicit group theoretical arguments, to reduce a given property tensor to its simplest
form in a particular point group. This entails the specification of which tensor com-
ponents are zero, and of any relationships between the nonzero components. This
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section is based on a treatment by Birss (1966), which itself follows Fumi (1952)
and Fieschi (1957).

We saw in Section 4.2.3 that the components of a polar tensor transform according
to

Py oo =liglwglyy ... Pagy ... (4.2.32a)
and the components of an axial tensor transform according to
Ay oo = Bpalglyy . Aggy - . .. (4.2.32b)

It follows from Neumann’s principle that, if the coordinate transformation cor-
responds to one of the symmetry operations of the molecule’s point group, the cor-
responding property tensor components are invariant. Since free space is isotropic,
a property tensor can depend only on the relative orientation of the molecule and
the coordinate axes, and not on their absolute orientation in space. This means that
the components of a polar property tensor must satisfy the set of equations

Pyp_/v/ .= Pl/w et =030 B0y - - Pot,By e (441661)
and the components of an axial property tensor must satisfy
A/l’p.’v/ el = A/l;w cee = (:I:)O'Aao_uﬁo_vy oo Aozﬂy ey (4416b)

where o;, is an element of a matrix corresponding to a particular symmetry oper-
ation, and the suffixes A v . .. now refer to the same axis system as afy ....

In Section 4.2.2 we considered two sets of axes x, y, z and x’, ¥/, 7/ with a
common origin O, and specified the relative orientation of the two sets by a set
of nine direction cosines l;,. The set x’, y’, 7’ can be generated from x, y, z by
some general rotation. The matrix giving the set of direction cosines for a right-
handed proper rotation through an angle 6 about an axis defined relative to x, y, z
by direction cosines [, m, n is (Jeffreys and Jeffreys, 1950)

Lol =
cost +1>(1 —cosf) Im(l —cosO)+nsin® In(l —cosf) —msin6
ml(1 —cos@) —nsin® cosf +m*(1 —cosf) mn(l —cosB)+1sinb|.
nl(1 —cosf) +msin@® nm(l —cosf) —Isind cos@ + n*(1 — cosH)
4.4.17)

For an improper rotation, which can be considered as a combination of a rotation and
an inversion, each element of the matrix (4.4.17) must be multiplied by —1. Thus,
for example, the operation Csz corresponding to a right-handed rotation through
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6 = 120° about the z axis is represented by the set of direction cosines

cos120°  sin120° 0 -1 i3 0
[Lie] = | —sin120° cos120° 0| = —%\/5 —% 0]. (4.4.18)
0 0 1 0 0 1

As another example, the operation oy, a reflection across the xy plane, can be
regarded as a rotation through 180° followed by inversion through the origin, and
so is represented by

1 0 0
[lvel=10 1 0]. (4.4.19)
0 0 -1

It is therefore a simple matter to construct a set of symmetry matrices [0;,] repre-
senting the set of operations of any point group.

One conclusion we can draw immediately is that polar tensors of odd rank and
axial tensors of even rank vanish for point groups containing the inversion operation.
Thus using the symmetry matrix

-1 0O O
[ol=| 0 -1 0 (4.4.20)
0 —1
in (4.4.16) gives
Pugy ... =—Pypy...=0
for a polar tensor of odd rank, and
Aoy .= —Agpy ... =0

for an axial tensor of even rank.
Another simple example is the polarizability tensor of a molecule with a threefold
proper rotation axis. Thus, from (4.4.16a) and (4.4.18),

1 1

Ox; = OxqOplap = —50x; + Eﬁaﬂ,
1 1

O(yz = Uyaozﬁaaﬂ = —E\/golxz — E(Xyz,

and these two equations can only be satisfied simultaneously if a,; = o, = 0.

In general, by applying the appropriate set of symmetry matrices to (4.4.16),
it is possible to achieve the maximum simplification of a polar or axial tensor of
any rank for a molecule belonging to a particular point group. In fact it is often
not necessary to apply a symmetry matrix for every operation of a point group
since there is usually a smaller set of generating operations from which, by taking
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suitable combinations, the complete set of symmetry operations can be obtained.
So it is only necessary to take the set of generating matrices in order to achieve the
maximum simplification of a tensor.

The forms of polar and axial tensors up to the fourth rank in the important
molecular point groups are displayed in Tables 4.2, adapted from tables given by
Birss (1966) which were derived using the methods outlined above. The equalities
between property tensors in the important point groups are given in Table 4.2a.
The actual form of the tensor represented by a given symbol may be obtained
from Tables 4.2b to f for tensors of rank zero to four, respectively. Each column
displays the components to which the tensor component at the top of the column
reduces in the various point groups; so each row is a list of equalities between
pairs of components, and of identities of components to zero. Notations such as
xz(2) and xxy(3) indicate the equalities that exist between the two and three tensor
components, respectively, which may be obtained by unrestricted permutation of
the indices. Notations of the type yxxx(x.3) denote the three distinct components
which may be obtained from yxxx by keeping its last index fixed and permuting
the others, and notations of the type xxyy(x:3) denote the three distinct components
which may be obtained from xxyy by keeping its first index fixed and permuting the
others. Notations of the type xxyz(c4) denote the four distinct cyclic permutations.
Notations of the type zzxy(xy: 6) denote the six components which can be obtained
from zzxy by permuting its indices subject to the restriction that the order of the
indices x and y remains unchanged (although x and y need not remain adjacent).

The molecular point groups able to support the appropriate components of the
property tensors G;ﬁ, a second-rank axial tensor, and A, g,, a third-rank polar
tensor, that are responsible for natural optical rotation as specified in (3.4.42) and
(3.4.43) are readily determined from these tables. Thus from Tables 4.2a and 4.2d
itis found that G, = G, + G/, + G’_, which is responsible for natural optical
rotation in isotropic samples, is only supported by molecules belonging to the
point groups C,, D,, O and T (and also / from the icosahedral system which is
not included in these tables) which lack a centre of inversion, reflection planes
and rotation-reflection axes. Similarly for (G’ + G’yy) and (Ay ,; — A, ;) which
contribute to optical rotation in an oriented sample for light propagating along
z. Hence natural optical rotation in isotropic samples, and in oriented samples for
light propagating along the principal molecular symmetry axis, is supported only by
chiral molecules. However, as mentioned in Section 1.9.1, natural optical rotation
is possible in some oriented achiral molecules lacking a centre of inversion for light
propagating along other directions.

These tables give the simplification of molecular property tensors imposed by
point group symmetry considerations alone. But additional physical considerations
may bring about further simplification. Time reversal arguments are particularly
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Table 4.2a
Schonflies Polar Axial Polar Axial
(International)  Orientation tensor  tensor  tensor  tensor
symbol of of symmetry ofeven ofeven ofodd ofodd
System point group elements rank m rankm rankn  rankn
Triclinic Ci(D) any A, A, A, A,
Ci(1) any A - - A,
Monoclinic Cr(2) Collz B, B, B, B,
Cs(m) onllz B, Cn C, B,
Con(2/m) Collz B - - B,
Orthorhombic  D,(222) Gollx, Colly D,, D,, D, D,
Cr,(2mm) oylx,o,ly D,, E,, E, D,
Doy (mmm) Collx, Caolly  Dm - - D,
Tetragonal Cys(4) Cyllz F, F,, F, F,
S4(Z“) S4||Z Fm Gm Gn Fn
Can(4/m) Cullz Fu - - F,
D4(422) C4||Z’ C2||y Hm Hm Hn Hn
C4v(4mm) C4| |Z’ UUJ—)’ Hm Im In Hn
DZd(Z"zm) S4||Z’ C2||y Hm Jm Jn Hn
Dyp(4/mmm)  Cqllz, Colly  Hp - - H,
Trigonal C30(3) Gsllz K, K, K, K,
S6(3) Sellz K - - K,
D3(32) C3||Za C2||y Lm Lm Ln Ln
C3u(3_m) C3 | |Z7 GvJ—y Lm Mm Mn Ln
D34(3m) Cillz, Cally L - - L,
Hexagonal Ce(6) Collz N, N, N, N,
C3h (6) C3 | |Z Nm Om On Nn
Cen(6/m) Csllz Ny, - - N,
D6(622) C6||Zvc2||y Pm Pm Pn Pn
C6U(6_mm) Csllz, UUJ—y P, Onm On P,
D3h(6m2) C3||Zv ODJ-y Pm Rm Rn Pn
Dep(6/mmm)  Cgl|z, Cally  Pu - - P,
Cubic T(23) GCollx, Cally S S S, S,
T,(m3) Gollx, Colly  Sw - - Sn
0(432) Cyllx, Cqlly T T, T, T,
Td(43m) S4||)C, S4||y Tm m n Tn
O, (m3m) Cullx, Cally  Tn - - T,
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Table 4.2b Table 4.2¢

m=0 X n=1 X y z

A() X A] X y Z

BO X B] 0 0 Z

C() 0 C] X y 0

Do X D1 0 0 0

EO 0 E] 0 0 Z

F() X F1 0 0 Z

Gy 0 G, 0 0 0

Hy X H, 0 0 0

10 0 11 0 0 <

Jo 0 Ji 0 0 0

K() X K1 0 0 Z

Lo X L1 0 0 0

M() 0 M] 0 0 Z

No X N1 0 0 Z

0Oy 0 0, 0 0 0

PO X P1 0 0 0

Qo 0 ) 0 0 z

Ro 0 Ry 0 0 0

S() X S1 0 0 0

Ty X T 0 0 0

Uy 0 U, 0 0 0

Table 4.2d

m=72 XX yy béd Xy VX xz(2) yz(2)
A, XX yy Z Xy VX Xz vz
B, XX yy 2z Xy yX 0 0
C, 0 0 0 0 0 Xz vz
D, XX yy 2z 0 0 0 0
E, 0 0 0 Xy VX 0 0
F, XX XX Z Xy —Xy 0 0
G, XX —XxXx 0 Xy Xy 0 0
H, XX xx ed 0 0 0 0
I 0 0 0 Xy —Xy 0 0
J XX —XX 0 0 0 0 0
K> XX XX Z Xy —Xy 0 0
L, XX XX 2z 0 0 0 0
M, 0 0 0 Xy —Xy 0 0
N, xx XX 2z Xy —Xy 0 0
0, 0 0 0 0 0 0 0
P> XX XX ed 0 0 0 0
0> 0 0 0 Xy —Xy 0 0
R 0 0 0 0 0 0 0
S XX XX xx 0 0 0 0
T, XX xx XX 0 0 0 0
U, 0 0 0 0 0 0 0
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0 £dLx x£4L xxxq £xxx 2222 £L4L XXXX vg
2XXX £ddx x£44 xxx4{ Lxxx 2222 L4« XXXX vy
(#)zxxx (g O)ALLx x££« (¢ x)xxxd £xxx 2222 £L4L XXXX y=u

JTralqer
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£xx— £xx £xx £xx— £xx— £xx 0 0 0 "N
£xx L£xx £xx L£xx L£xx £xx 0 0 0 vr
xxAA £xx £xx xxAL xx£L £xx 0 0 0 Ky
0 0 0 0 0 0 0 0 2444 12
0 0 0 0 0 0 0 0 0 £0)
Xx22 22XX XxX22 22XX £xx £xx 0 0 0 vd
0 0 0 0 0 0 0 0 2444 o]
XxX22 22XX Xx22 22XX L£xx L£xx 0 0 0 YN
0 0 0 0 0 0 0 0 2444 "W
XxX22 22XX Xx22 22XX L£xx A£xx 0 0 0 vy
XxX22 22XX Xx22 22XX £dxx £lxx 0 0 2444 vy
XxX22— 22XX— XxX22 22XX £xx— £xx 0 0 0 vr
0 0 0 0 0 0 0 0 0 vy
XxX22 22XX XX22 22XX £dxx Adxx 0 0 0 YE
XxX22— 22XX— XxX22 22XX £hxx— £xx 0 0 0 vo
XxX22 22XX XxX22 22XX £lxx £xx 0 0 0 vy
0 0 0 0 0 0 0 0 0 vq
£€22 2244 Xx22 22XX xx£4 £dxx 0 0 0 vq
0 0 0 0 0 0 222 X222 2444 149)
£422 2244 Xx22 22XX xx£L £dxx 0 0 0 vg
£422 2244 Xx22 22XX xxdL £dxx £222 X222 2644 vy
(g:z)Ad22 (g:0)2244 (g:2)xx2z (g:x)2z2xx (¢ )xxdd (g:x)Adxx (p)dz22 (p)xz2z ()244€ p =

(ponunuo)) fo'y d1qel,



0 0 0 0 0 0 0 0 N
0 0 0 0 0 0 0 0 L
0 0 0 0 0 0 0 0 Y
0 0 0 0 0 244 — 244 — 244 — vy
Ax22— £x22 0 0 0 0 0 0 O
0 0 0 0 0 0 0 0 4
0 0 2XXX— 2XXX— 2XXX— 2644 — 2644 — 2644 — [£0)
£x22— Ax2z 0 0 0 0 0 0 YN
£x2z— Ax2z 0 0 0 2444 — 2444 — 2644 — YW
0 0 XXX — XXX — XXX — 0 0 0 v
£xz2— dx22 2XXX— 2XXX— 2XXX— 2844 — 2644 — 2644 — vy
0 0 0 0 0 0 0 0 r
Ax22— Ax22 0 0 0 0 0 0 vy
0 0 0 0 0 0 0 0 YH
£x22 £x22 0 0 0 0 0 0 45
Ax22— A£x22 0 0 0 0 0 0 vy
xXA22 £x22 0 0 0 0 0 0 v
0 0 0 0 0 0 0 0 'q
0 0 2A4x 2x A 2xL4L 2xxf 2xLx 2xx 49
x{22 £x22 0 0 0 0 0 0 vg
x{22 £x22 24x 24x4 2xAL 2xxA 2xAx 2xx vy
(9:xL)xA22 (9:4x)Ax22 ($9)244x (y9)24xL Ho)2xdL Ho)zxxq (Ho)zxdx (H9)24xx = u

(ponunuo)) fg'y dqel
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important in this respect because, as we saw in the previous section, they lead to pow-
erful statements about the symmetry or antisymmetry of a tensor with respect to the
permutation of its subscripts. For example, it is wrong to conclude on the basis of
Tables 4.2a and 4.2d alone that the xy component of an antisymmet-
ric polarizability is supported by molecules belonging to the point groups
Cyq, S4, Cap, C3, S6, Cg, C3;, and Cg;,. All we can conclude is that xy — yx spans
the totally symmetric irreducible representation, but since the antisymmetric part
of the effective polarizability operator (2.8.14) is time odd, further considerations
involving the generalized selection rule (4.3.37) are required. In any event we know
from (2.8.14¢) that any antisymmetric polarizability must be dynamic, and further
information is provided by (4.4.5) for an even-electron system and by (4.4.6) for
an odd-electron system.

4.4.5 Irreducible cartesian tensors

The procedure outlined in the previous section for the simplification of molecular
property tensors from a consideration of the symmetry operations of the molecule’s
point group in effect determines the tensor components spanning the totally sym-
metric irreducible representation. It is desirable to extend this classification to all the
irreducible representations of all the point groups. However, this is a formidable
task: it has been partially carried out by McClain (1971) and by Mortensen and
Hassing (1979), who considered just the components of a second-rank polar tensor
in order to discuss conventional Raman scattering, and we refer to these authors for
the results. It should be mentioned, however, that it is sometimes possible to obtain
this information for certain tensor components very simply: for example, since a
second-rank antisymmetric polar tensor transforms the same as an axial vector, the
transformation properties of its components can be deduced by consulting standard
point group character tables to see which irreducible representations are spanned by
components of rotations. But again it must be emphasized that generalized selec-
tion rules like (4.3.37) must be used to deduce whether or not a particular property
tensor is observable, depending on whether the corresponding operator is time even
or time odd and whether the molecule has an even or an odd number of electrons: of
course the conventional selection rules can still be used when considering transition
tensors between initial and final states from different levels.

In this section we content ourselves with a classification with respect to the
irreducible representations of the full rotation group R; (that is, all the symmetry
operations of the sphere, including improper as well as proper rotations). In fact
we use the proper rotation group Ry and add subscripts g or u later to distinguish
irreducible representations that are even or odd with respect to inversion.
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The importance of reducing sets of tensor components is summarized by the
following statement from Fano and Racah (1959):

Because the laws of physics are independent of the choice of a coordinate system, the two
sides of any equation representing a physical law must transform in the same way under
coordinate rotations. It is, of course, convenient to cast both sides of the equations in the
form of tensorial sets, so that their transformations will be linear. By resolving these sets into
irreducible subsets one pushes the process of simplification to its limit, because one disen-
tangles the physical equations into a maximum number of separate, independent equations.

We denote the irreducible representations of Ry by DY) where j takes integral
values 0, 1, 2, ... oco. The direct product of two irreducible representations DU
and D2 gives

D(jl) % D(jz) — D(j1+j2) 4 D(j1+j2—1) 4. D|jl_j2“ (4.4.21a)

In terms of symmetrized (square brackets) and antisymmetrized (curly brackets)
direct products, for use with basis sets constructed from products of components
of the same set of functions,

DY x DY = [D) 4 p@i=d 4 ... p©]

+{D® "V 4...p"}. (4.4.21b)
For the double rotation group, the same formulae apply, but now j can take values
0,1,1,3, .. cc.
b 25 b 2 9

A scalar transforms as D@ and a first-rank tensor as D). The components of
a general second-rank tensor transform like the nine products xx;, X1 y2, X122 . . .
according to

DD % DO = p@ 4 pM 4 pO.

but if 1 and 2 refer to the same basis set, only the symmetric irreducible repre-
sentations D® + D@ survive. The results for tensors up to rank six are given in
Table 4.3.

Itis well known that a general second-rank polar tensor can be decomposed into a
scalar, an antisymmetric second-rank tensor and a symmetric traceless second-rank
tensor:

Pup = Pdup + Pl + Py (4.4.22a)
P=3P,, (4.4.22b)
55 = 5(Pap — Ppa), (4.4.22¢)
o8 = 5(Pap + Ppo) — Plog. (4.4.22d)
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Table 4.3 Enumeration of the decomposition of general tensors
into irreducible parts.

DO DM D® D® D@ DO D©®

D 0 1 0 0 0 0 0
D’ 1 1 1 0 0 0 0
pw’ 1 3 2 1 0 0 0
D’ 3 6 6 3 1 0 0
D’ 6 15 15 10 4 1 0
D’ 15 36 40 29 15 5 1

Clearly Pé8,p, Pl and Py, are irreducible tensors with respect to DO DM and
D@, and we can rewrite (4.4.224a) as

Pos = Py + PLj + P (4.4.22¢)
Recalling the dyadic form (4.2.7) of a second-rank tensor, it is instructive to write

out P,g in terms of irreducible base tensors made up from dyadic products of unit
vectors (Fano and Racah, 1959):

P8og = Yigip + jujp + kakp)(Pex + Pyy + P), (4.4.22f)
o?ﬂ = %[(jakﬂ - kajﬁ)(Pyz - sz) + (kaiﬁ - iakﬂ)(sz - sz)
+ (iajp — Jaip)(Pxy — Pyl (4.4.22¢)

oig = %[%(2]%:]{5 - iaiﬂ - jotj,B)(ZPzz — Py — Pyy)
+ (itxiﬂ - jaj,B)(Pxx - Pyy) + (jakﬁ + kajﬁ)(Pyz + sz)
+ (koziﬂ + iakﬂ)(sz + P+ (iajﬂ + joliﬁ)(ny + Pyx)' (4.4.22h)

We can now appreciate the reason behind the choice of the traceless definition
(2.4.5) for the electric quadrupole tensor, for it is equivalent to (4.4.22d) and is
therefore in irreducible form.

A simple but important application of the decomposition (4.4.22) of a gen-
eral second-rank polar tensor is to the derivation of angular momentum selection
rules in Raman scattering. The polarizability tensor reduces to three parts spanning
DY DM and D@ if the initial state of the molecule has a total angular momentum
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quantum number j, it spans D), so the final state of the molecule must transform
as one of the representations D© x DY) = pW DU x DU = pU+H 4 pU) 4
DU=D or D@ % pU) = pU+2d 1 pU+D 1 pU) 4 pU=-b 4 pU=2 Tt therefore
follows that the total angular momentum quantum number of the molecule after
the Raman scattering process can take only the values j, j £ 1 or j &= 2. Notice
that, since d&, spans DU, these spatial symmetry arguments impose the restriction
Aj = 0, =1 on antisymmetric scattering in addition to the restrictions imposed by
time reversal discussed in Section 4.4.3.

The standard general method for reducing an arbitrary cartesian tensor uses
Young tableaux (Hamermesh, 1962) and is not elaborated here. But it is instructive
to see the irreducible third-rank cartesian tensors written out explicitly. Fortunately,
these have been worked out by Andrews and Thirunamachandran (1978), and we
simply quote their results. It can be seen from the third row of Table 4.3 that there
are three sets spanning D) and two sets spanning D®: for these, only the sums
of the sets are determined uniquely; the decomposition into independent tensors is
arbitrary and some additional constraint is required. Thus

_ pO® (1n) (2n) 3)

Papy = Py, + D Pug)+ > Pug) + Pup, (4.4.23a)
n=a,b,c n=a,b

Pagy = §8apysinPoin (4.4.23b)

S Y = hlup@Pusy — Pays — Pyay)
+ Say(_P&Sﬁ + 4P5ﬂ5 — Pﬁ55)
+ 88y (— Pssa — Psas + 4 Puss)], (4.4.23¢)

2
Z Poglg’:,) = éSaﬁS(ZQWgPAMy + 25/1#)/ P/l;ui

n=a,b
+ 81#8Py1u + Epy PM# - 26;/881)/1;1 Pvﬂu)
+ égﬂyé(zgiué Potlu. + 281/1.01 PB/I//. + Erus P/lu.ot
+ 8/1;L<SP/1;1.8 - 25a88vlupvlu)a (4423d)
Posy = §(Pagy + Payp + Phay + Poya + Prap + Pypo)

- %[301;5(1355;/ + Psys + Pyss) + 8ayy (Pssp + Psgs + Ppss)
+ 88y (Psse + Psas + Puss)]- (4.4.23¢)
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The three sets of terms in (4.4.23¢) can be regarded as the three linearly independent
sets, each spanning DV, Similarly for the two sets of terms in (4.4.23d).

Notice that, as expected, the isotropic tensors spanning the totally symmetric
irreducible representation D© of the proper rotation group Ry give the isotropic
averages of tensor components discussed in Section 4.2.5. However, in the full
rotation group R3, which includes the inversion, only the scalar Po(tg) spans the

.. . . (0). )
totally symmetrlc irreducible representation D,”; the pseudoscalar P,z now spans
DY and is no longer ‘observable’.
The reduction of a general second-rank axial tensor A,g into irreducible parts
gives expressions equivalent to (4.4.22) except that, whereas Poig,), POE;) and POS/ZS)

span D[({O), Dg) and Dg,z) in R;, Afgg), Asﬂ), and Affﬂ) span DO DD and D®. This
emphasizes the equivalence of an axial tensor and a polar tensor of the next higher
rank, for Po(lg)y, Péllg)y and Po(é)y also span D, DV and DP. If P,g, is symmetric
with respect to permutation of any pair of tensor subscripts, some of its irreducible
parts vanish; in particular D@, which explains why the electric dipole—electric
quadrupole tensor (2.6.27¢) cannot contribute to optical rotation in an isotropic
sample. Notice that the tensor 50/5,3;/’ given by (3.4.13b), that combines the electric
dipole—electric quadrupole and electric dipole—magnetic dipole contributions to

natural optical activity transforms the same as Poig)y.

4.4.6 Matrix elements of irreducible spherical tensor operators

Degeneracy in molecular quantum states is an important source of both natural and
magnetic optical activity. In order to calculate matrix elements of operators between
component states of a degenerate level, it is necessary to classify the wavefunctions
and operators with respect to the irreducible representations of the symmetry group
of the system, and to employ the celebrated Wigner—Eckart theorem.

The concept of irreducible tensor operators and the development of a formal-
ism for making practical use of them in spherical systems such as atoms are due
mainly to Racah. This work was partially based on, and developed concurrently
with, advances in the theory of angular momentum made by Wigner. The two au-
thoritative texts by Fano and Racah (1959), and Wigner (1959), summarize this
work. The subsequent extension of the theory to the molecular point groups has
been summarized by Griffith (1962). We shall not give an account of this work
here, but will simply state the formulae required in subsequent chapters and refer
the reader to Silver (1976) and Piepho and Schatz (1983) for an introduction to
most of the aspects required in this book. In writing down different versions of the
Wigner—Eckart theorem for use in different situations, we adhere to the notations
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of the various authors so that their tables of coupling coefficients can be used
directly.

For wavefunctions and operators classified with respect to the proper rotation
group Ry we use the following version of the Wigner—Eckart theorem:

./

1t It k]| _ i'—m’ ;1 1 Tk . J k J
(o j'm! | T jm) = (=1)) ™" (e jIT ||a1>(_m, q m) (4.4.24)

where j and m are the usual angular momentum and magnetic quantum numbers,
and o denotes any additional quantum numbers needed to specify the state. T, q" is the
operator written in irreducible spherical tensor form: k& denotes the corresponding
irreducible representation, and g the component. The 3 j symbol

Jok o

(4 o 2)
expresses the vector coupling coefficient in a form with special symmetry proper-
ties, and (o’ j'|| T*||ej) is the reduced matrix element. In effect, the Wigner—Eckart
theorem separates the physical part of the problem (the reduced matrix element)
from the geometrical aspect (the 3 j symbol). We use the numerical values for 3 j
symbols tabulated by Rotenberg, Bivens, Metropolis and Wooten (1959). The re-
duced matrix elements can be calculated in some situations, but in many of the
applications in this book explicit values are not required because dimensionless ex-
pressions for optical activity observables are used and the reduced matrix elements
cancel.

Much use is made of matrix elements of cartesian components of the electric
dipole moment operator, so we now write them out explicitly in terms of 3 j symbols
and reduced matrix elements. The cartesian components are first written in spherical
form:

1 i
o= =g mmn) = R ) e = i (44250)

These follow from the definition of the spherical components using a phase con-
vention consistent with that of Condon and Shortley (1935) for the spherical
harmonics:

i , ! .
ui=—ﬁ(m+%), 1o = M, M1_1=ﬁ(ux—1//«y)- (4.4.25b)
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Using (4.4.25a) in (4.4.24), the required matrix elements are

T . i'—m’ 1 Y .
(o j'm'|pxlojm) = (—1) +lﬁ<a Jlllle)
Y= Y YL @426
-m 1 m -m' -1 m
T . i'—m’ i Y .
(@' j'm'|\uylajm) = (=1) \72@6 Jlilleg)
S Y (7 YYD @anen
-m 1 m -m' -1 m
T . i'—m' st . j/ 1 .]
(@'’ | fojm) = (~1Y (ajllullaﬂ(_m/ 0 m) (4:4.260)

From the properties of the 3j symbol, the well known selection rules for electric
dipole transitions follow: for the z component, Aj = 0, £1(0 <4 0), Am = 0;
and for the x and y components, Aj = 0, £1(0 <4— 0), Am = %1 (althoughif j is
purely orbital, parity arguments forbid Aj = 0). It follows directly from (4.4.26a, b)
that

(mlplj +1m £1) = Filjmlu,|j +1m £1), (4.4.27)

a result that is useful in the discussion of magnetic circular dichroism in atoms.

For analogous calculations on systems belonging to finite molecular point groups,
we must use an alternative version of the Wigner—Eckart theorem (Griffith, 1962;
Silver, 1976). Thus when it is appropriate to use real basis sets, as in the absence
of external magnetic fields, the appropriate version is

/

(ac|ghla'e’) = (allg”lla’)V (Z Z, Z) . (4.4.28)

When complex basis sets are used, the appropriate version is

(ac|ghla'e) = [~ 11 {allg®lla") V ( “ “i b) . (4.4.29)
—a o B

The state |ax) transforms according to the o component of the irreducible rep-
resentation a. Care must be taken to use the appropriate sets of real or complex
operators and V coefficients depending on which version is employed. We refer
to Griffith (1962) or Silver (1976) for the definition of the factor [—1]*"* and the
properties of the V coefficients. In order to use Griffith’s tables of complex V co-
efficients, we must write the operator gg in complex form, taking care to use his
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phase convention, which is actually that of Fano and Racah (1959), rather than the
Condon and Shortley phase convention used in (4.4.24). In fact, spherical harmon-
ics in the Fano and Racah phase convention are obtained by multiplying those in
the Condon and Shortley phase convention by the factor i’. Thus in place of the
cartesian components (4.4.25a) of the electric dipole moment operator we must
use, in general,

[ 1 .
Mx = 7§(M1 —nly), py = %(Ml +uly). pz=—ing (4.4.30)

and the matrix elements are now, in place of (4.4.26),

_1]a+(x

(aaluxla'a’) =1 (allplla’)

x[v( @ b)—V( a da b)}, (4.4.31a)
— o 1 —a o -1

-

QR

(aa|pyla’a’) = [—H“*“\%(allulla’)
><|:V< a “i b)+v( a “i b)], (4.431b)
—a o 1 —a o -1
. , )
(aaluzla'e’) = [~11°(i) {al|lle’) V'(_Z : 0)- (44310)

However, in the dihedral groups D, (n > 2), Griffith (1962) uses real functions for
A1, Ay, By and B, representations and complex functions for E: in other words,
his corresponding tables of complex V coefficients are to be used with the complex
operators

i = —= (ud =),y = —=
NS V2

for E, but used with p left unchanged for A,. So for D,,(n > 2), (4.4.31a, b) still
apply, but (4.4.31c¢) is replaced by

(M% + Ml_l)

mamzmuw=[—uﬁﬂwmum>V( “a b>. (4.4.31d)
—a o 0

The entries b in the V coefficients depend on the irreducible representations spanned
by components of u in the particular point group. Thusin O, (uy, iy, iz) span T;
so b = Ti; whereasin Dy, (iy, (by) span E and pz spans A;,sob = E in (4.4.31a
and b) and b = A, in (4.4.31d). In applying (4.4.31), Table C2.3 of Griffith (1962)
is used for the V coefficients in O, whereas Table D3.2 (complex) is used for Dy.
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Finally, for certain calculations on molecules with odd numbers of electrons,
we need an extension of Griffith’s methods to the double point groups. Harnung
(1973) has provided a suitable extension (see also Dobosh, 1972; and Piepho and
Schatz, 1983) and gives the following version of the Wigner—Eckart theorem for
the octahedral double group O*:

/

[Ty PEIy) = 30 D" D s|ir) (% 5) @4
The sum over the parameter € arises because O* is not simply reducible; that is, the
direct products of some of the irreducible representations contain repeated represen-
tations. We refer to Harnung (1973) for the definition of the factor (—1)“T="), the
properties of the 3I" symbols and tables of 3I" symbols. The phase conventions of
Fano and Racah are again employed, so using operators of the form (4.4.30) we ob-
tain expressions analogous to (4.4.31) for matrix elements of cartesian components
of the electric dipole moment operator:

/ u — 1
(CyluxITy") = (=1)"T=" —(T||u||T")

V2
x[( rn F:)—( rh F)] (4.4.33a)
-y 1y -y -l vy

1 :
(Cyluy|T'y') = (=17 —(T[|ul|T)

NG
X[(—g f 1;)*(; o 1;)] (4.4.33b)
r! w(l— . , r T I
(Cyluzlly') = D" V>(—1><F||u||r><—y 0 y/)- (4.4.330)

These 3I" symbols apply explicitly to O*, and are given in Table 5 of Harnung
(1973).

4.5 Permutation symmetry and chirality

‘We now turn to a rather different aspect of symmetry in the discussion of molecular
properties, namely an algebraic analysis of chirality based on the permutation of
ligands among sites on a molecular skeleton. As well as giving insight into the
phenomenon of molecular chirality, it provides rigorous algebraic criteria which
can be used to assess (at least in principle) any molecular theory of optical activity.
Much of this section is based on reviews by Ruch (1972) and Mead (1974), and we
refer to these and a later review by King (1991) for further details.
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4.5.1 Chirality functions

A molecule can be pictured as a skeleton providing sites to which ligands have
been attached. If the skeleton is achiral, any molecular chirality must arise from
differences between the ligands. Taking the case of the methane skeleton consisting
of a carbon atom with four tetrahedrally directed bonds, it is well known that
chirality is only possible if all four ligands are different. This led Crum Brown (1890)
and Guye (1890) to propose that the optical rotatory power might be proportional
to a ‘product of asymmetry’ of the form

o= (a—>b)b—c)c—d)a—c)a—d)(b—d), 4.5.1)

where a, b, ¢, d are identified with some property of the ligands (which Crum Brown
and Guye took to be the masses). Clearly, if any two of a, b, ¢, d are equal, @ = O;
and if any two are interchanged, o changes sign. Thus (4.5.1) has the correct form
to represent the pseudoscalar observable «, and is called a chirality function. The
molecular theory of Boys (1934) contains a factor with the same form as (4.5.1),
but with the quantities a, b, ¢, d identified with the radii of the ligands.

Although the chirality function (4.5.1) has the necessary symmetry properties
for describing the pseudoscalar optical rotatory parameter, it is not the only one
possible. The systematic group theoretical study of chirality functions for general
molecular skeletons was taken up by Ruch, Schonhofer and Ugi (1967) and given
a definitive form by Ruch and Schonhofer (1970).

Ruch posed the following important question, which he felt a satisfactory theory
of chirality functions ought to be able to answer: is it possible to divide chiral
molecules into two subclasses which can be designated as right handed and left
handed? He quotes the following analogy (Ruch, 1972):

If asked to put our left shoes into one box and our right shoes into a second box we
could accomplish the task without mental difficulty, in spite of the fact that the right shoes
belonging to different people may be quite different in colour, shape and size and although,
probably, there is not a single pair of shoes which are precise mirror images of each other. If
asked to solve the same problem with potatoes, we must capitulate. Of course, it is possible
that by chance we find an antipodal pair. It is then clear that we must separate them, but for
other potatoes different in shape, we have to make new arbitrary decisions each time. Any
classification would be very artificial.

We shall see (Section 4.5.6) that the skeleton of any chiral molecule can be
assigned to one of two categories. One of these categories is ‘shoe-like’ in that it
admits a classification into right-and left-handed molecules; the other is ‘potato-
like’ in that it permits no such distinction, any classification being arbitrary. For
pairs of different chiral molecules with skeletons in the first category, Ruch coined
the term homochiral if both were either left-handed or right-handed (like two shoes
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(@) T, (b) Dy (c) Dy, (d) O

T

Fig. 4.5 Typical achiral molecular skeletons: (a) methane, (b) allene, (c) cyclo-
propane and (d) SF.

of different make for the same foot) and heterochiral if oppositely handed (like two
shoes of different make for different feet).

A molecule may often be completely specified by describing a skeleton and the
nature (and perhaps the orientation) of the ligand at each site. Thus a particular
skeleton can be thought of as defining a class of molecules with individual class
members being specified by the ligands at each site. A given molecule can belong
to more than one class, depending on which part is taken to be the skeleton and
which the ligands: ethane, for example, can be thought of as the six-site ethane
skeleton with six hydrogen atoms as ligands; or as the four-site methane skeleton
with one methyl and three hydrogen atom ligands.

Here we restrict the discussion to ligands which fulfil the condition that molecules
have the symmetry of the bare skeleton if all its ligands are of the same kind.
This means that the ligand must possess sufficient symmetry to make all properties
invariant under changes of orientation (so the ligand must have a threefold or higher
proper rotation axis coincident with the bond linking the ligand to the skeleton);
it also excludes intrinsically chiral ligands. If the skeleton is achiral, a molecule
containing only ligands of one sort is achiral.

We consider chiral classes which are specified by skeletons such that the
molecules are chiral if, at the least, all the ligands are different. Examples are
skeletons supporting ligands whose positions are at the corners of regular bodies
(Fig. 4.5). The corners of a regular body with 7, symmetry, for example, would
correspond to the positions of ligands attached to the methane skeleton (Fig. 4.5a).
It is assumed that the ligands can be characterized by a physical property associated
with a single scalar parameter 4; for example, the radii of spherical ligands.
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Fig. 4.6 The allene skeleton.
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Fig. 4.7 Various isomers of allene.

Take as an example the labelled allene skeleton shown in Fig. 4.6. It is easy to
verify that

X1 = (A1 — 42)(A3 — 44), (4.5.2a)
x2 = (A1 — A2)(A1 — 43)(A1 — A9)(A2 — 43)(A2 — Aa)(A3 — A4)  (4.5.2b)

are both chirality functions for the allene skeleton since they are unchanged under
the proper operations and change sign under the improper operations of the D,
skeleton.

However, neither of these chirality functions can be applied without encountering
a fundamental difficulty. For example, consider a mixture of the isomers I, II, III
of Fig. 4.7a in equal concentrations. The first chirality function y; for this mixture
vanishes:

x1 = 20D + D + xi (D]
G = 2 — 1) + (Ga — A)(ha — Ap) + (a — Ap)(Ae — Aa)] = 0;
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whereas the second chirality function x, does not vanish. On the other hand, for
the chiral molecule of Fig. 4.7b and the nonracemic equal mixture of isomers in
Fig. 4.7¢, x, vanishes but x; does not. So neither x; nor x; is capable by itself of
giving a sufficiently general description of a chiral property, as each vanishes in
situations where there is no symmetry reason why it should. In this instance the
sum x; + X2 is more satisfactory. In general we must demand that there is no non-
racemic mixture of isomers for which the chirality function vanishes. A chirality
function of this type is called qualitatively complete.

4.5.2 Permutations and the symmetric group

In order to proceed, we require some results from the theory of the permutation
group, or symmetric group, which is the set of all permutations of the labels 1,2, . . .,
n and is denoted by .%,. More complete accounts can be found in Hamermesh (1962),
Chisholm (1976) and Mead (1974).

Consider the ordered set of numbers 12 . . . n and the permutation P of .%, which
replaces 1 by pi,2 by p», ..., n by p,; thatis,

P12...n=pips...pu, (4.5.3)

where p1p; ... p, are the set of numbers 12. .. n in some other order. This permu-
tation is denoted by the symbol

P=(1 2o ”). (4.5.4)
pr p2 - DPn

A permutation which interchanges m labels cyclically is called an m-cycle and is
written as

(1 2 - m—1 m

53 o m 1>E(12...m). (4.5.5)

For example, the permutation that changes 123 into 231 is written

1 2 3
(2 3 1) 123 = (123)123 = 231.
A 2-cycle is called a transposition.

It can be shown that every permutation can be written as a product of cycles
which operate on mutually exclusive sets of labels. For example,

1 23 456
(2 45 1 3 6>=(124>(35>(6)- (4.5.6)
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Furthermore, every permutation can be expressed as a product of transpositions;
for example, (123) = (13)(12). In particular, it can be shown that the (n — 1) trans-
positions (12), (13),..., (1n) constitute a set of generators for the group %,; that is,
every element of .%, can be written as a suitable product of these transpositions.

It is important to define the effect of a permutation operator on a function of n

independent variables x1, x, . .., x,, of the form
S, xo, 00 x) = (0 — x2)(x1 — x3) ... (X1 — Xp)
X (X2 —x3) ... (x2 — x,)
X (X1 — Xp). 4.5.7)

If P is an element of .%,, it is clear that

Pf=c¢,f, (4.5.8)

where ¢, = £1. If ¢, = +1 the permutation is said to be even, while if ¢, = —1
it is said to be odd. Clearly, even and odd permutations consist of an even and an
odd number of transpositions, respectively. Also, the product of two even or two
odd permutations is even, whereas the product of an even and an odd permutation
is odd.

We now turn to the matter of partitions and conjugate classes. If P and Q are
elements of .%,, Q is in the same class as P if there exists an element 7 for which

Q=TPT . (4.5.9)

Suppose that in the decomposition of P into cycles there occur v; 1-cycles, v,
2-cycles, ..., v, n-cycles. P is then said to have the cycle structure

(v)y=(1"2"...n"). (4.5.10)

Denoting the cycles by ¢; we have
P =cicy...cyp, (4.5.11)
where h = v| + vo + ... + v,. Since there are n numbers in the set, it follows that
Vi +2vy +...0v, = n. (4.5.12)
The conjugate element Q is now given by
Q=TT NTe,T™Y. .. (Te, T, (4.5.13)

and it can be shown from this that Q has the same cycle structure as P. Thus all the
elements in a given conjugate class have the same cycle structure. It follows that
each solution of (4.5.12) in nonnegative integers vy, v, ... v, determines a cycle
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structure and hence a conjugate class. The number of classes in %, is therefore
given by the number of solutions of (4.5.13). Writing

vit+vy+...+ v,,=81

Mm+...+ v, =8 (4.5.14a)
Vp = 8p,
we have
Si+6+...4+6,=n, (4.5.14b)
with
81 =8> ... 26,20. (4.5.14¢)

We say that (4.5.14b) is a partition of n and denote it by [§] = [616; . .. 5,]. There
is a one to one correspondence between partitions of n and solutions of (4.5.12),
since from (4.5.14a) we have

V) = 81 — 82
vy =68 — 43

(4.5.144d)
v, = 6,.

Consequently, the number of classes in .%, is given by the number of partitions
of n.

It can be shown that the number of elements in the conjugate class with the cycle
structure (1"12%2 ... n')is

n!
(1 DRV L ()

Consider .% as an example. The partitions of 4 are [4], [3 1], [22] = 2?1, [211] =
[2 1?1 and [1 1 1 1] =[1?%]. Thus there are five conjugate classes in .%. Using
(4.5.14d) and (4.5.12) we obtain Table 4.4.

Since the number of conjugate classes in .%, is given by the number of partitions
of n, it follows that the number of irreducible representations of %, is also given
by the number of partitions of n. Thus, associated with each partition of n, there
is an irreducible representation of .%,, which leads to a very convenient method
for labelling the irreducible representations. Corresponding to each partition [§] =
(8185 . ..8,] we can draw a Young diagram y'°! consisting of §; cells in the first row,

g (4.5.15)

8, cells in the second row and so on, with no row longer than the one above it. If
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Table 4.4 Partitions of four

Partition Cycle structure Number of elements in class Example
(4] (1 1 (H2)3)4)
[14] 4hH 6 (1432)
[2°] 2% 3 (14)(23)
[217] (1'3h) 8 (132)(4)
[31] (1224 6 12)3)4)
the numbers 1, 2, ..., n are now inserted into the cells we obtain a Young tableau.

If the numbers are inserted into the cells in such a way that they increase on going
down a column and increase on going along a row from left to right we have a
standard Young tableau T'°!, The following theorem (see Hamermesh, 1962) is of
fundamental importance: the dimension d of the irreducible representation denoted
by the partition [§] is given by the number of standard Young tableaux G Td[s]
which can be constructed from the Young diagram y!°!. The result of applying this
theorem to .% is shown in Table 4.5. We see that for each irreducible representation
[8] there exists an irreducible representation [8] in which the rows and columns
have been interchanged. [§] is called the dual of [§]. We also see that [2?] is self
dual, and that dual irreducible representations have the same dimension.

Just as % has two one-dimensional irreducible representations, [4] and [1%],50 %,
in general has two one-dimensional irreducible representations [n] and [1"]. Since
[n] is totally symmetric, it must be spanned by a basis function ¥%(1, 2, ..., n)
that is symmetric to any transposition; for example, under any transposition (17),
i =2,3,...,n, we must have

ADYS,2,....n) = ¥(1,2,...,n).

The other one-dimensional irreducible representation [1”] is symmetric under even
permutations but antisymmetric under odd permutations (that is, has characters +1
and —1, respectively); so, since the transpositions (1i) are all odd, any function
¥i(1,2,...,n) spanning [1"] must satisfy

(IHy*(1,2,...,n) = —¥*(1,2,...,n).
We now associate with the standard Young tableau

(2] [n]

the symmetrizing operator

S = Z P, (4.5.16)

P
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Table 4.5 The irreducible representations of %

Irreducible Standard
representation Young tableaux Dimension

(4] !

[14]

] 12] [1]3 5
304] [2]4
3 1]2]3] [1]2]4] [1]3]4] 3
e B [
1]4] [1]3] [1]2]
[21%] 2012 3 3
3 4 4
where the sum runs over all the permutation operations of .%,. Thenif (1, 2, ..., n)

is an arbitrary function, the function Sy is a symmetry adapted basis for [n].
Similarly we associate with the standard Young tableau

the antisymmetrizing operator

A= ngp. (4.5.17)
P

Then At is symmetry adapted to [17].

These ideas can be generalized to irreducible representations of dimension
greater than one. Two types of permutation are defined: horizontal permutations
which interchange only symbols in the same row of a standard tableau, and vertical
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permutations which interchange only symbols in the same column of a standard

tableau. The following Young operator is now associated with the standard tableau
(8]

T

1

YPl = As, (4.5.18)

where S effects only horizontal permutations and A effects only vertical permuta-
tions.

Consider, for example, the two-dimensional irreducible representation [21] of
% which is associated with the standard tableaux

1]2 1]3
[21]
T = :

[21] _
=

The corresponding Young operators are

Y = (1 — 13)[1 + (12)], (4.5.19a)
Y =1 — a1 + (13)], (4.5.19b)

where I = (1)(2)(3) is the identity operation.

4.5.3 Chirality functions: qualitative completeness

We now use the formalism of the permutation group to give mathematical structure
to the concept of qualitative completeness introduced in Section 4.5.1.

The group %, generates all the possible isomers of a molecule M belonging
to a skeleton with n sites. .%, possesses a subgroup ¥ consisting of those ligand
permutations which can be interpreted as point group symmetry operations. ¥ is
often, but not always, isomorphic with the point group of the skeleton. For example,
all possible permutations of the four ligands on the allene skeleton (Fig. 4.6) make
up the permutation group .% which contains 24 elements in all: of these, only eight
elements are equivalent to the operations of the D,; point group of the allene
skeleton, namely, the identity (1)(2)(3)(4); the proper rotations (12)(34), (13)(24)
and (14)(23) (equivalent to the three distinct C, operations); and the improper
rotations (1)(2)(34), (12)(3)(4) (equivalent to the two distinct o, operations), (1324)
and (1423) (equivalent to the two distinct S, operations). A chirality function must
by definition belong to the chirality (or pseudoscalar) representation I'; of the
subgroup ¥, which has characters +1 for proper rotations and —1 for improper
rotations. It is now shown how the transformation properties of chirality functions
in the point group of the skeleton are related to their behaviour in the full permutation
group of the ligand sites.
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Table 4.6 The character table for %

Irreducible Young (1% (122h (1'3h (2%) 4"
representation I, diagram 1 6 8 3 6
I [4] 1 1 1

I [31] 3 1 0 -1 -1
i [22] 2 0 -1 2 0
Iy [21] 3 -1 0 -1

s [14] 1 -1 1 -

An ensemble operator consisting of a linear combination of permutation opera-
tors of .%, is introduced which, when applied to any molecule, generates a mixture
of isomers by permuting the n ligands among the n sites on the skeleton:

a=Y a(P)P. (4.5.20)
P
The a(P) are positive real coefficients to be interpreted in terms of concentrations.
In the general case that all the ligands are different, an ensemble operator is said
to be chiral or achiral depending on whether the resulting mixture of isomers is
nonracemic or racemic, respectively.

Given a skeleton with n sites we can form a molecule M by distributing n ligands
(in general all different) in an arbitrary way among the sites. A chirality function
x (M) will have a particular value for this molecule. The corresponding chirality
function for the mixture aM is

x@M) =" a(P)x(PM). 4.5.21)
P

Qualitative completeness means that if a is not the operator for a racemic mix-
ture, then x(aM) does not vanish. We now quote the following theorem: it is
necessary and sufficient for qualitative completeness of x that x contain z, inde-
pendent components transforming according to each irreducible representation I,
of %, where z, is the number of times I', is subduced by I', in %; and that the
induction from I', of % to.%, is regular. We refer to Mead (1974) for the proof
of this theorem, together with an account of subduced and induced representa-
tions.

The meaning of this will become clear by considering as an explicit example
the allene skeleton. The character table for .% is shown in Table 4.6. The required
subgroup of % is D,,, and Table 4.7 shows the classes of D,;, the number of
elements in each, the class of .% to which each belongs and the character of each
for the chirality representation I', (= B;) of Dy,.
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Table 4.7 Some properties of the classes in Dy

1 Cz 2Cé 20’d 2S4

Classin % a2 @ a2h @
Character in I', (= By) 1 1 1 —1 -1

Table 4.8 The characters of the irreducible
representations for the operations of % that are

also in Dy,
C2 2C£ 20’d 2S4
T, 1 1 1 1 1
I 3 -1 —1 1 —1
I'; 2 2 2 0 0
T, 3 —1 —1 —1 1
Ts 1 1 —1 ~1

To find the characters for the representation of D,; subduced by a given rep-
resentation of % we simply write down the characters of that representation for
the elements of . which are also in D,,, and this is done in Table 4.8. Compar-
ing Tables 4.7 and 4.8 and using the standard formula for finding the irreducible
parts of a representation by means of the characters, we find that only the repre-
sentations subduced by I'3 and I's contain I',, and then only once each. So in this
case z; = 7o = z4 = 0, and z3 = z5 = 1. This also means that the regular induc-
tion from I', of Dy, to % gives a representation containing I'; and I's once each,
and the others not at all. Thus a qualitatively complete chirality function for the
allene skeleton must have two independent components: one, denoted x ', trans-
forming according to I'; and the other, denoted x>, transforming according to
F5 of %

It is left to the reader to verify that a qualitatively complete chirality function for
the four-site methane skeleton has just one component transforming according to
I's of %, because the regular induction from I'y (= A,) of T, to % gives only I's.

4.5.4 Chirality functions: explicit forms

It was indicated in the previous section that a qualitatively complete chirality func-
tion x contains )z, components, so the explicit construction of x reduces to the
construction of its components.
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The formal procedure for constructing a chirality function belonging to a par-
ticular irreducible representation I', of .%, is as follows. A Young operator YT,
defined in (4.5.18), is applied to an arbitrary function (1, 2, ..., n). If the result
is not zero, it will be a function belonging to I',, but not necessarily a chirality
function. A projection operator C''x) corresponding to the chiral irreducible repre-
sentation of % is then applied, and if the result is still not zero it will be a chirality
function with the required properties. Thus

X T = Ty Ty, 2, . ). (4.5.22)

If z, > 1, it is necessary to construct z, independent functions in this way. In
principle the starting function ¥ (1, 2, ..., n) is arbitrary, and an unlimited number
of functions belonging to the same representation is possible. But in practice the
functions are chosen to correspond with the model on which a particular theory of
optical activity is being constructed. We consider two particularly useful types of
functions: the first procedure generates polynomials of lowest possible order, and
the second procedure generates functions of as few ligands as possible.

Consider the first procedure, which generates chirality functions of lowest pos-
sible order in one or more ligand parameters. The two functions (4.5.2) provide a
simple example. Since we are considering only achiral ligands, they can be char-
acterized by a single scalar parameter A. The starting function ¥ (1,2, ..., n) in
(4.5.22) is chosen to be a monomial of the lowest order which is not annihilated by
the operations of (4.5.22). The Young operator Y in (4.5.22) antisymmetrizes
with respect to permutations of sites in the same column in its tableau. Our mono-
mial cannot therefore be symmetric with respect to any two sites in the same column,
that is, it cannot contain the same power of 4 for any two such sites. The powers
of 4 for the sites in a given column must therefore all be different, and the lowest
possible choiceis 0, 1, 2, . .., n for acolumn of length n. The total order is therefore

h=Y"(j—13, (4.5.23)
J

where §; is the number of sites in the jth row.

This will become clear by considering again the simple example of the allene
skeleton. According to the results of Section 4.5.3, a qualitatively complete y must
contain two components, one belonging to I'; and the other to I's. For the irreducible
representation ['3, the Young diagrams are those of [22] in Table 4.5 and so (4.5.23)
tells us that 4 = 2. We choose ¥ (1, 2, ..., n) = 1,44 and the tableau

2 _ | 1]3

2 204
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Using (4.5.18), the corresponding Young operator is
YA = [I — (21 — GHIT + (AR + (24)]. (4.5.24)
Applying this to ¥ (1, 2, ..., n) we find
YV iody = 200 — A1) (hg — A3). (4.5.25)
For the projection operator C') we have

CT) =T 4+ (12)(34) + (13)(24) + (14)(23) — (1)(2)(34)
—(12)(3)(4) — (1324) — (1423). (4.5.26)

It is easily verified that C" applied to Y2(r3)/12/14 simply multiplies it by a constant.
Dropping the multiplicative constant, the required function is

x T = (A — 4124 — 13), (4.5.27)

which is identical with (4.5.2a). In a similar way it is found that x> is identical
with (4.5.2b).

Now consider the second procedure, which generates chirality functions that
depend on as few ligands as possible. The starting function ¥ (1, 2, ..., n) is not
now required to be a monomial, but is simply required to depend on as few ligands
as possible, otherwise being arbitrary. If ¥(1, 2, .. ., n) depends on only b ligands,
it must be totally symmetric under both permutations and reflections of the other
(n—>b) ligands. Hence no two of these (n—b) sites may be in the same column of the
tableau of the Young operator Y '), Thus (n—b) cannot be greater than the number
of columns, which is the same as the length of the first row, of the Young diagram.
The lowest value of b is therefore (n—3;).

A simple example is again the component spanning I"3 of the D, allene skeleton.
We choose ¥ = f(2,4), where f is an arbitrary function, and again apply the
operators (4.5.24) and (4.5.26). The result is

x T = g(2,4) — g(1,4) — g(2,3) + g(1,3), (4.5.28)

where g(i,j) = f(i,j)+ f(j,i) is a totally symmetric function with respect to
interchange of ligands i and j.

The two procedures outlined above for generating explicit chirality functions
can be applied, with varying degrees of difficulty, to any class of skeleton. Mead
(1974) has given an extensive list of both types of chirality function for a number
of important skeletons.
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(a) (b) (©

Fig. 4.8 Partition diagrams for (a) the T; methane skeleton, (b) the D,, allene
skeleton and (c¢) the C, adamantanone skeleton. The shaded partitions indicate
the irreducible representations for which z, # 0.

4.5.5 Active and inactive ligand partitions: chirality numbers

We now turn to the following question. Given a set of n ligands to be distributed
among the sites of a particular skeleton, which components (if any) of the quali-
tatively complete chirality function will vanish if any of the ligands happen to be
identical? The answer for the case of the allene skeleton can be deduced imme-
diately, since x'¥, given by (4.5.2b), vanishes if any two ligands are identical;
whereas x %), given by (4.5.2a), can be different from zero with two ligands iden-
tical and the other two different, or with two pairs of identical ligands. We now
formulate the problem more generally.

It is possible to associate an assortment of ligands with a Young diagram. A
ligand partition is defined as the list of numbers é;, §,, etc. of identical ligands. So
a partition corresponds to a set of §; identical ligands, &, identical ligands different
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from the §; previously listed, etc.; and the sum of the §s must equal . The partition
diagram y' is just the Young diagram whose row lengths are 8, 8, etc. Figure 4.8
shows the partition diagrams of order four for three different four-site skeletons: the
T, methane skeleton, the D, allene skeleton and the C,, adamantanone skeleton.
The shaded diagrams belong to irreducible representations for which z, # 0. A
ligand partition is called active if a chiral molecule can be constructed by properly
distributing the ligands on the skeleton sites (not every permutation of ligands
specified by an active partition leads to a chiral molecule).

It can be proved that all ligand partitions represented by shaded diagrams are
active, but we infer from the allene example that further active partitions can exist
because, in addition to I'; and I's, it is easy to see that I'4 is also active because an
allene skeleton dressed with two identical ligands and two different ones is chiral.
A method for finding all the active partitions uses the following definition (see
Ruch, 1972): a Young diagram y is smaller than another one y’(y C y’) if y can
be constructed from 3’ by pulling boxes from upper lines to lower ones without at
any point producing an array of boxes which is not a Young diagram. This definition
is supplemented by saying that y C y for each diagram y. This definition can be
given another form by using partial sums o; of the lengths &; of the first i horizontal
rows: oy = 81,02 = 81 + 8,03 = 81 + 8, + 83, etc. Then y C y' if, and only if,
01 <o; for all i. It can be proved that all partitions smaller than any shaded one, and
only those, are active for molecules; and furthermore that all partitions smaller than
a given shaded one, and only those, are active for corresponding chiral ensemble
operators. Active partitions are said to be represented by chiral Young diagrams (or
chiral irreducible representations of .%,).

Active partitions are now defined a little more precisely. Given a representation
[, of %, with z, #£ 0, partition [§] is said to be active with respect to ', if there is
some molecule belonging to [4] for which at least one component X;r,) does not
vanish. A partition is simply called active if it is ', active for any [, with z, # 0.
The question posed at the start of this section can now be formulated precisely:
given [§] and I',, how do we determine whether [§] is I, active? It can be shown
(see, for example, Mead, 1974) that a necessary condition for I', activity is that

yT oyl (4.5.29)

in other words, the ligand partition [§] must have a Young diagram smaller than the
shaded one corresponding to the I', of interest. Thus looking again at allene, from
Fig. 4.8 we see that (4.5.29) leads to the same result as was deduced at the start of
this section.

The set of active partitions (or chiral Young diagrams) for a given skeleton
generate a set of numbers which characterize the chiral properties of the skeleton.
It follows from the results of this section that, in relation to a given diagram, there
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exists no smaller diagram the first line of which is longer or the first row of which is
shorter. This means that within the set of all shaded diagrams we can specify four
numbers which characterize the chirality properties of a given class of skeleton:
these are the longest and the shortest first line and column of all shaded diagrams.
The two most important are the chirality order o, defined as the longest first line of
all shaded diagrams; and the chirality index u, defined as the shortest first column of
all shaded diagrams. It follows that the chirality order defines the maximum number
of equal ligands, and the chirality index defines the minimum number of different
ligands, which can be present in a chiral molecule belonging to a particular class
of skeleton.

In Section 4.5.1 a chiral class of skeleton was introduced as one which permits
of chiral molecules with exclusively achiral ligands. For such classes, Ruch and
Schonhofer (1970) proved that n — 3 <o <n and 1 <u <4. Five cases can be dis-
tinguished, each requiring a distinct type of theory to describe the generation of
optical activity:

o = n. This defines skeletons that can support chiral molecules with ligands all of
the same type. The skeleton must therefore be intrinsically chiral, so any theory of
optical activity must be concerned with skeletal chirality.

o = (n — 1). This defines skeletons that can support chiral molecules if just one
ligand is different, all the others being the same. Thus optical activity is generated
by perturbations from a single ligand, which gives rise to sector rules of the quadrant
and octant type, as in adamantanone derivatives.

o = (n — 2). For this type of skeleton, two ligands must be different, and optical
activity is generated by simultaneous perturbations from two ligands, as in allene
derivatives.

o = (n — 3). This type of skeleton requires three different ligands to support a chiral
molecule, and three ligand interactions are required to generate optical activity, as
in methane derivatives.

o = 0. This class of skeleton is achiral by definition since it cannot support a chiral
molecule even if all the ligands are different. An example is the benzene skeleton.

4.5.6 Homochirality

An important property required of satisfactory chirality functions is that, for shoe-
like skeletons, they accommodate the concepts of homochirality and heterochirality
introduced in Section 4.5.1. Chiral relatedness, that is chiral similarity of molecules
belonging to a particular class of skeleton, must be based on similarity of ligands.
Since we are specifying an achiral ligand by means of a single scalar parameter
A, the molecule is specified by the value of A at each of the n sites in the skeleton
class; that is, a particular molecule corresponds to a point in an n-dimensional
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A space. By continuously varying the is we can transform any molecule of the
class continuously into any other without leaving the class. Shoe-like molecules
must therefore be described by continuous pseudoscalar functions which have the
same sign for homochiral pairs, have opposite signs for heterochiral pairs, and
have only achiral zeros, that is they vanish only for achiral molecules. Potato-like
molecules are described by less well defined chirality functions: one characteristic
which distinguishes them from chirality functions for shoe-like molecules is that
they possess chiral zeros, that is they vanish for some chiral molecules.

An acceptable division of chiral molecules into right and left therefore means
a division of the A space into two regions, say R and L, such that (i) every chiral
molecule is in either R or L and not on the boundary between them; (ii) if a given
chiral moleculeisin R, its mirror image is in L, and vice versa; (iii) achiral molecules
are in neither R nor L, but on the boundary between them. Thus the boundary
between the regions R and L must be the subspace of the achiral molecules; and
since the boundary between two regions of an n-dimensional space must have
(n — 1)-dimensions, the subset of achiral molecules corresponds to a set of (n — 1)-
dimensional hypersurfaces.

An achiral molecule is left invariant by an improper rotation of the point group
of the skeleton. It was mentioned in Section 4.5.2 that every permutation can be
written as a product of cycles which operate on mutually exclusive labels, as in
(4.5.6). So by writing the permutation P corresponding to a particular improper
rotation in cyclic form,

P=,2,....9)s+1,s4+2,....,s +0)s+1..)..., (4.5.30)

we see that a molecule will be left invariant by P only if sites in the same cycle are
occupied by identical ligands, that is if

M=l =...4,
AS+1 = AS+2 =... AS+1, etc. (4531)

If P consists of & cycles, the subspace in which (4.5.31) is satisfied is 4 dimensional.
The dimension % is equal to (n — 1) only if / consists of a single 2-cycle and (n — 2)
1-cycles; that is, P must be a single transposition.

Let s/ denote the set of all pairs i,j of sites such that the transposition (ij)
corresponds to an improper rotation. The set of (n — 1)-dimensional hypersurfaces
determined by

A= (4.5.32)

for each pair (jk) contained in /# are subspaces corresponding to achiral molecules.
If the hypersurfaces determined by (4.5.32) contain a/! achiral molecules, the subset
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of the achiral molecules will indeed be a set of (n — 1)-dimensional hypersurfaces.
This will be true only if the subspaces determined by (4.5.31) are all subspaces
of those determined by (4.5.32); that is, if the following is satisfied: every cycle
of every permutation P corresponding to an improper rotation of the point group of
the skeleton must contain at least two sites j,k such that (jk) is contained in J#; or
equivalently, every achiral molecule of the class must have at least one symmetry
operation which in permutation form corresponds to a transposition.

If this condition is satisfied we can choose the surfaces (4.5.32) as the bound-
ary between R and L, so that criteria (i) and (iii) are satisfied. In fact (ii) is also
satisfied for, if (ij) is contained in . then mirror-image molecules correspond to
interchanged values of 1; and 4. Thus shoe-like skeletons are those for which this
condition holds and an acceptable classification into R and L is possible; whereas
potato-like skeletons are those for which this condition does not hold so no direct
classification into R and L is possible.

It is emphasized that for shoe-like skeletons the designation of R and L for the
two regions of opposite chirality is arbitrary. Also by changing the definition of the
ligand parameter A a molecule originally assigned to R, say, might find itself in L.

Allene (Fig. 4.6) provides a convenient example of a shoe-like skeleton. The
surfaces determined by the improper rotations (12) and (34) are 1; = A, and 13 = A4.
The improper rotations (1324) and (1423) both determine the one-dimensional
space A; = A, = A3 = A4, which is a subspace of the above.

A simple example of a potato-like skeleton is the four-site skeleton of sym-
metry Cy4, shown in Fig. 4.9. The improper rotations (24) and (13) determine the
(n — 1) =three-dimensional hypersurfaces A; = A3 and 1; = A4. On the other hand,
the improper rotations (12) (34) and (14) (23) determine the two-dimensional hy-
persurfaces A1 = 15, 44 = A3, and 4| = A4, 4, = A3, which are not subspaces of the
above.

The condition developed above for a precise homochirality and heterochirality
classification for shoe-like skeletons can be expressed in a form more readily appli-
cable to a given skeleton. A skeleton is shoe-like if, and only if, either the skeleton
has only two sites for ligands, or the number of sites, n, is larger, but the symme-
try of the skeleton contains mirror planes and each mirror plane contains (n — 2)

1 2

Fig. 4.9 A ‘potato-like’ skeleton with Cy, symmetry.
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Fig. 4.10 (a) A ‘shoe-like’ skeleton and (b) a ‘potato-like’ skeleton.

sites. All other skeletons are potato-like. In addition to the allene and four-site Cy,
skeletons discussed above, another instructive pair of examples are the shoe-like
trigonal bipyramid and the potato-like tetragonal bipyramid in Fig. 4.10.

The tetragonal bipyramid can be used to illustrate the lack of a homochirality
concept for a potato-like skeleton. Referring to Fig. 4.10b, we can envisage varying
the ligands at positions 1 and 2 continuously so as to finish up with the original
positions interchanged. Since an achiral situation is not encountered at any time,
we may assign any pair of neighbouring molecules encountered on the path to the
same enantiomeric subclass, and so all molecules generated on this path belong to
the same subclass. Subsequently, we perform the same variation with the ligands at
positions 3 and 4, and the same argument applies. But the end result, with ligands
1 and 2 interchanged and ligands 3 and 4 interchanged, is the enantiomer of the
original molecule. Thus chiral relatedness between neighbouring molecules must
be interrupted somewhere on the path from the original molecule to its enantiomer;
but since no privileged point can be found we conclude that a homochirality concept
does not exist.

4.5.7 Chirality functions: concluding remarks

We have presented Ruch’s ideas on permutation symmetry and chirality in some
detail because it seems to be of fundamental significance in the theory of optical ac-
tivity, even though at present its applications in stereochemistry have been limited:
indeed we make little use of it in subsequent chapters. One reason for its limited
applicability in its present form is the restriction to effectively spherical ligands
characterized by a single scalar parameter, although Mead (1974) has extended the
theory to include chiral ligands (still spherical); whereas in the molecular theories of
optical activity developed in later chapters it is found that the introduction of vector
and rensor properties of anisotropic ligands usually leads to more tractable expres-
sions. However, the above results based on scalar ligand properties can sometimes
be applied to anisotropic ligands: for example, the generation of optical rotation in
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the case of a molecule with chirality order o = (n — 2) in Section 4.5.5 was said to
require simultaneous contributions from pairs of isotropic ligands; but this could
be reinterpreted as a contribution from a single anisotropic ligand because a pair of
interacting atoms, for example, is equivalent to an anisotropic group.

A simple example of the value of permutation symmetry methods in criticizing
theories of optical activity is provided by a comparison of the D, allene skeleton
and the 7; methane skeleton. From the discussion in Section 4.5.3 we know that a
qualitatively complete chirality function giving the optical rotation, say, for an allene
derivative will contain two independent contributions x ** and x ', perhaps of the
form (4.5.2a and b), which transform according to I'3 and I'5s of .%; whereas that for a
methane derivative contains just one term x 's), perhaps of the form (4.5.2b), which
transforms according to I's. The relative weights of x ™ and x>, which can be
determined by measurements of the optical rotation of various nonracemic mixtures
of chiral allene isomers, tells us to what extent we are justified in taking a chiral
allene derivative as having the approximate symmetry of a regular tetrahedron.
Also, if a chiral methane derivative has a skeleton distorted from 7; symmetry we
must include a second contribution of the form y (™).

King (1991) has reviewed experimental tests, based on optical rotation measure-
ments, of chirality functions determined by chirality algebra. It appears that their
success depends greatly on the complexity of the skeleton, particularly with respect
to the numbers of sites and chiral ligand partitions. Chirality functions provide fair
to good approximations of optical rotation data for chiral derivatives of shoe-like
skeletons such as those of methane and allene. However, the approximations deteri-
orate rapidly for chiral derivatives of more complicated shoe-like skeletons having
several chiral ligand partitions or of potato-like skeletons.

The formal development of chirality functions is based on just one pseudoscalar
observable, the optical rotatory parameter at transparent wavelengths. It is only in
terms of this observable that the arguments about qualitative completeness in Sec-
tion 4.5.1 appear to be valid, because each component of a nonracemic mixture of
isomers contributes coherently to the net observed optical rotation. It therefore ap-
pears that the formalism is not immediately applicable to pseudoscalar observables
such as Rayleigh and Raman optical activity which are generated by incoherent
scattering processes. This can be seen straight away in the Raman case because
nonenantiomeric isomers generate Raman lines at different sets of frequencies. In
the Rayleigh case the scattered frequencies are the same from all the isomers, but
there is the complication that the isotropic and anisotropic scattering contributions
depend differently on sample density, and the relative amounts of isotropic and
anisotropic scattering will be different for the different isomers. However, it may
be that in the limit of an ideal transparent gas the concept of qualitative complete-
ness is applicable to the Rayleigh case because the total observed circular intensity



4.5 Permutation symmetry and chirality 263

difference IR — I will then be a simple sum of separate contributions from each
molecule in the sample. On the other hand, it may be that it is only the interpretation
of qualitative completeness in terms of the nonvanishing of the chirality function
for any nonracemic mixture of isomers that is suspect in the case of incoherent
processes and that the group theoretical analysis of qualitative completeness in
Section 4.5.3 remains generally valid. In any event, the entire chirality function
formalism will need to be carefully re-evaluated, and perhaps reformulated, before
any attempt is made to apply it to Rayleigh and Raman optical activity.
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Natural electronic optical activity

A theory has only the alternative of being right or wrong. A model has a
third possibility: it may be right, but irrelevant.
(Manfred Eigen)

5.1 Introduction

This chapter is concerned with optical rotation and circular dichroism of visible
and near ultraviolet light in the absence of an external influence such as a static
magnetic field; in other words, natural optical activity in the electronic spectrum.
Natural optical activity is generated by appropriate components of the molecular
property tensors G(’xﬂ and A, g, which involve interference between an electric
dipole transition moment and either a magnetic dipole or an electric quadrupole
transition moment, respectively. Optical activity for light propagation along an arbi-
trary direction in a general anisotropic medium is complicated and is not considered
here. We discuss only the most important situations in molecular optics; namely
complete isotropy, as in a liquid or solution, and isotropy in the plane perpendicular
to the direction of propagation. In the language of crystal optics, the latter situa-
tion is specified as light propagation along the optic axis of a uniaxial medium: it
also corresponds to light propagation in the direction of a static field applied to an
isotropic medium. As discussed in Section 4.4.4, in these situations the appropriate
components of G/, 5 and Ay g, are supported only by chiral molecules.

5.2 General aspects of natural optical rotation and circular dichroism
5.2.1 The basic equations

In Chapter 3, expressions for natural optical rotation and circular dichroism were de-
rived using the refringent scattering approach. Thus from Section 3.4.6 we can write
the following expressions for the optical rotation and circular dichroism generated
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in a light beam propagating along the z direction in an oriented sample:

A8 ~ — 0o N[30(Axy:(f) = Ayxo()) + G () + G (], (52.1a)

N~ — 300l N[§0(Ar,2(8) — Ay x2(8)) + Gr(8) + Gy (9)]- (5.2.1b)

Optical rotation depends on the dispersion lineshape function f, and circular dichro-
ism on the absorption lineshape function g. Equation (5.2.1b) applies to small el-
lipticities developed in a light beam that is initially linearly polarized; expressions
for more general observations are given in Section 3.4.6.

In an isotropic sample, the average over all orientations yields

AO ~ —1wpgl NG, (f), (5.2.2a)
N~ —1oug NG, (9), (5.2.2b)

the first being the Rosenfeld equation. The electric dipole—electric quadrupole con-
tributions average to zero.

According to (2.6.35), general components of G,z and A, g, are origin depen-
dent. However, it is easily shown that the combinations of components specified in
(5.2.1) are independent of the choice of molecular origin, as befits an expression
for an observable quantity (Buckingham and Dunn, 1971). It is emphasized that the
separate electric dipole—-magnetic dipole and electric dipole—electric quadrupole
contributions are origin dependent in an oriented sample: the change in one contri-
bution on moving the origin is cancelled by the change in the other. Consequently,
the analysis of optical rotation or circular dichroism data on oriented systems can be
quite wrong if only the electric dipole-magnetic dipole contribution is considered.

5.2.2 Optfical rotation and circular dichroism through circular
differential refraction

Although the refringent scattering approach provides the most fundamental and
complete description of optical rotation and circular dichroism, it is less familiar
than the description in terms of circular differential refraction. For comparison,
the basic equations are now derived using the more conventional approach. The
derivation is based on that given by Buckingham and Dunn (1971).

It is shown in Section 1.2 that the optical rotation and circular dichroism can be
formulated in terms of the refractive indices n® and n" and absorption indices n'®
and n'* for right- and left-circularly polarized light:

!
AO = 2 — R, (5.2.3q)
2¢

l
O™ — ™, (5.2.3b)

n:2c
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The refractive index and absorption index are best introduced through the exponent
of the complex electric vector (2.2.11) of the plane wave light beam in the medium:

E, = EQexp [i (913,3;’,3 - wt)] , (5.2.4)
¢
where i is a complex propagation vector,
i=n-+in. (5.2.5)

n = |n| is the refractive index, and n’ = |n’| is the absorption index. Clearly the
presence of n’ leads to an attenuation of the wave. If the medium is nonconducting,
the Maxwell equations (2.2.3¢ and d) for this plane wave become

%ﬁ papy Ey = Ba, (5.2.6a)

%ﬁﬂgaﬂyﬁy = —D,. (5.2.6b)

In the theory of crystal optics, the material connections (2.2.2) are generalized to
D, = &pe0kp, (5.2.7a)

By = flapitoHg, (5.2.7b)

where the dielectric constant and magnetic permeability are now complex tensors.
D and H can also be written in terms of a bulk polarization P, a quadrupole
polarization Q and amagnetization M developed in the medium (Rosenfeld, 1951):

(5.2.8a)
Da = E()EO, + Pa — %VﬁQaﬂ, (528[7)
. 1 . _
Hy,=—B,—M,. (5.2.8¢)
Mo

This definition of D differs from that generally used in the macroscopic Maxwell
theory by the addition of the quadrupole term; there are further contributions to
D and H arising from higher multipole polarizations which we do not consider.
The bulk multipole polarizations can be related to the multipole moments of the
constituent molecules through

P, = Njt,, (5.2.9a)
Oup = NOyp. (5.2.95)
M, = Nii, (5.2.9¢)

where N is the number density of the molecules and the bar denotes a statistical
average appropriate to the particular medium.
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If we write
_ 1 - 1

H,=—B,——B,+H,,
yﬂoyuoy Y

the Maxwell equations (5.2.6) can be combined into one equation,
figiigEp — i Eq + poc* D), =0, (5.2.10)
where

o 1. .
D), = Do — —iiptup, <E3y - Hy) . (5.2.11)

If the magnetic permeability is isotropic and unity so that B = poH, D’ reduces
to D and (5.2.10) becomes the fundamental equation used in the theory of light
propagation in dielectric crystals. Now introduce (5.2.8) and (5.2.9) into (5.2.11):

. . - . 1. -
D:x = éoEa + Pa — %VﬂQaﬂ — ;nﬁsaﬂyMy
- B - 1._ .
=ekby+ N (ua — V5B — ~TipEapy ity + - ) . (5.2.12)

where, for simplicity, we have omitted the bars denoting statistical averages. If the
molecular multipole moments are induced by the external light wave, (2.6.43) can
be used to introduce the molecular polarizability tensors:

- - 1w - -
D[y = 6OEoz + N[&aﬁ + %ﬁy(Aa,ﬁy - <%ﬁ,ay)
n ~ ~ -
+ “L(esysCas + 830 Top) + -+ | Ep. (5.2.13)

where we have assumed that the ‘effective fields’ at the molecule are those of the
light wave in free space. Now introduce into (5.2.13) the tensor Eaﬂy defined in
(3.4.11):

D), = €yEq + N(@up + ity Cupy + -+ ) Ep. (5.2.14)

In the case of complete isotropy, and isotropy in the plane perpendicular to the
direction of propagation, ii - E = 0 and the fundamental equation (5.2.10) becomes

[(3 — 1)8up — o¢” N (@ap + iy Cupy + - )1Eg = 0. (5.2.15)

From (2.3.2), the complex electric vector of a right- or left-circularly polarized light
beam is

Fe = 2 EOG = iivexp|i(Citrs — o
Ea_ﬁ o F ijo) exp | i —fifrp — @
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so for circularly polarized light (5.2.15) provides two equations:
(% = 1) = o Nl@ur + Lere F i@ 40+ 1=0, (52.160)
(72 = 1) = poc® Ny + Lyye & i@y tEys) + -1 =0, (5.2.16b)

where we have taken z to be the direction of propagation. These can be combined
into

(ﬁfz - 1) - %MOCZN[&XX + &yy + gxxz + Zyyz
F i@y —=@y) FiCye = Lyar) +---1=0. (5.2.16¢)
If the molecular medium is dilute, the second term is very small so we can write
it & 1+ Lo Nl + Gyy + Gorz + Sy
Fi @y =@y) FilGaye = Eyxd) +- -1 (5.2.17)

The real and imaginary parts of these complex circular refractive indices are

nt 2 14 Lo Nl (f) + oy (f) + Lo () + Eye(f)

F 2, () + 8 (N + -1, (5.2.184)
& Lpoc? Nl (8) + oyy(8) + Leaa(@) + £yya(g)
F 20y, (8) + &ry (@) + -1, (5.2.18b)

where we have introduced the dispersion and absorption lineshape functions f
and g.

Using (5.2.18) in (5.2.3), the optical rotation and circular dichroism are found
to be

A0 ~ —3ouol N[—ca, (f) + 0(Ar y(f) — Ay ()

+ G () + G (N, (5.2.19a)
N~ =zl N[ — o, (g) + 30(Ax 1:(8) — Ay 2(8)
+G(9) + G (@) (5.2.19b)

The antisymmetric polarizability a;ﬁ is responsible for magnetic optical activity,
and is disregarded in the rest of this chapter.

It is instructive to expose the connection between the modified electric displace-
ment vector (5.2.14) and the equivalent expression derived in the theory of crystal
optics to account for optical activity. If the medium is transparent and nonmagnetic,
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(5.2.14) becomes

D, = €0Eq + Nlaap(f) — inyCpp, (f) + - -1Ep.
If we identify the dielectric tensor with
€ap = €00ap + Noagp(f), (5.2.20)
and introduce the gyration vector g through
Nn,Los (f) = €apy 8y (5.2.21)
the relation between I’ and E takes the form
D), ~ eupEg —icap, Epgy - (5.2.22)

This parallels equation (82.7a) of Landau and Lifshitz (1960), and equation (IX.2)
of Born and Huang (1954). A symmetric gyration tensor defined by

8o = 8apllp (5.2.23)

is also used in crystal optics, particularly in the discussion of the crystal symmetry
requirements for natural optical activity (Nye, 1985). It is clear that

Ny, (f) = €apsgsy - (5.2.24)
By using (4.2.42) and (4.2.38), we can rewrite this in the form
8ap = %Ngayéé‘}//aﬂ(fl (5225)

The tensor gug is in general not symmetric, but since only the symmetric part
contributes to optical rotation the crystal symmetry requirements for optical rotation
can be discussed in terms of just the symmetric part (Landau and Lifshitz, 1960).
Further discussion and developments of the circular differential refraction ap-
proach to natural optical rotation and circular dichroism in chiral media may be
found in Raab and Cloete (1994), Theron and Cloete (1996) and Kaminsky (2000).

5.2.3 Experimental quantities

The optical rotation (5.2.2a) is in radians, with the path length / in metres since
SI units are used. For applications, it should be translated into experimental units.
Experimental results are traditionally reported as specific rotations, defined by (see
(1.2.9))

optical rotation in degrees per decimetre

Af] = _ - .
[A0] density of optically active material in grams per cubic centimetre
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For an isotropic sample, the optical rotation in degrees per decimetre is given by
(5.2.2a) multiplied by 18/m{. Since N is the number of molecules per cubic metre
(the unit volume in SI), the number of grams of optically active material per cubic
centimetre is N M /10° Ny, where M is the molecular weight and N is Avogadro’s
number (6.023 x 10%%). The specific rotation is therefore

242
[A0] ~ —6 x 10° ( 2oNo) (P4 2) 6
aM 3

(5.2.26)

where we have included the Lorentz factor (n? 4 2)/3 to take approximate account
of the influence of the refractive index n of the medium.

The dissymmetry factor, giving the ratio of the circular dichroism to the absorp-
tion, is given in terms of molecular property tensors by (3.4.50). Averaging this
over all orientations, and using (2.6.42), the dissymmetry factor for an isotropic
sample can be written as follows in terms of molecular transition moments:

4R(j < n)

g(j < n)= D —n) (5.2.27)

where
R(j < n) =Im((n|u|j) - (j|m|n)), (5.2.28a)
D(j < n) =Re((n|ulj) - (jluln)), (5.2.28D)

are the rotational strength and dipole strength of the j <— n transition. The dissym-
metry factor (5.2.27) differs from that encountered in earlier literature by a factor
of 1/c because we are working in SI.

For light propagating along z in an oriented sample, the same dissymmetry
factor (5.2.27) can be used if the rotational strength and dipole strength are now
generalized to

R.(j < n) = — {3wjulRe((n|1t:]/){j10yz1n)) — Re((nliuy] j){(j|OuIn))]
—Im((nlpxl ) Glmln)) — Im({nl ey ) (Glmyln))}, (5.2.29a)
D.(j <= n) = Re((n|px] ) (jlmxn)) +Re((nlwy| ) (jliyln). (5.2.29b)

Using (2.4.3), (2.4.9) and (2.4.14) for the origin dependence of the electric dipole,
electric quadrupole and magnetic dipole moment operators, together with the
velocity—dipole transformation (2.6.31b), it is easy to show that the general-
ized rotational strength (5.2.29a) is independent of the choice of the molecular
origin.

Since polar and axial vectors only transform the same under proper rotations,
the same components of the polar electric dipole vector u and the axial magnetic
dipole vector m only span the same irreducible representations and hence are able
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to connect the same states |n) and |j) in systems lacking a centre of inversion, re-
flection planes and rotation—reflection axes. Hence the isotropic rotational strength
(5.2.28a) is only nonzero for molecules belonging to point groups containing no
more than proper rotation axes, namely C,, D,,, O, T and I. As previously noted
in Sections 1.9.1 and 4.4.4, these are the chiral point groups. This type of argument
is not as straightforward for the electric dipole—electric quadrupole terms in the
generalized rotational strength (5.2.29a), but from considerations similar to those
used in Section 4.4.4 the same conclusion obtains.

5.2.4 Sum rules

An important sum rule, first propounded by Condon (1937), exists for the isotropic
rotational strength (5.2.28a). Summing over all states j except the initial state n,

D ORG < n) = Im((nlual j)(jlmaln))
Jj#n j#n
= Im(ntame|n) — Im((n|q|n) (nlmq|n)) = 0, (5.2.30)

where we have used the fact that, according to (2.6.67), the same components of the
Hermitian electric and magnetic dipole moment operators commute so that (i, m, is
also pure Hermitian and so possesses only pure real expectation values (along with
e and m,, separately). It is emphasized that the sum is over all the molecular states,
not just the electronic states, and so includes vibrational and rotational components.

It can also be shown that a similar sum rule exists for the rotational strength
(5.2.29a) of an oriented sample, that is,

Y R.(j < m)=0. (5.2.31)
Jj#n
The electric dipole-magnetic dipole terms sum to zero for the reasons given above,
and the electric dipole—electric quadrupole terms can be shown to sum to zero by
using

imwjn(jlrargln) = (jlrapg + rgpa — ihdag|n), (5.2.32)

which follows from the commutation relation (2.5.22).

We can now see that optical rotation in both isotropic and oriented samples tends
to zero at very low and very high frequency. This low frequency behaviour follows
directly from the forms of (5.2.1) and (5.2.2). The high frequency behaviour follows
from the sum rules (5.2.30) and (5.2.31). For example,

, 2

ww = > Im((nlpal j)(jImaln) =0, (@ > oma).  (5:2.33)

JF#n
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Notice that another version of the Condon sum rule (5.2.30) follows from the
Kramers—Kronig relations outlined in Section 2.6.4. Thus

/ N G, (g:)dE =0. (5.2.34)
0

Also, since optical rotation and circular dichroism are determined by the dispersive
and absorptive parts, respectively, of the optical activity tensors, with all other
factors the same, we can write Kramers—Kronig relations directly for the optical
rotation and circular dichroism. Thus from (2.6.61),

200 [ A d
20" 5 1(g¢)dé

AO(fo) = m, (5.2.35a)
203 ® AO(f:)d
An(ge) = — %(@ A ﬁfiﬁ) (5.2.35b)

So a knowledge of the complete optical rotation spectrum of a molecule gives
straight away the circular dichroism spectrum, and vice versa. The application
of Kramers—Kronig relations to optical rotation and circular dichroism has been
developed in detail by Moscowitz (1962).

5.3 The generation of natural optical activity within molecules

The essential feature of any source of natural optical activity is the stimulation by
the light wave of oscillating electric dipole, magnetic dipole and electric quadrupole
moments within the molecule which mutually interfere. This is expressed quan-
tum mechanically by the transition moment terms Im((n|uy|j)(jlmgln)) and
Re({n|uqlj)(j|@p,In)) which appear in G;ﬂ and A, g, and in the associated rota-
tional strengths. Quantum chemical computations of natural optical activity observ-
ables requires a knowledge of the ground and excited state wavefunctions. Accurate
determination of the wavefunctions for large chiral molecules is still a difficult prob-
lem, and we refer to Koslowski, Sreerama and Woody (2000) for an account of such
calculations. One notable success, however, has been the ab initio computation, via
(5.6.26), of specific rotations at transparent wavelengths for small chiral molecules
based on evaluation of G|, using the static approximation (2.6.75) for the elec-
tric dipole-magnetic dipole optical activity tensor. These calculations, pioneered
by Polavarapu (1997), provide a simple and reliable means of assigning absolute
configuration (Kondru, Wipf and Beratan, 1998; Stephens et al., 2002; Polavarapu,
2002b). A historical note which highlights the unifying theme of molecular light
scattering of this book is that the idea for performing ab initio computations of
specific rotations via G/, originated in the late 1980s when calculations of Raman
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optical activity, which require computations of general components of G;ﬂ and
A, gy, were initiated (see Section 7.3.1).

We shall not elaborate further on quantum chemical computations, but instead
will concentrate on coupling models which are in keeping with the semiclassical
light scattering formalism of this book and which provide physical insight into how
natural electronic optical activity is generated by chiral molecular structures. Cou-
pling models apply when all groups within a molecule are inherently achiral and no
electron exchange exists between them. Electrons are thus localized on symmetric
groups, and any optical activity is assumed to arise from perturbations of the intrin-
sic group electronic states by the chiral intramolecular environment. Among other
things, such models serve as a framework for point group symmetry arguments,
thereby providing rules which relate the signs and magnitudes of rotatory dispersion
and circular dichroism bands to stereochemical and structural features. The oppo-
site case, known as the inherently chiral chromophore model (Caldwell and Eyring,
1971; Charney, 1979) applies when electronic states are significantly delocalized
over a chiral nuclear framework and will not be considered here. Models sometimes
produce useful quantitative results, an example being a coupling treatment of hexa-
helicene which provides the correct sign for the specific rotation and a magnitude
comparable in accuracy with current ab initio computations (Section 5.4.3).

Two types of coupling model can be distinguished. The static coupling, or one
electron, theory of Condon, Altar and Eyring (1937) emphasizes perturbations
due to the electrostatic fields of other groups. The dynamic coupling, or coupled
oscillator, model, put forward independently by Born (1915) and Oseen (1915) and
later developed by Kuhn (1930), Boys (1934) and Kirkwood (1937), emphasizes
perturbations due to the electrodynamic fields radiated by other groups under the
influence of the light wave. The general hypothesis of the dynamic coupling model
was well expressed by Lowry (1935):

A molecule is regarded as a system of discrete units, which are fixed more or less rigidly
relative to one another. Each of these units possesses the property of assuming an induced
polarization under the action of an applied electric field. When a beam of plane polarized
light is incident upon such a molecule, the components become polarized under the action
of the electric vector of the light wave. Each of these polarized units then produces a field
of force which in turn acts upon each of the other units. The resultant polarization of each
unit is determined by the combined influence of the applied external field and of the fields
created by all the other units of the molecule. The phenomenon by which the state of one
of the units of a molecule is thus influenced by the state of other units of the same molecule
is described as coupling.

The static and dynamic coupling models can make comparable contributions in
the same molecule, and there can be higher order terms involving simultaneous
static and dynamic perturbations. When two or more dynamically coupled groups
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are identical, an exciton or degenerate coupled oscillator treatment is required in
which the electronic excitations are ‘shared’ between the groups.

These models are usually used to account for optical rotation and circular dichro-
ism in isotropic collections of molecules, in other words to generate G|, (the trace
of the optical activity tensors) and the isotropic rotational strength (5.2.28a). We
extend these models to other components of the optical activity tensors G,’xﬁ and
Aq gy in order to generate the rotational strength (5.2.29a) of oriented molecules,
and to deal later with circular differential scattering.

Although coupling models can be applied to optical rotation at transparent fre-
quencies and to Cotton effects at absorbing frequencies in any chiral molecule,
they have been most successful in situations where Cotton effects are induced
in electronic transitions of a single intrinsically achiral chromophore (such as the
carbonyl group) by chiral intramolecular perturbations. In such a situation, the dom-
inant static and dynamic chiral perturbing fields at the chromophore often originate
in just one of the several other groups in the molecule, and so the problem can
be reduced to considerations of a simple chiral two-group structure comprising a
chromophore and a perturbing group. Such two-group models are emphasized in
much of the rest of this chapter: these models can be generalized by summing over
all groups in a molecule that constitute chiral pairs, although the selection of such
pairs is often rather arbitrary.

In applying coupling models explicitly to a particular structure, it is often neces-
sary to know the distribution of the components of the local group tensors aqs, G, s
and A, g, among the irreducible representations of the point group of the un-
perturbed group. The general methods outlined in Section 4.4.4 can be used for
this. But in the case of optical activity induced in a particular transition of a
single chromophore, one can simply use a classification of the irreducible rep-
resentations spanned by components of the electric dipole, magnetic dipole and
electric quadrupole moment operators, which can be read directly from character
tables.

In the case of the isotropic rotational strength (5.2.28a), for example, electronic
transitions on a chromophore will always fall into one of the following categories:

1. Electric dipole allowed, magnetic dipole forbidden; or vice versa. Point groups C;,
Cuns Duns Dpa (n # 2), S (n 0dd), Op, Ty, 1.

2. Electric dipole and magnetic dipole allowed, but perpendicular. Point groups Cs,
Cm,, D2d, Sz,l (I’l even).

3. Electric dipole and magnetic dipole allowed and parallel. Point groups C,, D,, O,
T, 1.

The third class contains, of course, the chiral point groups and corresponds to an
inherently chiral chromophore. An example of the second class is the 7* < n
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transition of the carbonyl chromophore: in this case the static or dynamic chiral
perturbation serves to induce an electric dipole transition moment parallel to the
fully allowed magnetic one.

We make little use of the algebra of chirality functions in criticizing these models
for the reason given in Section 4.5.7, namely that it is restricted in its present form
to ligands characterized by a single scalar parameter, whereas most of the coupling
theory results developed below specify anisotropic group properties.

The treatment given here has been greatly influenced by the following articles:
Moscowitz (1962), Tinoco (1962), Schellman (1968), Hohn and Weigang (1968)
and Buckingham and Stiles (1974). See also Rodger and Norden (1997) for a
detailed account of the degenerate coupled oscillator model and its application to
some typical chiral molecules.

5.3.1 The static coupling model

We consider first the optical activity generated by two groups 1 and 2 that together
constitute a chiral structural unit. The two groups are intrinsically achiral so that
Gy,, and G/zw are zero, although each group might be able to support certain
components of G/, 5 and Al py- 1n the static coupling model, the optical activity is
assumed to arise from perturbations of group optical activity tensors by static fields
from other groups. The perturbed optical activity tensors of the group i (referred to
a local origin on i) in the electrostatic field and field gradient from the group j are
analogous to (2.7.1):

1 4(©)

] i i = [ (M) [ 3 . PR
A’a,ﬂy(El’ VE[) - Ala,ﬂ}/ + AiUl,,BV,SEl(S + 3Ai0{,ﬂy, se El(Sé —+ s (53161)
’ ) N = G () ) 1,0 '
G & VE) =G +G Ei+3G  Ei;+--.  (53.1b)

where the perturbed tensors have quantum mechanical forms analogous to (2.7.6)
at transparent frequencies, and (2.7.8) at absorbing frequencies. The electrostatic
field at group i arising from group j is given by (2.4.25) as

1

— 1
Eiy = Feo( = Tiad; + Tiiagttis — 5Tiiag, gy T777)- (5.3.2a)

and the corresponding field gradient is
1
“f = Are, (=Tijupqj + Tijyp, iy + ) (5.3.2b)

where ¢, i, and © Jup A€ the permanent charge, electric dipole moment and
electric quadrupole moment of j, and the subscript ij on the T tensors indicates
they are functions of the vector R;; = R; — R; from the origin on j to that on i.
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If group 1, but not 2, is a chromophore at the frequency of the exciting light,
the static coupling contribution to the optical activity of the two-group structure
is determined by the chromophore transition between appropriate initial and final
electronic states of 1 perturbed by the static fields from 2. Thus the isotropic ro-
tational strength of the j; <— n; chromophore transition follows from (5.2.28a),
(5.3.1) and (5.3.2) (or simply by using perturbed eigenstates (2.6.14) in the rota-
tional strength):

R(j<m= )

ki#n, Whkin,
— (nilmig | j1) (Jilg k)]

3

ki ji @k ji

Im[(ky[pe1glna) ((nilpeig L) (Galmag ki)

Im[(jilprg ki) ((nilperg i) kil [n)

— (nilmyg | j1) kil g [n1)]

! |
X Feo( — Tiogqa + Tiog, 12, — 5T124,;02,5 + )

+ {same expression with O, replacing (g}
1

X M(_TIZﬂqu + leﬂ)/a'uzﬁ + .- ) + .- (533)

Since group 1 is intrinsically achiral, there is no term analogous to the first term in
(2.7.6b) because Im ({n1 |1, |71} {j1|m1,|n1)) is zero. An analogous expression for
the generalized rotational strength (5.2.29a) of an oriented molecule can be written
down easily if required.

If we allow the perturbing group 2 to have only isotropic properties, only the first
terms containing the charge ¢, survive. As discussed in Section 4.5.5, this means
that, in order to show optical activity, the skeleton supporting groups 1 and 2 must be
defined by a chirality order o = (n — 1). This is realized if, say, the skeleton to which
groups 1 and 2 are attached has Cy, symmetry, as in adamantanone derivatives.

In molecules containing more than two groups, we sum the interactions of
individual groups with the chromophore. In chiral methane derivatives such as
CHFCIBr, optical activity within the static coupling model is induced in an atom
through its simultaneous interaction with the electrostatic fields of at least three
other atoms, in accordance with the chirality order o = (n — 3) for the methane
skeleton. Since the free atoms are uncharged and nondipolar, any associated fields
in the molecule originate in effects such as incomplete shielding of nuclear charges
at short distances, and dipole moments induced by other atoms. These effects are
usually small, and the optical activity of such molecules is probably determined
largely by dynamic coupling, as discussed in the next section.
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5.3.2 The dynamic coupling model

The molecule is divided into a convenient, but otherwise arbitrarily selected, set of
atoms or groups such as a chiral carbon atom and its four substituent groups. The
oscillating multipole moments induced in the molecule are the sums of the mo-
ments induced in individual groups referred to local group origins, together with
additional contributions from the origin-dependent moments referred to a conve-
nient centre within the molecule. The induced moments can arise both from the
direct influence of the radiation field on individual groups and from the secondary
fields arising from oscillating multipole moments generated in other groups. Ex-
pressions for the optical activity tensors in terms of molecular structural units are
obtained from the total induced magnetic dipole and electric quadrupole moments
through

om’
G;ﬂ:—w[ .’3} (5.3.4q)
I(Eado (Eq)0=0,
le)
Awpy = [ by ] (5.3.4b)
d(Eado (Eq)o=0,

which follow from (2.6.26). The optical activity tensors can also be obtained via
the induced electric dipole moment, but the calculation is more complicated.

We consider first the optical activity generated by two neutral groups 1 and 2
that constitute a chiral structural unit. When (5.3.4) are used to calculate the optical
activity tensors, the differentiations are performed with respect to fields evaluated at
a fixed molecular origin. All the group multipole moments must be referred to this
origin, which we choose for convenience to be the local origin on 1. All expressions
for observables subsequently obtained are independent of this choice of origin.

The total multipole moments of the two-group structure are then, using (2.4.3),
(2.4.9) and (2.4.14),

Mo = K1y T Koy s (5.3.5a)
Oup = Ol + Oy — %Rlzaﬂzﬂ - %Rlzﬂll«za + Rz 42, 80, (5.3.5D)
my = my, + my, — %E,Xﬁlezﬁ[LZy. (5.3.5¢)

The multipole moments of each group i are written in terms of dynamic group
property tensors coupled with the dynamic fields (E,);, (By); and (Eyg); at the
origin of i arising from the light wave, and the dynamic fields (E,);, (B,); and
(E, p)i at i radiated by the osillating multipole moments induced by the light wave
in the other group:

Mig = iz [(Ep)i + (E;g)i] + %A [(Egy)i + (E;gy)i]

lo, By

1, . .
+ 5G,-aﬁ [(Bg)i + (Bl + - - -, (5.3.6a)
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@iaﬂ =A [(E)/)l + (E]//)l] + Ci(xﬂ, ) [(Eyé)i + (E;/S)l]

Iy, af

1, . .
- ;Dwﬂ [(By)i + (Bl +---, (5.3.6b)
My = Jigs | (Bp)i + (Bp)il + 3507, [(Epy)i + (Ep, )]
1., . y
= =Gl [(Ep)i+ (Epil+ . (5.3.6¢)

By neglecting the tensors a4, Ay, 5., Gaps Cop 55 Da,py and Xgq, We are assuming
that the group has an even number of electrons and no static magnetic fields are
present. Three distinct expressions are derived in Section 2.4.5 for the electric
and magnetic fields arising from oscillating multipole moments, depending on
whether the distance is much smaller than, comparable with, or much larger than
the wavelength. We assume that the first case obtains here, so from (2.4.44) the
electric field, electric field gradient and magnetic field at the ith group radiated by
the jth group are

! 1
(Ep)i = E(T”aﬂ“"ﬂ = 3Tijp, O, +- ), (5.3.7a)
1
(Eop)i = FGO(Tijaﬂy Wiy ), (5.3.7D)
Ko
(B)i = E(Tijaﬂmjﬁ + ), (5.3.7¢)

where the time dependence has been absorbed into the multipole moments. In
this approximation there is no contribution to the radiated electric field from the
magnetic dipole moment, nor to the radiated magnetic field from the electric dipole
moment. One difficulty in applying (5.3.7) to dynamic coupling between groups
is that the distance must be much larger than the separation of charges within the
radiating group (but still much smaller than the wavelength), which is not true for
groups in compact molecules.

Before using these results to write down general dynamic coupling expressions
for the optical activity tensors, it is helpful to show the steps in the derivation of
Kirkwood’s term, which is the simplest dynamic coupling contribution to the trace
of the optical activity tensors. This is obtained from the term —%eaﬂleg 5 2, in
(5.3.5¢)if M2, is the electric dipole moment induced in 2 by the electric field radiated
by 1 when stimulated by the external light wave. From (5.3.6a) and (5.3.7a),

. 1
. , .
M2y = azya(Es)z = M“zytg Doy, 11
1 .
- 4n€0a2y5T21560‘161(E1)1- (5.3.8)

Since (E;); is the field of the light wave at the origin of group 1, which is also our
choice of molecular origin, (E;); = (E;)o and so the isotropic part of the optical
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activity tensors now follows from (5.3.4a):

4 —_—

G, =—w—
o a(Eoz)O

( - %gaﬂyRIZﬂﬂZy)

= ﬁeogaﬂy&zﬁagy&ﬂ]aea]m. (539)
Kirkwood (1937) originally derived this term by substituting the operator equiva-
lents of the electric and magnetic dipole moments (5.3.5) into the transition matrix
elements of the quantum mechanical expression for G,,,. He introduced the dy-
namic dipole—dipole coupling as a perturbation of the electronic wavefunctions of
the two groups, and by a series of transformations was able to express the result in
terms of group polarizabilities, as above.

It is important to realize that the Kirkwood term (5.3.9) depends on the choice
of local origins within the two groups. This difficulty is removed if we include a
further term arising from the intrinsic group magnetic moments in (5.3.5¢). From
(5.3.6¢) and (5.3.7a),

| . ,
—= G}, (Eph + G, (Epn]
1
-——— (G
dmeqw
1

- _4neow(G,'ﬂa Tiag, 02,5 + G/Zﬂa T21ﬁy“1y5)(E5)1, (5.3.10)

My, +my, =

/1/3& Tiog, 12, + Géﬂa Taig, it1y)

and we obtain the following additional contribution to G,

1
4 ey

(G} o 125,02, + G/zﬂa Taig, 1))

B
The combination

/

1 /
P —(ja)gaﬂyRIZﬁona D15, @1y + Glﬂa Tiog, a2,

dmeg
+ G;ﬂa T21ﬂya1ya) (5.3.11)

is independent of the choice of local group origins, as may be verified by the
replacements

R, = Ri, + Arj,, (5.3.12a)
Rijy — Rij, + Ariy, — Arj,, (5.3.12b)
Gy = Glpp T 3085 5 A7, 0, (5.3.12¢)

where Ar; is the shift of the local origin on group i and the last result follows from
(2.6.35¢).
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From (5.3.4-7) the general dynamic coupling contributions to the complete op-
tical activity tensors of the two-group structure are found to be

G;ﬂ = G/laﬂ + G/Zaﬂ + %a)sﬁyéRlzyC(zM
1 / /
e [5wepys Rz, g, Tioe; 10 + (G, T2y 5025, + Gy T2, s0015,)

- %(D/lﬂ’ Js 112y5¢%ea T Dy, Ti2,5.%1cq)

28, y8
+ %wgﬂyﬁRuy (@igy T2 A2s o — @25, Ti2e7p A, iu)] +---, (5.3.13a)

yde
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Although these general optical activity tensors depend on the choice of local
group origins, when specified components are used in expressions for observables
the results are origin invariant. We illustrate this by writing down the Kirkwood
contribution to optical rotation for light propagating in the z direction of an oriented
medium. The relevant tensor components are

i
G, +G), = [§w(R12y0l2w Tp,p015, — Rio, ), Tio, 5014,

1
4reg
+ Ri2 0, Tiog g1 5, — Riz, @y Tioggtig)

+ G, Ti2,50024, + G, Ti2,4%1 5,
+ Gy Ti2,p025, + Gy Tizgg i |, (5.3.14a)
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+ Rio 0, Tizg g1, + Riz, @, Tiogtig)
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so from (5.2.1a) the optical rotation is (Barron, 1975b)

N w* ol N
8meg
+ G, Tioygag, + G, Tiog15, + G/lay Ti2,50,

A6 [Rio (@) Tiog g1, — 024 T12,5015)

+ Glogy Ting gy, + Atg, 1y Ti2,502p, + Azg oy Ti2,5014,

— Ay, T — Ay . Tio (5.3.15)

ap Y2py ap®1y]-

Thus the Kirkwood contributions to the electric dipole—magnetic dipole and electric
dipole—electric quadrupole optical rotation mechanisms have equal and opposite
terms that cancel, and identical terms that reinforce. The invariance of this equa-
tion to the choice of local group origins may be verified using the replacements
(5.3.12a—c), together with

3 3
A — A,-a’ by iAriﬁO‘iw — EAr,-yoz,»aﬂ + Ariga 3, (5.3.12d)

Kruchek (1973) has derived a corresponding rotational strength, also starting from
the Buckingham—Dunn equation (5.2.1a).

If the two dynamically coupled groups have threefold or higher proper rotation
axes, the Kirkwood term can be given a tractable form. If unit vectors s;, t;, u;
define the principal axes of the ith group, with u; along the symmetry axis then,
from (4.2.58), its polarizability tensor can be written

la, By

iy = i1 = Ki)8ap + 3ikilkio Uig, (5.3.16a)

where
o = 321 + ey, (5.3.16b)
ki = (i) + o1)/3e (5.3.16¢)

are the mean polarizability and dimensionless polarizability anisotropy. The first
part of the Kirkwood contribution (5.3.11) to the isotropic part of the optical activity
tensors now becomes

9w
G;ta = g(alazKle)Eaﬁlezﬁ (MZyMZ,; Tussuléula). (5.3.17)
0

The form of the second part of (5.3.11), which is required for general origin invari-
ance, depends on the precise symmetry of the groups. In the case of C,, (n > 2), the
only nonzero components of G;ﬂ are G;y = —G’yx (taking z to be the C,, rotation
axis), as may be verified from Tables 4.2 so that, provided we choose the group ori-
gins to lie anywhere along the group symmetry axes, terms such as G;ﬁa T;; 6y YLiva
vanish. The optical rotation in isotropic collections of such structures is then simply

3(1)2 Mol N

8me

AO = (Oll()lzl{ll(z)é‘algyRlzﬁ(uzyuzaleaéuléula). (5318)
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The corresponding Kirkwood contribution to optical rotation in oriented samples
is
3w’ ol N

A = Teoalalezz[Kl(l — k)i, Tioyg — UigUiy Tioyy)

(L — k) (uzy g Tiog, — U, Uzg T2gy)

+ 3K1K2(l/t2yl/t2a leaﬂulﬂulx — U, U, leaﬂulﬂuly)]. (5319)

We see from (5.3.18) that if one of the two groups is isotropically polarizable,
the Kirkwood term does not contribute to optical rotation in an isotropic sample;
likewise if the symmetry axes of the two groups lie in the same plane: both situations
correspond, of course, to achiral structures. These dynamic coupling results can be
extended to molecules containing more than two groups by summing all pairwise
interactions. If a molecule contains three groups, at least one of them must be
anisotropically polarizable for the Kirkwood mechanism to contribute to optical
rotation in an isotropic sample. In fact the Kirkwood mechanism can only contribute
in an isotropic collection of molecules consisting of isotropically polarizable groups
if dynamic coupling extends over a chiral arrangement of at least four groups: this
is the Born—Boys model, which we now consider explicitly.

In the Born—-Boys model, the excitation is relayed from the first group encoun-
tered by the light wave successively to the other three groups. The induced magnetic
dipole moment of the complete system is written as a sum of the moments induced
at each group by a wave that has suffered sequential scattering from each of the
other three groups. The molecular origin is chosen to be the local origin on group
1, and we retain only the part of a group’s magnetic moment that is referred to
the origin on group 1, that is m;, = —%saﬁyR” gLy - The total magnetic dipole
moment of the molecule is then
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(5.3.20)
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Retaining just the isotropic part of each group polarizability tensor, aeg = adug,
we find from (5.3.4)

4
, w w
173 = 58137/01 ZaiRliy + 5 ( )813)/5 ZZ“ 0[ thy ij§a

i=2 j#i
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w
+2 (W ) s 3 Y Y cnaorn Ry Ty, Ty T
i=2 j#i k#j l1#k

(5.3.21)

with a similar expression for A, g, . The relevant tensor components for the Born—
Boys contribution to optical rotation for light propagating in an oriented sample
can now be written down immediately if required. But we shall be content with just
the part which gives the optical rotation in an isotropic sample:

3
w 1
Gro =% () o @25 s 32 30 30 3 Ruy T TiTo

i=2 j#i k#j l#k
#i )
#i (5.3.22)

It is easy to see that these are the only nonzero terms: if each dynamically cou-
pled pair of atoms is regarded as an anisotropically polarizable group, all the other
terms correspond to dynamic coupling between pairs of ‘anisotropically polarizable
groups’ with their symmetry axes lying in the same plane. Thus (5.3.22) demon-
strates explicitly that dynamic coupling must extend over all four atoms for optical
rotation to be generated in an isotropic sample.

The Born—Boys model would not, in fact, provide the lowest order contribution to
optical rotation in a simple chiral molecule such as CHFCIBr because the C—X bonds
constitute anisotropically polarizable groups. Thus optical rotation can be generated
through dynamic coupling between a bond and a pair of dynamically coupled
atoms. We refer to Applequist (1973) for a critical discussion of classical dynamic
coupling models of optical rotation, and for details of how the complicated general
formulae taking account of all orders of coupling can be handled in numerical
calculations.

The dynamic coupling mechanisms are illustrated in Fig. 5.1. Recalling from
Section 3.4 that polarization effects in transmitted light originate in interference
between forward-scattered waves and unscattered waves, the dynamic coupling
mechanisms can be visualized in terms of interference in the intensity measurement
at the detector of an unscattered photon and a photon that has sampled the chirality
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Fig. 5.1 The generation of optical rotation through dynamic coupling between
(a) two anisotropic groups (the Kirkwood model), (b) four isotropic groups (the
Born-Boys model) and (c¢) a bond and two isotropic groups.

of a molecule by being deflected from one group to another before emerging in the
forward direction. The lowest order dynamic coupling mechanism that can generate
optical rotation is the one involving the least number of deflections in generating a
‘chiral pathway’ for the photon within the molecule. This picture is oversimplified
in that the waves scattered from a large number of molecules must first be combined
into a net plane wave moving in the forward direction before interfering with the
unscattered wave. Such pictures form the basis of a treatment of optical activity
using quantum electrodynamics (Atkins and Woolley, 1970).

The dispersive and absorptive parts of the optical activity tensors can be obtained
by writing each group polarizability tensor as a function of (f + ig), and equating
real and imaginary parts. Thus if we consider a single transition on each group with
dispersion and absorption lineshapes f1, f> and g1, g2, the dispersive and absorptive
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parts of the Kirkwood contribution (5.3.11) are

G (f?—gH) = lweapy Riaglaa, s (f2) T2, 10 (f1)
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If the two groups are different and we are interested in an electronic absorption
of group 1, then 2,5 (g2) is zero and (5.3.23) simply describe the perturbation
of the group 1 chromophore by a chiral electrodynamic field from group 2. A
corresponding rotational strength can be written for the j; < n; transition:
, 1 o
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where we have included terms of higher order than Kirkwood’s since these can
dominate when the Kirkwood contribution is symmetry forbidden.

The dynamic coupling mechanism is sometimes called a dispersion mechanism
because there is some similarity with the dispersion contribution to intermolecular
forces. Thus (5.3.9) giving the isotropic optical activity contains the polarizabilities
of the two groups, and these polarizabilities remain finite even at zero frequency
(although the optical activity itself becomes zero because it depends on w). However,
at infrared frequencies the polarizability is dominated by the static part. Thus at
visible and ultraviolet frequencies this contribution is best regarded as a dynamic
coupling mechanism, but at infrared frequencies it is best regarded as a dispersion
mechanism.
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5.3.3 Exciton coupling (the degenerate coupled oscillator model)

Until now, we have used wave functions localized on two or more separate groups
of a chiral structure. This is acceptable when the groups are different and their
energy levels do not coincide, but when the groups are identical the wavefunctions
must be defined more carefully. The ground state wavefunction of a dimer is written
as the direct product of the individual group ground state wavefunctions,

|n) = [nny). (5.3.25)

Since the wavefunctions of the dimer must reflect the fact that there is an equal
probability of finding an excitation induced by the light wave on either group, the
dimer wavefunction corresponding to a transition to a particular excited state | j;)
of a group i is
| j+) 1
Jx) = —=
V2
where we have used the notation of (4.3.56). This also reflects the fact that the dimer
has a C, axis, so the true molecular wavefunctions, having a definite energy, must
be either symmetric or antisymmetric with respect to the C; rotation. From (4.3.55),
interaction between the two singly excited local group states results in the following

exciton splitting of the degeneracy of the states | j1) (Craig and Thirunamachandran,
1984):

(In1j2) £ €] jina)), (5.3.26)

Wis = Wi =2[(n1 2|V ]jin2)l. (5.3.27)

The interaction Hamiltonian is taken to be the operator equivalent of the interaction
energy (2.5.15) between two charge distributions. Since the two groups are neutral,
dipole—dipole coupling makes the first contribution:

1
V=——TT . 5.3.28
Ty [apia g ( )

Soif T, 5 (nilprg 1j) (2l 5 |ny) is real and negative, the interaction energy itself
will be real and positive so that e’ = 41 and the symmetric state has the higher
energy. (It should be remembered in what follows that the subscripts % in |ji)
and wy refer to the higher and lower energy states, not to the symmetric and
antisymmetric states.)

The transition frequencies from the ground state to the first two excited states of
the dimer are

1 g
= Wjin, £ mlleaﬂ (niliig 1) (alpag n2)|. (5.3.29)
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If the two exciton levels are well resolved and far from other electronic levels of
the dimer, each contributes separately to the optical activity so that the isotropic
part of the optical activity tensors is

G;{O{ = Gl:ot + G/(;Ol

B 2 w I . .
-2 {m m(( 12l i) (o Imaln))

+

w- —

+ e Im((nl ] ) G maln)) | - (5.3.30)
C()2

Writing the electric and magnetic dipole moment operators of the dimer in the form
(5.3.5a) and (5.3.5¢), and using the wavefunctions (5.3.26), this becomes

eia w . .
G:m = —? {m[— %wjinigaﬂlezﬂRe(ml|M1a|]l><J2|lL2y|n2>)

+Im((n2pa2g | j2) (i 1m1y [n1)) 4+ Im((ny a1 L) (J2lmag 12))]

w . .
+ 5[50 Eapy RiogRe(lm 1| ) (ol o, 1n2))

—Im({nalpay [j2) (J1lmig In1)) — Im((ny g, 1) (2 lmo, |n2))]}.
(5.3.31)

Notice that terms in Im({n; |;, | ji) (j;jIm j, |n ;)) guarantee the invariance of (5.3.31)
to shifts in the local group origins. We have dropped the terms corresponding to the
intrinsic rotational strengths of the two groups.
The corresponding exciton rotational strengths are
1

R(jz < n) = F 1 0jmapy RizgRe(ni| g 1) {2l 12, [n2))

+ S [Im((n2l 2 | j2) (i lmig In1))
+Im((n1 14171 (Jalmag n2))]. (5.3.32)

Dispersive or absorptive lineshape functions can be introduced into (5.3.31).
The contributions from the j, < n and j_ < n transitions in (5.3.31) together
generate circular dichroism and optical rotatory dispersion line shapes characteristic
of degenerate coupled chromophores. These are drawn in Fig. 5.2 for the case where
the exciton splitting is larger than the linewidth. The absolute signs of the high and
low frequency bands shown in Fig. 5.2 obtain when the chirality factor

€apy RizgRe((nil 1, [71) (2l 2, [n2))
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/ A
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Fig. 5.2 Circular dichroism 7 and rotatory dispersion A@ curves for a
pair of degenerate coupled chromophores where the exciton splitting is
larger than the linewidth. The absolute signs shown obtain when the chi-
rality factor eaﬁ,,RlzﬁRe((nl|u1a|j1)(j2|,u2y|n2)) and the coupling factor

Ty, gRe ((nil1t1q1j1) (J2l1r24 n2)) have opposite signs.

and the coupling factor

Tip,zRe ((nil a1, 1) (2l 2y In2)

have opposite signs and the additional terms in
Im ((ni | ig 1Ji) (G lm g Inj))

are either zero or can be neglected. The opposite absolute signs obtain when the
chirality factor and the coupling factor have the same absolute signs.

The exciton treatment falls within the dynamic coupling model since the exci-
ton splitting originates in an interaction between the electric dipole moments of
monomer states excited by the light wave: in the absence of the light wave this
interaction does not exist. The exciton treatment is most appropriate in the lim-
iting case of frequency shifts larger than the linewidth. The other limiting case
of frequency shifts much smaller than the linewidth is best described by the dy-
namic coupling expressions (5.3.23); and for the j <— n transition of two identical
monomers, the dispersive and absorptive parts of G/,, depend, respectively, on the
functions f2 — g and fg given by (2.7.7). The circular dichroism and optical
rotatory dispersion lineshapes now have the forms shown in Fig. 5.3, which are
similar to the lineshapes given by the exciton model except that the displacements
of the turning points from the band centres are determined by I'; rather than by the
exciton splitting. The absolute signs of the band structures are determined by the
sign of

Eapy Ri2g002, 5 T125 1

which is in effect an ‘amalgam’ of the chirality factor and the coupling factor.
It is instructive to compare in detail the application of the dynamic coupling
results and the exciton results to a simple chiral structure involving two groups
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Fig. 5.3 Circular dichroism 7 and rotatory dispersion A@ curves for a pair of
degenerate coupled chromophores where the exciton splitting is much smaller
than the linewidth.

v
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Fig. 5.4 Vectors defining the geometry of a simple chiral two-group structure.

each with C,,(n > 2) symmetry and with their symmetry axes in parallel planes
(Fig. 5.4).

The optical rotation of an isotropic collection of such structures can be deduced
from (5.3.18). For groups of this particular symmetry, if the local origins are chosen
anywhere along the group symmetry axes there is no contribution from terms of
the type G;aﬁ T;; 5y YLiya- The choice indicated in Fig. 5.4 is particularly convenient.
The only part of T, 5 that contributes here is —dqg/ Rl32, so the net geometrical
factor is

sin 26

S — (5.3.33)
2R3,

Eapy Riog (U2 s Tiyy 1 U1,) =
Choosing the group origins at other points along the group symmetry axes does
not change this result: this can be seen by using the replacement R, 5 = Ry 5 +
Ariuy g Arzuzﬂ on the left-hand side of (5.3.33). The optical rotation is then
simply

N 3w’y IN

AO~
l6megRY,

(ajaakikr) sin 26. (5.3.34)
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It follows that the maximum optical rotation results when & = 45° and that, in longer
wavelength regions where both polarizabilities are positive, a right-handed screw
configuration (viewed along Rj,) leads to a positive angle of rotation (clockwise
when viewed towards the light source).

The optical rotation of an oriented collection of such structures can be deduced
from (5.3.19). Thus there is no optical rotation for light propagating perpendicular
to Ry, for this particular geometry. For light propagating parallel or antiparallel to
R, we find the follow optical rotation:

N 9w’ g IN

A~ —
167160sz

(ojaakikr) sin 26. (5.3.35)
If this is averaged over all orientations, the isotropic result (5.3.34) is recovered.

Analogous results are obtained when the exciton model is applied. If the two
groups are identical and have electronic transitions with electric dipole transition
moments along u; and u,, for the absolute configuration shown in Fig. 5.4 the cir-
cular dichroism and optical rotatory dispersion bands of the corresponding exciton
levels have the signs shown in Fig. 5.2. This is because the chirality factor reduces
to

€apy RizgRe((nil 1y 1) (2l 12, [n2))
= RpRe((ni|m1lj1)(j2lp2ln2)) sin@,

and the coupling factor reduces to

Tip,gRe((n|pig 1) (2l m2g [72))

= s Re((ni |11} Ualpaln) cose.
12
So, for values of & where sin 6 and cos 6 have the same sign (0 < 6 < /2, 7 <6
< 3m/2), the chirality factor and the coupling factor have opposite signs. Thus
the chirality factor is zero when the two transition moments are parallel and is
a maximum when they are perpendicular; the coupling factor is a maximum for
the parallel conformation and zero for the perpendicular. Since the amplitudes of
the exciton circular dichroism and optical rotatory dispersion curves depend on the
magnitude of both the exciton splitting and the intrinsic rotational strengths of
each isolated j, < n and j_ < n transition (a large intrinsic rotational strength
does no good if there is no splitting), these two conditions lead to an effective
overall dependence of sin 26 for the exciton circular dichroism and optical rotatory
dispersion amplitudes. This can be seen explicitly for the limiting case when the
splitting is much less than the linewidth, which gives the circular dichroism and
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rotatory dispersion curves shown in Fig. 5.3. The factor

apy R12502 5 T125 X1y

now automatically provides the sin 26 dependence.

5.4 Illustrative examples
5.4.1 The carbonyl chromophore and the octant rule

The weak electronic absorption bands in the visible or near ultraviolet spectral
regions of organic molecules are often due to the promotion of a lone pair electron
on a heteroatom to an antibonding 7 or ¢ orbital localized on the chromophoric
group. The following are typical chromophores containing a heteroatom:

C=0, C=S, —-N=0, —-NO,, -O-N=0.

The carbonyl chromophore is of particular importance in electronic optical activity
since the accessible electronic absorption band at 250-350 nm is weak, so ample
transmitted light is available for measurement, yet the associated Cotton effects
can be large. Consequently, a large body of experimental data exists from which
symmetry rules have been deduced, and this enables the relative importance of the
static and dynamic coupling mechanisms to be assessed.

The relevant localized atomic and molecular orbitals and electronic transitions
of the carbonyl chromophore are shown in Fig. 5.5. The symmetry species are as-
signed on the basis of the local Cy, symmetry. The o and o * molecular orbitals result
from the in-phase and out-of-phase combinations of carbon and oxygen atomic or-
bitals; the atomic orbitals are the oxygen 2pz and the (2s + A2p;) of the carbon
sp? hybrids. The 7 and 7* molecular orbitals result from the in-phase and out-
of-phase combinations of the oxygen and carbon 2py orbitals. The nonbonding
n orbital is the oxygen 2py. The ground state has an electronic configuration
o?n?n*('A)) andis a singlet. The lowest excited state arises from the 7* <— n elec-
tron promotion; its configuration o >m?nm*(13A,) generates both a singlet and a
triplet. The weak absorption normally observed in the 250-350 nm region originates
in the 7* < n singlet—singlet transition (' Ay <-'A;). The two strong absorptions
normally observed in the 150-250 nm regions originate in the 0* < n (! B, <-'A)
and 7* < w ('A; <'A)) transitions.

A cursory inspection of the C,, character table shows that the 7* <« n transition
is electric dipole forbidden and magnetic dipole and electric quadrupole allowed.
Although relatively weak, the intensity is well above that expected from mag-
netic dipole and electric quadrupole mechanisms: this intensity originates mainly
in !B, «<'A, and ' B; «!'A, electric dipole allowed transitions to vibronic states
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Fig. 5.5 The orbitals and electronic transitions of the carbonyl chromophore
(energies not to scale). The origin of the coordinate system is the mid point of
the CO bond.

associated with two distinct out-of-plane bending vibrations of symmetry species B
and an in-plane bending vibration of species B; (see, for example, King, 1964). An-
other much smaller ‘forbidden’ electric dipole contribution to the 7* <— n carbonyl
transition is present in optically active molecules and originates in the reduction of
the C,,, symmetry of the chromophore by the chiral intramolecular environment, and
is largely responsible for the isotropic optical ac