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PREFACE

Unlike Newton’s mechanics, or Maxwell’s electrodynamics, or Einstein’s relativity,
quantum theory was not created—or even definitively packaged—Dby one individual,
and it retains to this day some of the scars of its exhilirating but traumatic youth.
There is no general consensus as to what its fundamental principles are, how it should
be taught, or what it really “means.” Every competent physicist can “do” quantum
mechanics, but the stories we tell ourselves about what we are doing are as various
as the tales of Scheherazade, and almost as implausible. Richard Feynman (one of
its greatest practitioners) remarked, “I think I can safely say that nobody understands
quantum mechanics.”

The purpose of this book is to teach you how to do quantum mechanics. Apart
from some essential background in Chapter 1, the deeper quasi-philosophical ques-
tions are saved for the end. I do not believe one can intelligently discuss what quantum
mechanics means until one has a firm sense of what quantum mechanics does. But if
you absolutely cannot wait, by all means read the Afterword immediately following
Chapter 1.

Not only is quantum theory conceptually rich, it is also technically difficult,
and exact solutions to all but the most artificial textbook examples are few and far
between. It is therefore essential to develop special techniques for attacking more
realistic problems. Accordingly, this book is divided into two parts!; Part I covers
the basic theory, and Part II assembles an arsenal of approximation schemes, with
illustrative applications. Although it is important to keep the two parts logically
separate, it is not necessary to study the material in the order presented here. Some
instructors, for example, may wish to treat time-independent perturbation theory
immediately after Chapter 2.

I'This structure was inspired by David Park’s classic text Introduction to the Quantum Theory, 3td
ed., (New York: McGraw-Hill, 1992).
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Preface

This book is intended for a one-semester or one-year course at the junior or
senior level. A one-semester course will have to concentrate mainly on Part I; a
full-year course should have room for supplementary material beyond Part II. The
reader must be familiar with the rudiments of linear algebra, complex numbers, and
calculus up through partial derivatives; some acquaintance with Fourier analysis and
the Dirac delta function would help. Elementary classical mechanics is essential, of
course, and a little electrodynamics would be useful in places. As always, the more
physics and math you know the easier it will be, and the more you will get out of your
study. But I would like to emphasize that quantum mechanics is not, in my view,
something that flows smoothly and naturally from earlier theories. On the contrary,
it represents an abrupt and revolutionary departure from classical ideas, calling forth
a wholly new and radically counterintuitive way of thinking about the world. That,
indeed, is what makes it such a fascinating subject.

At first glance, this book may strike you as forbiddingly mathematical. We en-
counter Legendre, Hermite, and Laguerre polynomials, spherical harmonics, Bessel,
Neumann, and Hankel functions, Airy functions, and even the Riemann Zeta function
—not to mention Fourier transforms, Hilbert spaces, Hermitian operators, Clebsch-
Gordan coefficients, and Lagrange multipliers. Is all this baggage really necessary?
Perhaps not, but physics is like carpentry: Using the right tool makes the job easier,
not more difficult, and teaching quantum mechanics without the appropriate mathe-
matical equipment is like asking the student to dig a foundation with a screwdriver.
(On the other hand, it can be tedious and diverting if the instructor feels obliged to
give elaborate lessons on the proper use of each tool. My own instinct is to hand the
students shovels and tell them to start digging. They may develop blisters at first, but I
still think this is the most efficient and exciting way to learn.) At any rate, I can assure
you that there is no deep mathematics in this book, and if you run into something
unfamiliar, and you don’t find my explanation adequate, by all means ask someone
about it, or look it up. There are many good books on mathematical methods—I par-
ticularly recommend Mary Boas, Mathematical Methods in the Physical Sciences,
2nd ed., Wiley, New York (1983), and George Arfken, Mathematical Methods for
Physicists, 3rd ed., Academic Press, Orlando (1985). But whatever you do, don’t let
the mathematics—which, for us, is only a tool—interfere with the physics.

Several readers have noted that there are fewer worked examples in this book
than is customary, and that some important material is relegated to the problems. This
is no accident. I don’t believe you can learn quantum mechanics without doing many
exercises for yourself. Instructors should, of course, go over as many problems in
class as time allows, but students should be warned that this is not a subject about
which anyone has natural intuitions—you’re developing a whole new set of muscles
here, and there is simply no substitute for calisthenics. Mark Semon suggested that I
offer a “Michelin Guide” to the problems, with varying numbers of stars to indicate
the level of difficulty and importance. This seemed like a good idea (though, like the
quality of a restaurant, the significance of a problem is partly a matter of taste); I have
adopted the following rating scheme:
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* an essential problem that every reader should study;
**  asomewhat more difficult or more peripheral problem;
* * * an unusually challenging problem that may take over an hour.

(No stars at all means fast food: OK if you're hungry, but not very nourishing.) Most
of the one-star problems appear at the end of the relevant section; most of the three-star
problems are at the end of the chapter. A solution manual is available (to instructors
only) from the publisher.

I have benefited from the comments and advice of many colleagues, who sug-
gested problems, read early drafts, or used a preliminary version in their courses. I
would like to thank in particular Burt Brody (Bard College), Ash Carter (Drew Uni-
versity), Peter Collings (Swarthmore College), Jeff Dunham (Middlebury College),
Greg Elliott (University of Puget Sound), Larry Hunter (Amherst College), Mark
Semon (Bates College), Stavros Theodorakis (University of Cyprus), Dan Velleman
(Amherst College), and all my colleagues at Reed College.

Finally, T wish to thank David Park and John Rasmussen (and their publishers)
for permission to reproduce Figure 8.6, which is taken from Park’s Introduction to the
Quantum Theory (footnote 1), adapted from I. Perlman and J. O. Rasmussen, “Alpha
Radioactivity,” in Encyclopedia of Physics, vol. 42, Springer-Verlag, 1957.
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THEORY






CHAPTER 1

THE WAVE FUNCTION

1.1 THE SCHRODINGER EQUATION

Imagine a particle of mass m, constrained to move along the x-axis, subject to some
specified force F(x, t) (Figure 1.1). The program of classical mechanics is to deter-
mine the position of the particle at any given time: x(¢). Once we know that, we can
figure out the velocity (v = dx/dt), the momentum (p = mv), the kinetic energy
(T = (1/2)mv?), or any other dynamical variable of interest. And how do we go
about determining x (#)? We apply Newton’s second law: F' = ma. (For conservative
systems—the only kind we shall consider, and, fortunately, the only kind that occur
at the microscopic level—the force can be expressed as the derivative of a potential
energy function,' F = —3V /dx, and Newton’s law reads m d*x /dt? = —3V /9x.)
This, together with appropriate initial conditions (typically the position and velocity
att = (), determines x(z).

Quantum mechanics approaches this same problem quite differently. In this
case what we’re looking for is the wave function, ¥ (x, 1), of the particle, and we get
it by solving the Schrodinger equation:

ih— = ———— + V. [.1]

"Magnetic forces are an exception, but let’s not worry about them just yet. By the way, we shall
assume throughout this book that the motion is nonrelativistic (v « ¢).
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;mgl —> F(x 1)

x(t) X

Figure 1.1: A “particle” constrained to move in one dimension under the influ-
ence of a specified force.

Here i is the square root of —1, and % is Planck’s constant—or rather, his original
constant (k) divided by 27:

h
h=— =1.054573 x 1073J s. [1.2]
27

The Schrodinger equation plays a role logically analogous to Newton’s second law:
Given suitable initial conditions [typically, W(x, 0)], the Schrédinger equation de-
termines W (x, ¢) for all future time, just as, in classical mechanics, Newton’s law
determines x (¢) for all future time.

1.2 THE STATISTICAL INTERPRETATION

But what exactly is this “wave function”, and what does it do for you once you've got
it? After all, a particle, by its nature, is localized at a point, whereas the wave function
(as its name suggests) is spread out in space (it’s a function of x, for any given time
1). How can such an object be said to describe the state of a particle? The answer is
provided by Born’s statistical interpretation of the wave function, which says that
|W (x, )|* gives the probability of finding the particle at point x, at time /—or, more
precisely,”

[1.3]

W )P dx = { probability of finding the particle }

between x and (x 4+ dx), at time ¢,

For the wave function in Figure 1.2, you would be quite likely to find the particle in
the vicinity of point 4, and relatively unlikely to find it near point 5.

The statistical interpretation introduces a kind of indeterminacy into quantum
mechanics, for even if you know everything the theory has to tell you about the

2The wave function itself is complex, but |¥|2 = ¥* W (where ¥* is the complex conjugate of W)
is real and nonnegative—as a probability, of course, must be.
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Figure 1.2: A typical wave function. The particle would be relatively likely to be
found near 4, and unlikely to be found near B. The shaded area represents the
probability of finding the particle in the range dx.

particle (to wit: its wave function), you cannot predict with certainty the outcome
of a simple experiment to measure its position—all quantum mechanics has to offer
is statistical information about the possible results. This indeterminacy has been
profoundly disturbing to physicists and philosophers alike. Is it a peculiarity of
nature, a deficiency in the theory, a fault in the measuring apparatus, or what?

Suppose I do measure the position of the particle, and I find it to be at the point
C. Question: Where was the particle just before I made the measurement? There
are three plausible answers to this question, and they serve to characterize the main
schools of thought regarding quantum indeterminacy:

1. The realist position: The particle was at C. This certainly seems like a
sensible response, and it is the one Einstein advocated. Note, however, that if this is
true then quantum mechanics is an incomplete theory, since the particle really was at
C, and yet quantum mechanics was unable to tell us so. To the realist, indeterminacy
is not a fact of nature, but a reflection of our ignorance. As d’Espagnat put it, “the
position of the particle was never indeterminate, but was merely unknown to the
experimenter.”® Evidently ¥ is not the whole story—some additional information
(known as a hidden variable) is needed to provide a complete description of the
particle.

2. The orthodox position: The particle wasn’t really anywhere. It was the act
of measurement that forced the particle to “take a stand” (though how and why it
decided on the point C we dare not ask). Jordan said it most starkly: “Observations
not only disturb what is to be measured, they produce it. ... We compel [the particle]
to assume a definite position.”* This view (the so-called Copenhagen interpretation)
is associated with Bohr and his followers. Among physicists it has always been the

3Bernard d’Espagnat, The Quantum Theory and Reality, Scientific American, Nov. 1979
(Vol. 241), p. 165.

4Quoted in a lovely article by N. David Mermin, Is the moon there when nobody looks?, Physics
Today, April 1985, p. 38.
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most widely accepted position. Note, however, that if it is correct there is something
very peculiar about the act of measurement—something that over half a century of
debate has done precious little to illuminate.

3. The agnostic position: Refuse to answer. This is not quite as silly as it
sounds—after all, what sense can there be in making assertions about the status of
a particle before a measurement, when the only way of knowing whether you were
right is precisely to conduct a measurement, in which case what you get is no longer
“before the measurement”? It is metaphysics (in the perjorative sense of the word) to
worry about something that cannot, by its nature, be tested. Pauli said, “One should
no more rack one’s brain about the problem of whether something one cannot know
anything about exists all the same, than about the ancient question of how many angels
are able to sit on the point of a needle.”® For decades this was the “fall-back” position
of most physicists: They’d try to sell you answer 2, but if you were persistent they’d
switch to 3 and terminate the conversation.

Until fairly recently, all three positions (realist, orthodox, and agnostic) had
their partisans. But in 1964 John Beil astonished the physics community by showing
that it makes an observable difference if the particle had a precise (though unknown)
position prior to the measurement. Bell’s discovery effectively eliminated agnosticism
as a viable option, and made it an experimental question whether 1 or 2 is the correct
choice. I'll return to this story at the end of the book, when you will be in a better
position to appreciate Bell’s theorem; for now, suffice it to say that the experiments
have confirmed decisively the orthodox interpretation®: A particle simply does not
have a precise position prior to measurement, any more than the ripples on a pond do;
it is the measurement process that insists on one particular number, and thereby in a
sense creates the specific result, limited only by the statistical weighting imposed by
the wave function.

But what if I made a second measurement, immediately after the first? Would I
get C again, or does the act of measurement cough up some completely new number
each time? On this question everyone is in agreement: A repeated measurement (on
the same particle) must return the same value. Indeed, it would be tough to prove that
the particle was really found at C in the first instance if this could not be confirmed
by immediate repetition of the measurement. How does the orthodox interpretation
account for the fact that the second measurement is bound to give the value C?
Evidently the first measurement radically alters the wave function, so that it is now
sharply peaked about C (Figure 1.3). We say that the wave function collapses upon
measurement, to a spike at the point C (\ soon spreads out again, in accordance with
the Schrédinger equation, so the second measurement must be made quickly). There

3Quoted by Mermin (previous footnote), p. 40.

6This statement is a little too strong: There remain a few theoretical and experimental loopholes,
some of which I shall discuss in the Afterword. And there exist other formulations (such as the many
worlds interpretation) that do not fit cleanly into any of my three categories. But I think it is wise, at least
from a pedagogical point of view, to adopt a clear and coherent platform at this stage, and worry about the
alternatives later.
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Figure 1.3: Collapse of the wave function: graph of w2 immediately after a
measurement has found the particle at point C.

are, then, two entirely distinct kinds of physical processes: “ordinary” ones, in which
the wave function evolves in a leisurely fashion under the Schrédinger equation, and
“measurements”, in which ¥ suddenly and discontinuously collapses.”

1.3 PROBABILITY

Because of the statistical interpretation, probability plays a central role in quantum
mechanics, so 1 digress now for a brief discussion of the theory of probability. It is
mainly a question of introducing some notation and terminology, and I shall do it in
the context of a simple example.

Imagine a room containing 14 people, whose ages are as follows:

one person aged 14
one person aged 15
three people aged 16
two people aged 22
two people aged 24
five people aged 25.

If we let N () represent the number of people of age j, then

TThe role of measurement in quantum mechanics is so critical and so bizarre that you may well
be wondering what precisely constitutes a measurement. Does it have to do with the interaction between
a microscopic (quantum) system and a macroscopic (classical) measuring apparatus (as Bohr insisted),
or is it characterized by the leaving of a permanent “record” (as Heisenberg claimed), or does it involve
the intervention of a conscious “observer” (as Wigner proposed)? I'll return to this thorny issue in the
Afterword; for the moment let’s take the naive view: A measurement is the kind of thing that a scientist
does in the laboratory, with rulers, stopwatches, Geiger counters, and so on.
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N()

K

o HH

1 11 1 | 1 1 i
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Figure 1.4: Histogram showing the number of people, N(}), with age j, for the
example in Section 1.3.

N(14) =1
N(15) =1
N(16) =3
NQ22) =2
NQ4) =2
N@25) =5

while N(17), for instance, is zero. The fofal number of people in the room is
o0
N=Y N@). [1.4]
j=0

(In this instance, of course, N = 14.) Figure 1.4 is a histogram of the data. The
following are some questions one might ask about this distribution. -

Question 1. If you selected one individual at random from this group, what is
the probability that this person’s age would be 15? Answer: One chance in 14, since
there are 14 possible choices, all equally likely, of whom only one has this particular
age. If P(j) is the probability of getting age j, then P(14) = 1/14, P(15) =
1/14, P(16) = 3/14, and so on. In general,

[1.5]

Notice that the probability of getting either 14 or 15 is the sum of the individual
probabilities (in this case, 1/7). In particular, the sum of all the probabilities is 1—
you’re certain to get some age:

Y P(jH=1 [1.6]
j=1
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Question 2. What is the most probable age? Answer: 25, obviously; five
people share this age, whereas at most three have any other age. In general, the most
probable j is the j for which P () is a maximum.

Question 3. What is the median age? Answer: 23, for 7 people are younger
than 23, and 7 are older. (In general, the median is that value of j such that the
probability of getting a larger result is the same as the probability of getting a smaller
result.)

Question 4. What is the average (or mean) age? Answer:

(14) + (15) +3(16) + 2(22) + 2(24) + 5(25) _ 294

=21.
14 14
In general, the average value of j (which we shall write thus: {/)) is given by
) ING) S s
()= Z—’N—’ =>_JjPW). [1.7]
7=0

Notice that there need not be anyone with the average age or the median age—in this
example nobody happens to be 21 or 23. In quantum mechanics the average is usually
the quantity of interest; in that context it has come to be called the expectation value.
It’s a misleading term, since it suggests that this is the outcome you would be most
likely to get if you made a single measurement (that would be the most probable
value, not the average value)—but I’'m afraid we’re stuck with it.

Question 5. What is the average of the squares of the ages? Answer: You
could get 142 = 196, with probability 1/14, or 152 = 225, with probability 1/14, or
16° = 256, with probability 3/14, and so on. The average, then, is

oC
(A =Y PO (1.8]
J=0
In general, the average value of some function of j is given by
oC
(f =) _fHPY)- (1.9]
j=0

(Equations 1.6, 1.7, and 1.8 are, if you like, special cases of this formula.) Beware:
The average of the squares ({;2)) is not ordinarily equal to the square of the average
({j)%). For instance, if the room contains just two babies, aged 1 and 3, then (x?) =5,
but (x)? = 4.

Now, there is a conspicuous difference between the two histograms in Figure
1.5, even though they have the same median, the same average, the same most prob-
able value, and the same number of elements: The first is sharply peaked about the
average value, whereas the second is broad and flat. (The first might represent the
age profile for students in a big-city classroom, and the second the pupils in a one-
room schoolhouse.) We need a numerical measure of the amount of “spread” in a
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N(j)
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Figure 1.5: Two histograms with the same median, same average, and same
most probable value, but different standard deviations.

distribution, with respect to the average. The most obvious way to do this would be
to find out how far each individual deviates from the average,

Aj=j—={Jj) [1.10]

and compute the average of Aj. Trouble is, of course, that you get zero, since, by the
nature of the average, Aj is as often negative as positive:

=Y G=MPGY=D_JP() = ()Y P()

J)*<')“0

(Note that () is constant—it does not change as you go from one member of the
sample to another—so it can be taken outside the summation.) To avoid this irritating
problem, you might decide to average the absolute value of Aj. But absolute values
are nasty to work with; instead, we get around the sign problem by squaring before
averaging:

o® = (A7) [L.11]

This quantity is known as the variance of the distribution; o itself (the square root

of the average of the square of the deviation from the average—gulp!) is called the

standard deviation. The latter is the customary measure of the spread about ().
There is a useful little theorem involving standard deviations:

= ((A)D) =) (AD*PG) =Y (j — U)*P())
=Y (=2 +H(HIP)
=Y FPD =20 Y JPDO+ NI PU)
2 W2
or

o’ = (%) = () [1.12)

Equation 1.12 provides a faster method for computing o': Simply calculate (j2) and
(/)?, and subtract. Incidentally, I warned you amoment ago that ( j2) is not, in general,
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equal to {)2. Since o2 is plainly nonnegative (from its definition in Equation 1.11),
Equation 1.12 implies that

A = ()3 [1.13]

and the two are equal only when o = 0, which is to say, for distributions with no
spread at all (every member having the same value).

So far, I have assumed that we are dealing with a discrete variable—that is, one
that can take on only certain isolated values (in the example, j had to be an integer,
since I gave ages only in years). But it is simple enough to generalize to continuous
distributions. If I select a random person off the street, the probability that her age is
precisely 16 years, 4 hours, 27 minutes, and 3.3333 seconds is zero. The only sensible
thing to speak about is the probability that her age lies in some interval=—say, between
16 years, and 16 years plus one day. If the interval is sufficiently short, this probability
is proportional to the length of the interval. For example, the chance that her age is
between 16 and 16 plus two days is presumably twice the probability that it is between
16 and 16 plus one day. (Unless, I suppose, there was some extraordinary baby boom
16 years ago, on exactly those days—in which case we have chosen an interval too
long for the rule to apply. If the baby boom lasted six hours, we’ll take intervals of a
second or less, to be on the safe side. Technically, we’re talking about infinitesimal
intervals.) Thus

{ probability that individual (chosen at random)

lies between x and (x 4 dx) } =p)dx. [1.14]

The proportionality factor, p(x), is often loosely called “the probability of getting

x,” but this is sloppy language; a better term is probability density. The probability
that x lies between a and b (a finite interval) is given by the integral of p(x):

b
Pab=/ o(x)dx, [1.15]

and the rules we deduced for discrete distributions translate in the obvious way:

+00
/ px)dx =1, [1.16]
Joc
{x) =/ xp(x)dx, [1.17]
+o0
o= [ fwpeds, [1.18]

o? = ((Ax)Y) = (x?) — (x)*. [1.19]
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xProblem 1.1 For the distribution of ages in the example in Section 1.3,

(2) Compute (%) and (/).

(b) Determine A; for each j, and use Equation 1.11 to compute the standard devi-
ation.

(€) Use your results in (a) and (b) to check Equation 1.12.

Problem 1.2 Consider the first 25 digits in the decimal expansion of 7 (3, 1, 4, 1,
5,9,...).

(@) If you selected one number at random from this set, what are the probabilities
of getting each of the 10 digits?

(b) What is the most probable digit? What is the median digit? What is the average
value?

(c) Find the standard deviation for this distribution.

Problem 1.3 The needle on a broken car speedometer is free to swing, and bounces
perfectly off the pins at either end, so that if you give it a flick it is equally likely to
come to rest at any angle between 0 and 7.

(a) What is the probability density, p(8)? [p(8) d6 is the probability that the needle
will come to rest between 6 and (8 + d6).] Graph p(9) as a function of 8, from
—n/2to 37 /2. (Of course, part of this interval is excluded, so p is zero there.)
Make sure that the total probability is 1.

(b) Compute (8), (#*), and o for this distribution.

(c) Compute {sin8), (cos8), and {cos’ 6).

Problem 1.4 We consider the same device as the previous problem, but this time
we are interested in the x-coordinate of the needle point—that is, the “shadow”, or
“projection”, of the needle on the horizontal line.

(a) What is the probability density p(x)? [o(x) dx is the probability that the pro-
jection lies between x and (x 4 dx).] Graph p(x) as a function of x, from —2r
to +2r, where 7 is the length of the needle. Make sure the total probability is 1.
[Hint: You know (from Problem 1.3) the probability that 8 is in a given range;
the question is, what interval dx corresponds to the interval d67]

(b) Compute (x), (x?), and o for this distribution. Explain how you could have
obtained these results from part (¢) of Problem 1.3.
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xxProblem 1.5 A needle of length [ is dropped at random onto a sheet of paper ruled
with parallel lines a distance / apart. What is the probability that the needle will cross
a line? [Hint: Refer to Problem 1.4.]

xProblem 1.6 Consider the Gaussian distribution
p(x) = AeT
where A4, a, and A are constants. {Look up any integrals you need.)

(@) Use Equation 1.16 to determine 4.
(b) Find (x), (x?),and o.
(c) Sketch the graph of p(x).

1.4 NORMALIZATION

We return now to the statistical interpretation of the wave function (Equation 1.3),
which says that |W (x, 1)|? is the probability density for finding the particle at point x,
at time 7. It follows (Equation 1.16) that the integral of |W|? must be 1 (the particle’s
got to be somewhere):

+00
f W (x,1)]*dx = 1. [1.20]

oo

Without this, the statistical interpretation would be nonsense.

However, this requirement should disturb you: After all, the wave function is
supposed to be determined by the Schrédinger equation—we can’t impose an extrane-
ous condition on ¥ without checking that the two are consistent. A glance at Equation
1.1 reveals that if W(x, ¢} is a solution, so too is AW (x, t), where 4 is any (complex)
constant. What we must do, then, is pick this undetermined multiplicative factor so as
to ensure that Equation 1.20 is satisfied. This process is called normalizing the wave
function. For some solutions to the Schrodinger equation, the integral is infinite; in
that case no multiplicative factor is going to make it 1. The same goes for the trivial
solution ¥ = 0. Such non-normalizable solutions cannot represent particles, and
must be rejected. Physically realizable states correspond to the “square-integrable”
solutions to Schrodinger’s equation.®

8Evidently W(x, t) must go to zero faster than 1/,/]x], as |x| — oo. Incidentally, normalization
only fixes the modulus of A; the phase remains undetermined. However, as we shall see, the latter carries
no physical significance anyway.
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But wait a minute! Suppose I have normalized the wave function at time ¢ = 0.
How do I know that it will stay normalized, as time goes on and W evolves? (You can’t
keep renormalizing the wave function, for then 4 becomes a function of ¢, and you
no longer have a solution to the Schrodinger equation.) Fortunately, the Schrédinger
equation has the property that it automatically preserves the normalization of the wave
function—without this crucial feature the Schrodinger equation would be incompat-
ible with the statistical interpretation, and the whole theory would crumble. So we’d
better pause for a careful proof of this point:

+00

dt J o

+00

|\Il(x,t)|2dx=/ ;;I\I/(x,t)lzdx. [1.21]

[Note that the integral is a function only of ¢, so I use a total derivative (d/dt) in the
first term, but the integrand is a function of x as well as ¢, so it’s a partial derivative
(9/9t) in the second one.] By the product rule,

d d v gw*
— |V = — (V) = ¥ — v 1.22
3t| | az( ) ot + ot [1.22]
Now the Schriodinger equation says that
oV in PPV i
— =————-=VV¥ 1.23
9t 2max?2 n [1.23]
and hence also (taking the complex conjugate of Equation 1.23)
v h PWr
= +rw, [1.24]

3t  2m x| h

SO

a ih v 9w a [ in AV )
— W= (W — —— V)= — [~ (¥ — — —W¥])|.[125
8tl | 2m ( 9x? dx? ) dx I:Zm ( dx dx ):I 1231

The integral (Equation 1.21) can now be evaluated explicitly:

o0 ih v A +00
had Wi, P dy = — (vl 1y ‘ . 1.26
dt J_o Wix, D dx 2m ( ax ax ) —00 [1.26]

But W(x, r) must go to zero as x goes to (%) infinity—otherwise the wave function
would not be normalizable. It follows that

+00

- |W(x,H)*dx =0, [1.27]

and hence that the integral on the left is constant (independent of time); if W is
normalized at ¢t = O, it stays normalized for all future time. QED
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Problem 1.7 Attime ¢t = 0 a particle is represented by the wave function

Az/a, ifo0<z<a,
U(z,0)=q A(b—2x)/(b—a), ifa<az<h,
0, otherwise,

where A, a, and b are constants.

(@) Normalize W (that is, find A in terms of @ and b).
(b) Sketch ¥(z,0) as a function of z.
(C) Where is the particle most likely to be found, at £ = (?

(d) What is the probability of finding the particle to the left of a? Check your result
in the limiting cases b = @ and b = 2a.

(e) What is the expectation value of ©?

xProblem 1.8 Consider the wave function
U(zx,t) = Ae~Mzlg=iwt

where A, A, and w are positive real constants. [We’ll see in Chapter 2 what potential
(V') actually produces such a wave function.]

(a) Normalize .
(b) Determine the expectation values of = and z2.

(c) Find the standard deviation of z. Sketch the graph of |¥|?, as a function of z,
and mark the points ({(z) + o) and ({x) — o) to illustrate the sense in which ¢
represents the “spread” in z. What is the probability that the particle would be
found outside this range?

Problem 1.9 Let P,,(¢) be the probability of finding the particle in the range
(a <z < b), at time 1.

(@) Show that
dP, ab

dt

= J(a,t) — J(b,%)

where

ih ov* o
Jz, )= — [P —Pr— .
(%) 2m < ox ox )
What are the units of J(z,¢)? [J is called the probability current, because
it tells you the rate at which probability is “flowing” past the point . If P,;(t)

is increasing, then more probability is flowing into the region at one end than
flows out at the other.]
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(b) Find the probability current for the wave function in the previous problem. (This
is not a very pithy example, I’'m afraid; we’ll encounter some more substantial
ones in due course.)

xxProblem 1.10 Suppose you wanted to describe an unstable particle that sponta-

neously disintegrates with a “lifetime” . In that case the total probability of finding
the particle somewhere should not be constant, but should decrease at (say) an expo-
nential rate:

+oo

P@) = / W(x,)*dx =e'/".
-0

A crude way of achieving this result is as follows. In Equation 1.24 we tacitly assumed
that V' (the potential energy) is real. That is certainly reasonable, but it leads to the
conservation of probability enshrined in Equation 1.27. What if we assign to ¥ an
imaginary part:

V=V,—Iil,

where V) is the true potential energy and I' is a positive real constant?

(a) Show that (in place of Equation 1.27) we now get
dP 2r

dr —

(b) Solve for P(¢), and find the lifetime of the particle in terms of I".

1.5 MOMENTUM

For a particle in state W, the expectation value of x is

+00

(x) =f x|W(x, )| dx. [1.28]

oo

What exactly does this mean? It emphatically does not mean that if you measure the
position of one particle over and over again, | x|W|?dx is the average of the results
you’ll get. On the contrary, the first measurement (whose outcome is indeterminate)
will collapse the wave function to a spike at the value actually obtained, and the
subsequent measurements (if they’re performed quickly) will simply repeat that same
result. Rather, (x) is the average of measurements performed on particles all in the
state W, which means that either you must find some way of returning the particle
to its original state after each measurement, or else you prepare a whole ensemble of
particles, each in the same state W, and measure the positions of all of them: (x) is the
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average of these results. [I like to picture a row of bottles on a shelf, each containing
a particle in the state W (relative to the center of the bottle). A graduate student with
a ruler is assigned to each bottle, and at a signal they all measure the positions of
their respective particles. We then construct a histogram of the results, which should
match |W|2, and compute the average, which should agree with (x). (Of course, since
we’re only using a finite sample, we can’t expect perfect agreement, but the more
bottles we use, the closer we ought to come.)] In short, the expectation value is the
average of repeated measurements on an ensemble of identically prepared systems,
not the average of repeated measurements on one and the same system.

Now, as time goes on, {x) will change (because of the time dependence of W),
and we might be interested in knowing how fast it moves. Referring to Equations
1.25 and 1.28, we see that’

d{x) a 2 ih a oA A
— = —|W = — —_— W — 'Y . 1.29
dt /xBIl " dx 2m x8x dax ax dx [ ]
This expression can be simplified using integration by parts'®:
d(x) in W owr
—_ = yr— — W | dx. 1.30
dt 2m ( ox dx ) ¥ [1.30]

[T used the fact that dx/dx = 1, and threw away the boundary term, on the ground

that W goes to zero at (+) infinity.}] Performing another integration by parts on the
second term, we conclude that

d{x) ih oW

Frai v ™ dx. [1.31]

What are we to make of this result? Note that we’re talking about the “velocity”

of the expectation value of x, which is not the same thing as the velocity of the particle.

Nothing we have seen so far would enable us to calculate the velocity of a particle

it’s not even clear what velocity means in quantum mechanics. If the particle doesn’t

have a determinate position (prior to measurement), neither does it have a well-defined

velocity. All we could reasonably ask for is the probability of getting a particular

value. We’ll see in Chapter 3 how to construct the probability density for velocity,

9To keep things from getting too cluttered, I suppress the limits of integration when they are +o0.
10The product rule says that

af
e

b b
dg df b
—dx = - — .
f,, fodx f ——gdx+ fg],

Under the integral sign, then, you can peel a derivative off one factor in a product and slap it onto the other
one—it’ll cost you a minus sign, and you’ll pick up a boundary term.

9 e = 18
E(fg)—fdx+

from which it follows that
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given W; for our present purposes it will suffice to postulate that the expectation value
of the velocity is equal to the time derivative of the expectation value of position:
d{x)
= —. 1.32
) P [1.32]

Equation 1.31 tells us, then, how to calculate (v) directly from W.

Actually, it is customary to work with momentum (p = mv), rather than ve-
locity:

LA [ (Y
(p)=m—-= = 171](\1/ ax) dx. [1.33]

Let me write the expressions for (x) and (p) in a more suggestive way:

{x) =/\I/*(x)\lldx, [1.34]
X
(p) =/\y (?E)Mx' [1.35]

We say that the operator'' x “represents” position, and the operator (/:)(9/0x)
“represents” momentum, in quantum mechanics; to calculate expectation values, we
“sandwich” the appropriate operator between W* and W, and integrate.

That’s cute, but what about other dynamical variables? The fact is, all such
quantities can be written in terms of position and momentum. Kinetic energy, for
example, is

and angular momentum is
L=rxmv=rxp

(the latter, of course, does not occur for motion in one dimension). To calculate the
expectation value of such a quantity, we simply replace every p by (h/i)(3/9x),
insert the resulting operator between W* and W, and integrate:

h 0
(O(x, p)) =/‘V*Q(x,—.—)\lldx. [1.36]
I 0x

11 An operator is an instruction to do something to the function that follows. The position operator
tells you to multiply by x; the momentum operator tells you to differentiate withrespect to x (and multiply
the result by —i#). In this book all operators will be derivatives (d /dt, d? /dt?, 82 /dxdy,etc.) or multipliers
(2,1, x2, etc.) or combinations of these.
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For example,

(T)—_h2 w*azwd [1.37]
T 2m axz ’

Equation 1.36 is a recipe for computing the expectation value of any dynamical
quantity for a particle in state V; it subsumes Equations 1.34 and 1.35 as special
cases. I have tried in this section to make Equation 1.36 seem plausible, given Born’s
statistical interpretation, but the truth is that this equation represents such a radically
new way of doing business (as compared with classical mechanics) that it’s a good
idea to get some practice using it before we come back (in Chapter 3) and put it on
a firmer theoretical foundation. In the meantime, if you prefer to think of it as an
axiom, that’s fine with me.

Problem 1.11 Why can’t you do integration by parts directly on the middle ex-
pression in Equation 1.29—pull the time derivative over onto x, note that dx /3¢ = 0,
and conclude that d{x)/dt = 0?

xProblem 1.12 Calculate d{p)/dt. Answer:

dp) _,
—= =) [1.38]

(This is known as Ehrenfest’s theorem; it tells us that expectation values obey
Newton’s second law.)

Problem 1.13 Suppose you add a constant ¥ to the potential energy (by “constant”
I mean independent of x as well as ¢). In classical mechanics this doesn’t change
anything, but what about quantum mechanics? Show that the wave function picks
up a time-dependent phase factor: exp(—i Vot /h). What effect does this have on the
expectation value of a dynamical variable?

1.6 THE UNCERTAINTY PRINCIPLE

Imagine that you’re holding one end of a very long rope, and you generate a wave by
shaking it up and down rhythmically (Figure 1.6). If someone asked you, ‘“Precisely
where is that wave?” you’d probably think he was a little bit nutty: The wave isn’t
precisely anywhere—it’s spread out over 50 feet or so. On the other hand, if he asked
you what its wavelength is, you could give him a reasonable answer: It looks like
about 6 feet. By contrast, if you gave the rope a sudden jerk (Figure 1.7), you'd get a
relatively narrow bump traveling down the line. This time the first question (Where
precisely is the wave?) is a sensible one, and the second (What is its wavelength?)
seems nutty—itisn’t even vaguely periodic, so how can you assign a wavelength to it?
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—

N, VY v A\ \/ —
(feet)

Figure 1.6: A wave with a (fairly) well-defined wavelength but an ill-defined
position.

Of course, you can draw intermediate cases, in which the wave is fairly well localized
and the wavelength is fairly well defined, but there is an inescapable trade-off here:
The more precise a wave’s position is, the less precise is its wavelength, and vice
versa.l> A theorem in Fourier analysis makes all this rigorous, but for the moment 1
am only concerned with the qualitative argument.

This applies, of course, to any wave phenomenon, and hence in particular to
the quantum mechanical wave function. Now the wavelength of W is related to the
momentum of the particle by the de Broglie formula':

h 2mh [1.39]
P=5= '
Thus a spread in wavelength corresponds to a spread in momentum, and our general
observation now says that the more precisely determined a particle’s position is, the
less precisely its momentum is determined. Quantitatively,

[1.40]

where oy is the standard deviation in x, and o), is the standard deviation in p. This
is Heisenberg’s famous uncertainty principle. (We’ll prove it in Chapter 3, but I
wanted to mention it here so you can test it out on the examples in Chapter 2.)

R —
A : : J\ : : :
/7 10 20 30 40 50
x(feet)

Figure 1.7: A wave with a (fairly) well-defined position but an ill-defined wave-
length.

12Thar’s why a piccolo player must be right on pitch, whereas a double-bass player can afford to
wear garden gloves. For the piccolo, a sixty-fourth note contains many full cycles, and the frequency (we’re
working in the time domain now, instead of space) is well defined, whereas for the bass, at a much lower
register, the sixty-fourth note contains only a few cycles, and all you hear is a general sort of “oomph,”
with no very clear pitch.

131°11 prove this in due course. Many authors take the de Broglie formula as an axiom, from
which they then deduce the association of momentum with the operator (/7)(3/3x). Although this isa
conceptually cleaner approach, it involves diverting mathematical complications that I would rather save
for later.
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Please understand what the uncertainty principle means: Like position mea-
surements, momentum measurements yield precise answers—the “spread” here refers
to the fact that measurements on identical systems do not yield consistent results. You
can, if you want, prepare a system such that repeated position measurements will be
very close together (by making W a localized “spike”), but you will pay a price: Mo-
mentum measurements on this state will be widely scattered. Or you can prepare a
system with a reproducible momentum (by making ¥ a long sinusoidal wave), but in
that case position measurements will be widely scattered. And, of course, if you’re in
a really bad mood you can prepare a system in which neither position nor momentum
is well defined: Equation 1.40 is an inequality, and there’s no limit on how big o, and
o, can be—just make W some long wiggly line with lots of bumps and potholes and
no periodic structure.

xProblem 1.14 A particle of mass m is in the state
\IJ(X t) — Ae_a[(mxz/h)-Ht],
where A4 and a are positive real constants.

(@) Find 4.

(b) For what potential energy function ¥ (x) does W satisfy the Schrodinger equa-
tion?

(c) Calculate the expectation values of x, x2, p, and p?.
P p 14

(d) Find o, and o,. Is their product consistent with the uncertainty principle?




CHAPTER 2

THE TIME-INDEPENDENT
SCHRODINGER EQUATION

2.1 STATIONARY STATES

In Chapter 1 we talked a lot about the wave function and how you use it to calculate
various quantities of interest. The time has come to stop procrastinating and confront
what is, logically, the prior question: How do you get W (x, ¢) in the first place—how
do you go about solving the Schrddinger equation? I shall assume for all of this
chapter (and most of this book) that the potential,' V', is independent of t. In that case
the Schrodinger equation can be solved by the method of separation of variables
(the physicist’s first line of attack on any partial differential equation): We look for
solutions that are simple products,

V(x, 1) =¥(x) f(), [2.1]

where V¥ (lowercase) is a function of x alone, and f is a function of ¢ alone. On its
face, this is an absurd restriction, and we cannot hope to get more than a tiny subset
of all solutions in this way. But hang on, because the solutions we do obtain turn out
to be of great interest. Moreover, as is typically the case with separation of variables,
we will be able at the end to patch together the separable solutions in such a way as
to construct the most general solution.

Ut is tiresome to keep saying “potential energy function,” so most people just call ¥ the “potential”,
even though this invites occasional confusion with electric potential, which is actually potential energy
per unit charge.
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For separable solutions we have

v df PV &y

at T dt’ axr  dx?
(ordinary derivatives, now), and the Schrédinger equation (Equation 1.1) reads
f n? d*y
hw 2m dx? VYL

Or, dividing through by ¥ /-

2 2

1 df = l l d_v/ [2.2]
f dt 2m ¥ dx?

Now the left side is a function of ¢ alone, and the right side is a function of x alone.?
The only way this can possibly be true is if both sides are in fact constant—otherwise,
by varying ¢, I could change the left side without touching the right side, and the two
would no longer be equal. (That’s a subtle but crucial argument, so if it’s new to you,
be sure to pause and think it through.) For reasons that will appear in a moment, we
shall call the separation constant £. Then

ldf
fdt =E,
or
df iE
CA 23
dt h /. 23]
and
R 1 d*y vk
2m ¢ dx? + ’
or
h2 dzl//
———— + VY =Ey. 2.
o dez TVY =EY [24]

Separation of variables has turned a partial differential equation into two ordi-
nary differential equations (Equations 2.3 and 2.4). The first of these is easy to solve
(just multiply through by dt and integrate); the general solution is C exp(—i Et /%),
but we might as well absorb the constant C into v (since the quantity of interest is
the product ¥ f). Then

f(@t) =e B/, [2.5]

The second (Equation 2.4) is called the time-independent Schridinger equation;
we can go no further with it until the potential ¥ (x) is specified.

2Note that this would not be true if ¥ were a function of ¢ as well as x.



22

Chap. 2 The Time-Independent Schrédinger Equation

The rest of this chapter will be devoted to solving the time-independent Schro-
dinger equation, for a variety of simple potentials. But before we get to that I would
like to consider further the question: What'’s so great about separable solutions? After
all, most solutions to the (time-dependent) Schrédinger equation do not take the form
¥ (x) f(2). I offer three answers—two of them physical and one mathematical:

1. They are stationary states. Although the wave function itself,

W(x, 1) = Y(x)e E/R, [2.6]

does (obviously) depend on ¢, the probability density
W, )7 = W0 = yretF iy e 50 =y (o) [2.7]

does not—the time dependence cancels out.* The same thing happens in calculating
the expectation value of any dynamical variable; Equation 1.36 reduces to

hod
(0, p)) = / w0, Ly ax. 2.8]
i dx

Every expectation value is constant in time; we might as well drop the factor f(z)
altogether, and simply use v in place of V. (Indeed, it is common to refer to v
as “the wave function”, but this is sloppy language that can be dangerous, and it is
important to remember that the true wave function always carries that exponential
time-dependent factor.) In particular, (x) is constant, and hence (Equation 1.33)
{p) = 0. Nothing ever happens in a stationary state.

2. They are states of definite total energy. In classical mechanics, the total
energy (kinetic plus potential) is called the Hamiltonian:

2
Hx,pp =2 1+ v w. [2.9]
2m
The corresponding Hamiltonian operator, obtained by the canonical substitution p —

(h/i)(8/9x), is therefore”
SR
A== 4V (). (2.10]

Thus the time-independent Schrédinger equation (Equation 2.4) can be written

Hy = Evy, [2.11]

3For normalizable solutions, £ must be real (see Problem 2.1a).

4Whenever confusion might arise, I’ll put a “hat” (*) on the operator to distinguish it from the
dynamical variable it represents.
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and the expectation value of the total energy is

(H) =/1//*1§h//dx = E/|1//|2dx =E. [2.12]

(Note that the normalization of W entails the normalization of {.) Moreover,
By = H(HYy) = H(EY) = E(HY) = E*y,
and hence
(H?) = /x//*ﬁ%/f dx = E2/ Iy |2dx = E2.
So the standard deviation in H is given by
o} = (H* — (HY? = E*— E*=0. [2.13]

But remember, if o = 0, then every member of the sample must share the same value
(the distribution has zero spread). Conclusion: A separable solution has the property
that every measurement of the total energy is certain to return the value E. (That’s
why I chose that letter for the separation constant.)

3. The general solution is a linear combination of separable solutions. As
we’re about to discover, the time-independent Schrédinger equation (Equation 2.4)
yields an infinite collection of solutions (y1(x), ¥ (x), ¥3(x), ...), each with its
associated value of the separation constant (E|, E,, E3, ...); thus there is a different
wave function for each allowed energy:

Wi(x,t) = Yy (x)e B Wy(x, 1) = Yo (x)e B

Now (as you can easily check for yourself) the (time-dependent) Schrodinger equation
(Equation 1.1) has the property that any linear combination® of solutions is itself a
solution. Once we have found the separable solutions, then, we can immediately
construct a much more general solution, of the form

[o 8]

Vi, 1) = cyn(x)e B, [2.14]

n=1

It so happens that every solution to the (time-dependent) Schrodinger equation can be
written in this form—it is simply a matter of finding the right constants (¢;, ¢, ...)
so as to fit the initial conditions for the problem at hand. You’ll see in the following
sections how all this works out in practice, and in Chapter 3 we’ll put it into more
elegant language, but the main point is this: Once you’ve solved the time-independent

3 A linear combination of the functions fj(z), f2(2), ... is an expression of the form

S@Q=afid)+eh@)+---,

where ¢y, ¢z, . .. are any (complex) constants.
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Schrodinger equation, you're essentially done; getting from there to the general so-
lution of the time-dependent Schrddinger equation is simple and straightforward.

xProblem 2.1 Prove the following theorems:

(a) For normalizable solutions, the separation constant £ must be real. Hint: Write
E (in Equation 2.6) as E + i’ (with Eo and I real), and show that if Equation
1.20is to hold for all ¢, I" must be zero.

(b) Y can always be taken to be real (unlike ¥, which is necessarily complex).
Note: This doesn’t mean that every solution to the time-independent Schrodinger
equation is real; what it says is that if you’ve got one that is nof, it can always be
expressed as a linear combination of solutions (with the same energy) that are.
So in Equation 2.14 you might as well stick to ’s that are real. Hint: If  (x)
satisfies the time-independent Schrédinger equation for a given £, so too does
its complex conjugate, and hence also the real linear combinations (¢ + ¥*)
and i(yy — ¥™).

(c) If ¥V (x) is an even function [i.e., ¥ (—x) = V(x)], then ¥ (x) can always be
taken to be either even or odd. Hint: If v (x) satisfies the time-independent
Schrodinger equation for a given E, so too does ¥ (—x), and hence also the
even and odd linear combinations ¥ (x) £ ¥ (—x).

sProblem 2.2 Show that £ must exceed the minimum value of ¥ (x) for every
normalizable solution to the time-independent Schrédinger equation. What is the
classical analog to this statement? Hint: Rewrite Equation 2.4 in the form

>y 2m
o h—?_[V(x) — ElY;
if E < Viin, then ¥ and its second derivative always have the same sign—argue that
such a function cannot be normalized.

2.2 THE INFINITE SQUARE WELL

Suppose
0, if0<x<a,

00, otherwise [2.15]

Vix) = {
(Figure 2.1). A particle in this potential is completely free, except at the two ends
(x = 0 and x = a), where an infinite force prevents it from escaping. A classical
model would be a cart on a frictionless horizontal air track, with perfectly elastic
bumpers—it just keeps bouncing back and forth forever. (This potential is awfully
artificial, but I urge you to treat it with respect. Despite its simplicity—or rather,
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V(x)

. Figure 2.1: The infinite square well
X potential (Equation 2.15).

|

precisely because of its simplicity—it serves as a wonderfully accessible test case for
all the fancy stuff that comes later. We’ll refer back to it frequently.)

Outside the well, ¥ (x) = 0 (the probability of finding the particle there is zero).
Inside the well, where V' = 0, the time-independent Schrodinger equation (Equation
2.4) reads

h2 d2
_ EKVZI — £y, [2.16]
or ,
d v2mE
d—xf = —k*Y, wherek = 7:” . [2.17]

(By writing it in this way, I have tacitly assumed that £ > 0; we know from Problem
2.2 that £ < 0 doesn’t work.) Equation 2.17 is the (classical) simple harmonic
oscillator equation; the general solution is

Y(x) = Asinkx + Bcoskx, [2.18]

where 4 and B are arbitrary constants. Typically, these constants are fixed by the
boundary conditions of the problem. What are the appropriate boundary conditions
for ¥(x)? Ordinarily, both v and d+/dx are continuous, but where the potential
goes to infinity only the first of these applies. (I’ll prove these boundary conditions,
and account for the exception when ¥ = o0, later on; for now I hope you will trust
me.)

Continuity of (x) requires that

v (0) =¥ (@) =0, [2.19]

so as to join onto the solution outside the well. What does this tell us about 4 and
B7? Well,
¥ (0) = Asin0+ Bcos0O = B,

so B = 0, and hence
Y (x) = Asinkx. [2.20]

Then vyr(a) = Asinka, so either A = 0 [in which case we’re left with the trivial—
nonnormalizable—solution ¥ (x) = 0], or else sin ka = 0, which means that

ka =0, 7, 27, £3n,.... [2.21]
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But k& = 0 is no good [again, that would imply ¥ (x) = 0], and the negative solutions
give nothing new, since sin(—6) = — sin(#) and we can absorb the minus sign nto
A. So the distinct solutions are

k,="".  withn=1,2 3,.... 12.22]
a

Curiously, the boundary condition at x = a does not determine the constant 4,
but rather the constant &, and hence the possible values of E:

_ B nPmR

E, = = —. 2.23
2m 2ma? [2:23]

In sharp contrast to the classical case, a quantum particle in the infinite square well
cannot have just any old energy—only these special allowed values. Well, how do
we fix the constant 4? Answer: We normalize
a a 2
/ |4 sin2(kx) dx = |A]P= =1, so |4} =~
0 2 a
This only determines the magnitude of A, but it is simplest to pick the positive real
root: A = /2/a (the phase of 4 carries no physical significance anyway). Inside the
well, then, the solutions are

Yn(x) = \/§sin (Ex) [2.24]
a a

As promised, the time-independent Schrédinger equation has delivered an infi-
nite set of solutions, one for each integer n. The first few of these are plotted in Fig-
ure 2.2; they look just like the standing waves on a string of length a. ¥, which car-
ries the lowest energy, is called the ground state; the others, whose energies increase
in proportion to n?, are called excited states. As a group, the functions v, (x) have
some interesting and important properties:

1. They are alternately even and odd, with respect to the center of the well.
(¥ is even, V¥, is odd, ¥3 is even, and so on.®)

2. As you go up in energy, each successive state has one more node (zero
crossing). V1 has none (the end points don’t count), ¥ has one, 3 has two, and so
on.

6To make this symmetry more apparent, some authors center the well at the origin (so that it runs
from —a/2 to +a/2. The even functions are then cosines, and the odd ones are sines. See Problem 2.4.
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e

v, (x) V() W3(x)

Figure 2.2: The first three stationary states of the infinite square well (Equation
2.24).

3. They are mutually orthogonal, in the sense that

/ Ym (X)) Yn(x)dx =0, [2.25]

whenever m # n. Proof
" 2 mm b4
/l/fm(x) Yr(x)dx = 2/(; sm( )sm(; )
=l/a|:cos<m_nnx)—cos< )] dx
a Jo a
_{ 1 . (m—n )_ 1 . <m+n )}
=\ —mm sin P X e sin

_ l {sin[(m —n)m] B sin[(m +n)7t} ~0

14 (m —n) (m+n)

Note that this argument does not work if m = n (can you spot the point at which
it fails?); in that case normalization tells us that the integral is 1. In fact, we can
combine orthogonality and normalization into a single statement’:

/ Ym (0)* Y (x) dX = 8, [2.26]

where 8,,, (the so-called Kronecker delta) is defined in the usual way,

_ 10, ifm #n;
Sun = { 1, ifm=n. [2.27]

We say that the y’s are orthonormal.
4. They are complete, in the sense that any orher function, f(x), can be ex-
pressed as a linear combination of them:

fe) =) e x) = \/g Y cusin (%x) [2.28]
n=1 n=1

"In this case the ¥’s are real, so the * on Y¥m is unnecessary, but for future purposes it’s a good
idea to get in the habit of putting it there.
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I’'m not about to prove the completeness of the functions +/2/a sin(nmx/a), but if
you've studied advanced calculus you will recognize that Equation 2.28 is nothing
but the Fourier series for f(x), and the fact that “any” function can be expanded
in this way is sometimes called Dirichlet’s theorem.® The expansion coefficients
(c,) can be evaluated—for a given f(x)—by a method I call Fourier’s trick, which
beautifully exploits the orthonormality of {1, }: Multiply both sides of Equation 2.28
by ¥, (x)*, and integrate.

/ Yn(x) fX)dx =) ¢, / Y () Yn(X) dx =) Cpbn = €. [229]
n=1 =

n=1

(Notice how the Kronecker delta kills every term in the sum except the one for which
n = m.) Thus the mth coefficient in the expansion of f(x) is given by

Cm = / Y (X)* f(x) dx. [2.30]

These four properties are extremely powerful, and they are not peculiar to the
infinite square well. The first is true whenever the potential itself is an even function;
the second is universal, regardless of the shape of the potential.’ Orthogonality is also
quite general—I'1l show you the proof in Chapter 3. Completeness holds for all the
potentials you are likely to encounter, but the proofs tend to be nasty and laborious;
I’'m afraid most physicists simply assume completeness and hope for the best.

The stationary states (Equation 2.6) for the infinite square well are evidently

2 i
W, (x, 1) = \/; sin (ﬂx) i TR/ ma)t [2.31]

a

I claimed (Equation 2.14) that the most general solution to the (time-dependent)
Schradinger equation is a linear combination of stationary states:

> 2 o2
U(x, 1) = ch\/;sin (%x) eini xR/ 2ma®)t [2.32]
n=1

If you doubt that this is a solution, by all means check it! It remains only for me to
demonstrate that I can fit any prescribed initial wave function, W (x, 0), by appropriate
choice of the coefficients ¢,. According to Equation 2.32,

W(x,0) =) cnulx).
n=1

8See, for example, Mary Boas, Mathematical Methods in the Physical Sciences, 2nd ed. (New
York: John Wiley & Sons, 1983), p. 313; f(x) can even have a finite number of finite discontinuities.

9See, for example, John L. Powell and Bernd Crasemann, Quantum Mechanics (Reading, MA:
Addison-Wesley, 1961), p. 126.
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The completeness of the ¥ ’s (confirmed in this case by Dirichlet’s theorem) guarantees
that I can always express W (x, 0) in this way, and their orthonormality licenses the
use of Fourier’s trick to determine the actual coefficients:

c,,:ﬁ/ sin(ﬂx)\p(x,O)dx. / (2.33]
a Jo a

That does it: Given the initial wave function, W(x, 0), we first compute the
expansion coefficients ¢,, using Equation 2.33, and then plug these into Equation 2.32
to obtain W (x, t). Armed with the wave function, we are in a position to compute any
dynamical quantities of interest, using the procedures in Chapter 1. And this same
ritual applies to any potential—the only things that change are the functional form of
the v’s and the equation for the allowed energies.

Problem 2.3 Show that there is no acceptable solution to the (time-independent)
Schrédinger equation (for the infinite square well) with £ = O or £ < 0. (This is a
special case of the general theorem in Problem 2.2, but this time do it by explicitly
solving the Schrédinger equation and showing that you cannot meet the boundary
conditions.)

Problem 2.4 Solve the time-independent Schrodinger equation with appropriate
boundary conditions for an infinite square well centered at the origin {V (x) = 0, for
—a/2 < x < +a/2; V(x) = oo otherwise]. Check that your allowed energies are
consistent with mine (Equation 2.23), and confirm that your 1 ’s can be obtained from
mine (Equation 2.24) by the substitution x — x — a/2.

xProblem 2.5 Calculate (x), (x2), (p), (p*), 0x, and o, for the nth stationary state
of the infinite square well. Check that the uncertainty principle is satisfied. Which
state comes closest to the uncertainty limit?

xxProblem 2.6 A particle in the infinite square well has as its initial wave function
an even mixture of the first two stationary states:

W(x,0) = A{Y1(x) + Y2 (x)].

(@) Normalize W(x,0). (That is, find 4. This is very easy if you exploit the
orthonormality of ¢; and . Recall that, having normalized W at ¢t = 0, you
can rest assured that it stzays normalized—if you doubt this, check it explicitly
after doing part b.)

(b) Find W(x,t) and |¥ (x, t)|?. (Express the latter in terms of sinusoidal functions
of time, eliminating the exponentials with the help of Euler’s formula: ¢¥ =
cosf +isinf.) Let w = n%h/2ma>.

(c) Compute (x). Notice that it oscillates in time. What is the frequency of the
oscillation? What is the amplitude of the oscillation? (If your amplitude is
greater than a/2, go directly to jail.)
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(d) Compute {p). (As Peter Lorre would say, “Do it ze kveek vay, Johnny!”)

(e) Find the expectation value of H. How does it compare with E; and E,?

(f) A classical particle in this well would bounce back and forth between the walls.
If its energy is equal to the expectation value you found in (e), what is the

frequency of the classical motion? How does it compare with the quantum
frequency you found in (c)?

Problem 2.7 Although the overall phase constant of the wave function is of no
physical significance (it cancels out whenever you calculate a measureable quantity),
the relative phase of the expansion coefficients in Equation 2.14 does matter. For
example, suppose we change the relative phase of ¢ and v, in Problem 2.6:

W(x,0) = Ay (x) + 9 (x)],

where ¢ is some constant. Find ¥ (x, 1), | W (x, ¢)|?, and (x), and compare your results
with what you got before. Study the special cases ¢ = w/2 and ¢ = 7.

xProblem 2.8 A particle in the infinite square well has the initial wave function

Y(x,0) = Ax(a — x).

(a) Normalize W(x,0). Graph it. Which stationary state does it most closely
resemble? On that basis, estimate the expectation value of the energy.

(b) Compute (x), (p), and (H), at t = 0. (Note: This time you cannot get {p) by
differentiating (x), because you only know (x) at one instant of time.) How
does (H) compare with your estimate in (a)?

xProblem 2.9 Find W (x, ¢) for the initial wave function in Problem 2.8. Evaluate

¢1, ¢2, and ¢3 numericaily, to five decimal places, and comment on these numbers.
(¢y tells you, roughly speaking, how much v, is “contained in” W.) Suppose you
measured the energy at time 7y > 0, and got the value £3. Knowing that immediate
repetition of the measurement must return the same value, what can you say about
the coefficients ¢, after the measurement? (This is an example of the “collapse of the
wave function”, which we discussed briefly in Chapter 1.)

xProblem 2.10 The wave function (Equation 2.14) has got to be normalized; given

that the ¥,’s are orthonormal, what does this tell you about the coefficients ¢,?
Answer:

el =1 [2.34]
n=1

(In particular, |c,|? is always < 1.) Show that

(H) =) Enlenl. (2.35]
n=1



Sec. 2.3: The Harmonic Oscillator 31

Incidentally, it follows that {H) is constant in time, which is one manifestation of
conservation of energy in quantum mechanics.

2.3 THE HARMONIC OSCILLATOR

The paradigm for a classical harmonic oscillator is a mass m attached to a spring of
force constant k. The motion is governed by Hooke’s law,
d*x
F=—fkx=m—

dr?

(as always, we ignore friction), and the solution is
x(t) = Asin(wt) + Bcos(wt),

where

k
w=,— [2.36]
m

is the (angular) frequency of oscillation. The potential energy is
1
V(x)= Ekxz; [2.37]

its graph is a parabola.

Of course, there’s no such thing as a perfect simple harmonic oscillator—if you
stretch it too far the spring is going to break, and typically Hooke’s law fails long
before that point is reached. But practically any potential is approximately parabolic,
in the neighborhood of a local minimum (Figure 2.3). Formally, if we expand V (x)
in a Taylor series about the minimum:

1
mw=V@@+Vumx<m+iwku—mf+~u

subtract J(xo) [you can add a constant to ¥ (x) with impunity, since that doesn’t
change the force], recognize that V' (xy) = 0 (since xo is a minimum), and drop the
higher-order terms [which are negligible as long as (x — x) stays small], the potential
becomes

1
V@)%EV%mxx—mf,

which describes simple harmonic oscillation (about the point x¢), with an effective
spring constant £ = V”(x)."° That’s why the simple harmonic oscillator is so
important: Virtually any oscillatory motion is approximately simple harmonic, as
long as the amplitude is small.

1Note that ¥”(xg) > 0, since by assumption x; is a minimum. Only in the rare case ¥” (xg) = 0
is the oscillation not even approximately simple harmonic.
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V(x)

Figure 2.3: Parabolic approximation (dashed curve) to an arbitrary potential, in
the neighborhood of a local minimum.

The quantum problem is to solve the Schrédinger equation for the potential
1
V(x)= Ema)zx2 [2.38]

(it is customary to eliminate the spring constant in favor of the classical frequency,
using Equation 2.36). As we have seen, it suffices to solve the time-independent
Schrodinger equation:

— — T 4 —maxy = Ey. [2.39]

In the literature you will find two entirely different approaches to this problem. The
first is a straighforward “brute force” solution to the differential equation, using the
method of power series expansion; it has the virtue that the same strategy can be
applied to many other potentials (in fact, we’ll use it in Chapter 4 to treat the Coulomb
potential). The second is a diabolically clever algebraic technique, using so-called
ladder operators. I’ll show you the algebraic method first, because it is quicker and
simpler (and more fun); if you want to skip the analytic method for now, that’s fine,
but you should certainly plan to study it at some stage.

2.3.1 Algebraic Method

To begin with, let’s rewrite Equation 2.39 in a more suggestive form:
1| /hd\
— (=) +mwx)* |y =Ey. [2.40)
2m i dx

The idea is to factor the term in square brackets. If these were numbers, it would be
easy:
W+ 2= (u—iv)u+iv).
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Here, however, it’s not quite so simple, because u and v are operators, and operators
do not, in general, commute (xv is not the same as vu). Still, this does invite us to
take a look at the expressions

a4 = — <—.— + ima)x) . [2.41]

What is their product, a_a? Warning: Operators can be slippery to work with
in the abstract, and you are bound to make mistakes unless you give them a “test
function”, f(x), to act on. At the end you can throw away the test function, and
you’ll be left with an equation involving the operators alone. In the present case, we
have

(a_ay) f(x) = % (7?—% - ima)x) (?;ix + ima)x) f(x)

1 (hd hdf .
™ (73; —lma)x) (721; +tma)xf)

2
L I:—hzd—f +hma)i(xf) - hma)xd—f + (ma)x)zfj|
dx dx

= om dx?
2
! [(ﬁi) +(ma)x)2+hma):| f).

ZE—WT idx

[Tused d(xf)/dx = x(df/dx) + f inthe last step.] Discarding the test function, we

conclude that
a_a, = ; + (mwx + ~hw. 2.42

Evidently Equation 2.40 does not factor perfectly—there’s an extra term (1/2)hw.
However, if we pull this over to the other side, the Schridinger equation'' becomes

(a_a, — %ha))l/f = Evy. {2.43]

Notice that the ordering of the factors a_ and a_ is important here; the same
argument, with a on the left, yields

1 [ (nd\ .| 1
= (2= - —ho. 44
a,a o |:<l dx) + (mwx) :| 2ha) [2.44]
Thus
a_a, —a,a_ =ho, [2.45]

UT'm getting tired of writing “time-independent Schrodinger equation,” so when it’s clear from the
context which one I mean, I’ll just call it the Schrodinger equation.
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and the Schrédinger equation can also be written
1
(aya_ + Eha))l/f = Er. [2.46]

Now, here comes the crucial step: I claim that if y satisfies the Schrodinger
equation, with energy E, then a . satisfies the Schrodinger equation with energy
(E + hw). Proof:

1 1
(ara- + Ehw)(aﬂ/f) = (a1a-a; + Ehwa+)‘/f

1 1
=a(a-a; + Eha))l/f =a;l(a-a, - Ehw)l/f + hay]
= 4, (EY +hoy) = (E +ho)(a, ¥). QED

[Notice that whereas the ordering of @, and a_ does matter, the ordering of a4 and
any constants (such as %, w, and E) does not.] By the same token, a_ is a solution
with energy (F — hw):

(0-a, ~ Sho)a-p) = a_(@a — Sho)y

1
=a-[(ara- + Ehw)llf —hoyl =a_(EYy —hoy)
= (£ —hw)(a-y).

Here, then, is a wonderful machine for grinding out new solutions, with higher and
lower energies—if we can just find one solution, to get started! We call a,. ladder
operators, because they allow us to climb up and down in energy; a. is called the
raising operator, and a_ the lowering operator. The “ladder” of states is illustrated
in Figure 2.4.

But wait! What if I apply the lowering operator repeatedly? Eventually I'm
going to reach a state with energy less than zero, which (according to the general
theorem in Problem 2.2) does not exist! At some point the machine must fail. How
can that happen? We know that a_1 is a new solution to the Schrédinger equation,
but there is no guarantee that it will be normalizable—it might be zero, or its square
integral might be infinite. Problem 2.11 rules out the latter possibility. Conclusion:
There must occur a “lowest rung” (let’s call it y) such that

a_yr = 0. [2.47]

That is to say,

1 (hdyo ; " ) 0
—— | ——— —imwx =
Tm | dx m 0 s
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« »a,
E+3ha L aly
E+2fio ay
E+ho a\y
E v
E-ho awy
E-2f0 — a’y
< ,‘7 a
E Yo Figure 2.4: The ladder of stationary states
for the simple harmonic oscillator.
or
dy mw
— = ——XxYp.
dx Rl
This differential equation for ¥y is easy to solve:
dyry mw mw
20 _T7 | xdx = Inyy=——x?+ constant,
Yo ) Vo 2
so ,
Yo(x) = Age” 2%, [2.48]

To determine the energy of this state, we plug it into the Schrédinger equation (in
the form of Equation 2.46), (aya_ + (1/2)hw)yn = Epyn, and exploit the fact that

a_yro = 0. Evidently
1
Ey = sho. [2.49]
With our foot now securely planted on the bottom rung'? (the ground state of
the quantum oscillator), we simply apply the raising operator to generate the excited

states'>:

Un(x) = Ap(as)"e" %, with E, = (n + %)ha). [2.50]

12Note that there can only be ore ladder, because the lowest state is uniquely determined by Equation
2.47. Thus we have in fact obtained «ll the (normalizable) solutions.

131n the case of the harmonic oscillator, it is convenient to depart from our usual custom and number
the states starting with n = 0 instead of n = 1. Obviously, the lower limit on the sum in equations such
as Equation 2.14 should be altered accordingly.
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(This method does not immediately determine the normalization factor A,; I'll let
you work that out for yourself in Problem 2.12.) For example,

mw 1 h d mw
L= Ay B = Aj—— [ = — + imwx | e FF
+ ~/2—
m
A1 h ma)x _ﬂzlh__wxz +i a)xe_';h'ﬂxz
=—|-|——5x]e im
V2m i h ’

which simplifies to
Y1 (x) = (i Aywv2m)xe™ 57 [2.51]

I wouldn’t want to calculate yrso in this way, but never mind: We have found all the
allowed energies, and in principle we have determined the stationary states—the rest
is just computation.

Problem 2.11 Show that the lowering operator cannot generate a state of infinite
norm (i.e., [ |[a_y|*dx < oo, if ¥ itself is a normalized solution to the Schrodinger
equation). What does this tell you in the case ¥ = ,? Hint: Use integration by
parts to show that

/ (V) (@_y) dx = / U*(@ra_y)dx.

Then invoke the Schrédinger equation (Equation 2.46) to obtain

o0 1
/ la_y)dx = E — Eha),

o0

where E is the energy of the state .

xxProblem 2.12

(a) The raising and lowering operators generate new solutions to the Schrodinger
equation, but these new solutions are not correctly normalized. Thus a, ),
is proportional to Y, 1, and a_v, is proportional to ,_;, but we’d like to
know the precise proportionality constants. Use integration by parts and the
Schrodinger equation (Equations 2.43 and 2.46) to show that

f las P dx = (1 + Dho, f la_y P dx = nho,

o0 o0

and hence (with i’s to keep the wavefunctions real)

a ¥, =iy (n+ Dho Yy, [2.52]
a_vyr, = —ivnhoy, ;. [2.53]
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(b) Use Equation 2.52 to determine the normalization constant A, in Equation 2.50.
(You’ll have to normalize o “‘by hand”.) Answer:

A, = (@)”“_(ﬂ_ [2.54]
"7\ nh N '

«Problem 2.13 Using the methods and results of this section,

(a) Normalize vy (Equation 2.51) by direct integration. Check your answer against
the general formula (Equation 2.54).

(b) Find v, but don’t bother to normalize it.

(C) Sketch Yo, ¥, and Y.

(d) Check the orthogonality of v, ¥r1, and . Note: If you exploit the evenness
and oddness of the functions, there is really only one integral left to evaluate
explicitly.

«Problem 2.14 Using the results of Problems 2.12 and 2.13,

(@) Compute (x), (p), (x?), and (p?), for the states Yo and ;. Note: In this and
most problems involving the harmonic oscillator, it simplifies the notation if
you introduce the variable & = +/m/f x and the constant & = (mw/7h)'/*.

(b) Check the uncertainty principle for these states.

(c) Compute (T) and (V) for these states (no new integration allowed!). Is their
sum what you would expect?

2.3.2 Analytic Method

We return now to the Schrodinger equation for the harmonic oscillator (Equa-
tion 2.39):
wdy 1,
——— 4+ —mw = Evy.
2m dx? + 2 ok v

Things look a little cleaner if we introduce the dimensionless variable

mao
£ = ‘/Tx’ [2.55]

in terms of &, the Schrédinger equation reads

2y

2z =€ K, [2.56]
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where K is the energy, in units of (1/2)hw:
_2E
=0
Our problem is to solve Equation 2.56, and in the process obtain the “allowed” values
of K (and hence of E).

To begin with, note that at very large & (which is to say, at very large x), £2
completely dominates over the constant K, so in this regime

[2.57]

d2
T e, 2.58]
which has the approximate solution (check it!)
Y (E) ~ de ¥ + et/ [2.59]

The B term is clearly not normalizable (it blows up as |x| — 00); the physically
acceptable solutions, then, have the asymptotic form

YE) > (e, atlarge €. [2.60]
This suggests that we “peel off” the exponential part,
Y€)= hEe 7, [2.61]

in hopes that what remains [A(£)] has a simpler functional form than v (§) itself.*
Differentiating Equation 2.61, we have

(D)o

dg dg
and d? d*h d
4 h 2 ey
ARG Y - -1 /
dE? <d§2 Edg +E —Dh)e™ 77,
so the Schrédinger equation (Equation 2.56) becomes
d*h dh
— — 25— K—-1)h=0. 2.62
Jgi ~ g HK-Dh=0 [2.62]

I propose to look for a solution to Equation 2.62 in the form of a power series
in £13:

hE) =ap+aiE + a2+ =) ;. [2.63]
j=0

14Note that although we invoked some approximations to motivate Equation 2.61, what follows is
exact. The device of stripping off the asymptotic behavior is the standard first step in the power series
methed for solving differential equations—see, for example, Boas (cited in footnote 8), Chapter 12.

15 According to Taylor’s theorem, any reasonably well-behaved function can be expressed as a power
series, so Equation 2.63 involves no real loss of generality. For conditions on the applicability of the series
method, see Boas (cited in footnote 8) or George Arfken, Mathematical Methods for Physicists, 3rd ed.
(Orlando, FL: Academic Press, 1985), Section 8.5.
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Differentiating the series term by term,

dh x* .
— =a; + 26 + 3a352 4= Zjajfj_l,
di -
and
d*h — P R : ;
g =t -3azg + 3 - dasE +_---_Xg(]+1)(]+2)aj+zg :
J=
Putting these into Equation 2.62, we find
S G+ DG +2a42 — 2ja; + (K = Da]§7 =0, [2.64]
=0

It follows (from the uniqueness of power series expansions'®) that the coefficient of
each power of & must vanish,

G+ DU +2aj0 —2ja; + (K — Da; =0,

and hence that )
T Y ol S O
MGG+

This recursion formula is entirely equivalent to the Schrodinger equation itself.

[2.65]

Given ag it enables us (in principle) to generate a,, a4, g, . - ., and givena, it generates
as,as,ai, .... Letus write

h(E) = heven(§) + hoda(£), [2.66]
where

heven(€) = ap +a2§2 +a4g4 +

is an even function of £ (since it involves only even powers), built on ag, and

hoaa(€) = @i + asE +ast’ + -

is an odd function, built on a;. Thus Equation 2.65 determines 4 (&) in terms of two
arbitrary constants (ay and a;)—which is just what we would expect, for a second-
order differential equation.

However, not all the solutions so obtained are normalizable. For at very large
j, the recursion formula becomes (approximately)

2

a; ~ —a;
J+2 il
J

16See, for example, Arfken (footnote 15), Section 5.7.
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with the (approximate) solution

C
a; N ————
TGy

for some constant C, and this yields (at large £, where the higher powers dominate)

1
/2!

Now, if 4 goes like exp(£?), then 1/ (remember yr 7—that’s what we’re trying to calcu-
late) goes like exp(2/2) (Equation 2.61), which is precisely the asymptotic behavior
we don’t want.!” There is only one way to wiggle out of this: For normalizable solu-
tions the power series must terminate. There must occur some “highest” ; (call it n)
such that the recursion formula spits out a,,, = 0 (this will truncate either the series
Aeven OF the series hoqq; the other one must be zero from the start). For physically
acceptable solutions, then, we must have

MO ~CY et~ C Y L%~ e

K=2n+1,

for some positive integer n, which is to say (referring to Equation 2.57) that the energy
must be of the form

1
E,=n+ E)ha), forn=0,1,2,.... [2.67]

Thus we recover, by a completely different method, the fundamental quantization
condition we found algebraically in Equation 2.50.
For the allowed values of K, the recursion formula reads
_ )
G+DG+2)
If n = 0, there is only one term in the series (we must pick a@; = 0 to kill A.qq, and
J = 0 in Equation 2.68 yields a; = 0):

ho(§) = ay,

a2 [268]

and hence
Yo(§) = age™* 7
(which reproduces Equation 2.48). Forn = 1 we pick ap = 0,'® and Equation 2.68
with j = 1 yields a3 = 0, so
h(§) = a§,

171t’s no surprise that the ill-behaved solutions are still contained in Equation 2.65; this recursion
relation is equivalent to the Schrodinger equation, so it’s got to include both the asymptotic forms we found
in Equation 2.59.

18Note that there is a completely different set of coefficients a ; for each value of n.
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and hence

Yi(€) = ajge 62

(confirming Equation 2.51). For n = 2, j = 0 yields a; = —2ao, and j = 2 gives
ay=0,s0

ho(§) = ao(1 — 2£%)

and

Ya(€) = ao(l — 261572,

and so on. (Compare Problem 2.13, where the same result was obtained by algebraic
means.)

In general, A, (£) will be a polynomial of degree » in &, involving even powers
only, if # is an even integer, and odd powers only, if # is an odd integer. Apart from
the overall factor (ag or a,) they are the so-called Hermite polynomials, H, (§)."”
The first few of them are listed in Table 2.1. By tradition, the arbitrary multiplicative
factor is chosen so that the coefficient of the highest power of £ is 2". With this
convention, the normalized? stationary states for the harmonic oscillator are

mo AR 2
_{ = ~£%/2
Yra(x) = (nh ) T H,(&)e . [2.69]

They are identical (of course) to the ones we obtained algebraically in Equation 2.50.
In Figure 2.5a I have plotted v, (x) for the first few n’s.

The quantum oscillator is strikingly different from its classical counterpart—
not only are the energies quantized, but the position distributions have some bizarre
features. For instance, the probability of finding the particle outside the classically
allowed range (that is, with x greater than the classical amplitude for the energy
in question) is not zero (see Problem 2.15), and in all odd states the probability of

Table 2.1: The first few Hermite polynomials, H,(x).

Hy=1,

Hy =2x,

Hy = 4x% -2,
H; = 8x3 — 12x,

Hy = 16x* —48x% + 12,
Hs = 32x% — 160x> + 120x.

19The Hermite polynomials have been studied extensively in the mathematical literature, and there
are many tools and tricks for working with them. A few of these are explored in Problem 2.18.

201 shall not work out the normalization constant here; if you are interested in knowing how it is
done, see, for example, Leonard Schiff, Quantum Mechanics, 3rd ed. (New York: McGraw-Hill, 1968),
Section 13.
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Wo(X) 4 w4(x)

Wo(X) A W3(x) }

(a)
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Figure 2.5: (a) The first four stationary states of the harmonic oscillator.
(b) Graph of |y100/%, with the classical distribution (dashed curve) superimposed.
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finding the particle at the center of the potential well is zero. Only at relatively large
n do we begin to see some resemblance to the classical case. In Figure 2.5b I have
superimposed the classical position distribution on the quantum one (for n = 100); if
you smoothed out the bumps in the latter, the two would fit pretty well (however, in
the classical case we are talking about the distribution of positions over time for one
oscillator, whereas in the quantum case we are talking about the distribution over an
ensemble of identically-prepared systems).”!

Problem 2.15 Inthe ground state of the harmonic oscillator, what is the probability
(cortect to three significant digits) of finding the particle outside the classically allowed
region? Hint: Look in a math table under “Normal Distribution” or “Error Function”.

Problem 2.16 Use the recursion formula (Equation 2.68) to work out Hs(§) and
He(§).

xProblem 2.17 A particle in the harmonic oscillator potential has the initial wave
function

W (x,0) = Algro(x) + ¥1(x)]

for some constant 4.

(a) Normalize ¥ (x, 0).

(b) Find W(x, ) and [V (x, DI

(c) Find the expectation value of x as a function of time. Notice that it oscillates
sinusoidally. What is the amplitude of the oscillation? What is its (angular)
frequency?

(d) Use your result in (c) to determine (p). Check that Ehrenfest’s theorem holds
for this wave function.

(e) Referring to Figure 2.5, sketch the graph of |¥| at ¢ = 0, 7/w, 27 /w, 37 /w,
and 47 /w. (Your graphs don’t have to be fancy—just a rough picture to show
the oscillation.)

xxProblem 2.18 In this problem we explore some of the more useful theorems (stated
without proof) involving Hermite polynomials.

(@) The Rodrigues formula states that
ng, 4 e
Hy(§) = (=1)"e (E) e [2.70]

Use it to derive H3 and Hj.

21The analogy is perhaps more telling if you interpret the classical distribution as an ensemble of
oscillators all with the same energy, but with random starting times.
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(b) The following recursion relation gives you H, . in terms of the two preceding
Hermite polynomials:

Hyi1(§) =26 Hy(§) — 2nH, 1 (8). [2.71]

Use it, together with your answer to (a), to obtain Hs and Hg.

(C) If you differentiate an nth-order polynomial, you get a polynomial of order
(n — 1). For the Hermite polynomials, in fact,

dH,
dg
Check this, by differentiating Hs and Hs.

(d) H,(£) is the nth z-derivative, at z = 0, of the generating function exp(—z> +
2z£); or, to put it another way, it is the coefficient of z"/n! in the Taylor series
expansion for this function:

= 2nH, (). [2.72]

oo

oEHE Z z_n' H, (). [2.73]
=0 """

Use this to rederive Hy, H;, and H,.

2.4 THE FREE PARTICLE

We turn next to what should have been the simplest case of all: the free particle
[V (x) = 0 everywhere]. As you’ll see in a moment, the free particle is in fact a
surprisingly subtle and tricky example. The time-independent Schrédinger equation
reads

n? d*y
_—— T =F .
2m dx? v 274
or s
d 2mE
d—xlz = —k*y, wherek = F:n [2.75]

So far, it’s the same as inside the infinite square well (Equation 2.17), where the
potential is also zero; this time, however, I prefer to write the general solution in
exponential form (instead of sines and cosines) for reasons that will appear in due
course:

Y(x) = A’ + Be™'*, [2.76]

Unlike the infinite square well, there are no boundary conditions to restrict the possible
values of & (and hence of E); the free particle can carry any (positive) energy. Tacking
on the standard time dependence, exp(—i £¢/h),

W(x,t) = AeFE=530 L BemikGtin, [2.77]
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Now, any function of x and ¢ that depends on these variables in the special
combination (x £ vt) (for some constant v) represents a wave of fixed profile, traveling
in the Fx-direction, at speed v. A fixed point on the waveform (for example, a
maximum or a minimum) corresponds to a fixed value of the argument, and hence to
x and ¢ such that

x vt = constant, or Xx = Fvf + constant,

which is the formula for motion in the Fx-direction with constant speed v. Since
every point on the waveform is moving along with the same velocity, its shape doesn’t
change as it propagates. Thus the first term in Equation 2.77 represents a wave
traveling to the right, and the second term represents a wave (of the same energy)
going to the left. By the way, since they only differ by the sign in front of k£, we might
as well write ,

W(x, 1) = del="5m0), [2.78]

and let & run negative to cover the case of waves traveling to the left:

V2mE
h

k > 0= traveling to the right,
k < 0= traveling to the left.

k=+ , with { [2.79]

The speed of these waves (the coefficient of ¢ over the coefficient of x) is

hk| E
uantum — ~ . — 4/ 5 - 2.80
Vquans 2m 2m [ ]
On the other hand, the classical speed of a free particle with energy E is given by

E= (1/2)mv2 (pure kinetic, since V' = 0), so

[2F
Uclassical = 7 = 27-)quantum- [2.81]

Evidently the quantum mechanical wave function travels at Aalf the speed of the
particle it is supposed to represent! We’ll return to this paradox in a moment—there
is an even more serious problem we need to confront first: This wave function is not
normalizable! For

400 400
f Ui dx = |A|2f 1dx = |4]*(c0). [2.82]
—o0 —o0
In the case of the free particle, then, the separable solutions do not represent physically
realizable states. A free particle cannot exist in a stationary state; or, to put it another
way, there is no such thing as a free particle with a definite energy.

But that doesn’t mean the separable solutions are of no use to us. For they
play a mathematical role that is entirely independent of their physical interpretation:
The general solution to the time-dependent Schrédinger equation is still a linear
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combination of separable solutions (only this time it’s an integral over the continuous
variable k, instead of a sum over the discrete index n):

+o0
W(x, 1) = \/% f ¢(k)e"<kx—%’> dk. [2.83]

[The quantity 1/+/27 is factored out for convenience; what plays the role of the
coefficient ¢, in Equation 2.14 is the combination (1/ V2m)¢ (k) dk.] Now this wave
function can be normalized [for appropriate ¢ (k)]. But it necessarily carries a range
of k’s, and hence a range of energies and speeds. We call it a wave packet.

In the generic quantum problem, we are given W(x, 0), and we are to find
W(x, ). For a free particle the solution has the form of Equation 2.83; the only
remaining question is how to determine ¢ (k) so as to fit the initial wave function:

+o0
W(x,0) = \/% ¢ (k)e™ dk. [2.84]

This is a classic problem in Fourier analysis; the answer is provided by Plancherel’s
theorem (see Problem 2.20):

+o0 +00
fx) = J_lz_; [ N F(k)e'™ dk <= F(k)=\/—1§—7? f_ N fx)e *®dx. | [2.85]

F (k) is called the Fourier transform of f(x); f(x) is the inverse Fourier transform
of F(k) (the only difference is in the sign of the exponent). There is, of course, some
restriction on the allowable functions: The integrals have to exist.”> For our purposes
this is guaranteed by the physical requirement that W (x, 0) itself be normalized. So
the solution to the generic quantum problem, for the free particle, is Equation 2.83,
with

+o0
¢ (k) = J_IE_E f W(x, 0)e " dx. [2.86]

I'd love to work out an example for you—starting with a specific function ¥(x, 0)
for which we could actually calculate ¢ (k), and then doing the integral in Equation
2.83 to obtain W(x, ¢) in closed form. Unfortunately, manageable cases are hard to

22The necessary and sufficient condition on f(x) is that f _OZO | f (x)2dx be finite. (In that case

f _O; |F(k)|2dk is also finite, and in fact the two integrals are equal.) See Arfken (footnote 15), Sec-
tion 15.5.
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come by, and I want to save the best example for you to work out yourself. Be sure,
therefore, to study Problem 2.22 with particular care.

I return now to the paradox noted earlie—the fact that the separable solution
W (x, £) travels at the “wrong” speed for the particle it ostensibly represents. Strictly
speaking, the problem evaporated when we discovered that Wy is not a physically
achievable state. Nevertheless, it is of interest to discover how information about
the particle velocity is carried by the wave function (Equation 2.83). The essential
idea is this: A wave packet is a sinusoidal function whose amplitude is modulated
by ¢ (Figure 2.6); it consists of “ripples” contained within an “envelope.”” What
corresponds to the particle velocity is not the speed of the individual ripples (the so-
called phase velocity), but rather the speed of the envelope (the group velocity)—
which, depending on the nature of the waves, can be greater than, less than, or equal
to the velocity of the ripples that go to make it up. For waves on a string, the group
velocity is the same as the phase velocity. For water waves it is one half the phase
velocity, as you may have noticed when you toss a rock into a pond: If you concentrate
on a particular ripple, you will see it build up from the rear, move forward through
the group, and fade away at the front, while the group as a whole propagates out at
half the speed. What I need to show is that for the wave function of a free particle
in quantum mechanics the group velocity is twice the phase velocity—just right to
represent the classical particle speed.

The problem, then, is to determine the group velocity of a wave packet with the
general form

I .
V) = = pk)e' = dk.

[In our case w = (7ik?/2m), but what I have to say now applies to any kind of wave
packet, regardless of its dispersion relation—the formula for w as a function of £.]
Let us assume that ¢ (k) is narrowly peaked about some particular value ky. [There
is nothing illegal about a broad spread in k, but such wave packets change shape
rapidly (since different components travel at different speeds), so the whole notion
of a “group,” with a well-defined velocity, loses its meaning.] Since the integrand

Figure 2.6: A wave packet. The
“envelope” travels at the group velocity;
the “ripples” travel at the phase velocity.
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is negligible except in the vicinity of ko, we may as well Taylor-expand the function
w(k) about that point and keep only the leading terms:

a)(k) = wo -+- a)f)(k et k()),

where a)(’) is the derivative of w with respect to k, at the point ko.
Changing variables from & to s = k — ko, to center the integral at ko, we have

1 +oo , )
Yix,H) = — b (ko + 5)e!lhot9r—(@otal gg

LY/ 2w J—oo

Att =0,
+00

1 .
Y(x,0) = = b (ko + s)e'borx g,

and at later times

1 , oo : ,
W(x, 1) = et host) / ¢ (ko + 5)e' Co+E=en) g,
A/ 2r —00

Except for the shift from x to (x — wjt), the integral is the same as the one in W(x, 0).
Thus '
W(x, 1) = e @ k) (x — ot, 0). [2.87]

Apart from the phase factor in front (which won’t affect |\¥ |2 in any event), the wave
packet evidently moves along at a speed

do
Vgroup = % [288]
(evaluated at k = k), which is to be contrasted with the ordinary phase velocity
w

Uphase = E [289]

In our case, w = (hk>/2m), so w/k = (hk/2m), whereas dw/dk = (hk/m), which
is twice as great. This confirms that it is the group velocity of the wave packet, not
the phase velocity of the stationary states, that matches the classical particle velocity:

Vclassical = Vgroup = 2Uphase~ [2.90]

Problem 2.19 Show that the expressions [Ae’® 4 Be='**], [C cos kx + D sin kx],
[F cos(kx +a)], and [G sin(kx + B)] are equivalent ways of writing the same function
of x, and determine the constants C, D, F, G, a, and $ in terms of 4 and B. (In
quantum mechanics, with ¥ = 0, the exponentials give rise to traveling waves,
and are most convenient in discussing the free particle, whereas sines and cosines
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correspond to standing waves, which arise naturally in the case of the infinite square
well.) Assume the function is real.

xxProblem 2.20 This problem is designed to guide you through a “proof” of Plan-
cherel’s theorem, by starting with the theory of ordinary Fourier series on a finite
interval, and allowing that interval to expand to infinity.

(a) Dirichlet’s theorem says that “any” function f(x) on the interval [—a, 4+a] can
be expanded as a Fourier series:

o0

fx) = Z[an sin(nmx/a) + b, cos(nmx/a)l.

n=0

Show that this can be written equivalently as

f(X) — i Cneinnx/a.

R=—00

What is ¢,, in terms of a,, and b, ?
(b) Show (by appropriate modification of Fourier’s trick) that

1 +a

Cp = — fx)e A gy
2a

—a
(¢) Eliminate n and ¢, in favor of the new variables k = (n7/a) and F(k) =
/2/m ac,. Show that (a) and (b) now become

1 +a

1 0 , ,
- Fkye™ Ak; F(k) = — R dx,
fx) m,,;,o (k)e ) =/, fxye ™ dx

where Ak is the increment in & from one # to the next.

(d) Take the limit @ — 00 to obtain Plancherel’s theorem. Note: In view of their
quite different origins, it is surprising (and delightful) that the two formulas
[one for F(k) in terms of f(x), the other for f(x) in terms of F(k)] have such
a similar structure in the limit a — o0.

Problem 2.21 Suppose a free particle, which is initially localized in the range
—a < X < a,is released at time ¢ = 0:

A, if—ga<x<a,

Yx, 0) = {0, otherwise,

where A and g are positive real constants.
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(a) Determine 4, by normalizing V.
(b) Determine ¢ (k) (Equation 2.86).

(c) Comment on the behavior of ¢ (k) for very small and very large values of a.
How does this relate to the uncertainty principle?

*Problem 2.22 A free particle has the initial wave function
Y(x,0) = Ae

where A and a are constants (a is real and positive).

(@) Normalize ¥(x, 0).
(b) Find W(x, ¢). Hint: Integrals of the form
+00 ,
/ e—(ax +bx) dx

o0

can be handled by “completing the square.” Let y = /a[x + (b/2a)], and note
that (ax? 4 bx) = y* — (b*/4a). Answer:

2a 1/4 e—axz/[1+(2ihat/m)]
Yx,t)y=[ — —_—_—
T

T+ Qihat[m)

(c) Find |W(x,?)|*>. Express your answer in terms of the quantity w =
\/a/[l + (2hat /m)?]. Sketch |¥|? (as a function of x) at ¢ = 0, and again
for some very large ¢. Qualitatively, what happens to |W | as time goes on?

(d) Find (x), (p), (x?), (p?), 0%, and o,,. Partial answer: (p?) = ah?, but it may
take some algebra to reduce it to this simple form.

(@) Does the uncertainty principle hold? At what time ¢ does the system come
closest to the uncertainty limit?

2.5 THE DELTA-FUNCTION POTENTIAL

We have encountered two very different kinds of solutions to the time-independent
Schrédinger equation: For the infinite square well and the harmonic oscillator they
are normalizable, and labeled by a discrete index n; for the free paticle they are
non-normalizable, and labeled by a continuous variable . The former represent
physically realizable states in their own right, the latter do not; but in both cases
the general solution to the time-dependent Schrédinger equation is a linear combina-
tion of stationary states—for the first type this combination takes the form of a sum
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(over n), whereas for the second it is an integral (over k). What is the physical
significance of this distinction?

In classical mechanics a one-dimensional time-independent potential can give
rise to two rather different kinds of motion. If ¥ (x) rises higher than the particle’s to-
tal energy (£) on either side (Figure 2.7a), then the particle is “stuck” in the potential
well—itrocks back and forth between the turning points, but it cannot escape (unless,

X
Classical turning points
(a)
V(x) Ar
TET T
—
X X
Classical turning point
(b)
Vi(x)
Classical turning points
x

(c)

Figure 2.7: (a) A bound state. (b) Scattering states. (c) A classical bound state,
but a quantum scattering state.
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of course, you provide it with a source of extra energy, such as a motor, but we’re
not talking about that). We call this a bound state. If, on the other hand, F exceeds
¥ (x) on one side (or both), then the particle comes in from “infinity”, slows down or
speeds up under the influence of the potential, and returns to infinity (Figure 2.7b).
(It can’t get trapped in the potential unless there is some mechanism, such as friction,
to dissipate energy, but again, we’re not talking about that.) We call this a scattering
state. Some potentials admit only bound states (for instance, the harmonic oscillator);
some allow only scattering states (a potential hill with no dips in it, for example);
some permit both kinds, depending on the energy of the particle.

As you have probably guessed, the two kinds of solutions to the Schrodinger
equation correspond precisely to bound and scattering states. The distinction is even
cleaner in the quantum domain, because the phenomenon of tunneling (which we’ll
come to shortly) allows the particle to “leak” through any finite potential barrier, so
the only thing that matters is the potential at infinity (Figure 2.7¢):

[2.91]

E < V(—00)and V' (+00) = bound state,
E > V(—o0)orV(+00) =  scattering state.

In “real life” most potentials go to zero at infinity, in which case the criterion simplifies
even further:
[ E <0 = bound state, [2.92]

E >0 = scattering state.

Because the infinite square well and harmonic oscillator potentials go to infinity as
x — =00, they admit bound states only; because the free particle potential is zero
everywhere, it only allows scattering states.”> In this section (and the following one)
we shall explore potentials that give rise to both kinds of states.

The Dirac delta function, 5(x), is defined informally as follows:

o ifx#0 U B _
6(x)_[ 0o, ifx =0 }, with /-oo §(x)dx = 1. [2.93]

It is an infinitely high, infinitesimally narrow spike at the origin, whose area is 1
(Figure 2.8). Technically, it’s not a function at all, since it is not finite at x = 0
(mathematicians call it a generalized fanction, or distribution).”* Nevertheless, it is
an extremely useful construct in theoretical physics. (For example, in electrodynam-
ics the charge density of a point charge is a delta function.) Notice that §(x —a) would

BIf you are very observant, and awfully fastidious, you may have noticed that the general theorem
requiring E > Viin (Problem 2.2) does not really apply to scattering states, since they are not normalizable
anyway. If this bothers you, try solving the Schrodinger equation with £ < 0, for the free particle, and
note that even linear combinations of these solutions cannot be normalized. The positive energy solutions
by themselves constitute a complete set.

24The delta function can be thought of as the Jimir of a sequence of functions, such as rectangles
(or triangles) of ever-increasing height and ever-decreasing width.
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8(x)

Figure 2.8: The Dirac delta function
(Equation 2.93).

xy

be a spike of area 1 at the point . If you multiply 8(x — a) by an ordinary function
f(x), it’s the same as multiplying by f(a):

fx)8(x —a)= f@)d(x —a), [2.94]

because the product is zero anyway except at the point a. In particular,

+o0 400

fX)d(x —a)dx = f(a)f S(x —a)dx = f(a). [2.95]
—0 -0
That’s the most important property of the delta function: Under the integral sign it
serves to “pick out” the value of f(x) at the point a. (Of course, the integral need
not go from —oo to 4+00; all that matters is that the domain of integration include the
point a, s0 a — € to a + € would do, for any € > 0.)

Let’s consider a potential of the form

Vix) =—adXx), [2.96]

where « is some constant. This is an artificial potential (so was the infinite square
well), but it’s beautifully simple and in some respects closer to reality than any of the
potentials we have considered so far. The Schrédinger equation reads

nt d*y
2m dx?
This potential yields both bound states (£ < () and scattering states (£ > 0); we’ll

look first at the bound states.
In the region x < 0, V' (x) =0, so

—ad(x)y = Ey. [2.97]

>y 2mE
FR i L d 298]
where
V=2mE
k= YE [2.99]

h
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(E is negative, by assumption, so x is real and positive.) The general solution to
Equation 2.98 is
Y(x) = Ade™™* + Be**, [2.100]

but the first term blows up as x — —00, so we must choose 4 = 0:
v(x) = B, (x <0). [2.101]

In the region x > 0, V' (x) is again zero, and the general solution is of the form
F exp(—kx)+ G exp(xx); this time it’s the second term that blows up (as x — +00),
S0

Y(x) = Fe™*, (x> 0). [2.102]

It remains only to stitch these two functions together, using the appropriate
boundary conditions at x = 0. I quoted earlier the standard boundary conditions
for .

2. dy/dx is continuous except at points [2.103]

I 1. ¥ is always continuous, and
where the potential is infinite.

In this case the first boundary condition tells us that F = B, so

B, (x <0),
v(x) = { Be*, (x> 0). [2.104]
[¥ (x) is plotted in Figure 2.9.] The second boundary condition tells us nothing; this
is (like the infinite square well) the exceptional case where V' is infinite at the join, and
it’s clear from the graph that this function has a kink at x = 0. Moreover, up to this
point the delta function has not come into the story at all. Evidently the delta function
must determine the discontinuity in the derivative of ¥, at x = 0. I’ll show you now
how this works, and as a byproduct we’ll see why d/dx is ordinarily continuous.
The idea is to integrate the Schrodinger equation, from —e to +¢, and then take
the limit as € — 0:

! X

Figure 2.9: Bound state wave function for the delta function potential (Equation
2.104).
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hZ +e dzw +e +€
_ dx +/ Vixyw(x)dx =F w(x)dx. [2.105]
2m ). dx?

€ —€

The first integral is nothing but dv/dx, evaluated at the two end points; the last
integral is zero, in the limit € — 0, since it’s the area of a sliver with vanishing width
and finite height. Thus

dw _2 +e
A(E) = 27 lin lim /_6 Vi) x)dx. [2.106]

Ordinarily, the limit on the right is again zero, and hence d+/dx is continuous.
But when V (x) is infinite at the boundary, that argument fails. In particular, if
V(x) = —ad(x), Equation 2.95 yields

dyr _2ma
A (d_x> ——v(0). [2.107]

For the case at hand (Equation 2.104),

dyr/dx = —Bke ™", for (x > 0), so dW/dx|+ = —Bx,
dy/dx = +Bke™™*, for (x <0), sody/dx|_ = +Bk,

and hence A(d{/dx) = —2Bx. And ¢ (0) = B. So Equation 2.107 says

mo
and the allowed energy (Equation 2.99) is
Rk ma?
FE=———=——+. 2.109
2m 2n? [ ]
Finally, we normalize y:
+o0 —2;( |B|2
IW(X)I dx =2|BJ? Ydx =1,
_ K
so (choosing, for convenience, the positive real root):
B=ﬁ=V;’“, [2.110]

Evidently the delta-function well, regardless of its “strength” &, has exactly one bound
state:

2
Y = Y2 ;"“e""“‘*'/h‘; E=-"2 [2.111]
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What about scattering states, with E > 0? For x < 0 the Schrodinger equation
reads

2
where
k= «/Qrzn—E [2.112]
is real and positive. The general solution is
Y(x) = 4™ + Be™ [2.113]

and this time we cannot rule out either term, since neither of them blows up. Similarly,
forx > 0,

Y (x) = Fe'® 4 Ge™'*~, [2.114]
The continuity of y(x) at x = 0 requires that
F+G=A4+B. - [2.115]

The derivatives are

dy/dx = ik (Fe'*™ — Ge™™), for (x > 0), sody/dx| = ik(F-G),
dy/dx =ik (4™ — Be™™*), for (x < 0), sody/dx|_=ik(4— B),

and hence A(dy/dx) = ik(F — G — A+ B). Meanwhile, ¢/ (0) = (4 + B), so the
second boundary condition (Equation 2.107) says

. 2mao
or, more compactly,
F—G=A(1+2if) — B(1 —2ip), whereﬂ—:—%. [2.117]

Having imposed the boundary conditions, we are left with two equations (Equa-
tions 2.115 and 2.117) in four unknowns (A4, B, F, and G)—five, if you count k. Nor-
malization won’t help—this isn’t a normalizable state. Perhaps we’d better pause,
then, and examine the physical significance of these various constants. Recall that
exp(ikx) gives rise [when coupled with the time-dependent factor exp{(—i £t /%)] to
a wave function propagating to the right, and exp(—ikx) leads to a wave propagating
to the left. Tt follows that A (in Equation 2.113) is the amplitude of a wave coming in
from the left, B is the amplitude of a wave returning to the left, F (in Equation 2.114)
is the amplitude of a wave traveling off to the right, and G is the amplitude of a wave
coming in from the right (Figure 2.10). In a typical scattering experiment particles
are fired in from one direction—Ilet’s say, from the left. In that case the amplitude of
the wave coming in from the right will be zero:
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A
Aeikx Feikx
e e -
Be—ikx Ge—ikx
X
Figure 2.10: Scattering from a
delta-function well.
G =0 (for scattering from the left). [2.118]

A is then the amplitude of the incident wave, B is the amplitude of the reflected
wave, and F is the amplitude of the transmitted wave. Solving Equations 2.115 and
2.117 for B and F, we find
] 1
p=—P 4 Fp__L1 4
1-ip 1—-iB
(If you want to study scattering from the right, set A = 0; then G is the incident
amplitude, F is the reflected amplitude, and B is the transmitted amplitude.)
Now, the probability of finding the particle at a specified location is given by
|W|2, so the relative® probability that an incident particle will be reflected back is

_ B B?
AP T+ Y
R is called the reflection coefficient. (If you have a beam of particles, it tells you the

Sraction of the incoming number that will bounce back.) Meanwhile, the probability
of transmission is given by the transmission coefficient

[2.119]

[2.120]

= Lill - [2.121]
SR T L+ Y '
Of course, the sum of these probabilities should be 1—and it is:
R+T=1 [2.122]

Notice that R and T are functions of 8, and hence (Equations 2.112 and 2.117) of E:

1 1

_ N . — 2.123
1+ (W2 E/ma?) 1 + (ma?/2h%E) [ ]

Z5This is not a normalizable wave function, so the absolute probability of finding the particle at a
particular location is not well defined; nevertheless, the ratio of probabilities for two different locations is
meaningful. More on this in the next paragraph.
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The higher the energy, the greater the probability of transmission (which seems rea-
sonable).

This is all very tidy, but there is a sticky matter of principle that we cannot al-
together ignore: These scattering wave functions are not normalizable, so they don’t
actually represent possible particle states. But we know what the resolution to this
problem is: We must form normalizable linear combinations of the stationary states,
just as we did for the free particle—true physical particles are represented by the
resulting wave packets. Though straightforward in principle, this is a messy busi-
ness in practice, and at this point it is best to turn the problem over to a computer.”®
Meanwhile, since it is impossible to create a normalizable free particle wave function
without involving a range of energies, R and T should be interpreted as the approxi-
mate reflection and transmission probabilities for particles in a narrow energy range
about E. Incidentally, it might strike you as peculiar that we were able to analyse a
quintessentially time-dependent problem (particle comes in, scatters off a potential,
and flies off to infinity) using stationary states. After all, ¥ (in Equations 2.113 and
2.114) is simply a complex, time-independent, sinusoidal function, extending (with
constant amplitude) to infinity in both directions. And yet, by imposing appropriate
boundary conditions on this function, we were able to determine the probability thata
particle (represented by a localized wave packet) would bounce off, or pass through,
the potential. The mathematical miracle behind this is, I suppose, the fact that by
taking linear combinations of states spread over all space, and with essentially triv-
ial time dependence, we can construct wave functions that are concentrated about a
(moving) point, with quite elaborate behavior in time (see Problem 2.40).

As long as we’ve got the relevant equations on the table, let’s look briefly at
the case of a delta-function barrier (Figure 2.11). Formally, all we have to do is
change the sign of . This kills the bound state, of course (see Problem 2.2). On
the other hand, the reflection and transmission coefficients, which depend only on
o, are unchanged. Strange to say, the particle is just as likely to pass through the
barrier as to cross over the well! Classically, of course, the particle could not make
itover aninfinitely high barrier, regardless of its energy. In fact, the classical scattering

V(x) = ad(x)

X Figure 2.11: The delta-function barrier.

26There exist some powerful programs for analysing the scattering of a wave packet from a one-
dimensional potential; see, for instance, A. Goldberg, H. M. Schey, and J. L. Schwartz, Am. J. Phys. 35,
177 (1967).
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problem is pretty dull: If £ > ¥V, then 7 = 1 and R = 0—the particle certainly
makes it over; conversely, if £ < Vi, then T = 0 and R = 1—it rides “up the
hill” until it runs out of energy, and then returns the same way it came. The quantum
scattering problem is much richer; the particle has some nonzero probability of passing
through the potential even if £ < ¥, We call this phenomenon tunneling; it is
the mechanism that makes possible much of modern electronics—not to mention
spectacular recent advances in microscopy. Conversely, even if E > Vpay, there is a
possibility that the particle will bounce back—though I wouldn’t advise driving off a
cliff in the expectation that quantum mechanics will save you (see Problem 2.41).

Problem 2.23 Evaluate the following integrals:

@ [7 (=322 +2x — DS(x +2) dx
(b) [y7lcos(3x) +2]6(x — ) dx
(© [ exp(ix|+3)8(x —2)dx.

Problem 2.24 Two expressions [ D;(x) and D;(x)] involving delta functions are
said to be equal if

+0o0 +00

S Di(x)dx = f(x)Da(x) dx,

—o0 —o0

for any (ordinary) function f(x).

(@) Show that

8(cx) = %S(x), [2.124]

where ¢ is a real constant.
(b) Let 6(x) be the step function:

|1, ifx>0,
O(x) = {O, fx <0 [2.125]
{In the rare case where it actually matters, we define ¢ (0) to be 1/2.] Show that
do/dx = 8(x).
«Problem 2.25 What is the Fourier transform of § (x)? Using Plancherel’s theorem,
show that
1 [t .
s(x) = — f e dk. [2.126]
21 J_o

Comment. This formula gives any respectable mathematician apoplexy. Although
the integral is clearly infinite when x = 0, it doesn’t converge (to zero or anything
else) when x # 0, since the integrand oscillates forever. There are ways to patch it up
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(for instance, you can integrate from — L to + L, and interpret the integral in Equation
2.126 to mean the average value of the finite integral, as L — 00). The source of the
problem is that the delta function doesn’t meet the requirement (square integrability)
for Plancherel’s theorem (see footnote 22). In spite of this, Equation 2.126 can be
extremely useful, if handled with care.

«Problem 2.26 Consider the double delta-function potential
Vx)=—ald(x +a)+é(x —a)l,

where « and a are positive constants.

(a) Sketch this potential.

(b) How many bound states does it possess? Find the allowed energies, for o =
h%/ma and for o = h%/4ma, and sketch the wave functions.

*xProblem 2.27 Find the transmission coefficient for the potential in Problem 2.26.

2.6 THE FINITE SQUARE WELL

As a last example, consider the finite square well

_ ) =Vy, for—-a<x<a,
v = {O, for |x| > a, (2.127]

where 7 is a (positive) constant (Figure 2.12). Like the delta-function well, the finite
square well admits both bound states (with £ < 0) and scattering states (with £ > 0).

We’ll look first at the bound states.
In the region x < —a the potential is zero, so the Schrodinger equation reads

n d*y d*y
——— =k ’ 5, = 2 ’
2m dx? v, or dx2 " 4

AVX)

-a a

xy

Figure 2.12: The finite square well
(Equation 2.127).
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where
—=2mE
h

is real and positive. The general solution is ¥ (x) = A4 exp(—«x) + Bexp(xx), but
the first term blows up (as x — —o0), so the physically admissable solution (as
before—see Equation 2.101) is

K [2.128]

Y(x) = Be”*, for (x < —a). [2.129]
In the region —a < x < a, V (x) = —Vj, and the Schrodinger equation reads
n? d*y d*y
—_————— — V = E —_— = —12 s
2m dx? 0¥ v, or dx? 4
where
V2
= ’”—(;:’L~@ [2.130]

Although E is negative, for a bound state, it must be greater than —¥j, by the old
theorem E > Vyin (Problem 2.2); so [ is also real and positive. The general solution
is

¥(x) = Csin(lx) + Dcos(lx), for (—a < x < a), [2.131]

where C and D are arbitrary constants. Finally, in the region x > a the potential is
again zero; the general solution is ¥ (x) = F exp(—«x) + G exp(xx), but the second
term blows up (as x — 00), so we are left with

P(x) = Fe ™, for (x > a). [2.132]

The next step is to impose boundary conditions: ¥ and dy/dx continuous at
—a and +a. But we can save a little time by noting that this potential is an even
function, so we can assume with no loss of generality that the solutions are either
even or odd (Problem 2.1c). The advantage of this is that we need only impose the
boundary conditions on one side (say, at +a); the other side is then automatic, since
P (—x) = =¥ (x). T'll work out the even solutions; you get to do the odd ones in
Problem 2.28. The cosine is even (and the sine is odd), so I’'m looking for solutions

of the form
Fe™**, for (x > a),
Y (x) = 1 Dcos(lx), for (0 <x < a), [2.133]
Y(—x), for (x < 0).

The continuity of ¥ (x), at x = a, says
Fe ™% = Dcos(la), [2.134]
and the continuity of dyr/dx says

—kFe™% = —IDsin(la). [2.135]
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Dividing Equation 2.135 by Equation 2.134, we find that
k =l tan(la). [2.136]

Equation 2.136 is a formula for the allowed energies, since « and / are both
functions of E. To solve for E, it pays to adopt some nicer notation. Let

z=la, and z = ;Z—l\/ZmVO. (2.137]

According to Equations 2.128 and 2.130, (% + %) = 2mVy /A%, s0 ka = /22 — 22,

and Equation 2.136 reads
tanz = v/(z0/2)? — 1. [2.138]

This is a transcendental equation for z (and hence for E) as a function of zo (which is
a measure of the “size” of the well). It can be solved numerically, using a calculator
or a computer, or graphically, by plotting tan z and +/(zo/2)*> — 1 on the same grid,
and looking for points of intersection (see Figure 2.13). Two limiting cases are of
special interest:

1. Wide, deep well. If z, is very large, the intersections occur just slightly
below z, = nm /2, with n odd; it follows that

nmln?

Ent Vo= 2mQ2a)?’

[2.139]
Here (E + Vp) is the energy above the bottom of the well, and on the right we have
precisely the infinite square well energies, for a well of width 2a (see Equation 2.23)—
or rather, half of them, since n is odd. (The other ones, of course, come from the odd
wave functions, as you’ll find in Problem 2.28.) So the finite square well goes over to
the infinite square well, as Vo — oo; however, for any finite V; there are only finitely
many bound states.

2. Shallow, narrow well. As 7, decreases, there are fewer and fewer bound
states, until finally (for zg < 7/2, where the lowest odd state disappears) only one
remains. It is interesting to note, however, that there is always one bound state, no
matter how “weak” the well becomes.

You're welcome to normalize ¢ (Equation 2.133), if you’re interested (see
Problem 2.29), but I’m going to move on now to the scattering states (£ > 0). To the
left, where V (x) = 0, we have

Y(x) = Ae’™ + Be % for (x < —a), [2.140]

where (as usual)

)
3
ty

k [2.141]

Inside the well, where V (x) = —V,,

Y(x) = Csin(lx) + Dcos(/x), for (—a < x < a), [2.142]
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n/2 n 3n/2 2n 5n/2 z
Figure 2.13: Graphical solution to Equation 2.138, for z5 = 8 (even states).

where, as before,

V2m(E F Vo)
I = 2’"—(;”@ [2.143]
To the right, assuming there is no incoming wave in this region, we have
¥ (x) = Fe'™. [2.144]

A is the incident amplitude, B is the reflected amplitude, and F is the transmitted
amplitude.?”
There are four boundary conditions: Continuity of ¥ (x) at —a says

Ae 'k + Be'*® = _Csin(la) + D cos(la), [2.145]
continuity of dy//dx at —a gives
ik[Ae™*@ — Be™*] = [[C cos(la) + Dsin(la)], [2.146]
continuity of ¥ (x) at +a yields
Csin(la) + D cos(la) = Fe'*®, [2.147]
and continuity of dyr/dx at 4+a requires
I[C cos(la) — Dsin(la)] = ikFe'*. [2.148]

We can use two of these to eliminate C and D, and solve the remaining two for B
and F (see Problem 2.31):

sinQRla) , .,
=i———=("—k)F 2.149
e ( )F, [ ]

27We could use even and odd functions, as we did for bound states, but these would represent
standing waves, and the scattering problem is more naturally formulated in terms of traveling waves.
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E

Figure 2.14: Transmission coefficient as a function of energy (Equation 2.151).

e—2ikaA
F= n02la) . [2.150]
cos(2la) — i 557 (k2 +12)
The transmission coefficient (I = |F|?/|A|%), expressed in terms of the original

variables, is given by
T =1+ A (2“,/2m(E ) [2.151]
T T 4E(E + V) h V) '

Notice that 7 = 1 (the well becomes “transparent”) whenever the argument of the
sine is zero, which is to say, for

2a
7\/2m(E,, + Vo) = nm, [2.152]

where » is any integer. The energies for perfect transmission, then, are given by

n2mh?

En + VO = 2m (2a)23

[2.153]

which happen to be precisely the allowed energies for the infinite square well. T is
plotted in Figure 2.14 as a function of energy.

xProblem 2.28 Analyze the odd bound-state wave functions for the finite square

well. Derive the transcendental equation for the allowed energies, and solve it graph-
ically. Examine the two limiting cases. Is there always at least one odd bound state?

Problem 2.29 Normalize ¥ (x) in Equation 2.133 to determine the constants D
and F.

Problem 2.30 The Dirac delta function can be thought of as the limiting case of
a rectangle of area 1, as the height goes to infinity and the width goes to zero. Show
that the delta-function well (Equation 2.96) is a “weak” potential (even though it is
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infinitely deep), in the sense that z, — (0. Determine the bound-state energy for
the delta-function potential, by treating it as the limit of a finite square well. Check
that your answer is consistent with Equation 2.111. Also show that Equation 2.151
reduces to Equation 2.123 in the appropriate limit.

xProblem 2.31 Derive Equations 2.149 and 2.150. Hint: Use Equations 2.147 and
2.148 to solve for C and D in terms of F:

. k ik k. ”
C = |sin(la) + i 7 cos(la) | € F; D = |cos(la) — 17 sin(la) | € F.
Plug these back into Equations 2.145 and 2.146. Obtain the transmission coeffi-

cient, and confirm Eqation 2.151. Work out the reflection coefficient, and check that
T+R=1

x+Problem 2.32 Determine the transmission coefficient for a rectangular barrier
(same as Equation 2.127, only with +¥ in the region —a < x < a). Treat separately
the three cases E < Vg, E = Vo, and E > V, (note that the wave function inside the
barrier is different in the three cases). Partial answer: For E < V(,”

143 2
T'=14 —2L sinh? (—",/2m(V0 — E)) )

4E(Vo — E) h

s« Problem 2.33 Consider the step function potential:

0, ifx<0,
V)= { Vo ifx > 0.

(a) Calculate the reflection coefficient, for the case E < V, and comment on the
answer.

(b) Calculate the reflection coefficient for the case £ > V.

(c) For a potential such as this that does not go back to zero to the right of the
barrier, the transmission coefficient is not simply | F|?/| 4|2, with 4 the incident
amplitude and F the transmitted amplitude, because the transmitted wave travels
at a different speed. Show that

_ J[E-Vo |F?

T = —, 2.154
E AP l ]

for E > V. Hint: Youcan figure it out using Equation 2.8 1, or—more elegantly,
but less informatively—from the probability current (Problem 1.9a). Whatis T
for £ < Vy?

28This is a good example of tunneling—classically the particle would bounce back.
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(d) For E > V¥, calculate the transmission coefficient for the step potential, and
checkthat T + R = 1.

2.7 THE SCATTERING MATRIX

The theory of scattering generalizes in a pretty obvious way to arbitrary localized
potentials (Figure 2.15). To the left (Region I), V' (x) = 0, so

. . 2mE
U(x) = Ade™ 4 Be | where k = Y2 [2.155]

To the right (Region III), ¥ (x) is again zero, so
Y(x) = Fe'™ + Ge . [2.156]

In between (Region II), of course, I can’t tell you what i is until you specify the
potential, but because the Schrédinger equation is a linear, second-order differential
equation, the general solution has got to be of the form

V(x) = Cf(x) + Dg(x), [2.157]

where f(x) and g(x) are any two linearly independent particular solutions.? There
will be four boundary conditions (two joining Regions I and II, and two joining
Regions II and III). Two of these can be used to eliminate C and D, and the other two
can be “solved” for B and F in terms of 4 and G:

B =814+ 8SG, F=584+ 8,G. [2.158]

The four coefficients 5;;, which depend on & (and hence on E), constitute a
2 x 2 matrix

V(x) J

Ae’ kx Fe ikx

—_ —_
- -
—ikx —ikx
Be Ge
P -
\V/4 x

Region 1 Region 11 Region 11T

Figure 2.15: Scattering from an arbitrary localized potential [V (x) = 0 except in
Region IT].

29See any book on differential equations—for example, J. L. Van Iwaarden, Ordinary Differential
Equations with Numerical Technigues (San Diego, CA: Harcourt Brace Jovanovich, 1985). Chapter 3.
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S11 Siz
S= , 2.159
( S S» ) [ ]

called the scattering matrix (or S-matrix, for short). The S-matrix tells you the
outgoing amplitudes (B and F) in terms of the incoming amplitudes (4 and G):

(2)-5(4)

In the typical case of scattering from the left, G = 0, so the reflection and transmission
coefficients are

|B 2 |FI? 2
Ri= ol =1sult =Tl =Isul 2.161
N TE] P S =147 om0 [S21 [ ]
For scattering from the right, 4 = 0, and
lFlzi 2 |BI> 2
B T,=—‘ = IS 2.162
GRRTCTEL P 15221 GPE |10 [S12l [ 1

The S-matrix tells you everything there is to know about scattering from a local-
ized potential. Surprisingly, it also contains (albeit in a concealed form) information
about the bound states (if there are any). For if E < 0, then ¥ (x) has the form

Be* (Region I),
Yx) = [ Cf(x)+ Dg(x) (RegionIl), [2.163]
Fe™* (Region I1II),
with
K= —_;m@ [2.164]

The boundary conditions are the same as before, so the S-matrix has the same
structure—only now E is negative, so k — ix. But this time 4 and G are nec-
essarily zero, whereas B and F are not, and hence (Equation 2.158) at least two
elements in the S-matrix must be infinite. To put it the other way around, if you’ve
got the S-matrix (for E > 0), and you want to locate the bound states, put ink — ix,
and look for energies at which the S-matrix blows up.

For example, in the case of the finite square well,

e-—2ika

S = -
?7 cos(2la) — i B (2 4 12)

(Equation 2.150). Substituting k — ix, we see that S; blows up whenever
2 _ 2

2kl

cot(2la) =
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Using the trigonometric identity
0
tan (5) =%V 1+ cot? 6 — cot#,

we obtain
tan(la) = L (plus sign), and cot(la) = —il(— (minus sign).
K

These are precisely the conditions for bound states of the finite square well (Equation
2.136 and Problem 2.28).

xProblem 2.34 Construct the S-matrix for scattering from a delta-function well
(Equation 2.96). Use it to obtain the bound state energy, and check your answer
against Equation 2.111.

Problem 2.35 Find the S-matrix for the finite square well (Equation 2.127). Hint:
This requires no new work if you carefully exploit the symmetry of the problem.

FURTHER PROBLEMS FOR CHAPTER 2

Problem 2.36 A particle in the infinite square well (Equation 2.15) has the initial
wave function

W(x,0) = Asin’(rx/a).

Find (x) as a function of time.

*Problem 2.37 Find (x), (p), (x%), (p%), (T), and (¥ (x)) for the nth stationary
state of the harmonic oscillator. Check that the uncertainty principle is satisfied.
Hint: Express x and (2/i)(d /dx) in terms of (a; £ a_), and use Equations 2.52 and
2.53; you may assume that the states are orthogonal.

Problem 2.38 Find the allowed energies of the half-harmonic oscillator

(1/2yma*x?, for (x > 0),

V&)= { 0, for (x < 0).

(This represents, for example, a spring that can be stretched, but not compressed.)
Hint: This requires some careful thought, but very little actual computation.

x+Problem 2.39 Solve the time-independent Schrodinger equation for an infinite
square well with a delta-function barrier at the center:

ad(x), for(—a < x < +a),
00, for (x| > a).

Vix)= {
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Treat the even and odd wave functions separately. Don’t bother to normalize them.
Find the allowed energies (graphically, if necessary). How do they compare with the
corresponding energies in the absence of the delta function? Comment on the limiting
cases @ — 0 and o — oco.

s+Problem 2.40 In Problem 2.22 you analyzed the stationary Gaussian free particle
wave packet. Now solve the same problem for the traveling Gaussian wave packet,
starting with the initial wave function

Y(x,0) = Ae“”zeﬂx,

where / is a real constant.

Problem 2.41 A particle of mass m and kinetic energy E > 0 approaches an
abrupt potential drop Vp (Figure 2.16).

(a) What is the probability that it will “reflect” back, if £ = V/3?

(b) I drew the figure so as to make you think of a car approaching a cliff, but
obviously the probability of “bouncing back” from the edge of a cliff is far
smaller than what you got in (a)—unless you’re Bugs Bunny. Explain why this
potential does not correctly represent a cliff.

Problem 2.42 If two (or more) distinct®® solutions to the (time-independent) Schrd-
dinger equation have the same energy E, these states are said to be degenerate. For
example, the free particle states are doubly degenerate—one solution representing
motion to the right, and the other motion to the left. But we have encountered no

AV(x)

=y

Figure 2.16: Scattering from a “cliff” (Problem 2.41).

301f the two solutions differ only by a multiplicative constant (so that, once normalized, they differ
only by a phase factor ¢'9), they represent the same physical state, and in this case they are not distinct
solutions. Technically, by “distinct” I mean “linearly independent.”
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normalizable degenerate solutions, and this is not an accident. Prove the following
theorem: In one dimension®' there are no degenerate bound states. Hinz: Suppose
there are two solutions, 1; and yr,, with the same energy E. Multiply the Schrodinger
equation for yr; by ¢, and the Schrodinger equation for v, by -, and subtract, to
show that (ydyr /dx — y1dip /dx) is a constant. Use the fact that for normalizable
solutions ¢ — 0 at 00 to demonstrate that this constant is in fact zero. Conclude
that v, is a multiple of v, and hence that the two solutions are not distinct.

Problem 2.43 Imagine abead of mass m that slides frictionlessly around a circular
wire ring of circumference a. [This is just like a free particle, except that ¢ (x) =
¥ (x + a).] Find the stationary states (with appropriate normalization) and the cor-
responding allowed energies. Note that there are /o independent solutions for each
energy E,—corresponding to clockwise and counterclockwise circulation; call them
¥, (x) and ¥, (x). How do you account for this degeneracy, in view of the theorem
in Problem 2.42—that is, why does the theorem fail in this case?

«xProblem 2.44 (Attention: This is a strictly qualitative problem—no calculations

allowed!) Consider the “double square well” potential (Figure 2.17). Suppose the
depth ¥, and the width a are fixed, and great enough so that several bound states
occur.

(@) Sketch the ground-state wave function Y1 and the first excited state 1>, (i) for
the case b = 0, (ii) for b ~ a, and (iii) for b > a.

(b) Qualitatively, how do the corresponding energies (E; and E,) vary, as b goes
from O to co? Sketch E,(b) and E;(b) on the same graph.

(€) The double well is a very primitive one-dimensional model for the potential
experienced by an electron in a diatomic molecule (the two wells represent the
attractive force of the nuclei). If the nuclei are free to move, they will adopt the
configuration of minimum energy. In view of your conclusions in (b), does the
electron tend to draw the nuclei together, or push them apart? (Of course, there
is also the internuclear repulsion to consider, but that’s a separate problem.)

x+xProblem 2.45

(a) Show that

1/4 2 ) iht )
W(x,t) = dad exp _TMe (2 + a—(l +eHey 4 P paxe i
nh 2h 2 m

3In higher dimensions such degeneracy is very common, as we shall see in Chapter 4. Assume that
the potential does not consist of isolated pieces separated by regions where ¥ = oco—two isolated infinite
square wells, for instance, would give rise to degenerate bound states, for which the particle is either in the
one or in the other.
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AV(X)

xY

___Vo

Figure 2.17: The double square well (Problem 2.44).

satisfies the time-dependent Schrodinger equation for the harmonic oscillator
potential (Equation 2.38). Here a is any real constant (with the dimensions of
length).*

(b) Find |W(x, )|?, and describe the motion of the wave packet.

(c) Compute (x) and {p), and check that Ehrenfest’s theorem (Equation 1.38) is
satisfied.

Problem 2.46 Consider the potential

0o, ifx <0,
ad(x —a), ifx >0,

Vix)= {

where a and « are positive real constants with the appropriate units (see Figure 2.18).
A particle starts out in the “well” (0 < x < a), but because of tunneling its wave
function gradually “leaks” out through the delta-function barrier.

(a) Solve the (time-independent) Schrodinger equation for this potential; impose
appropriate boundary conditions, and determine the “energy”, E. (An implicit
equation will do.)

(b) I put the word “energy” in quotes because you’ll notice that it is a complex
number! How do you account for this, in view of the theorem you proved in
Problem 2.1a?

(c) Writing E = Eg + i (with Eg and T real), calculate (in terms of T') the
characteristic time it takes the particle to leak out of the well (that is, the time it
takes before the probability is 1/e that it’s still in the region 0 < x < a).

32This rare example of an exact closed-form solution to the time-dependent Schrodinger equation
was discovered by Schrodinger himself, in 1926.



72 Chap. 2 The Time-Independent Schrddinger Equation

V(x)

1
T

a X

Figure 2.18: The potential for Problem 2.46.

xxProblem 2.47 Consider the moving delta-function well:
Vix,t) = —ad(x — vt),

where v is the (constant) velocity of the well.
(a) Show that the time-dependent Schrodinger equation admits the exact solution
W(x,t) = N —malx—vtl /8 =il(E+(1/20mv?)1—mux]/h

where £ = —ma? /2 is the bound-state energy of the stationary delta function.
Hint: Plug it in and check it! Use Problem 2.24b.

(b) Findthe expectation value of the Hamiltonian in this state, and comment on the
result.

xxxProblem 2.48 Consider the potential

2.2
a 2
V(x) = ———sech”(ax),
m

where a is a positive constant and “sech” stands for the hyperbolic secant.

(&) Show that this potential has the bound state
Yo(x) = A sech(ax),

and find its energy. Normalize ¥, and sketch its graph.
(b) Show that the function
ik — atanh(ax)\ ;,
— A KX
Vilx) ( ik+a ) ¢
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(where k = +/2mE /A, as usual) solves the Schrodinger equation for any (posi-
tive) energy E. Since tanhz — —1asz — —oo,

Vi (x) ~ Ae'™,  for large negative x.

This represents, then, a wave coming in from the left with no accompanying
reflected wave [i.e., no term exp(—ikx)]. What is the asymptotic form of ¥ (x)
at large positive x? What are R and T for this potential? Note: sech? is afamous
example of a “reflectionless” potential—every incident particle, regardless of
its energy, passes right through. See R. E. Crandall and B. R. Litt, Annals of
Physics 146, 458 (1983).

(c) Construct the S-matrix for this potential, and use it to locate the bound states.
How many of them are there? What are their energies? Check that your answer
is consistent with part (a).

sx+x*Problem 2.49 The S-matrix tells you the outgoing amplitudes (B and F) in terms
of the incoming amplitudes (4 and G):

BY (S So A

F)] \Sa S» G/’
For some purposes it is more convenient to work with the transfer matrix, M, which
gives you the amplitudes to the right of the potential (¥ and G) in terms of those to

the left (A and B):
FN _(Mn Mp A
G) \ My Mp)\B)

(a) Find the four elements of the M-matrix in terms of the elements of the S-matrix,
and vice versa. Express Ry, T;, R,, and T, (Equations 2.161 and 2.162) in terms
of elements of the M-matrix.

(b) Suppose you have a potential consisting of two isolated pieces (Figure 2.19).
Show that the M-matrix for the combination is the product of the two M-matrices
for each section separately:

M = M;M,.

(This obviously generalizes to any number of pieces, and accounts for the use-
fulness of the M-matrix.)

- o ~7 o> a8
M1 M2 X
[ — . — S —

V=0 V=0 V=0

Figure 2.19: A potential consisting of two isolated pieces (Problem 2.49).
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(¢) Construct the M-matrix for scattering from a single delta-function potential at
point a:
Vix) =—abd(x —a).

(d) By the method of part (b), find the AM-matrix for scattering from the double delta
function
V(x) =—ald(x +a)+d(x —a)l.

What is the transmission coefficient for this potential?




CHAPTER 3

FORMALISM

3.1 LINEAR ALGEBRA

The purpose of this chapter is to develop the formalism of quantum mechanics—
terminology, notation, and mathematical background that illuminate the structure of
the theory, facilitate practical calculations, and motivate a fundamental extension of
the statistical interpretation. I begin with a brief survey of linear algebra.! Linear
algebra abstracts and generalizes the arithmetic of ordinary vectors, as we encounter
them in first-year physics. The generalization is in two directions: (1) We allow
the scalars to be complex, and (2) we do not restrict ourselves to three dimensions
(indeed, in Section 3.2 we shall be working with vectors that live in spaces of infinite
dimension).

3.1.1 Vectors
A vector space consists of a set of vectors (la), |8), |v), ...), together with a set

of scalars (a, b, ¢, ...),*> which are subject to two operations—vector addition and
scalar multiplication:

'If you have already studied linear algebra, you should be able to skim this section quickly, but
1 wouldn’t skip it altogether, because some of the notation may be unfamiliar. If, on the other hand, this
material is new to you, be warned that I am only summarizing (often without proof) those aspects of the
theory we will be needing later. For details, you should refer to a text on linear algebra, such as the classic
by P. R. Halmos: Finite Dimensional Vector Spaces, 2nd ed. (Princeton, NJ: van Nostrand, 1958).

2For our purposes, the scalars will be ordinary complex numbers. Mathematicians can tell you
about vector spaces over more exotic fields, but such objects play no role in quantum mechanics.

v
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Vector addition. The “sum” of any two vectors is another vector:

ey +1B) = ly). [3.1]
Vector addition is commutative
la) + [8) = |8) + |a), [3.2]
and associative
ley + (UBY +1v) = (o) +[B)) + |y). [3.3]

There exists a zero (or null) vector,® |0, with the property that
la) +10) = |a), [3.4]

for every vector |a). And for every vector |a) there is an associated inverse vector
(] — a)), such that
loy + | — ) = |0). [3.5]

Scalar multiplication. The “product” of any scalar with any vector is another

vector:
ala) = |y). [3.6]

Scalar multiplication is distributive with respect to vector addition
a(la) +1B)) = ala) + alp) (3.7]
and with respect to scalar addition
(@ + b)la) = ala) + bla). [3.8]
It is also associative with respect to the ordinary multiplication of scalars:
a(bla)) = (ab)lar). (3.9]
Multiplication by the scalars 0 and 1 has the effect you would expect:
Ola) = [0):  1]ar) = o). [3.10]

Evidently | — «) = (—1)|a).

There’s a lot less here than meets the eye—all I have done is to write down
in abstract language the familiar rules for manipulating vectors. The virtue of such
abstraction is that we will be able to apply our knowledge and intuition about the
behavior of ordinary vectors to other systems that happen to share the same formal
properties.

31t is customary, where no confusion can arise, to write the null vector without the adorning bracket:
10y — 0.
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A linear combination of the vectors |a), |8), |y), ... is an expression of the
form
ala) +b|B) +cly) +---. [3.11]

A vector |1) is said to be linearly independent of the set |}, |8), |y), . .. if it cannot
be written as a linear combination of them. (For example, in three dimensions the unit
vector £ is linearly independent of 7 and j, but any vector in the x y-plane is linearly
dependent on T and j.) By extension, a set of vectors is linearly independent if each
one is linearly independent of all the rest. A collection of vectors is said to span the
space if every vector can be written as a linear combination of the members of this
set.* A set of linearly independent vectors that spans the space is called a basis. The
number of vectors in any basis is called the dimension of the space. For the moment
we shall assume that the dimension (r) is finite.
With respect to a prescribed basis

Iel)v IEZ)’ tees Ien), [312]

any given vector
l) = aile)) + arle2) + -+ - +ayle,) (3.13]

is uniquely represented by the (ordered) n-tuple of its components:
lay < (ay, a,...,a,). [3.14]

It is often easier to work with the components than with the abstract vectors them-
selves. To add vectors, you add their corresponding components:

lo) +1B) « (a1 + b1, a2+ by, ..., a, + by); [3.15]
to multiply by a scalar you multiply each component:
cla) < (cay, cay, ..., ca): [3.16]
the null vector is represented by a string of zeroes:
[0) < (0,0,...,0) [3.17]
and the components of the inverse vector have their signs reversed:
| —a) © (—ay, —az, ..., —a,). [3.18]

The only disadvantage of working with components is that you have to commit your-
self to a particular basis, and the same manipulations will look very different to
someone working in a different basis.

Problem 3.1 Consider the ordinary vectors in three dimensions (a,7 +a,} + ak)
with complex components.

4 A set of vectors that spans the space is also called complete, though I personally reserve that word
for the infinite-dimensional case, where subtle questions of convergence arise.
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(a) Does the subset of all vectors with a, = 0 constitute a vector space? If so, what
is its dimension; if not, why not?

(b) What about the subset of all vectors whose z component is 1?

(c) How about the subset of vectors whose components are all equal?

«Problem 3.2 Consider the collection of all polynomials (with complex coefficients)

of degree < N in x.

(a) Does this set constitute a vector space (with the polynomials as “vectors”)? If
so, suggest a convenient basis, and give the dimension of the space. If not,
which of the defining properties does it lack?

(b) What if we require that the polynomials be even functions?

(c) What if we require that the leading coefficient (i.e., the number multiplying
¥ 1be 1?7

(d) What if we require that the polynomials have the value 0 at x = 17
(e) What if we require that the polynomials have the value 1 at x = 0?7

Problem 3.3 Prove that the components of a vector with respect to a given basis
are unique.

3.1.2 Inner Products

In three dimensions we encounter two kinds of vector products: the dot product and
the cross product. The latter does not generalize in any natural way to n-dimensional
vector spaces, but the former does—in this context it is usually called the inner
product. The inner product of two vectors (|a) and |8)) is a complex number (which
we write as {a|B)), with the following properties:

(Bla) = (a|B)", [3.19]
(@la) >0, and (xja) =0« |a)=|0), [3.20]
(@] (b1B) +cly)) = b(@|B) + claly). [3.21]

Apart from the generalization to complex numbers, these axioms simply codify the
familiar behavior of dot products. A vector space with an inner product is called an
inner product space.

Because the inner product of any vector with itself is a nonnegative number
(Equation 3.20), its square root is real—we call this the norm of the vector:

leell = v/ {a|a); (3.22]
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it generalizes the notion of “length”. A “unit” vector, whose norm is 1, is said to
be normalized (the word should really be “normal”, but I guess that sounds too
anthropomorphic). Two vectors whose inner product is zero are called orthogonal
(generalizing the notion of “perpendicular”). A collection of mutually orthogonal
normalized vectors,

(a]a;) = 8y, [3.23]
is called an orthonormal set. It is always possible (see Problem 3.4), and almost
always convenient, to choose an orthonormal basis; in that case the inner product of
two vectors can be written very neatly in terms of their components:

(@|B) =aiby +asby +---+a’b,, [3.24]
the norm (squared) becomes
(@la) = la1|* + a2 + - + lan P, [3.25]
and the components themselves are
a; = {e;|a). [3.26]

(These results generalize the familiar formulas a - b = a,b, + ayb, + a.b., a - a
=a}+a+al,anda, =i-a,a,=j a,a, = k - a, for the three-dimensional
orthonormal basis 7, j, k.) From now on we shall always work in orthonormal bases
unless it is explicitly indicated otherwise.

Another geometrical quantity one might wish to generalize is the angle between
two vectors. In ordinary vector analysis cos@ = (a-b)/|a||b|. But because the inner
product is in general a complex number, the analogous formula (in an arbitrary inner
product space) does not define a (real) angle §. Nevertheless, it is still true that the
absolute value of this quantity is a number no greater than 1,

{alB) > < (ela)(BIB). [3.27]

(This important result is known as the Schwarz inequality; the proof is given in
Problem 3.5.) So you can, if you like, define the angle between |a) and |8) by the
formula

cos = [ {211 Bla). [3.28)
(ala)(BIB)
xProblem 3.4 Suppose you start out with a basis (Je;), |e2), ..., |e,)) that is not
orthonormal. The Gram-Schmidt procedure is a systematic ritual for generating
from it an orthonormal basis (|e}), |€}), . .., |e,)). It goes like this:

(i) Normalize the first basis vector (divide by its norm):

_ le1)
el

le})
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(i) Find the projection of the second vector along the first, and subtract it off:
lez) — (€}]e)le)).
This vector is orthogonal to |e); normalize it to get |e;).
(iii) Subtract from |e3) its projections along |e}) and |e5):
les) — (e]les)le]) — (elesdler).

This is orthogonal to |€}) and |¢5); normalize it to get |e). And so on.
Use the Gram-Schmidt procedure to orthonormalize the three-space basis
ler) = (14D + ()] + Ok, le2) = O+ 3]+ (D, les) = 0)i +(28)] + (O)k.

Problem 3.5 Prove the Schwarz inequality (Equation 3.27). Hint: Let ly) =
1B) — ((@|B)/(ala))|e), and use (y|y) = 0.

Problem 3.6 Find the angle (in the sense of Equation 3.28) between the vectors
la) = (1 + )i + (1)] + (D and [B) = (4 — )i + (0)f + 2 — 2D)k.

Problem 3.7 Prove the triangle inequality: ||(|a) + 8D < lleeli + 18Il

3.1.3 Linear Transformations

Suppose you take every vector (in three-space) and multiply it by 17, or you rotate
every vector by 39° about the z-axis, or you reflect every vector in the x y-plane—these
are all examples of linear transformations. A linear transformation® (T') takes each
vector in a vector space and “transforms” it into some other vector (ja) = |&) =
T |a)), with the proviso that the operation is linear:

T (ale) + b1B)) = a(T|@)) + b(T1B)), [3.29]

for any vectors |a), |B) and any scalars a, b.
If you know what a particular linear transformation does to a set of basis vectors,
you can easily figure out what it does to any vector. For suppose that

Tler) = Tiler) + Tatles) + -+ Tuilen),
Tles) = Tuler) + Tolez) + -+ + Talen),
Tle)) = Tinler) + Tanlea) + -+ + Tunlen),

or, more compactly,

Tle)y =Y Tyler), (G=12,....n). (3.30)
i=1

51n this chapter I'll use a hat (") to denote linear transformations; this is not inconsistent with my
earlier convention (putting hats on operators), for (as we shall see) our operators are linear transformations.
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If |&) is an arbitrary vector:

@) = ailer) + azles) + -+ + anlen) = Y _ ayley), [3.31]
then
n n n n
Tley =Y a;(Tle)) =YY aTijle) = Y ( Z Tiap)ler).  [3.32]
j=1 j=1 i=1 i=1 j=1
Evidently T takes a vector with components a;, ay, . . ., a, into a vector with compo-
nents®

a =) Ta. [3.33]
Jj=1

Thus the n? elements T;; uniquely characterize the linear transformation T (with
respect to a given basis), ]ust as the n components a; uniquely characterize the vector
|a) (with respect to the same basis):

T < (Tu, Tz, -, Ton). [3.34]
If the basis is orthonormal, it follows from Equation 3.30 that
T,y = (el Tle;). (3.35]

It is convenient to display these complex numbers in the form of a matrix’:

T]l T12 “ e Tlﬂ
T= . . . ] [3.36]
T T ... T,

The study of linear transformations, then, reduces to the theory of matrices. The sum
of two linear transformations (S + T ) is defined in the natural way:

S+ Tyla) = Sla) + Ta); [3.37]
this matches the usual rule for adding matrices (you add their corresponding elements):

Notice the reversal of indices between Equations 3.30 and 3.33. This is not a typographical error.
Another way of putting it (switching i <> j in Equation 3.30) is that if the components transform with T;;,
the basis vectors transform with T;.

I'll use boldface to denote matrices.
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The product of two linear transformations (S T ) is the net effect of performing them
in succession—first T, then S:

) — |@) = Tla) — |a) = Sla) = S(T|)) = ST ). [3.39]

What matrix U represents the combined transformation U = ST? 1t’s not hard to
work it out:

n

S5 3os (S ) £ (£ - Evee
= = k=1

j=1 k=1 \J=I1
Evidently
U=ST & Uy =y S;Tw [3.40]
j=1

this is the standard rule for matrix multiplication—to find the ik"™ element of the
product, you look at the i row of § and the k™ column of T, multiply corresponding
entries, and add. The same procedure allows you to multiply rectangular matrices, as
long as the number of columns in the first matches the number of rows in the second.
In particular, if we write the n-tuple of components of |a) as an n x 1 column matrix

ai

a
a=1| 1. [3.41]

ap
the transformation rule (Equation 3.33) can be written
a' = Ta. [3.42]

And now, some useful matrix terminology: The transpose of a matrix (which
we shall write with a tilde: T) is the same set of elements, but with rows and columns
interchanged:

Ty T ... Ta
~ T]z T22 P Tnz
T= . . ) [3.43]
Tln T2n v Tnn
Notice that the transpose of a column matrix is a row matrix:
a=(a a ... a). [3.44]

A square matrix is symmetric if it is equal to its transpose (reflection in the main
diagonal—upper left to lower right—leaves it unchanged); it is antisymmetric if
this operation reverses the sign:

SYMMETRIC: T = T: ANTISYMMETRIC: T = —T. [3.45]
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To construct the (complex) conjugate of a matrix (which we denote, as usual, with
an asterisk: T*), you take the complex conjugate of every element:

*

oIy ... T, 4
Ty T ... Tt @

=] 7 7 i S [3.46]
rhn T, ... T ay

A matrix is real if all its elements are real and imaginary if they are all imaginary:
REAL: T* =T; IMAGINARY:T*= —T. [3.47]

The Hermitian conjugate (or adjoint) of a matrix (indicated by a dagger: T') is the
transposed conjugate:

TI:I TZII U
3 Ty Ty ... T3
Th=T=| | : N F al=a"=(a} a ... a). [3.48]
Tl)‘;l TZ); Tn*n

A square matrix is Hermitian (or self-adjoint) if it is equal to its Hermitian conjugate;
if Hermitian conjugation introduces a minus sign, the matrix is skew Hermitian (or
anti-Hermitian):

HERMITIAN: Tf = T; SKEW HERMITIAN: T! = —T. (3.49]

With this notation the inner product of two vectors (with respect to an orthonormal
basis—Equation 3.24), can be written very neatly in matrix form:

(a|B) = a'b. [3.50]

(Notice that each of the three operations discussed in this paragraph, if applied twice,
returns you to the original matrix.)

Matrix multiplication is not, in general, commutative (ST 5 TS); the difference
between the two orderings is called the commutator:

[S, T} =ST - TS. [3.51]
The transpose of a product is the product of the transposes in reverse order:
(ST) = T§ 3.52]
(see Problem 3.12), and the same goes for Hermitian conjugates:

ST = TtSt, [3.53]
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The unit matrix (representing a linear transformation that carries every vector
into itself) consists of ones on the main diagonal and zeroes everywhere else:

10 ... 0
o1 ... 0
1= . e [3.54]
00 ... 1
In other words,
1, = &;. [3.55]

The inverse of a matrix (written T™") is defined in the obvious way:
T T=TT'=1 [3.56]

A matrix has an inverse if and only if its determinant?® is nonzero; in fact,
-1 1 bod
T'!'=—-C, [3.57]

where C is the matrix of cofactors [the cofactor of element Tj; 1s (=1t tlmes
the determinant of the submatrix obtained from T by erasing the i™ row and the j®
column]. A matrix without an inverse is said to be singular. The inverse of a product
(assuming it exists) is the product of the inverses in reverse order:

ST) ' =T7'87", [3.58]
A matrix is unitary if its inverse is equal to its Hermitian conjugate:
UNITARY : Ut = U™\ [3.59]

Assuming the basis is orthonormal, the columns of a unitary matrix constitute an
orthonormal set, and so too do its rows (see Problem 3.16).

The components of a given vector depend on your (arbitrary) choice of basis,
as do the elements in the matrix representing a given linear transformation. We might
inquire how these numbers change when we switch to a different basis. The old basis
vectors |e;) are—like all vectors—linear combinations of the new ones:

le) = Sulfi)+ Saulfo) +---+ Sulfn),
lea) = Sulfi)+ Snlf) + -+ Se2lfi),
len) = Sulfi) + Samlfa) + -+ Sunl fa)

81 assume you know how to evaluate determinants. If not, see M. Boas, Mathematical Methods in
the Physical Sciences, 2nd ed. (New York: John Wiley, 1983), Section 3.3.
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(for some set of complex numbers S§;;), or, more compactly,
lej) = Z i, G=1,2....n). [3.60]

This is itself a linear transformation (compare Equation 3.30),° and we know imme-
diately how the components transform:

Z a [3.61]

(where the superscript indicates the basis). In matrix form
a/ =8Sa°. [3.62]

What about the matrix representing a given linear transformation T—how is it
modified by a change of basis? In the old basis we had (Equation 3.42)

el — Teae
and Equation 3.62—multiplying both sides by S~'—entails'® a° = §'a/, so
a/ = Sa® = §(T¢a%) = ST*S~'a’.

Evidentl
vidently f —sTes—1 [3.63]

In general, two matrices (T, and T5) are said to be similar if T, = ST S~! for some
(nonsingular) matrix S. What we have just found is that similar matrices represent
the same linear transformation with respect to two different bases. Incidentally, if
the first basis is orthonormal, the second will also be orthonormal if and only if the
matrix S is unitary (see Problem 3.14). Since we always work in orthonormal bases,
we are interested mainly in unitary similarity transformations.

While the elements of the matrix representing a given linear transformation
may look very different in the new basis, two numbers associated with the matrix are
unchanged: the determinant and the trace. For the determinant of a product is the
product of the determinants, and hence

det(T/) = det(S T°S™1) = det(S) det(T¢) det(S™') = det T°.  [3.64]

9Notice, however, the radically different perspective: In this case we're talking about one and the
same vector, referred to two different bases, whereas before we were thinking of a completely different
vector, referred to the same basis.

ONote that S~! certainly exists—if S were singular, the | f;)’s would not span the space, so they
wouldn’t constitute a basis.
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And the trace, which is the sum of the diagonal elements,
m
Te(T) = Y T, [3.65]
i=1

has the property (see Problem 3.15) that
Tr(T; T,) = Tr(T,T)), [3.66]
(for any two matrices T and T), so that

Tr(T/) = Tr(STeS™!) = Tr(T*S~!S) = Tr(T*). [3.67]

Problem 3.8 Using the standard basis (7, J, k) for vectors in three dimensions:

(a) Construct the matrix representing a rotation through angle 6 (counterclockwise,
looking down the axis toward the origin) about the z-axis.

(b) Construct the matrix representing arotation by 120° (counterclockwise, looking
down the axis) about an axis through the point (1,1,1).

(C) Construct the matrix representing reflection in the x y-plane.

(d) Are translations (x — x + x9, ¥y —> y+ W, z = z + 2o, for some constants
X0, Yo, Zo) linear transformations? If so, find the matrix which represents them;
if not, explain why not.

xProblem 3.9 Given the following two matrices:

-1 1 i 2 0 —i
A=<2 0 3), B=<O 1 0),
2 =2 2 i3 2
compute (a) A + B, (b) AB, (c) [A, B], (d) A, (e) A%, (f) A', () Tr(B), (h) det(B),
and (i) B~!. Check that BB™! = 1. Does A have an inverse?

+Problem 3.10 Using the square matrices in Problem 3.9 and the column matrices

i 2
a=(2i>, b:((l—i)),
2 0

find (a) Aa, (b) a'b, (c) aBb, (d) ab'.

Problem 3.11 By explicit construction of the matrices in question, show that any
matrix T can be written

(a) as the sum of a symmetric matrix S and an antisymmetric matrix A;
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(b) as the sum of a real matrix R and an imaginary matrix I;

{C) as the sum of a Hermitian matrix H and a skew-Hermitian matrix K.

xProblem 3.12 Prove Equations 3.52, 3.53, and 3.58. Show that the product of two
unitary matrices is unitary. Under what conditions is the product of two Hermitian
matrices Hermitian? Is the sum of two unitary matrices unitary? Is the sum of two
Hermitian matrices Hermitian?

Problem 3.13 In the usual basis (7, 7, k), construct the matrix T, representing a
rotation through angle @ about the x-axis, and the matrix T, representing a rotation
through angle @ about the y-axis. Suppose now we change bases,to i’ = 7, j =
-1, k =k Construct the matrix S that effects this change of basis, and check that
ST,S™! and ST S are what you would expect.

Problem 3.14 Show that similarity preserves matrix multiplication (that is if
A°B¢ = C¢, then A’B/ = C/). Similarity does nor, in general, preserve symmetry,
reality, or Hermiticity; show, however, that if S is unitary, and H® is Hermitian, then
H/ is Hermitian. Show that S carries an orthonormal basis into another orthonormal
basis if and only if it is unitary.

s«Problem 3.15 Prove that Tr(T,T;) = Tr(T,T,). It follows immediately that
Te(T T, T3) = Tr(T,T5T)), but is it the case that Tr(T | T,T3) = Tr(T,T, T;), in gen-
eral? Prove it, or disprove it. Hint: The best disproof is always a counterexample—
and the simpler the better!

Problem 3.16 Show that the rows and columns of a unitary matrix constitute
orthonormal sets.

3.1.4 Eigenvectors and Eigenvalues

Consider the linear transformation in three-space consisting of a rotation, about some
specified axis, by an angle . Most vectors will change in a rather complicated way
(they ride around on a cone about the axis), but vectors that happen to lie along the
axis have very simple behavior: They don’t change at all (T o)y = |a)). If 6 is 180°,
then vectors which lie in the the “equatorial” plane reverse signs ( Tla) = —la)). Ina
complex vector space,'! every linear transformation has “special” vectors like these,
which are transformed into simple multiples of themselves:

Tle) = Ala); [3.68]

"' This is not always true in a real vector space (where the scalars are restricted to real values). See
Problem 3.17.
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they are called eigenvectors of the transformation, and the (complex) number A is
their eigenvalue. (The null vector doesn’t count, even though, in a trivial sense, it
obeys Equation 3.68 for any T and any A; technically, an eigenvector is any nonzero
vector satisfying Equation 3.68.) Notice that any (nonzero) multiple of an eigenvector
is still an eigenvector with the same eigenvalue.

With respect to a particular basis, the eigenvector equation assumes the matrix

form
Ta=)a [3.69]

(for nonzero a), or

(T—Ala=0. [3.70]
(Here 0 is the zero matrix, whose elements are all zero.) Now, if the matrix (T — A1)
had an inverse, we could multiply both sides of Equation 3.70 by (T — A1)~!, and

conclude that a = 0. But by assumption a is not zero, so the matrix (T — A1) must
in fact be singular, which means that its determinant vanishes:

(T —A) Ty 1y,
I Tz —2) ... I3,
det(T — A1) = . . . =0. [3.71]
Tnl Tn2 (Tnn_)\)
Expansion of the determinant yields an algebraic equation for A:
CoA'+ Crs WV CIA+ Cp =0, [3.72]

where the coefficients C; depend on the elements of T (see Problem 3.19). This is
called the characteristic equation for the matrix; its solutions determine the eigen-
values. Notice that it’s an nth-order equation, so it has n (complex) roots.'> However,
some of these may be duplicates, so all we can say for certain is that an #n X » matrix
has at least one and at most n distinct eigenvalues. To construct the corresponding
eigenvectors it is generally easiest simply to plug each A back into Equation 3.69 and
solve “by hand” for the components of a. I’ll show you how it goes by working out
an example.

Example. Find the eigenvalues and eigenvectors of the following matrix:

2 0 -2
M= <—2i i 2i ) [3.73]
1 0 -1
The characteristic equation is
Q2=% 0 -2
—2i (- 2i = +A+DA—ir=0, [3.74]
1 0 (=1-2)

12t is here that the case of real vector spaces becomes more awkward, because the characteristic
equation need not have any (real) solutions at all. See footnote 11 and Problem 3.17.
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and its roots are 0, 1, and i. Call the components of the first eigenvector (a1, a2, a3);

2 0 -2 a) a 0
1 0 -1 ajs ajs 0

which yields three equations:

2a1 - 2613 = 0,
—2ia1 +iay + 2ia3 =0,
a —az = 0.

The first determines a3 (in terms of a;): a3 = ay; the second determines a;: a; = 0;
and the third is redundant. We may as well pick ¢; = 1 (since any multiple of an
eigenvector is still an eigenvector):

1
al) = <O) , for Ay = 0. [3.75]
1

For the second eigenvector (recycling the same notation for the components)

2 0 -2 ai ap ai
<—2i i 2i)<a2)=1<a2)=<a2),
1 0 -1 as as as
which leads to the equations

2&1 - 203 =4ap,
—2iay + iay + 2iaz = as,
a) —as = as,

with the solution as = (1/2)ay, a; = [(1 — i)/2]ay; this time we’ll pick a; = 2, so
that

2
a® = ((1 - i)), for Ay = 1. [3.76]
1

Finally, for the third eigenvector,

2 0 =2 @ a ia
<—2i I 21')<a2)=i<a2)=<ia2),
1 0 -1 as as ias

which gives the equations

2611 - 203 = ial,
—2iay +iay + 2iaz = iay,
ay — a3 = ias,
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whose solutionis a; = a; = 0, with a; undetermined. Choosing a; = 1, we conclude

0
a® = (1) for A3 = i. [3.77]
0

If the eigenvectors span the space (as they do in the preceding example), we
are free to use them as a basis:

TIfy = MlA),
TIhY = hlp),

TS = halfi).

The matrix representing T takes on a very simple form in this basis, with the eigen-
values strung out along the main diagonal and all other elements zero:

A0 000
0 x» ... 0
T=]| . . ) [3.78]
0 0 ... A
The (normalized) eigenvectors are equally simple:
1 0 0
0 1 0
aV»=10] a®=}0]| ... ,a®=]0]. [3.79]
0 \O 1

A matrix that can be brought to diagonal form (Equation 3.78) by a change
of basis is said to be diagonalizable. The similarity matrix that accomplishes the
transformation can be constructed by using the eigenvectors (in the old basis) as the
columns of §7!:

™ = @), [3.80]

Example (cont’d). In the example,

1 2 0
s—1=<o 1= 1),
1 1 0

so (using Equation 3.57)
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and you can check for yourself that

00 0
SMS‘1=(O 1 o).

0 0 i

There is a great advantage in bringing a matrix to diagonal form—it’s much easier to
work with. Unfortunately, not every matrix can be diagonalized—the eigenvectors
have to span the space. For an example of a matrix that cannor be diagonalized, see
Problem 3.18.

xProblem 3.17 The 2 x 2 matrix representing a rotation of the xy-plane is
T = { €°8 # —siné
“ \sin® cosf J°
Show that (except for certain special angles—what are they?) this matrix has no real
eigenvalues. (This reflects the geometrical fact that no vector in the plane is carried
into itself under such a rotation; contrast rotations in three dimensions.) This matrix
does, however, have complex eigenvalues and eigenvectors., Find them. Construct

a matrix S which diagonalizes T. Perform the similarity transformation (STS™)
explicitly, and show that it reduces T to diagonal form.

Problem 3.18 Find the eigenvalues and eigenvectors of the following matrix:
11
we () 1)

Problem 3.19 Show that the first, second, and last coefficients in the characteristic
equation (Equation 3.72) are

Can this matrix be diagonalized?

C,=(-1)", Co_i = (—1)"'T(T), and Cy = det(T). [3.81]

For a 3 x 3 matrix with elements T;;, what is C;?

Problem 3.20 It is pretty obvious that the trace of a diagonal matrix is the sum of
its eigenvalues, and its determinant is their product (see Equation 3.78). It follows
(from Equations 3.64 and 3.67) that the same holds for any diagonalizable matrix.
Prove that

det(T) = Ajhz Ay, Te(T)=Xxi+A2+ -+ Ay [3.82]

for any matrix. (The A’s are the n solutions to the characteristic equation—in the case
of multiple roots, there may be fewer linearly independent eigenvectors than there
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are solutions, but we still count each A as many times as it occurs.) Hint: Write the
characteristic equation in the form

M =NA2=2) (A= 2) =0,

and use the result of Problem 3.19.

3.1.5 Hermitian Transformations

In Equation 3.48 I defined the Hermitian conjugate (or “adjoint”) of a matrix as its
transpose conjugate: Tt = T*. Now I want to give you a more fundamental definition
for the Hermitian conjugate of a linear transformation: 1t is that transformation Tt
which, when applied to the firsr member of an inner product, gives the same result as
if T itself had been applied to the second vector:

(T1alB) = («IT B) (3.83]

(for all vectors |a) and |8))."* [I have to warn you that although everybody uses it, this
is lousy notation. For o and B are not vectors (the vectors are |ar) and |B)), they are
labels—serial numbers (“F43A-9GT™), or names (“Charlie”), or bar codes—anything
you care to use to identify the different vectors. In particular, they are endowed with no
mathematical properties at all, and the expression “f B is literally nonsense: linear
transformations act on vectors, not labels. But it’s pretty clear what the notation
means: |fﬂ) means f"|ﬂ), and (T 1a|B) means the inner product of the vector THa)
with the vector |B). Notice in particular that

(alcB) = clalp), (3.84]

but
(calB) = c*(a|B) [3.85]

for any scalar c.] If you’re working in an orthonormal basis (as we always shall),
the Hermitian conjugate of a linear transformation is represented by the Hermitian
conjugate of the corresponding matrix (so the terminology is consistent); for (using
Equations 3.50 and 3.53),

(|TB) = alTb = (Tta)'b = (T1x|B). [3.86]

In quantum mechanics, a fundamental role is played by Hermitian transforma-
tions (T f =7 ). The eigenvectors and eigenvalues of a Hermitian transformation
have three crucial properties:

B31f you're wondering whether such a transformation necessarily exists, you should have been a
math major, Still, it’s a good question, and the answer is yes. See, for instance, Halmos, (footnote 1),
Section 44.
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1. The eigenvalues of a Hermitian transformation are real.
Proof: Let A be an eigenvalue of 7: T|a) = A|e), with &) # |0). Then
(@|Ta) = (a)ra) = Aa|a).
Meanwhile, if 7 is Hermitian, then
(@|Ta) = (Tale) = (lala) = A (a]a).
But (o]} # 0 (Equation 3.20), so A = A*, and hence A is real. QED

2. The eigenvectors of a Hermitian transformation belonging to dis-
tinct eigenvalues are orthogonal.

Proof: Suppose T'|a) = Alar) and T'|8) = u|B), with A # u. Then
(@|TB) = (alup) = ullB),
and if T is Hermitian,

(| 7B) = (Talf) = (ra|B) = 4" (@|B).
But A = A* (from property 1), and A # pu, by assumption, so {¢|8) = 0. QED

3. The eigenvectors of a Hermitian transformation span the space.

Comment: If all the » roots of the characteristic equation are distinct, then (by
property 2) we have n mutually orthogonal eigenvectors, so they obviously span the
space. But what if there are duplicate roots (or, as they are called, in this context,
degenerate eigenvalues)? Suppose A is m-fold degenerate; any linear combination
of two eigenvectors belonging to the same eigenvalue is still an eigenvector (with
the same eigenvalue)—what we must show is that there are m linearly independent
eigenvectors with eigenvalue A. The proof is given in most books on linear algebra,"
and I shall not repeat it here. These eigenvectors can be orthogonalized by the Gram-
Schmidt procedure (see Problem 3.4), so in fact the eigenvectors of a Hermitian
transformation can always be taken to constitute an orthonormal basis. It follows, in
particular, that any Hermitian matrix can be diagonalized by a similarity transfor-
mation, with S unitary. This rather technical result is, in a sense, the mathematical
support on which much of quantum mechanics leans. As we shall see, it turns out to
be a thinner reed than one might have hoped.

141 ike the treatment in F. W. Byron, Jr., and R. W. Fuller, Mathematics of Classical and Quantum
Physics (Reading, MA: Addison-Wesley, 1969), Vol. 1, Section 4.7.
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Problem 3.21 A Hermitian linear transformation must satisty (o|T8) = (f"a[ B)
for all vectors |) and |B). Prove that it is (surprisingly) sufficient that (y|T Yy =
(Ty|y) for all vectors |y). Suppose you could show that (e,,IT e) = (T enley,) for
every member of an orthonormal basis. Does it necessarily follow that T is Hermitian?
Hint: First let |y) = |a) + |B8), and then let |y) = |a) + i|B).

11—
T_(1+i 0)'

(a) Verify that T is Hermitian.

sProblem 3.22 Let

(b) Find its eigenvalues (note that they are real).
(c) Find and normalize the eigenvectors (note that they are orthogonal).

(d) Construct the unitary diagonalizing matrix S, and check explicitly that it diag-
onalizes T.

(e) Check that det(T) and Tr(T) are the same for T as they are for its diagonalized
form.

*xxProblem 3.23 Consider the following Hermitian matrix:

2 i 1
T=<_,- 2 )
1 =i 2

(a) Calculate det(T) and Tr(T).

(b) Find the eigenvalues of T. Check that their sum and product are consistent with
(a), in the sense of Equation 3.82. Write down the diagonalized version of T.

(c) Find the eigenvectors of T. Within the degenerate sector, construct two linearly
independent eigenvectors (it is this step that is always possible for a Hermitian
matrix, but not for an arbitrary matrix—contrast Problem 3.18). Orthogonalize
them, and check that both are orthogonal to the third. Normalize all three
eigenvectors.

(d) Construct the unitary matrix S that diagonalizes T, and show explicitly that the
similarity transformation using S reduces T to the appropriate diagonal form.

Problem 3.24 A unitary linear transformation is one for which UtU = 1.

@) Show that unitary transformations preserve inner products, in the sense that
(Uoleﬂ) (| B), for all vectors |a), |8).
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(b) Show that the eigenvalues of a unitary transformation have modulus 1.

(c) Show that the eigenvectors of a unitary transformation belonging to distinct
eigenvalues are orthogonal.

3.2 FUNCTION SPACES

We are ready now to apply the machinery of linear algebra to the interesting and
important case of function spaces, in which the “vectors” are (complex) functions of
x, inner products are integrals, and derivatives appear as linear transformations.

3.2.1 Functions as Vectors

Do functions really behave as vectors? Well, is the sum of two functions a function?
Sure. Is addition of functions commutative and associative? Indeed. Is there a “null”
function? Yes: f(x) = 0. If you multiply a function by a complex number, do you
get another function? Of course. Now, the set of all functions is a bit unwieldy—we’ll
be concerned with special classes of functions, such as the set of all polynomials of
degree < N (Problem 3.2), or the set of all odd functions that go to zero at x = 1, or
the set of all periodic functions with period . Of course, when you start imposing
conditions like this, you’ve got to make sure that you still meet the requirements for
a vector space. For example, the set of all functions whose maximum value is 3
would rnot constitute a vector space (multiplication by 2 would give you functions
with maximum value 6, which are outside the space).
The inner product of two functions [ f(x) and g(x)] is defined by the integral

(flg) = / F()e(x) dx [3.87]

(the limits will depend on the domain of the functions in question). You can check
for yourself that it satisfies the three conditions (Equations 3.19, 3.20, and 3.21) for
an inner product. Of course, this integral may not converge, so if we want a function
space with an inner product, we must restrict the class of functions so as to ensure that
(flg) is always well defined. It is clearly necessary that every admissible function
be square integrable:

/If(x)lzdx < [3.88]

(otherwise the inner product of f with itself wouldn’t even exist). As it turns out,
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Table 3.1: The first few Legendre polynomials, P, (x).

Py=1
Pr=x
P=303x -1

Py=3(5x% —3x)
Py = £(35x% — 30x2 + 3)
Ps = 1(63x% —70x3 + 15x)

this restriction is also sufficient—if f and g are both square integrable, then the
integral in Equation 3.87 is necessarily finite.'
For example, consider the set P(N) of all polynomials of degree < N:

p(x) =ao+ax +ax* + - +ay_1x¥ 7, [3.89]

on the interval —1 < x < 1. They are certainly square integrable, so this is a bona
fide inner product space. An obvious basis is the set of powers of x:

ler) =1, |e2) =x, les) =x2, ..., |ex) =x"71; [3.90]

evidently it’s an N-dimensinal vector space. This is not, however, an orthonormal
basis, for

1 1
(e1|e1)=/ ldx =2, (e1|e3)=/ x?dx =2/3,

1 1

and so on. If you apply the Gram-Schmidt procedure, to orthonormalize this ba-
sis (Problem 3.25), you get the famous Legendre polynomials, P,(x) (except that
Legendre, who had other things on his mind, didn’t normalize them properly):

ey =+vn—A/2)P_1(x), (m=12,...,N). [3.91]
In Table 3.1 I have listed the first few Legendre polynomials.

*Problem 3.25 Orthonormalize the powers of x, on the interval —1 < x < 1, to
obtain the first four Legendre polynomials (Equation 3.91).

«Problem 3.26 Let T(N) be the set of all trigonometric functions of the form

N-1

fx) = Z[a,, sin(nmrx) + b, cos(nmx)], [3.92]

n=0

I5There is a quick phoney “proof” of this, based on the Schwarz inequality (Equation 3.27). The
trouble is, we assumed the existence of the inner product in proving the Schwarz inequality (Problem 3.5),
so the logic is circular. For a legitimate proof, see F. Riesz and B. Sz.-Nagy, Functional Analysis (New
York: Unger, 1955), Section 21.
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on the interval —1 < x < 1. Show that

ley) = %em’”, (n=0,%1,...,£(N —-1) [3.93]

constitutes an orthonormal basis. What is the dimension of this space?

Problem 3.27 Consider the set of all functions of the form p(x)e™*"/2, where p(x)
is again a polynomial of degree < N in x, on the interval —oo < x < 0. Check that
they constitute an inner product space. The “natural” basis is

3272 —x2n _2 1 g2
le)) = e 72, ley) = xe™ 2, les) =x%e ™72, ..., len) = xV"leT /2,

Orthonormalize the first four of these, and comment on the result.

3.2.2 Operators as Linear Transformations

In function spaces operators (such as d/dx, d*/dx?, or simply x) behave as linear
transformations, provided that they carry functions in the space into other functions
in the space and satisfy the linearity condition (Equation 3.29). For example, in the
polynomial space P(N) the derivative operator (D = d/dx) is a linear transforma-
tion, but the operator X (multiplication by x)'® is not, for it takes (N — 1)th-order
polynomials into Nth-order polynomials, which are no longer in the space.

In a function space, the eigenvectors of an operator T are called eigenfunctions:

Tf(x) = Af(x). [3.94]
For example, the eigenfunctions of D are
filx) = A& [3.95]

Evidently this operator has only one eigenfunction (the one with A = 0) in the space
P(N).
A Hermitian operator is one that satisfies the defining condition (Equation 3.83):

(f1Tg) = (T fg), [3.96]

for all functions f(x) and g(x) in the space. Is the derivative operator Hermitian?
Well, using integration by parts, we get

dr* )
dfx gdx = ([*[. — (Dflg). 3.97]

. b d b
(ibg = [ riEa= ol - [

16For consistency, I’ll put a hat on x when I’'m emphasizing its role as an operator, but you're
welcome to ignore it if you think I’m being too fastidious.
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It’s close, but the sign is wrong, and there’s an unwanted boundary term. The sign is
easily disposed of: D itself is (except for the boundary term) skew Hermitian, so i D
would be Hermitian—complex conjugation of the i compensates for the minus sign
coming from integration by parts. As for the boundary term, it will go away if we
restrict ourselves to functions which have the same value at the two ends:

fb) = f(a). [3.98]

In practice, we shall almost always be working on the infinite interval (a = —o0, b =
+00), where square integrability (Equation 3.88) guarantees that f(a) = f(b) =0,
and hence that i D is Hermitian. But i D is not Hermitian in the polynomial space
P(N).

By now you will realize that when dealing with operators you must always keep
in mind the function space you’re working in—an innocent-looking operator may not
be a legitimate linear transformation, because it carries functions out of the space;
the eigenfunctions of an operator may not reside in the space; and an operator that’s
Hermitian in one space may not be Hermitian in another. However, these are relatively
harmless problems—they can startle you, if you're not expecting them, but they don’t
bite. A much more dangerous snake is lurking here, but it only inhabits vector spaces
of infinite dimension. I noted a moment ago that ¥ is not a linear transformation in
the space P(N) (multiplication by x increases the order of the polynomial and hence
takes functions outside the space). However, it is a linear transformation on P(00),
the space of all polynomials on the interval —1 < x < 1. In fact, it’s a Hermitian
transformation, since (obviously)

1 1
/l[f(X)]*[xg(X)]dx = /][xf(x)]*[g(X)] dx.

But what are its eigenfunctions? Well,
x{ag + aix + a2x2 + -y = Alag + a1x + a2x2 + 1),

for all x, means

0= )»a(),
ap = Aay,
a; = Aay,

andso on. If A = 0, then all the components are zero, and that’s not a legal eigenvector;
but if A # 0, the first equation says ayp = 0, so the second gives a@; = 0, and the third
says a = 0, and so on, and we’re back in the same bind. This Hermitian operator
doesn’t have a complete set of eigenfunctions—in fact it doesn’t have any af all! Not,
at any rate, in P{00).

What would an eigenfunction of x look like? If

xg(x) = Ag(x), [3.99]
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where A, remember, is a constant, then everywhere except at the one point x = A we
must have g(x) = 0. Evidently the eigenfunctions of % are Dirac delta functions:

g.(x) = Bé(x — 1), [3.100]

and since delta functions are certainly not polynomials, it is no wonder that the
operator x has no eigenfunctions in P(c0).

The moral of the story is that whereas the first two theorems in Section 3.1.5
are completely general (the eigenvalues of a Hermitian operator are real, and the
eigenvectors belonging to different eigenvalues are orthogonal), the third one (com-
pleteness of the eigenvectors) is valid (in general) only for finite-dimensional spaces.
In infinite-dimensional spaces some Hermitian operators have complete sets of eigen-
vectors (see Problem 3.32d for an example), some have incomplete sets, and some (as
we just saw) have no eigenvectors (in the space) at all.'” Unfortunately, the complete-
ness property is absolutely essential in quantum mechanical applications. In Section
3.3 I’ll show you how we manage this problem.

Problem 3.28 Show that exp(—x2/2) is an eigenfunction of the operator 0=
(d?/dx*) — x?, and find its eigenvalue.

xProblem 3.29

(@) Construct the matrix D representing the derivative operator D = d/dx with
respect to the (nonorthonormal) basis (Equation 3.90) in P(N).

(b) Construct the matrix representing D with respect to the (orthonormal) basis
(Equation 3.93) in the space T () of Problem 3.26.

(c) Construct the matrix X representing the operator X = x with respect to the basis
(Equation 3.90) in P(oo). If this is a Hermitian operator (and it is), how come
the matrix is not equal to its transpose conjugate?

x«Problem 3.30 Construct the matrices D and X in the (orthonormal) basis (Equa-
tion 3.91) for P(oc). You will need to use two recursion formulas for Legendre
polynomials:

1
xPy(x) = (2n—+1—)[(n + D Pry1(x) +n Py (x)]; [3.101]
dp,
= Z(Zn — 4k — 1) Py_gj_1(x), [3.102]
k=0

7In an n-dimensional vector space, every linear transformation can be represented (with respect
to a particular basis) by an n x n matrix, and as long as » is finite, the characteristic Equation 3.71 is
guaranteed to deliver at least one eigenvalue. But if n is infinite, we can’t take the determinant, there is no
characteristic equation, and hence there is no assurance that even a single eigenvector exists.
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where the sum cuts off at the first term with a negative index. Confirm that X is
Hermitian but ;D is not.

Problem 3.31 Consider the operator D* = d?/dx?. Under what conditions (on the
admissable functions) is it a Hermitian operator? Construct the matrix representing
D?in P(N) (with respect to the basis Equation 3.90), and confirm that it is the square
of the matrix representing D (Problem 3.29a).

Problem 3.32

(@) Show that iD is Hermitian in the space T (N) of Problem 3.26.
(b) What are its eigenvalues and (normalized) eigenfunctions, in 7'(N)?
() Check that your results in (b) satisfy the three theorems in Section 3.1.5.

(d) Confirm that iD has a complete set of eigenfunctions in T (co) (quote the perti-
nent theorem from Fourier analysis).

3.2.3 Hilbert Space

To construct the real number system, mathematicians typically begin with the integers,
and use them to define the rationals (ratios of integers). They proceed to show that the
rational numbers are “dense,” in the sense that between any two of them (no matter
how close together they are) you can always find another one (in fact, infinitely many
of them). And yet, the set of all rational numbers has “gaps” in it, for you can easily
think of infinite sequences of rational numbers whose limit is not a rational number.

For example,
Ay=l—i b 1o 1 [3.103]
NEIT3T3Tg N '
is a rational number for any finite integer N, but its limit {as N — ©0) is In2, which
is not a rational number. So the final step in constructing the real numbers is to “fill in
the gaps”, or “complete” the set, by including the limits of all convergent sequences
of rational numbers. (Of course, some sequences don’t have limits, and those we do
not include. For example, if you change the minus signs in Equation 3.103 to plus
signs, the sequence does not converge, and it doesn’t correspond to any real number.)
The same thing happens with function spaces. For example, the set of all
polynomials, P{oc), includes functions of the form

2 x3 x4 xN

x

(for finite N), but it does not include the limit as N — oc:

2 3 oo x"
1+x+—+—+ — =", [3.105]
3! = n!
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For ¢* is not itself a polynomial, although it is the limit of a sequence of polynomials.
To complete the space, we would like to include all such functions. Of course, some
sequences of polynomials don’t have limits, or have them only for a restricted range
of x. For example, the series

1

1—x

l+x+x2+x>+-

converges only for |x| < 1. And even if the sequence does have a limit, the limit
function may not be square integrable, so we can’t include it in an inner product space.
To complete the space, then, we throw in all square-integrable convergent sequences
of functions in the space. Notice that completing a space does not involve the intro-
duction of any new basis vectors; it is just that we now allow linear combinations
involving an infinite number of terms,

o) =) " ajle), [3.106]
=1

provided (x|} is finite—which is to say (if the basis is orthonormal), provided

o0

> laj < oo [3.107]

=1

A complete'® inner product space is called a Hilbert space."” The completion
of P(o0) is easy to characterize: It is nothing less than the set of all square-integrable
functions on the interval —1 < x < +1; we call it L,(—1, +1). More generally,
the set of all square-integrable functions on the interval @ < x < b is L(a, b). We
shall be concerned primarily with the Hilbert space L,(—00, 4+00) (or Lz, for short),
because this is where quantum mechanical wave functions live. Indeed, to physicists
L, is practically synonymous with “Hilbert space”.

The eigenfunctions of the Hermitian operators iD =id/dx and X = x are of
particular importance. As we have already found (Equations 3.95 and 3.100), they
take the form

filx) = 47, and g (x) = BuS(x — 1),

respectively. Note that there is no restriction on the elgenvalues—every real number
is an eigenvalue of iD, and every real number is an eigenvalue of x. The set of
all eigenvalues of a given operator is called its spectrum,; iD and % are operators
with continuous spectra, in contrast to the discrete spectra we have encountered

18Note the two entirely different uses of the word “complete”: a set of vectors is complete if it spans
the space; an inner product space is complete if it has no “holes” in it (i.e., it includes all its limits).

19Every finite-dimensional inner product space is trivially complete, so they re all technically Hilbert
spaces, but the term is usually reserved for infinite-dimensional spaces.
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heretofore. Unfortunately, these eigenfunctions do not lie in Hilbert space, and hence,
in the strictest sense, do not count as vectors at all. For neither of them is square-
integrable:

o0

/ L) fix)dx = IAAIZ/ MM gy — |AA|2/ ldx — oo,

—0o0
and
o0 o0
/ ax)'omx)dx = |BA|2/ 8(x — M8(x — A)dx = |B[*6(A — 1) = 0.
—00 —00
Nevertheless, they do satisfy a kind of orthogonality condition:

o0

/ L) fu(x)dx = A;A#/ M eI dx = | 4,221 8(A — )

—00

(see Equation 2.126), and

[ eerads= 85, [ ax s - wdr = 1BLG~ w.

o0

It is customary to “normalize” these (unnormalizable) functions by picking the con-
stant so as to leave an unadorned Dirac delta function on the right side (replacing the
Kronecker delta in the usual orthonormality condition; Equation 3.23).® Thus

1
V21

are the “normalized” eigenfunctions of iD, and
&.(x) = 8(x — A), with (g:lg,) = 8(A — ), [3.109]

are the “normalized” eigenfunctions of £ 2!
What if we use the “normalized” eigenfunctions of i D and £ as bases for L, 7%
Because the spectrum is continuous, the linear combination becomes an integral:

Sulx)y = e, with (ful fu) = 8(h — ), [3.108]

lﬂ=/ mﬁwhlﬂ=/ blgy) d. [3.110]

o0 o0

2011 call this “normalization” (in quotes) so you won’t confuse it with the real thing.

21'we are engaged here in a dangerous stretching of the rules, pioneered by Dirac (who had a kind
of inspired confidence that he could get away with it) and disparaged by von Neumann (who was more
sensitive to mathematical niceties), in their rival classics (P. A. M. Dirac, The Principles of Quantum
Mechanics, first published in 1930, 4™ ed., Oxford (Clarendon Press) 1958, and J. von Neumann, The
Mathematical Foundations of Quantum Mechanics, first published in 1932, revised by Princeton Univ.
Press, 1955). Dirac notation invites us to apply the language and methods of linear algebra to functions
that lie in the “almost normalizable” suburbs of Hilbert space. It turns out to be powerful and effective
beyond any reasonable expectation.

22That’s right: We’re going to use, as bases, sets of functions none of which is actually in the space!
They may not be normalizable, but they are complete, and that’s all we need.
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Taking the inner product with | f,,}, and exploiting the “orthonormality” of the basis
(Equation 3.108), we obtain the “components” ay:

an= [ atimir= [ asu-ndi=a,

oc

So

a.={fA1N) = M fx)ydx = F(=M); [3.111]

1 o0
—_— e
evidently the — A “component” of the vector | f), in the basis of eigenfunctions of i ﬁ,
is the Fourier transform (Equation 2.85) of the function f(x). Likewise,

oc
by = (gl f) = / $(x — 1) fx)dx = f(b), [3.112]
-0

so the A “component” of the vector | f) in the position basis is f(A) itself. [If
that sounds like double-talk, remember that | f) is an abstract vector, which can be
expressed with respect to any basis you like; in this sense the function f(x) is merely
the collection of its “‘components” in the particular basis consisting of eigenvectors of
the position operator.] Meanwhile, we can no longer represent operators by matrices
because the basis vectors are labeled by a nondenumerable index. Nevertheless, we
are still interested in quantities of the form

(HIT1f),

which, by force of habit, we shall call the A, 1 matrix element of the operator T.

s+xProblem 3.33

(a) Show that any linear combination of two functionsin Ly (a, b) is stillin L (a, b).
If this weren’t true, of course, Lo(a, b) wouldn’t be a vector space at all.

(b) For what range of (real) v is the function f(x) = |x|" in La(—1, +1)?

(c) For what range of a is the function f(x) =1 —x +x2—x3+4...in Ly(—a, +a)?

(d) Show that the function f(x) = ¢ " isin L;, and find its “components” in the
basis (Equation 3.108).

(e) Find the matrix elements of the operator D? with respect to the basis (Equation
3. 108) of Lz.

Problem 3.34 L,(-1, +1)includes discontinuous functions [such as the step func-
tion, 6(x), Equation [2.125], which are not differentiable. But functions expressible
as Taylor series (f(x) = ao + a1x + a>x* + ---) must be infinitely differentiable.
How, then, can 6(x) be the limit of a sequence of polynomials? Note: This is not a
difficult problem, once you see the light, but it is very subtle, so don’t waste a lot of
time on it if you're not getting anywhere.
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3.3 THE GENERALIZED STATISTICAL

INTERPRETATION

My next project is to recast the fundamental principles of quantum mechanics (as
developed in Chapters 1 and 2) into the more elegant language of linear algebra.
Remember that the state of a particle is represented by its wave function, W (x, 1),
whose absolute square is the probability density for finding the particle at point x, at
time ¢. It follows that W must be normalized, which is possible (by dividing off a
constant) if and only if it is square integrable. Thus

1. The state of a particle is represented by a normalized vector (|¥)) in the
Hilbert space L,.

Classical dynamical quantities (such as position, velocity, momentum and ki-
netic energy) can be expressed as functions of the “canonical” variables x and p
(and, in rare cases, t): O(x, p, t). To each such classical observable we associate a
quantum-mechanical operator, Q, obtained from Q by the substitution

p—> ——. [3.113]
i 0x

The expectation value of Q, in the state ¥, is
(0) =f\IJ<x,t>*Q\IJ<x,r>dx,

which we now write as an inner product:®
(Q) = (V] 00). [3.114]

Now, the expectation value of an observable quantity has got to be a real number
(after all, it corresponds to actual measurements in the laboratory, using rulers and
clocks and meters), so

(W0W) = (V| QW)* = (OW|W), [3.115]

for all vectors |W). Tt follows (see Problem 3.21) that Q must be a Hermitian operator.
Thus

2. Observable quantities, O(x, p, t), are represented by Hermitian opera-
tors, Q(x, 52 1); the expectation value of (O, in the state | W), is (V| QW).

iax?

23The “Jousy notation” I warned you about on page 92 is not so bad in this context, for we are using
the function W itself to label the vector | W), and the expression QW is perfectly self-explanatory.
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In general, identical measurements on identically prepared systems (all in the
same state W) do not yield reproducible results; however, some states are determi-
nate, for a particular observable, in the sense that they always give the same result.
[A competent measurement of the total energy of a particle in the ground state of
the harmonic oscillator, for example, will always return the value (1/2)hw.] For a
determinate state of observable (, the standard deviation is zero:

0=05 = (0~ (2D = (¥|(Q — (Q)*¥)
= (0~ (ONWIQ — (W) = (@~ (NIW)I*.  [3.116]

[I used the fact that the operator (Q — (@)) is Hermitian to peel it off the second
member of the inner product and attach it to the first member.] But the only vector
with norm zero is the null vector (Equation 3.20), so (Q — (O)|¥) =0, or

O|w) = (O)| ). [3.117]

Evidently determinate states are eigenvectors of Q Thus

3. A measurement of the observable O on a particle in the state |W) is
certain to return the value A if and only if |¥) is an eigenvector of O, with
eigenvalue A.

For example, the time-independent Schridinger equation (Equation 2.11),
HY = EY,

is nothing but an eigenvalue equation for the Hamiltonian operator, and the solutions
are states of determinate energy (as we noted long ago).

Up to this point I have added nothing new to the statistical interpretation; I
have merely explored its implications in the language of linear algebra. But there is
a missing part to the story: Although we can calculate the average result of any mea-
surement, we still cannot say what the probability of getting a particular result would
be if we were to measure a given observable ( on a particle in an arbitrary state | V)
(except for the special case of position for which the original statistical interpretation
supplies the answer). To finish the job, we need the following generalized statistical
interpretation, which is inspired by postulate 3 above, and subsumes it as a special
case:

3. If you measure an observable O on a particle in the state |V), you
are certain to get one of the eigenvalues of Q The probability of getting the
particular eigenvalue A is equal to the absolute square of the A component of
| W), when expressed in the orthonormal basis of eigenvectors.”

Z4Notice that we could calculate from this the expectation value of , and it is important to check
that the result is consistent with postulate 2 above. See Problem 3.35(c).
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To sustain this postulate, it is essential that the eigenfunctions of Q span the
space. As we have seen, in the finite-dimensional case the eigenvectors of a Hermi-
tian operator always span the space. But this theorem fails in the infinite-dimensional
case—we have encountered examples of Hermitian operators that have no eigenfunc-
tions at all, or for which the eigenfunctions lie outside the Hilbert space. We shall
take it as a restriction on the subset of Hermitian operators that are observable, thar
their eigenfunctions constitute a complete set (though they need not fall inside L,).»

Now, there are two kinds of eigenvectors, which we need to treat separately. If
the spectrum is discrete (with the distinct eigenvalues separated by finite gaps), we
can label the eigenvectors with an integer #:

Olen) = Ailey), withn=1,2,3,...; [3.118]
the eigenvectors are orthonormal (or rather, they can always be chosen so):
(enlem) = Sum; [3.119]

the completeness relation takes the form of a sum:

W) =) calen); [3.120]
n=1

the components are given by “Fourier’s trick™;
cn = (e | V), (3.121]

and the probability of getting the particular eigenvalue 4, is

lcal?® = I{enl W) . [3.122]

On the other hand, if the spectrum is continuous, the eigenvectors are labeled
by a continuous variable (k):

Olex) = Adlex), with — oo < k < 00; [3.123]

the eigenfunctions are nof normalizable (so they do notlie in L,, and do not themselves
represent possible particle states), but they satisfy a sort of “orthonormality” condition

(exler) = 8(k = 1) [3.124]

25 Some authors, following Dirac, take this to be an axiom of quantum mechanics, but it seems to
me peculiar to use that term for something that is provable in many particular instances; [ prefer to regard
it as a part of what it means to be “observable”.
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(or rather, they can always be chosen s0); the completeness relation takes the form of
an integral:

W) = foo crlex) dk; [3.125]

o

the “components” are given by “Fourier’s trick”:
ok = (e W), [3.126]

and the probability of getting an eigenvalue in the range dk about Ay is

el dk = |(ex|W)|* dk. [3.127]

The generalized statistical interpretation makes no reference to the observable
x; it treats all observables on an equal footing. But it includes the “original” form
(Equation 1.3) as a special case. The “orthonormal” eigenfunctions of the position
operator are
ex(x) =8(x —x'), [3.128]
and the eigenvalue (x') can take on any value between —oo and +oc. The x’ “com-
ponent” of |W) is

cr = {ex|W) = / S(x —x"HYW(x,t)ydx = W(x', 1), [3.129]

o

so the probability of finding the particle in the range dx’ about x’ is
lew P dx’ = W', P dx’, [3.130]

which is the original statistical interpretation of W.
A more illuminating example is provided by the momentum operator. Its “or-
thonormal” eigenfunctions are (see Problem 3.37)

1.
= —— P/, 3.131
ep(x) me [ ]

and the eigenvalue (p) can take on any value in the range —o0 < p < 00. The p
“component” of W) is

cp = (e,| W) = iy (x, 1)y dx = d(p, 1). [3.132]

1 (o0}
\/27'[7! ~/;ooe

We call ®(p, t) the momentum-space wave function—it is (apart from the factors
of i) the Fourier transform of the “position-space” wave function W (x, ¢). Evidently
the probability of getting a momentum in the range dp is

|®(p, 1)* dp. [3.133]



108

Chap. 3 Formalism

xProblem 3.35

(@) Show that Y |c,|*> = 1, in Equation 3.120.
(b) Show that [ |cx|* dk = 1, in Equation 3.125.
(c) From postulate 3’ it follows that

(Q) =3 dalenl?, or (Q) = / Mlerl? dk, [(3.134]

for discrete and continuous spectra, respectively. Show that this is consistent
with postulate 2: (Q) = (V|QW).

xProblem 3.36

(a) Refer to Problem 2.6. If you measured the energy of this particle, what values
might you get, and what is the probability of each? Use the answer to calculate
the expectation value of H, and compare the answer you got before.

(b) Do the same for Problem 2.8. Hint: To sum the series, look in a math table
under “Sums of Reciprocal Powers” or “Riemann Zeta Function.”

Problem 3.37 Confirm that e, (x) (in Equation 3.131) is the “orthonormal” eigen-
function of the momentum operator, with eigenvalue p.

Problem 3.38 Find the momentum-space wave function, ®(p, t), for a particle in
the ground state of the harmonic oscillator. What is the probability (to two significant
digits) that a measurement of p on a particle in this state would yield a value outside
the classical range (for the same energy)? Hint: Look in a math table under “Normal
Distribution” or “Error Function” for the numerical part.

3.4 THE UNCERTAINTY PRINCIPLE

I stated the uncertainty principle (in the form 0,0, > %/2) back in Section 1.6, and
you have checked it several times in the problems. But we have never actually proved
it. In this section I shall prove a more general version of the uncertainty principle and
explore some of its implications. The argument is beautiful, but rather abstract, so
watch closely.

3.4.1 Proof of the Generalized Uncertainty Principle

For any observable A, we have (quoting Equation 3.116)
of = (A~ (ADW|(A — (ADW) = (f11),
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where | f) = (/AI — (A4))|W). Likewise, for any other observable B,
op = (glg), where|g) = (B — (B))|W).
Therefore (invoking the Schwarz inequality, Equation 3.27),

olo} = (f1Nglg) = 1S [3.135]

Now, for any complex number z,
21> = (Re(2))* + (Im(2))* > (Im(2))* = [—(z - P [3.136]

Therefore, letting z = ( f|g),

2
0505 > (—[ (flg) — glf)]) . [3.137]
But
(f1g) = (A — (ANW|(B — (B)W) = (¥|(4 — (4))(B — (B))W)
= (W|(AB — A(B) — B(4) + (A)(B))W)
= (U|ABW) — (B)(W|AW) — (4)(W|BY) + (4)(B)(¥|¥)
= (AB) — (B)(A) — (4)(B) + (A)(B)
= (AB) — (4)(B)
Similarly, .
(glf) = (BA) — (4)(B),
SO . o A
(f1g) — {glf) = (4B) — (BA) = ([4, BY),
where

[4, Bl= AB - BA [3.138]

is the commutator of the two operators. Conclusion:

2
oj05 > (%([/f, é])) : [3.139]

This is the uncertainty principle in its most general form. (You might think the i
makes it trivial—isn’t the right side negative? No, for the commutator carries its own
factor of i, and the two cancel out.)

For example, suppose the first observable is position (A = x), and the second
is momentum (B (h/i)d/dx). To determine the commutator, we use an arbitrary
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“test function”, f(x):

. hd hd nl df df .
[X,P]f(x)=xf—(f)‘T—(xf)=T x——(f+x=) =ihf,
i dx i dx i| dx dx
SO
} [x, pl = ih. [3.140]
Accordingly,
1.\ [\
olar>=in) =(=) ,
p 2i 2
or, since standard deviations are by their nature positive,
h
0:0, > o [3.141]

That proves the original Heisenberg uncertainty principle, but we now see that
it is just one application of a far more general theorem: There will be an “uncertainty
principle” for any pair of observables whose corresponding operators do not com-
mute. We call them incompatible observables. Evidently, incompatible observables
do not have shared eigenvectors—at least, they cannot have a complete set of common
eigenvectors. Matrices representing incompatible observables cannot be simultane-
ously diagonalized (that is, they cannot both be brought to diagonal form by the
same similarity transformation). On the other hand, compatible observables (whose
operators do commute) share a complete set of eigenvectors, and the corresponding
matrices can be simultaneously diagonalized (see Problem 3.40).

xProblem 3.39 Prove the famous “(your name) uncertainty principle,” relating the
uncertainty in position (4 = x) to the uncertainty in energy (B = pPr2m + V)
0xOH = 2—|(p)|-
m
For stationary states this doesn’t tell you much—why not?

Problem 3.40 Prove the following:

(a) If two matrices commute ([A, B] = 0), and you apply the same similarity
transformation to both of them (A’ = SAS™!, B' = SBS™!), the resulting
matrices also commute ([A’, B'] = 0).

(b) Diagonal matrices always commute. (It follows from this that simultaneously
diagonalizable matrices must commute. Conversely, if two Hermitian matrices
commute, then they are simulatneously diagonalizable—i.e., they have a com-
plete set of common eigenvectors. This is not so easy to prove® unless you
happen to know that the spectrum of one of them is nondegenerate.)

268ee Byron and Fuller (footnote 14), Theorem 4.22.
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(c) If matrices A and B commute, and |«) is an eigenvector of A, and the spectrum
of A is nondegenerate, then |«) is also an eigenvector of B. (In that case the
matrix S that diagonalizes A also diagonalizes B.)

xProblem 3.41
(a) Prove the following commutator identity:
[AB,C1= A[B,C]1+ 1[4, C15. [3.142]

(b) Using Equations 3.140 and 3.142, show that
%", pl = ihnk"".
(c) For any function f(x) that can be expanded in a power series, show that

Lf(R), pl =ik f' (%),

where the prime denotes differentiation.

3.4.2 The Minimum-Uncertainty Wave Packet

We have twice encountered wave functions that hit the position-momentum uncer-
tainty limit (0,0, = %/2): the ground state of the harmonic oscillator (Problem 2.14)
and the Gaussian wave packet for the free particle (Problem 2.22). This raises an
interesting question: What is the most general minimum-uncertainty wave packet?
Looking back at the proof of the uncertainty principle, we note that there were two
points at which inequalities came into the argument: Equation 3.135 and Equation
3.136. Suppose we require that each of these be an equality, and see what this tells
us about ¥. The Schwarz inequality becomes an equality when the angle between
the two vectors (Equation 3.28) is zero—that is, when one is a multiple of the other:
|g) = c| f), for some scalar c. (Study the proof of the Schwarz inequality in Problem
3.5 if you’re not convinced.) Meanwhile, in Equation 3.136 I threw away the real part
of z; equality results if Re(z) = 0, which is to say, if Re(f|g) =Re(c(f|f)) = 0.
Now ( f| /) is certainly real, so this means the constant ¢ must be purely imaginary—
let’s call it ia. The necessary and sufficient condition for minimum uncertainty, then,
is

|g) =ia|f), wherea isreal. [3.143]

In particular, for the position-momentum uncertainty principle this criterion
becomes

(7—.'i - <p>) W =ia(x — (x))V, (3.144]
idx
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which is a differential equation for W as a function of x, with the general solution
(see Problem 3.42)
W(x) = de 0N B HpIx/m, [3.145]

Evidently the minimum-uncertainty wave packet is a Gaussian—and sure enough,
the two examples we encountered earlier were Gaussians.”

Problem 3.42 SolveEquation 3.144 for W (x). (Note that (x) and ( p) are constants,
as far as x is concerned.)

3.4.3 The Energy-Time Uncertainty Principle

The position-momentum uncertainty principle is usually written in the form

/]
AxAp> . [3.146]
Ax (the “uncertainty” in x) is sloppy notation (and sloppy language) for the standard
deviation in the results of repeated measurements on identically prepared systems.
Equation 3.146 is often paired with the energy-time uncertainty principle,

h
At AE > 3 [3.147]

Indeed, in the context of special relativity the energy-time form might be thought of as
a consequence of the position-momentum version, because x and ¢ (or rather, cz) go
together in the position-time four-vector, while p and E (or rather, E/c) go together
in the energy-momentum four-vector. So in a relativistic theory Equation 3.147
would be a necessary concomitant to Equation 3.146. But we’re not doing relativistic
quantum mechanics—the Schrddinger equation is explicitly nonrelativistic: It treats
¢ and x on a very unequal footing (as a differential equation it is first-order in 7,
but second-order in x), and Equation 3.147 is emphatically not implied by Equa-
tion 3.146. My purpose now is to derive the energy-time uncertainty principle, and
in the course of that derivation to persuade you that it is really an altogether different
beast, whose similarity in appearance to the position-momentum uncertainty principle
is quite misleading.

Afterall, position, momentum, and energy are all dynamical variables—measur-
able characteristics of the system, at any given time. But time itself is not a dynamical
variable (not, at any rate, in a nonrelativistic theory): You don’t go out and measure
the “time” of a particle, as you might its position or its energy. Time is the indepen-
dent variable of which the dynamical quantities are functions. In particular, the Az

27Note that it is only the dependence of W on x that is at issue here—the “constants” 4, a, {x}, and
{p) may all be functions of time, and as time goes on W may evolve away from the minimal form. AllI'm
asserting is that if, at some instant, the wave function is Gaussian in x, then (at that instant) the uncertainty
product is minimal.
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in the energy-time uncertainty principle is not the standard deviation of a collection
of time measurements; roughly speaking (I'll make this more precise in a moment),
itis the time it takes the system to change substantially.

As a measure of how fast the system is changing, let us compute the time
derivative of the expectation value of some observable, Q(x, p, 1):

d d . oV ., 30 A QW
—(Q) = — (V| QW) = (— | QW) + (V| = W Oo—).
dz(Q> dt< QW) (BIIQ )+ Iat‘ll)+( lQat)
Now the Schrédinger equation says
W .
ih— = HV
3t
(where H = p?/2m + V is the Hamiltonian). So
d 1 oA s 1 s 30
;;(Q)——E(HWIQW)+E(WIQHW)+(¥)-
But A is Hermitian, so (HW|QW) = (¥|H OW), and hence
d i A oa 30
0y = (A =y, 3.148
dt<Q> h([ ,Q])+(at) [ )

This is an interesting and useful result in its own right (see Problems 3.43 and 3.53).
In the typical case, where the operator does not depend explicitly on ¢, it tells us
that the rate of change of the expectation value is determined by the commutator of
the operator with the Hamiltonian. In particular, if O commutes with H, then (Q) is
constant, and in this sense Q is a conserved quantity.

Suppose we pick 4 = H and B = (), in the generalized uncertainty principle
(Equation 3.139), and assume that Q does not depend explicitly on :

2 a1, o A N (1RO (R (d(O))
Ho0 > (z“”’ Q”) —(577) —<5) (T,) ~

Or, more simply,

h|d{Q)

> = —]. 3.149
OHO0 = 3 ‘ dt [3.1491
Let’s define AE = oy (with A as the usual sloppy notation for standard deviation),

and
Ar=_—22 [3.150]
|d(Q)/dt|

B Asan example of explicit time dependence, think of the potential energy of a harmonic oscillator
whose spring constant is changing (perhaps the temperature is rising, so the spring becomes more flexible):

0 = (1/2ymlw(t)?x2.
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Then

AEAt > -, [3.151]

[NSEER

and that’s the energy-time uncertainty principle. But notice what is meant by A¢ here:
Since

0p = ‘-d—(d?—) At,

At represents the amount of time it takes the expectation value of Q to change by one
standard deviation. In particular, A¢ depends entirely on what observable (Q) you
care to look at—the change might be rapid for one observable and slow for another.
But if AE is small, then the rate of change of all observables must be very gradual.
and conversely, if any observable changes rapidly, the “uncertainty” in the energy
must be large.

Example 1. In the extreme case of a stationary state, for which the energy is
uniquely determined, all expectation values are constant in time (A? = 00)—as, in
fact, we noticed some time ago (see Equation 2.8). To make something happen, you
must take a linear combination of at least two stationary states—for example,

W(x,1) = ay(x)e B 4 by (x)e 2R,
If a, b, ¥, and yr, are real,
E,—-F
W (x, )2 = a® (Y1 (x))? + B> (Y2 (x))* + 2abyr (x) Y (x) cos (—2,1—‘:) :

The period of oscillation is T = 27k /(E, — E1). Roughly, then, AE = E; — E7 and
At = 1 (for the exact calculation, see Problem 3.44), so

h
AE At =27h > 3

Example 2. How long does it take a free particle wave packet to pass by a
particular point (Figure 3.1)? Qualitatively (an exact version is explored in Problem
3.45), At = Ax/v =mAx/p,but E = p*/2m,so AE = pAp/m. Therefore,

Example 3. The A particle lasts about 1072* seconds before spontancously
disintegrating. If you make a histogram of all measurements of its mass, you get
a kind of bell-shaped curve centered at 1232 MeV/c?, with a width of about 115
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fe———— AX ————|

A x
Figure 3.1: A free particle wave packet approaches the point 4 (Example 2).

MeV/c?. Why does the rest energy (mc?) sometimes come out higher than 1232, and
sometimes lower? Is this experimental error? No, for

115
AE At = (5 MeV) (1072 sec) = 6 x 10722 MeV sec,

whereas 7/2 = 3 x 10722 MeV sec. So the spread in m is about as small as the
uncertainty principle allows—a particle with so short a lifetime just doesn’t have a
very well-defined mass.”

Notice the variety of specific meanings attaching to the term Af in these exam-
ples: In Example 1 it’s a period of oscillation; in Example 2 it’s the time it takes a
particle to pass a point; in Example 3 it’s the lifetime of an unstable particle. In every
case, however, At is the time it takes for the system to undergo substantial change. It
is often said that the uncertainty principle means that energy is not strictly conserved
in quantum mechanics—that you’re allowed to “borrow” energy A E, as long as you
“pay it back” in a time At ~ h/2AE; the greater the violation, the briefer the period
over which it can occur. There are many legitimate readings of the energy-time un-
certainty principle, but this is not one of them. Nowhere does quantum mechanics
license violation of energy conservation, and certainly no such authorization entered
into the derivation of Equation 3.151. But the uncertainty principle is extraordinar-
ily robust: It can be misused without leading to seriously incorrect results, and as a
consequence physicists are in the habit of applying it rather carelessly.

*Problem 3.43 Apply Equation 3.148 to the following special cases: (a) Q = 1;
(b) 0 = H; (¢) Q = x; (d) Q = p. In each case, comment on the result, with
particular reference to Equations 1.27, 1.33, 1.38, and 2.35.

»xxProblem 3.44 Test the energy-time uncertainty principle for the wave function in
Problem 2.6 and the observable x by calculating o', 0y, and d(x) /dt exactly.

29 Actually, Example 3 is a bit of a fraud. You can’t measure 1023 sec on a stop-watch, and in
practice the lifetime of such a short-lived particle is inferred from the width of the mass plot, using the
uncertainty principle as input. However, the point is valid even if the numbers are suspect. Moreover, if
you assume the A is about the same size as a proton (~ 107!1° m), then 10~23 sec is roughly the time it
takes light to cross the particle, and it’s hard to imagine that the lifetime could be much less than that.
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sxxProblem 3.45 Test the energy-time uncertainty principle for the free particle wave
packet in Problem 2.40 and the observable x by calculating o, 0y, and d{(x)/dt
exactly.

Problem 3.46 Show that the energy-time uncertainty principle reduces to the “your
name” uncertainty principle (Problem 3.39) when the observable in question is x.

FURTHER PROBLEMS FOR CHAPTER 3

x+Problem 3.47 Functions of matrices are defined by their Taylor series expansions;
for example,

1

3
3!M + - [3.152]

1
ele+M+§M2+

(a) Find exp(M), if

01 3
) . 0 6
(1)M=<0 0 4); (i1)M=( )

00 0 —6 0

(b) Show that if M is diagonalizable, then
det (M) = ™™, [3.153]

(This is actually frue even if M is not diagonalizable, but it’s harder to prove in
the general case.)

(c) Show that if the matrices M and N commute, then
MHN = MN, [3.154]

Prove (with the simplest counterexample you can think up) that Equation 3.154
is not true, in general, for noncommuting matrices.

(d) If H is Hermitian, show that ¢’ is unitary.

xProblem 3.48 A particle of mass m is in the ground state of the infinite square well
(Equation 2.15). Suddenly the well expands to twice its original size—the right wall
moving from a to 2a—Ileaving the wave function (momentarily) undisturbed. The
energy of the particle is now measured.

(a) What is the most probable result? What is the probability of getting that result?
(b) What is the next most probable result, and what is its probability?
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(c) What is the expectation value of the energy? (If you find yourself confronted
with an infinite series, try another method.)

Problem 3.49 A harmonic oscillator is in a state such that a measurement of the
energy would yield either (1/2)hw or (3/2)hw, with equal probability. What is the
largest possible value of (x) in such a state? If it assumes this maximal value at time
t =0, whatis W(x,1)?

*xxProblem 3.50 Find the matrix elements (r|x|n’) and (n|p|n’) in the (orthonormal)
basis consisting of stationary states for the harmonic oscillator (here |r) refers to the
state ¥, Eq.2.50). [You already calculated the diagonal elements (n = »’)in Problem
2.37; use the same technique for the general case.] Construct the corresponding
(infinite) matrices, X and P. Show that (1 /2m)P2 + (ma?/2)X? = His diagonal, in
this basis. Are its diagonal elements what you would expect? Partial answer:

h
(nlxin'y =\ 5— (VWbn 1 + Va1 ) [3.155]
2mw
sx+«Problem 3.51 Show that

(x)= / ¢* (—Ei) D dp, [3.156]
idp

where ®(p, ) is the momentum-space wave function. In general,

Sw*Q (x, B2 1) wdx, in position space;
/ "0 <—E %, D, t) ®dp, in momentum space.

i

(Qx,p,n) = l (3.157]

Hint: Notice that x exp(ipx /h) = —ih(d/dp) exp(ipx /h).

xxProblem 3.52 Find the momentum-space wave function ®, (p, ) for the nth sta-
tionary state of the infinite square well. Construct |®,|? (it’s simplest to write separate
formulas for odd and even n). Show that |®,|? is finite at p = +n7h/a.

xProblem 3.53 Use Equation 3.148 to show that

d, o Y
7P =2T) = {x—

where T is the kinetic energy (H = T + V). In a stationary state the left side is zero
(why?), so

), [3.158]

dv
—
dx
This is called the virial theorem. Use it to prove that (T) = (V) for stationary states

of the harmonic oscillator, and check that this is consistent with the results you got
in Problems 2.14 and 2.37.

2T) = ( ). [3.159]
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Problem 3.54 What would it mean for an observable Q to be conserved, in quan-
tum mechanics? At a minimum, the expectation value of Q should be constant in
time, for any state W. The criterion for this (assuming @ has no explicit time de-
pendence) is that Q commute with the Hamiltonian (Equation 3.148). But we’d like
something more: The probability [c,|* of getting any particular eigenvalue (A,) of
O should be independent of ¢. Show that this, too, is guaranteed by the condition
[H, Q] = 0. (Assume that the potential energy is independent of z, but do nor assume
W is a stationary state.) Hint: Q and H are compatible observables, so they have a

complete set of simultaneous eigenvalues.

«xProblem 3.55

(a) For a function f(x) that can be expanded in a Taylor series, show that
Fx+x0) = P f(x)

(where x, is any constant distance). For this reason, p/h is called the generator
of translations in space. (See Problem 3.47 for the meaning of an operator in
the exponent.)

(b) If W(x, t) satisfies the (time-dependent) Schridinger equation, show that
W(x,t+1t) = e_iﬁto/h\ll(x, 1)

(where 1o is any constant time); — H /A is called the generator of translations
in time.

(c) Show that the expectation value of a dynamical variable Q(x, p,?), at time
t + 29, can be written

(Q)esry = (U (x, )] H D%, Bt + tg)e™ Ho0/ W (x, 1)),

Use this to recover Equation 3.148. Hint: Let ty = dt, and expand to first order
in dt.

Problem 3.56 In an interesting version of the energy-time uncertainty principle*
At = t/m, where 7 is the time it takes W(x,?) to evolve into a state orthogo-
nal to W(x,0). Test this out, using a wave function that is an equal admixture
of two (orthonormal) stationary states of some (arbitrary) potential: W(x,0) =

(1/vV2)[¥1 (x) + Y2 (x)]-

»xxProblem 3.57 Dirac proposed to peel apart the bracket notation for an inner prod-

uct, («|B), into two pieces, which he called bra ({(«|) and ket (|8)). The latter is
a vector, but what exactly is the former? It’s a linear function of vectors, in the
sense that when it hits a vector (to its right) it yields a (complex) number—the inner

30See Lev Vaidman, Am. J. Phys. 60, 182 (1992) for a proof.
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product.® (When an operator hits a vector, it delivers another vector; when a bra hits
a vector, it delivers a number.) Actually, the collection of all bras constitutes another
vector space—the so-called dual space.

The license to treat bras as separate entities in their own right allows for some
powerful and pretty notation (though I shall not exploit it further in this book). For
example, if |o) is a normalized vector, the operator

P = |a) (x| [3.160]
picks out the component of any other vector that “lies along” |a):
PiB) = (lB)la);

we call it the projection operator onto the one-dimensional subspace spanned by
lor).

(@) Show that P? = P. Determine the eigenvalues of P, and characterize its
eigenvectors.
(b) Suppose |e;) is an orthonormal basis for an n-dimensional vector space. Show
that
n
D e el = 1. [3.161]
i=1

This is the tidiest statement of completeness.

(c) Let Q be an operator with a complete set of orthonormal eigenvectors:

~

Ole;) =xjle) (j=1,2,3,...n).

Show that Q can be written in terms of its spectral decomposition:
n
0= Z,\j|ej)(ej;. [3.162]
j=1

Hint: An operator is characterized by its action on all possible vectors, so what
you must show is that

Ola) = {Z xjieﬂ(ej!} [
j=1

for any vector |a).

3'In a function space, the bra can be thought of as an instruction to integrate

(f|=/f*[---]dx,

with the “hole” [ - -] waiting to be filled by whatever function the bra encounters next.
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«Problem 3.58 Imagine a system in which there are just two linearly independent

states:
1 0
|1):(0) and |2):(1).

The most general state is a normalized linear combination:

W) =al|l) +bJ2) = (Z) with |a)? + |b]? = 1.

Suppose the Hamiltonian matrix is

_(h g
H'<g h)’

where g and 4 are real constants. The (time-dependent) Schrodinger equation says
d
H|V) = ih—|¥).
W) priad

(a) Find the eigenvalues and (normalized) eigenvectors of this Hamiltonian.

(b) Suppose the system starts out (at = 0) in state |1). What is the state at time ¢?

Answer: (
_ —inin [ cos(gt/h)
9 (@)) =™ (—i sin(gt /h) )

Note: This is about the simplest nontrivial quantum system conceivable. It is
a crude model for (among other things) neutrine oscillations. In that case 1)
represents the electron neutrino, and |2) the muon neutrino; if the Hamiltonian
has a nonvanishing off-diagonal term g, then in the course of time the electron
neutrino will turn into a muon neutrino, and back again. At present this is
highly speculative—there is no experimental evidence for neutrino oscillations;
however, a very similar phenomenon does occur in the case of neutral K-mesons
(K° and K9).




CHAPTER 4

QUANTUM MECHANICS IN
THREE DIMENSIONS

4.1 SCHRODINGER EQUATION IN SPHERICAL

COORDINATES
The generalization to three dimensions is straightforward. Schrodinger’s equation
says
ov
h— = HY; 4.1
th— [4.1]

the Hamiltonian operator' H is obtained from the classical energy
LI L, 2 2
My +V = %(px+py+pz)+V

by the standard prescription (applied now to y and z, as well as x):
h o ho ha

- ——, — - -,
Pr= o P Pz Tz

A 4.2
iady’ 421
or

h
p—)TV
i

[4.3]

’

Where confusion might otherwise occur, I have been putting “hats” on operators to distinguish
them from the corresponding classical observables. I don’t think there will be much occasion for ambiguity
in this chapter, and the hats get to be cumbersome, so I am going to leave them off from now on.

191
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for short. Thus

EY n?
ih— =

—— VU 4V, 4.4
dat 2m + [4.4]

where 5 5 5
3 ] d
Ve — 4 — + — 4.5
9x? + 9y? + 8z2 [45]
is the Laplacian, in Cartesian coordinates.
The potential energy ¥ and the wave function ¥ are now functions of r =
(x, y,z) and t. The probability of finding the particle in the infinitesimal volume
d’r = dx dydx is |¥(r, 1)|* d°r, and the normalization condition reads

/|\I/|2d3r= 1, [4.6]

with the integral taken over all space. If the potential is independent of time, there
will be a complete set of stationary states,

W, (r, 1) = Yy(r)e B/t (4.7)

where the spatial wave function v, satisfies the time-independent Schrédinger equa-
tion:

h2
— — VY + VY, = Entn. [4.8]
2m

The general solution to the (time-dependent) Schrodinger equation is

() =Y cnPn(r)e B, [4.9]

with the constants ¢, determined by the initial wave function, W (r, 0), in the usual
way. (If the potential admits continuum states, then the sum in Equation 4.9 becomes
an integral.)

«Problem 4.1

(@) Work out all of the canonical commutation relations for components of the
operators r and p: [x, ¥, [x, p,], [x, p:], [Py, p], and so on. Answer:

[ri, pil = —[pi, rj1 =ihdy;, [ri,r;] =1[p:i, pj1=0. [4.10]
(b) Show that
i(l')_l( ), and i( ) = (—=VF) (4.11]
PTAL ar = ’ :

(Each of these, of course, stands for three equations—one for each component.)
Hint: Note that Equation 3.148 is valid in three dimensions.
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(¢) Formulate Heisenberg’s uncertainty principle in three dimensions. Answer:
0x0p, Z1/2, 0y0p, Z1/2, 0z0p ZH/2, [4.12]

but there is no restriction on, say, 0,0,

4.1.1 Separation of Variables

Typically, the potential is a function only of the distance from the origin. In that case
it is natural to adopt spherical coordinates, (r, 0, ¢) (see Figure 4.1). In spherical
coordinates the Laplacian takes the form?

10 (,8 13 3 1 ¥
Vz - 22 - in @ — —{—]. [4.13
r2 dr (r ar) + r2sin6 36 (sm 39) * 72 sin’ (ad’z) S

In spherical coordinates, then, the time-independent Schrédinger equation reads

R[1d [ ,00 18 /. oy 1 %y
_— == —_ — - —  { =
2m [:r2 or (r ar ) 2 sin0 56 (sm a0 ) * r2sin® @ <8¢2 )]

+Vy = Ey. [4.14]
We begin by looking for solutions that are separable into products:
Y(r,0,¢) = R)Y(O, d). [4.15]

Putting this into Equation 4.14, we have

WYy d/,dR N R_3 (. ¥ N R %Y
——— | — — | sInf— —_—
2m | r?dr \' dr ) r%sin6 39 36 ) r2sin® g d¢?

+V RY = ERY.

z

Figure 4.1: Spherical coordinates: radius r, polar angle 8, and azimuthal angle ¢.

2In principle, this can be obtained by change of variables from the Cartesian expression (Equation
4.5). However, there are much more efficient ways of getting it; see, for instance, M. Boas, Mathematical
Methods in the Physical Sciences, 2nd ed. (New York: John Wiley and Sons, Inc., 1983) Chapter 10,
Section 9.
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Dividing by Y R and multiplying by —2mr?/h*:

1d ,dR 2mr?
(72 (") - S o)

+1 1 3 _08Y N 1 9%y 0
-y nf— — 1 =0.
Y |sin8 06 5t a0 sin® 6 d¢?

The term in the first curly bracket depends only on r, whereas the remainder depends
only on @ and ¢; accordingly, each must be a constant. For reasons that will appear
in due course, I will write this “separation constant” in the form /(/ + 1):*

1d (,dR\ 2mr?

R (r dr) ) Vr)y—El=I10+1); [4.16]
11 a Y 1 %Y
—{—~—(sind— — ==l +1). 4.1
Y {sin@ 36 (S“’ 80)+sin20 a¢2} ¢+D [4.17]

xProblem 4.2 Use separation of variables in Cartesian coordinates to solve the
infinite cubical well (or “particle in a box™):

V(x,y.z) = 0, ifx,y, zare all between 0 and a;
Y2 =100, otherwise.

(a) Find the stationary state wave functions and the corresponding energies.

(b) Call the distinct energies Eq, E», F3, ..., in order of increasing energy. Find
E\, E», E;, E4, Es5, and Eg. Determine the degeneracy of each of these energies
(that is, the number of different states that share the same energy). Recall
(Problem 2.42) that degenerate bound states do not occur in one dimension, but
they are common in three dimensions.

(€c) What is the degeneracy of E|4, and why is this case interesting?

4.1.2 The Angular Equation

Equation 4.17 determines the dependence of v on € and ¢; multiplying by Y sin? @,
it becomes

3 3 3’y
sin@ — (sine—) + e = —I(l + 1)sin®6Y. [4.18]

3Note that there is no loss of generality here—at this stage / could be any complex number. Later
on we’ll discover that / must in fact be an integer, and it is in anticipation of that result that I express the
separation constant in a way that looks peculiar now.
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You may have encountered this equation already—it occurs in the solution to Laplace’s
equation in classical electrodynamics. As always, we try separation of variables:

Y6, ¢) =0(0)D(p). [4.19]

Plugging this in, and dividing by ®®, we find
1 d d 1 d*®
{6[sin0‘—ig<sin0£>:|+l(l+1)sin20} 5%:0

The first term is a function only of 6, and the second is a function only of ¢, so each
must be a constant. This time I'll call the separation constant m?:*

17. d (. d® .2 2.
) Iism@% <51n0%>] +I(d +1)sin“6 =m~; [4.20]
1 d?® 2
— = 4.21
The ¢ equation is easy:
qu) 2 im¢
= > 2@y = [4.22]

[Actually, there are two solutions: exp(ime) and exp(—im¢), but we’ll cover the latter
by allowing m to run negative. There could also be a constant factor in front, but we
might as well absorb that into ®. Incidentally, in electrodynamics we would write the
azimuthal function (®) in terms of sines and cosines, instead of exponentials, because
electric potentials must be real. In quantum mechanics there is no such constraint,
and the exponentials are a lot easier to work with.] Now, when ¢ advances by 2m,
we return to the same point in space (see Figure 4.1), so it is natural to require that’

Q@ +2m) = D(9). (4.23]

In other words, exp[im(¢ + 27)] = exp(im¢), or exp(2zim) = 1. From this it
follows that m must be an integer:

m=0,%1,%£2,.... [4.24]

4 Again, there is no loss of generality here since at this stage m could be any complex number;
in a moment, though, we will discover that m must in fact be an integer. Beware: The letter m is now
doing double duty, as mass and as the so-called magnetic quantum number. There is no graceful way to
avoid this since both uses are standard. Some authors now switch to M or u for mass, but I hate to change
notation in midstream, and I don’t think confusion will arise as long as you are aware of the problem.

S5This is a more subtle point than it looks. After all, the probability density (| ®|2) is single valued
regardless of m. In Section 4.3 we’ll obtain the condition on m by an entirely different—and more
compelling—argument.
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The 6 equation,

d de
sin6—- (sin025> +[Id + 1)sin® 6 — m?]® =0, [4.25]

may not be so familiar. The solution is
®@) = AP (cos0), {4.26]

where P” is the associated Legendre function, defined by®

|2
P (x) = (1 - xH)"? (%) P(x), [4.27)

and P;(x) is the [th Legendre polynomial. We encountered the latter (Equation 3.91)
as orthogonal polynomials on the interval (—1, +1); for our present purposes it is
more convenient to define them by the Rodrigues formula:

P(x) = L (4 1(2 15 (4.28)
=g\ ) & ‘ '
For example,
1d
Po(x) =1, Pi(x) = EE(XZ_I)ZX’

1 /d)\* 1
P(x) = 7— (5) -1 = 5<3x2 - 1),

and so on. The first few Legendre polynomials were listed in Table 3.1. As the name
suggests, P;(x) is a polynomial (of degree /) in x, and is even or odd according to the
parity of . But P/ (x) is not, in general, a polynomial—if m is odd it carries a factor

of V1 —x2:

PY(x) = %(3;(2 -1, Rx)=(0- xz)l/zdi B(z;x2 - 1)} = 3xv/1— x2,
X

PAx) = (1 - x) (%) B(ﬁuz - 1)} =301 -2,

etc. [On the other hand, what we need is P"(cos8), and /1 — cos*f = sind, so
P["(cos 0) is always a polynomial in cos 6, multiplied—if m is odd—Dby sin 6. Some
associated Legendre functions of cos 6 are listed in Table 4.1.]

Notice that P™ = P". Some authors adopt a different sign convention for negative values of
m; see Boas (footnote 2) p. 505.
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Table 4.1: Some associated Legendre functions, P/ (cos#).

P! =sin6

P} = 15sin6(1 — cos*6)
P = cos b

P} = 15sin* 6 cos 8
P} = 3sin’6

P} = 3sin6(5cos?6 — 1)
P} =3sinf cos b

P} = 1(5cos’ 6 — 3cos )
P} = 1(3cos’6 — 1)

Notice that / must be a nonnegative integer for the Rodrigues formula to make
any sense; moreover, if [m| > /, then Equation 4.27 says A" = 0. For any given /,
then, there are (2/ + 1) possible values of m:

I=0,1,2,...;om=-l,-1+1,...,-1,0,1,..., 0 = 1,1 [4.29]

But wait! Equation 4.25 is a second-order differential equation: It should have two
linearly independent solutions, for any old values of / and m. Where are all the other
solutions? Answer: They exist, of course, as mathematical solutions to the equation,
but they are physically unacceptable because they blow up at & = 0 and/or 6 = 7,
and do not yield normalizable wave functions (see Problem 4.4).

Now, the volume element in spherical coordinates’ is

d’r =r’sinfdrdode, [4.30]

so the normalization condition (Equation 4.6) becomes
/ W 2r2sinbdrdf dp = / |R|2r2dr/ |Y|*sin6d6d¢ = 1.
It is convenient to normalize R and Y individually:
oo 27 b3
/ IR1%¥*dr =1 and/ / |Y|*sinf df dep = 1. [4.31]
0 0 0

The normalized angular wave functions® are called spherical harmonics:

7See, for instance, Boas, (footnote 2), Chapter 5, Section 4.

8The normalization factor is derived in Problem 4.47. The € factor is chosen for consistency with
the notation we will be using in the theory of angular momentum; it is reasonably standard, though some
older books use other conventions. Notice that

Y;m = (=D Ylm
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Table 4.2: The first few spherical harmonics, Y;" (8, ¢).

0 1 1/2 »
YO = (E) YZ
3 172
0 _ 0
YI = (E) cosé Y3
+1 3 172 : i +1
We=x (g) sin get’® Y

0 5 172 2 +2
Y2=(16_7'[) (3COS 9—1) Y3

15 172 )
= (f) sinz Geim’
T

7 1/2
= (E) (5cos> @ — 3cos 6)

21 \ V2 2 »
=F (—) sin@(5cos? 6 — 1)et’®
64m

105\1/2 ;
= (37) sin” @ cos fer ¢
T

+1 15\'/* tip  pa3 SN2 5
Y, =% - sin @ cos fe YU =7 P sin” fe

[4.32]

wo e D A= mD! e o
Y,(@,(p)_e\/ y (l+|m|)!e P/ (cos9),

where € = (—1)" form > 0 and € = 1 for m < 0. As we shall prove later on, they
are automatically orthogonal, so

2w T
/ / (Y8, )Y B, $)]sin 6 d6 dp = 81 8pm- [4.33]
0 0

In Table 4.2 T have listed the first few spherical harmonics.

«Problem 4.3 Use Equations 4.27, 4.28, and 4.32 to construct Y, and ¥, . Check
that they are normalized and orthogonal.

Problem 4.4 Show that
©(0) = Aln[tan(6/2)]

satisfies the # equation (Equation 4.25) for / = m = 0. This is the unacceptable
“second solution”—what’s wrong with it?

xProblem 4.5 Using Equation 4.32, find Y/ (6, ¢) and Y2(8, ¢). Check that they sat-
isfy the angular equation (Equation 4.18), for the appropriate values of the parameters
[ and m.

xxProblem 4.6 Starting from the Rodrigues formula, derive the orthonormality con-
dition for Legendre polynomials:

! 2
/—1 Pi(x)Pr(x)dx = (m) Sypr.

Hint: Use integration by parts.

[4.34]
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4.1.3 The Radial Equation
Notice that the angular part of the wave function, Y (6, ¢), is the same for all spherically

symmetric potentials; the actual shape of the potential, V (r), affects only the radial
part of the wave function, R(»), which is determined by Equation 4.16:

d ( ,dR 2mr? _
4 (r E) -2 Ve) - EIR =10+ DR, [4.35]

This equation simplifies if we change variables: Let
u(r)y =rR(r), [4.36]

sothat R = u/r, dR/dr = [r(du/dr) —ul/r?, (d/dr)[r*(dR/dr)] = rd*u/dr?,
and hence

B? d2u {V ﬁ1(1+1)

B du - Eu. 4.37
2m dr? 2 ]" . [4.37]

2m  r

This is called the radial equation’; it is identical in form to the one-dimensional
Schrodinger equation (Equation 2.4), except that the effective potential,

210+ 1)
2m  r?

Ver =V + , [4.38]
contains an extra piece, the so-called centrifugal term, (A /2m)[1(14+1)/r*]. Ittends
to throw the particle outward (away from the origin), just like the centrifugal (pseudo-)
force in classical mechanics. Meanwhile, the normalization condition (Equation 4.31)
becomes

/ lu>dr = 1. [4.39]
0

We cannot proceed further until a specific potential is provided.

Example. Consider the infinite spherical well,

0, ifr<a;
Vir = [oo, ifr > a. [4.40]
Outside the well the wave function is zero; inside the well the radial equation says
d’u +1) 5
—_— = —k“u, 441
dr? [ 2 [4.41]

9Those m’s are masses, of course—the radial equation makes no reference to the quantum
number m.
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where
2mE

h £l
as usual. Our problem is to solve this equation, subject to the boundary condition
u(a) = 0. The case [ = 0 is easy:

k [4.42]

d*u

— =—ku = u(r) = Asin(kr) + B cos(kr).
dr?

But remember, the actual radial wave function is R(r) = u(r)/r, and [cos(kr)]/r
blows up as  — 0. So0'° we must choose B = 0. The boundary condition then
requires sin(ka) = 0, and hence ka = nx, for some integer n. The allowed energies
are evidently
n2n2h2
2ma? "’
the same as for the one-dimensional infinite square well (Equation 2.23). Normalizing
u(r) yields A = +/2/a; inclusion of the angular part (constant, in this instance, since
Y96, ¢) = 1/+/4m), we conclude that

E, = n=1273,..), [4.43]

1 sin(nmr/a)

Ynoo = (4.44]

2na r
[Notice that the stationary states are labeled by three quantum numbers, », [, and
m: Yo (7, 6, ¢). The energy, however, depends only onn and I: E,;.]
The general solution to Equation 4.41 (for an arbitrary integer /) is not so
familiar:
u(ry = Arjiy(kr) + Brni(kr), [4.45]

where j;(x) is the spherical Bessel function of order /, and »,(x) is the spherical
Neumann function of order /. They are defined as follows:

! . !
j,mE(_xy(li) Slzx; n,<x>s—<—x>’(li) SX  l4.46)

xdx x dx x

For example,

. sinx COS X
Jo(x) = ——; molx) = — ;
X X

. 1 d (sinx sinx  cosx
o= ot (22) .
x dx

X x? x

10 Actually, all we require is that the wave function be normalizable, not that it be finite: R(r) ~ 1/r
at the origin would be normalizable (because of the r2 in Equation 4.31). For a more compelling proof
that B = 0, see R. Shankar, Principles of Quantum Mechanics (New York: Plenum, 1980), p. 351.
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ni(x) = —-(—x);a

’

1d (cosx) cosx  sinx

x x? x

and so on. The first few spherical Bessel and Neumann functions are listed in

Table 4.3. Notice that for small x (where sinx ~ x — x3/3! + x°/5! — ... and
cosx & 1 —x2/24+x*/41 — .. ),
. 1 ) x 1
SR nx)x = H) R M) R -
X 3 X

etc. The point is that the Bessel functions are finite at the origin, but the Neumann
functions blow up at the origin. Accordingly, we must have B; = 0, and hence

R(r) = Aji(kr). [4.47]

There remains the boundary condition, R(a) = 0. Evidently k£ must be chosen
such that

Ji(ka) = 0; [4.48]
that is, (ka) is a zero of the /M-order spherical Bessel function. Now the Bessel
functions are oscillatory (see Figure 4.2); each one has an infinite number of zeros.
But (unfortunately, for us) they are not located at nice sensible points (such as #, or

n7, or something); they have to be computed numerically.!! Atany rate, the boundary
condition requires that

1
k= —Bu, [4.49]
a

Table 4.3: The first few spherical Bessel and Neumann functions, ji(x) and n;(x).

X sin x cosx
Jo= ng = —
X X
X sinx  COSx cosx  sinx
N=TF T e
X X P X
. (3 1) . 3 3 1) 3 .
=|——~])sinx— —<cosx np=—{-— ——}cosx — —sinx
2 x3  x x2 z 2 x)° x2
i x! Q@ -Dnn " <1
- —_—, > ——— or X .
A= @ M P r

11 Abramowitz and Stegun, eds., Handbook of Mathematical Functions (New York: Dover, 1965),
Chapter 10, provides an extensive listing.
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\ 12

L4 x
A

Figure 4.2: Graphs of the first four spherical Bessel functions.

where B8, is the n™ zero of the /™

then, are given by

spherical Bessel function. The allowed energies,

n®o,
Ey=——8, 4.50
I 2ma2 ﬁnl [ ]
and the wave functions are
wnlm (ry 6’ ¢) = Anl]l (ﬂnlr/a)Y]m (67 ¢)7 [4'51]

with the constant 4,; to be determined by normalization. Each energy levelis (2/+1)-
fold degenerate, since there are (2! + 1) different values of m for each value of / (see
Equation 4.29).

Problem 4.7

(@) From the definitions (Equation 4.46), construct j>(x) and n(x).

(b) Expand the sines and cosines to obtain approximate formulas for j>(x) and
na(x), valid when x « 1. Confirm that j;(x) is finite at the origin but n,(x)
blows up.

Problem 4.8

(@) Check that Arj, (kr) satisfies the radial equation (Equation 4.37) with V' () = 0
and/ = 1.
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(b) Determine graphically the allowed energies for the infinite spherical well when
[ = 1. Show that for large n, E,; ~ (h>m%/2ma®)(n + 1/2)%.

+xProblem 4.9 A particle of mass m is placed in a finite spherical well:

0, ifr<a;
Vo, ifr > a.

V(ry= {

Find the ground state by solving the radial equation with / = 0. Show that there is
no bound state at all if Vya? < w2h%/8m.

4.2 THE HYDROGEN ATOM

The hydrogen atom consists of a heavy, essentially motionless proton (we may as
well put it at the origin) of charge e, together with a much lighter electron (charge
—e) that circles around it, held in orbit by the mutual attraction of opposite charges
(see Figure 4.3). From Coulomb’s law, the potential energy (in SI units) is

e’ 1
Vr)=-— -, [4.52]
4 €y r
and the radial equation (Equation 4.37) says
n? d’u 21 RIg+D
-t - -+ — = Eu. 4.53
2m dr? [ dmegr  2m  r? ] ! ! [4.53]

Our problem is to solve this equation for u(r) and determine the allowed electron
energies E. The hydrogen atom is such an important case that I’m not going to hand
you the solutions this time—we’ll work them out in detail by the method we used
in the analytical solution to the harmonic oscillator. (If any step in this process is
unclear, you may wish to refer back to Section 2.3.2 for a more complete explana-
tion.) Incidentally, the Coulomb potential (Equation 4.52) admits continuum states
(with E > 0), describing electron-proton scattering, as well as discrete bound states,
representing the hydrogen atom, but we shall confine our attention to the latter.

+e

(proton)

Figure 4.3: The hydrogen atom.
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4.2.1 The Radial Wave Function

Our first task is to tidy up the notation. Let
v=2mE
P
(For bound states, £ < 0, so « is real.) Dividing Equation 4.53 by E, we have

1 d*u _ me? 1 Ia+1
k2 dr2 2megh’ic (kr) (ker)?

K [4.54]

This suggests that we let

2

nme
=k, d = 4.55
p=kr, and pg P edie [4.55]
so that P
u o 10+ 1)
~ =112 4.56
dp? [ o - P 14.56]

Next we examine the asymptotic form of the solutions. As p — oo, the constant
term in the brackets dominates, so (approximately)

d’u
21? =Uu.
The general solution is
u(p) = Ae™® + Be”, [4.57]

but e” blows up (as p — 00), so B = 0. Evidently,
u(p) ~ Ae™* [4.58]

for large p. On the other hand, as p — 0 the centrifugal term dominates'?; approxi-
mately, then,

d*u 10+ 1)

_—=—u.

dp? 02
The general solution (check it!) is

u(p) = Cp'*' + Dp”,

but o~/ blows up (as p — 0),s0 D = 0. Thus

u(p) ~ Cp"t! [4.59)

2This argument does not apply when [ = 0 (although the conclusion, Equation 4.59, is in fact
valid for that case too). But never mind: All T am trying to do is provide some motivation for a change of
variables (Equation 4.60.)
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for small p.
The next step is to peel off the asymptotic behavior, introducing the new function
v(p):
u(p) = p'*'e™"v(p), [4.60]

in the hope that v(p) will turn out to be simpler than u(p). The first indications are
not auspicious:

du_ I —p dv
and
d’u I+ dv  d*v
— =pe”{|-21-2 20+ 1—p)y— — 1.
7 o'e {[ +p+ ]v+(+ p)dp+pdp2}

In terms of v(p), then, the radial equation (Equation 4.56) reads

d*v

d
PEZ L2041 — P+ Ipo— 20+ D]y =0. [4.61]
dp dp

Finally, we assume the solution, v(p), can be expressed as a power series in p:
00 s
v(p) =Y a;p’. [4.62]
7=0

Our problem is to determine the coefficients (ao, ai, a2, . . .). Differentiating term by
term,

dp =

dU o . j-1 >, . j
— = Z]ajp = Z(J + Dajy1p0”.
=0

[In the second summation I have renamed the “dummy index”: j — j + 1. If this
troubles you, write out the first few terms explicitly, and check it. You might say that
the sum should now begin at j = —1, but the factor (j + 1) kills that term anyway,
so we might as well start at zero.] Differentiating again,

v & .
i ZJ'(J' + Dajip’™"
Inserting these into Equation 4.61, we have

o0 o0
3G+ Dajp’ + 2041 Y G+ Dajyip?
j=0 7=0

00

o0
2% jagp! + 1o — 20 + D) Y _a;p’ =0.

j=0 j=0
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Equating the coefficients of like powers yields
JU + Dajpr + 20+ DG + Dajyr — 2ja; +po — 2+ Dla; = 0,

or

2 4+1+1) -
H]:{ U+14+1D~po }aj [4.63]

G+DG+204+2)

This recursion formula determines the coefficients, and hence the function v(p):
We start with ag = A (this becomes an overall constant, to be fixed eventually by
normalization), and Equation 4.63 gives us a; putting this back in, we obtain a5, and
so on.!

Now let’s see what the coefficients look like for large j (this corresponds to
large p, where the higher powers dominate). In this regime the recursion formula
says

~ 2 2
dit a4 = a,
MEGGED Y T Y
SO ,
2J
J!

Suppose for a moment that this were the exact result. Then

5 2/ J 2p
v(p) =AY —pl = 4e¥,
=0 I

and hence
u(p) = Ap'*'e, [4.65]

whichblows up at large p. The positive exponential is precisely the asymptotic behav-
ior we didn’t want in Equation 4.57. (It’s no accident that it reappears here; after all.
it does represent the asymptotic form of some solutions to the radial equation—they
justdon’t happen to be the ones we’re interested in, because they aren’t normalizable. )
There is only one way out of this dilemma: The series must terminate. There must
occur some maximal integer, jmax, such that

a,.+1=0 [4.66]
(and beyond which all coefficients vanish automatically). Evidently (Equation 4.63)

2(jmax +1+1) = po=0.

3You might wonder why I didn’t use the series method directly on u(p)—why factor out the
asymptotic behavior before applying this procedure? The reason for peeling off p'*! is largely aesthetic:
Without this, the sequence would begin with a long string of zeroes (the first nonzero coefficient being
ai41); by factoring out p/*! we obtain a series that starts out with p°. The e~ factor is more critical—if
you don’t pull that out, you get a three-term recursion formula involving a;42, a;+1, and a; (#ry it!), and
that is enormously more difficult to work with.
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Defining
n= jmax+ 1+ 1 (4.67]

(the so-called principal quantum number), we have
Po = 2n. [4.68]
But pg determines E (Equations 4.54 and 4.55):

B2k2 met
E=-— = - , 4.69
2m 8n2eln’pd 14.69]

so the allowed energies are

m e\ 1 E
Eoe— | (Y| L 2B 2 470
[2712 (47Tfo> :|”2 w2 " 70

This is the famous Bohr formula—by any measure the most important result in
all of quantum mechanics. Bohr obtained it in 1913 by a serendipitous mixture
of inapplicable classical physics and premature quantum theory (the Schrodinger
equation did not come until 1924).

Combining Equations 4.55 and 4.68, we find that

me® 1 1
‘= S [4.71]
dwegh?) n  an
where
degh?
a= 0 —0529%10°m [4.72]
me

is the so-called Bohr radius. It follows (again, from Equation 4.55) that

-
p=—. [4.73]
an
Evidently the spatial wave functions for hydrogen are labeled by three quantum num-
bers (n, [, and m):
Yoim (7, 0,¢) = Ry(r) Ylm (9’ ), [4.74]

where (referring back to Equations 4.36 and 4.60)

1
Ru(r) = ;p’“e‘pv(p), [4.75]
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and v(p) is a polynomial of degree jn.x = n —/ — 1 in p, whose coefficients are

determined (up to an overall normalization factor) by the recursion formula

2+ +1-n) .
G+DG+2+2) 7

aj_H [476]

The ground state (that is, the state of lowest energy) is the case n = 1; putting
in the accepted values for the physical constants, we get

m 62 2
B = {_2 <___> } — _136eV. [4.77]
2h° \dmep

Evidently the binding energy of hydrogen (the amount of energy you would have to
impart to the electron in order to ionize the atom) is 13.6 eV. Equation 4.67 forces
{ = 0, whence also m = 0 (see Equation 4.29), so

Vioo(r, 0. ¢) = Rio(" Y56, ). [4.78]

The recursion formula truncates after the first term (Equation 4.76 with j = 0 yields
a; = 0), so v(p) is a constant (ap) and

Rio(r) = ?e“’/“. [4.79]

Normalizing it, in accordance with Equation 4.31,

® 2.2 laol* [ ) 24
[Rlolrdr=—2— e redr =lagl"= =1,
0 as Jo 4

50 ag = 2/+/a. Meanwhile, Y{ = 1/+/47, so

1
Vioo(r, 0, ¢) = ——=e "% [4.80]
Va3
If n = 2 the energy is
—13.6 eV
Ey = —4—° = 34eV: [4.81]

this is the first excited state—or rather, states, since we can have either / = 0 (in
which case m = 0) or [ = 1 (with m = —1, 0, or +1), so there are actually four
different states that share this energy. If / = 0, the recursion relation (Equation 4.76)
gives

a, = —ap (using j =0), anda; =0 (using j = 1),
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so v(p) = ag(1 — p), and hence

% (TN e
Rao(r) = 5 (1 Za) el [4.82]

If / = 1 the recursion formula terminates the series after a single term, so v(p) is a

constant, and we find
a
Ry(r) = —=re /%, [4.83]
4q?

(In each case the constant ag is to be determined by normalization—see Problem
4.11)
For arbitrary n, the possible values of / (consistent with Equation 4.67) are

[=0,1,2,...,n— 1. [4.84]
For each /, there are (2/ + 1) possible values of m (Equation 4.29), so the total

degeneracy of the energy level E,, is

n—1

dinmy=) @ +1)=n" [4.85]

=0

The polynomial v(p) (defined by the recursion formula, Equation 4.76) is a function
well known to applied mathematicians; apart from normalization, it can be written as

v(p) = LiAL (2p), [4.86]
where N
Li_,(x)=(=1)? <d—x> Ly(x) [4.87]
is an associated Laguerre polynomial, and
d\?
Lyx)=¢€" (-CE) (e_"xq) [4.88]

is the gth Laguerre polynomial.'* (The first few Laguerre polynomials are listed in
Table 4.4; some associated Laguerre polynomials are given in Table 4.5. The first
few radial wave functions are listed in Table 4.6 and plotted in Figure 4.4.) The
normalized hydrogen wave functions are'®

2N m=r=nt N o (20N,
vfnlm—\/(;b‘> me (n—a) Ln—l—l(E)Yl (9,¢) [489]

lapg usual, there are rival normalization conventions in the literature; I have adopted the most nearly
standard one.

I5If you want to see how the normalization factor is calculated, study (for example), L. Schiff,
Quantum Mechanics, 2nd ed. (New York: McGraw-Hill, 1968), page 93.
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Table 4.4: The first few Laguerre polynomials, L, (x).

Lo=1 |
Li=—x+1

Ly=x>—4x 42

Ly=—x34+9%2 - 18x+6

Lg=x*—16x3 +72x2 — 96x + 24

Ls = —x% 4+ 25x* — 200x% + 600x2 — 600x + 120

Lo = x% — 361" +450x* — 2400x> + 5400x2 — 4320x + 720

Table 4.5: Some associated Laguerre polynomials, L5_ Jean

Ly=1 L}=2

Li=—x+1 L} = —6x+18

L) =x%—4x +2 L3 = 12x% — 96x + 144
Li=1 L}=6

Ll=-2x+4 L} =—-24x +96
L}=3x2—18x +18 L3} = 60x% — 600x + 1200
2 2

They are not pretty, but don’t complain—this is one of the very few realistic systems
that can be solved at all, in exact closed form. As we will prove later on, they are
mutually orthogonal:

/ Uitm Ut 72 SN0 dr dO ded = 8,811 Sy [4.90]

xProblem 4.10 Work out the radial wave functions Rsg, R3;, and Rj;, using the
recursion formula (Equation 4.76). Don’t bother to normalize them.

*Problem 4.11

(a) Normalize Ry (Equation 4.82), and construct the function 9.
(b) Normalize R,; (Equation 4.83), and construct 1, /210, and ¥r2;_;.

+xProblem 4.12

(a) Using Equation 4.88, work out the first four Laguerre polynomials.
(b) Using Equations 4.86, 4.87, and 4.88, find v(p) for the case n = 5, = 2.
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Table 4.6: The first few radial wave functions for hydrogen, R, (r).

Rio = 2a72 exp(—r/a)

_ 1 —3/2( _Ir -
Rzo_ﬁa 1 3 )exp( r/2a)

a

—3n27

Ry = ——a - exp (—r/2a)

2 2r 2 /r\?
R = = o T34 —(—) -
30 ma 1 37 T\ exp (~r/3a)
8 1r r
Ry = ——a 3? (1 - = —) (—) exp (—r/3a
31 e 62\ p (—r/3a)

R 4 -3/2 (r)z ( /3 )
= —d - €X] -r/aa
R TWECT a) P
3

__1 —32 r 1 /r\? 1 r\3
Ry = 4(1 1 12 + 3 (;) 192 (a) exp (—r/4a)

NG 1r 1 /r\2\ r
Ry = gL I P —(-) - —r/4
4 16ﬁa 4a+80 a aexp( r/4a)
1 1 r r\?
tomgi (- ) )
42 64\/§a T A AR d r/4a)

1 r\?
Ryz = —a_3/2( ) exp (—r/4a
43 763753 p (—r/4a)

Q|

Ru(r)

]
]
]
08
[}
]

10
]
]
o.sl :.
izo:
[ 1
0.5—‘. E
04 —‘. :i
L3
0.3 ‘ \
30, /Nt
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Figure 4.4: Graphs of the first few hydrogen radial wave functions, R, ().
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(c) Again, find v(p) forthe case n = 5,/ = 2, but this time get it from the recursion
formula (Equation 4.76).

«Problem 4.13

(a) Find {r) and (#?) for an electron in the ground state of hydrogen. Express your
answers in terms of the Bohr radius a.

(b) Find (x) and {x?) for an electron in the ground state of hydrogen. Hint: This
requires no new integration—note that 7> = x% 4+ y* + z2, and exploit the
symmetry of the ground state.

(c) Find (x?) inthe state n =2,/ = 1, m = 1. Hinr. This state is nor symmetrical
inx, y,z Usex =rsinfcos¢.

Problem 4.14 What is the probability that an electron in the ground state of hy-
drogen will be found inside the nucleus?

(a) First calculate the exact answer, assuming that the wave function (Equation
4.80) is correct all the way down to » = 0. Let b be the radius of the nucleus.

(b) Expand your result as a power series in the small number & = 2b/a, and show
that the lowest-order term is the cubic: P ~ (4/3)(b/a). This should be a
suitable approximation, provided that b < a (which it is).

(c) Alternatively, we might assume that i () is essentially constant over the (tiny)
volume of the nucleus, so that P &~ (4/3)wb*|y(0)|?. Check that you get the
same answer this way.

(d) Use b ~ 100" manda ~ 0.5 x 107'%m to get a numerical estimate for

P. Roughly speaking, this represents the “fraction of its time that the electron
spends inside the nucleus”.

Problem 4.15

(a) Use the recursion formula (Equation 4.76) to confirm that when / = n — 1 the
radial wave function takes the form

Rn(n‘l) — Nnrn—le—r/na,

and determine the normalization constant N, by direct integration.
(b) Calculate () and (#?) for states of the form ¥, (,—1ym-

(c) Show that o, = (r)/~/2n + 1 for such states. Note that the fractional spread in
r decreases with increasing # (in this sense the system “begins to look classical”
for large n). Sketch the radial wave functions for several values of n to illustrate
this point.
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4.2.2 The Spectrum of Hydrogen

In principle, if you put a hydrogen atom into some stationary state W,,,, it should
stay there forever. However, if you tickle it slightly (by collision with another atom,
say, or by shining light on it), then the atom may undergo a transition to some other
stationary state—either by absorbing energy and moving up to a higher-energy state,
or by giving off energy (typically in the form of electromagnetic radiation) and moving
down.'® In practice such perturbations are always present; transitions (or, as they are
sometimes called, “quantum jumps”) are constantly occurring, and the result is that
a container of hydrogen gives off light (photons), whose energy corresponds to the
difference in energy between the initial and final states:

1 1
E, = E, — Ef = —13.6eV (—2 - —2>. [4.91]
n;  n;
Now, according to the Planck formula,"’ the energy of a photon is proportional

to its frequency:
E, =hv. [4.92]

Meanwhile, the wavelength is given by A = ¢/v, so

1—R ! ! [4.93]
o\ TR |

where
2 N2
m e 7
=— <— =1.097x 10'm™". [4.94]
dmch’ \4meg

R is known as the Rydberg constant, and Equation 4.93 is the Rydberg formula for
the spectrum of hydrogen. It was discovered empirically in the nineteenth century,
and the greatest triumph of Bohr’s theory was its ability to account for this result—
and to calculate R in terms of the fundamental constants of nature. Transitions to the
ground state (n, = 1) lie in the ultraviolet; they are known to spectroscopists as the
Lyman series. Transitions to the first excited state (n, = 2) fall in the visible region;
they constitute the Balmer series. Transitions to n, = 3 (the Paschen series) are in
the infrared, and so on (see Figure 4.5). (At room temperature, most hydrogen atoms
are in the ground state; to obtain the emission spectrum, you must first pump them
up into the various excited states; typically this is done by passing an electric spark
through the gas.)

6By its nature, this involves a time-dependent interaction, and the details will have to wait for
Chapter 9; for our present purposes the actual mechanism involved is immaterial.

7The photon is a quantum of electromagnetic radiation; it’s a relativistic object if there ever was
one, and therefore outside the scope of nonrelativistic quantum mechanics. It will be useful in a few places
to speak of photons and to invoke the Planck formula for their energy, but please bear in mind that this is
external to the theory we are developing.



144

Chap. 4 Quantum Mechanics in Three Dimensions

0

1oL [
10 YVY
—20 bk Paschen
series

W RO

-30

40 Balmer
series

50
—-6.0
-7.0
-8.0 [~

Energy (eV)

—90
-10.0 —
-11.0 I~
-120
-13.0 —

—14.0 = Lyman series

Figure 4.5: Energy levels and transitions in the spectrum of hydrogen.

Problem 4.16 Consider the earth-sun system as a gravitational analog to the hy-
drogen atom.

(a) What is the potential energy function (replacing Equation 4.52)? (Let m be the
mass of the earth and M the mass of the sun.)

(b) What is the “Bohr radius” for this system? Work out the actual numerical value.

(c) Write down the gravitational “Bohr formula”, and, by equating E, to the clas-
sical energy of a planet in a circular orbit of radius ro, show that n = /ro/a.
From this, estimate the quantum number » of the earth.

(d) Suppose the earth made a transition to the next lower level (n — 1). How much
energy (in Joules) would be released? What would the wavelength of the emitted
photon (or, more likely, graviton) be?

xProblem 4.17 A hydrogenic atom consists of a single electron orbiting a nucleus
with Z protons. (Z = 1 would be hydrogen itself, Z = 2 is ionized helium, Z = 3 is
doubly ionized lithium, and so on.) Determine the Bohr energies £, (Z), the binding
energy E1(Z), the Bohr radius a(Z), and the Rydberg constant R(Z) for a hydrogenic
atom. (Express your answers as appropriate multiples of the hydrogen values.) Where
in the electromagnetic spectrum would the Lyman series fall, for Z = 2 and Z = 3?
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4.3 ANGULAR MOMENTUM

In classical mechanics, the angular momentum of a particle (with respect to the origin)
is given by the formula

L=rxp, [4.95]

which is to say,
Li=yp.—zpy, Ly=2zp—xp,, and L;=xp,— ypx. [4.96]

The corresponding quantum operators are obtained by the standard prescription
(Equation 4.2):

L_h . _L_h NEAY
=i\ By’ »= 7Gx T Y%z)¢

L_h 0 3
P ay yax

In the following sections we will deduce the eigenvalues and eigenfunctions of these
operators.

[4.97]

4.3.1 Eigenvalues

L, and L, donot commute; in fact [providing a test function, f(x, y, z), for them to
act upon]:

Lo L)f = (5)2
(5 —5) (3 -3) )
n\? af af
- (1) ba (50) 5 ()
5) 5 () =5 (%)
)

Z ]
dy \ 0
] a ] a 3

+z— z—j—{ +x— y—f —X— f

dx \ 0y dz \” 0z az ay

AN 3 f ?2f LS 3 f

= - + yz —yX——z zX
i ax 9z0x 822 dydx dydz

i Bxaz Tz 0xay +xy8_zz— B 8y 0z0y

P L0 Pf o aZf)
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All the terms cancel in pairs (by virtue of the equality of cross-derivatives) except

two:
[Lx’Lv]f: N Y— — X lehLz_f,
’ i 0x dy

and we conclude (dropping the test function)

l [L,.L,]=ihL.. [4.98

By cyclic permutation of the indices it follows also that
[Ly,L,]=ihLl, and [L., L,]=ihL,. [4.99]

From these fundamental commutation relations the entire theory of angular momen-
tum can be deduced.

Evidently L,, L,, and L, are incompatible observables. According to the
generalized uncertainty principle (Equation 3.139),

2 2 ! PR,
00, = (2_i(ihLZ)> = —4—<Lz) )
or

B
0r,0L, = EI(LZH. [4.100]

It would therefore be futile to look for states that are simultaneously eigenfunctions
of L, and of L,. On the other hand, the square of the total angular momentum,

L’=Ll+L+1L2 [4.101]

does commute with L,:

(L3, L+ (L3, Ll + [L2, L]

= Ly[Ly’ Lx]+[Lya Lx]Ly'f'Lz[Lz’ L]+ I[L:, Ly]L,
Ly(—ihLs) + (—ihL)L, + L.GhL,) + GRL,)L.

0.

(L% L,]

(I used Equation 3.142 and the fact that any operator commutes with irself.'®) Tt
follows, of course, that L? also commutes with L yand L

[L? L,0=0, [L* L,]=0, [L*L,]=0, [4.102]

18Note that all the operators we encounter in quantum mechanics (see footnote 8, Chapter 1) are
linear, in the sense that Af+g = A S+ A 1g, and therefore distributive with respect to addition:
A(B + C) AB+ AC. In particular, [A B+ C] [4, B] +[4, C]
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or, more compactly,
[L?, L] =0. [4.103]

So L? is compatible with each component of L, and we can hope to find simultaneous
eigenstates of L2 and (say) L,:

L*f=xf and L,f=uf [4.104]

We’ll use a “ladder operator” technique, very similar to the one we applied to
the harmonic oscillator back in Section 2.3.1. Let

Li=L,+il,. [4.105]
Its commutator with L, is
[L:, Li)=1[L;, Ly)%i[L;, L] =ihL, +i(—ihLl,) = +h(L, £ iLy),

SO
(L, Ly]=2hL,. [4.106]

And, of course,
[L%, L] =0. [4.107]

Iclaim that if £ is an eigenfunction of L? and L., so also is L+ f. For Equation 4.107
says
L2 Lif) = La(L f) = Ly(Af) = A(L+ f), [4.108]

so Ly f is an eigenfunction of L2, with the same eigenvalue A, and Equation 4.106
says

L(Lif)=(LLs—Lal)f+LiLl.f=%hLy f+ Li(uf)
=(uxr(Lsf),

so L4 f is an eigenfunction of L, with the new eigenvalue p = %. L is called the
“raising” operator because it increases the eigenvalue of L, by %, and L_ is called
the “lowering” operator because it lowers the eigenvalue by 7.

For a given value of A, then, we obtain a “ladder” of states, with each “rung” sep-
arated from its neighbors by one unit of 7% in the eigenvalue of L, (see
Figure 4.6). To ascend the ladder we apply the raising operator, and to descend,
the lowering operator. But this process cannot go on forever: Eventually we’re going
to reach a state for which the z-component exceeds the foral, and that cannot be (see
Problem 4.18). So there must exist a “top rung,” f£;, such that

{4.109]

L,f,=0. [4.110]

lgActually, all we can conclude is that L. f; is not normalizable—its norm could be infinite, instead
of zero. Problem 4.19 eliminates this alternative.
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Let %l be the eigenvalue of L, at this top rung (the appropriateness of the letter
|—sometimes called the azimuthal quantum number—will appear in a moment):

L.f, =hlfy; L%*f, =Af,. [4.111]
Now

LiLly = (L, £iL)(Ly FiLly) =L+ L2 Fi(LLy — L,Ly)
=L* - L}Fi(inL,),

or, putting it the other way around,
L*=LiLi+L2FhL, [4.112)
It follows that
L*f,=(L_Ly + L2+ 8L f, = O+ + 12D f, = K11+ 1) f;,

and hence
A =nd+ 1. [4.113)

This tells us the eigenvalue of L? in terms of the maximum eigenvalue of L.
Meanwhile, there is also (for the same reason) a bottom rung, f,, such that

L_f,=0. [4.114]
Let 1l be the eigenvalue of L, at this bottom rung:
L.fy=nlfy; L*f, =Arfs. [4.115)
Using Equation 4.112, we have
L*fy = (LiL_+ L2 —nL) fo = O+ 11> =0 D) fo = 1*1d — 1) fo,
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and therefore o
A=rAd - 1. [4.116]

Comparing Equations 4.113 and 4.116, we see that /(I + 1) = I — 1), so either
{ =1+ 1 (which is absurd—the bottom rung is higher than the top rung!), or else

I=—1 [4.117]

Evidently the eigenvalues of L, are mh, where m (the appropriateness of this
letter will also be clear in a moment) goes from —! to +/ in N integer steps. In
particular, it follows that / = —/ + N, and hence [ = N/2, so ! must be an integer or
a half-integer. The eigenfunctions are characterized by the numbers [ and m:

LY =110+ D f";  Lf" =hmf", (4.118]

where
1=0,1/2,1,3/2,...; m=-1,-1+1,....,1—-1,1 [4.119]

For a given value of /, there are 2/ + 1 different values of m (i.e., 2/ + 1 “rungs” on
the “ladder™).

I hope you’re impressed: By purely algebraic means, starting with the fun-
damental commutation relations (Equations 4.98 and 4.99), we have determined the
eigenvalues of L? and L,—without ever seeing the eigenfunctions themselves! We
turn now to the problem of constructing the eigenfunctions, but I should warn you
that this is a much messier business. Just so you know where we’re headed, I'1l tell
you the punch line before we begin: f* = ¥;"—the eigenfunctions of L? and L, are
nothing but the old spherical harmonics, which we came upon by a quite different
route in Section 4.1.2 (that’s why I chose the letters / and m, of course).

Problem 4.18

(@) Prove that if f is simultaneously an eigenfunction of L2 and of L, (Equa-
tion 4.104), the square of the eigenvalue of L, cannot exceed the eigenvalue of
L?. Hint: Examine the expectation value of L2.

(b) Asitturnsout(see Equations 4.118 and 4.119), the square of the eigenvalue of L,
never even equals the eigenvalue of L? (except in the special case | = m = 0).
Comment on the implications of this result. Show that it is enforced by the
uncertainty principle (Equation 4.100), and explain how the special case gets
away with it

*xProblem 4.19 The raising and lowering operators change the value of m by one
unit:
Lyifi" = A", [4.120]

where A]' is some constant. Question: What is A]', if the eigenfunctions are to be
normalized? Hint: First show that L is the Hermitian conjugate of L. (since L,
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and L , are observables, you may assume they are Hermitian, but prove it if you like .
then use Equation 4.112. Answer:

m=hJIl+1)—mm=£1). [4.121°
Note what happens at the top and bottom of the ladder.

«Problem 4.20

(a) Starting with the canonical commutation relations for position and momentum.
Equation 4.10, work out the following commutators:
[L:, x]=ihy, [L;, y] = —ihx, [L;,z]=0

] . 4,122
(Lo pd = ifipy, (Lo pl = —ihpe, Ly pal =0. H15=

(b) Use these results to obtain [L,, L] = ik L, directly from Equation 4.96.
(c) Evaluate the commutators [L,,r?] and [L,, p?] (where, of course, r’> =
x*+ 3 + 22 and p* = p} + p + p).

(d) Show that the Hamiltonian H = (p?/2m) 4+ V commutes with all three com-
ponents of L, provided that ¥ depends only on r. (Thus H, L?, and L, are
mutually compatible observables.)

sxProblem 4.21

(a) Prove that for a particle in a potential ¥ (r) the rate of change of the expectation
p p
value of the orbital angular momentum L is equal to the expectation value of
the torque:
d
—(L)y=(N
i (L) = (N),
where
N=rx (-VV).
(This is the rotational analog to Ehrenfest’s theorem.)

(b) Show that d(L)/dt = 0 for any spherically symmetric potential. (This is one
form of the quantum statement of conservation of angular momentum.)

4.3.2 Eigenfunctions

First of all we need to rewrite L., L,, and L, in spherical coordinates. Now L =
(n/i)(r x V), and the gradient, in spherical coordinates, is*

0 ~1 0 ~ 1 9
V=it b+ ¢

—_— 123
or r a9 rsinf 9¢’ [4.123]

DGeorge Arfken, Mathematical Methods for Physicists, 3rd ed. (Orlando, FL: Academic Press.
1985), Section 2.5.
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meanwhile, r = r#, so
L=2 [ x D+ (x4 (F x D)o
=—|rFxAH—+(Fx0)—+ F x — .
i or 06 sinf 3¢

But (r x 7) =0, (F x 6) = qg, and (F x ¢) = —6 (see Figure 4.1), and hence

h(~0 ~ 1 9
L=-(¢——6——). 4.124
i (¢ a6 sin6 8¢> [ ]
The unit vectors § and (;3 can be resolved into their Cartesian components:
6 = (cos @ cos )i + (cos @ sing)j — (sin 0)k: [4.125)

¢ = —(sin @) + (cos P)]. [4.126]
Thus

B .1 8
L =- |:(— sin ¢1 + cos ¢j)8—9 — (cosf cos @i + cosfsingj — sinbk) :I .
i

sinf 3¢
Evidently,

I, =" inqs8 — cos¢cotf 0 [4.127]

x = - sing - — cos¢co 5% ) i

h d d
L,= n <+cos¢£ - sin¢cot9%), [4.128]
and

= h [4.129]

RS '

We shall also need the raising and lowering operators:

h d 0
Ly=L,xilL,= n l:(— sin ¢ :i:icos¢)£ — (cos ¢ :tisintp)coteﬁ].
But cos ¢ £ ising = e*'?, s0

. 9
Ly = +he™™® (i :ticot@—) .

% o0 [4.130]

We are now in a position to determine f" (8, ¢) (I'll drop the subscript and
superscript for now). It’s an eigenfunction of L, with eigenvalue 7im:

_hdf _
S = % =hmf,
SO )
f=g®)em.

[4.131]
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[Here g(8) is a constant of integration, as far as ¢ is concerned, but it can still depend
on4.] And f is also an eigenfunction of L? (which we’ll write in terms of L. and
L., using Equation 4.112), with eigenvalue A%/(/ + 1):

Lf=(LiL_+L*~nhL)f

et (O icote D) (— _,.¢(8_f_, AN 20 B
= he (89+zcot98¢ (—re™?) 20 zcot98¢ h8¢2 96

=rUI+ 1)1

But in view of Equation 4.131, 3£/36 = ¢™%dg/df and 3 /3¢ = ime™? g, so

" 3\, d . .
_? (% +i cot9%> (em71?) (ﬁ +mg00t9> +m?ge™ — mge'™?

. d (d d
= e””"’[—% (d—‘g +mgcot9> + (m — 1) cotd (d_‘g +mgcot9)

+m(m — l)g] =1+ 1)ge'™.
Canceling ™%,

d? d d
—ﬁ —md—‘g cotf +mgcs029 + (m — l)cotGd—‘eg +m(m — 1)1 + cot? O)g
d? d
= —ﬁf —coteﬁ +migesc?f = I( + g,

or, multiplying through by — sin®§:
d? d
sinZGﬁ + siné cos9£ —m?g=—I(+ 1)sin*fg.
This is a differential equation for g(8); it can be written in a more familiar form:

sin@fe— (mej-i) +[Id + 1)sin®6 — m?*]g = 0. [4.132)
Butthis is precisely the equation for the §-dependent part, ®(9), of Y;" (6, ¢) (compare
Equation 4.25). Meanwhile, the ¢-dependent part of f (to wit, ¢'™?) is identical
to P(¢) (Equation 4.22). Conclusion: The spherical harmonics are precisely the
(normalized) eigenfunctions of L and L,.

When we solved the Schrodinger equation by separation of variables, in Section
4.1, we were inadvertantly constructing simultaneous eigenfunctions of the three
commuting operators H, L?, and L,:
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Hy =Ey, L% =m0+ 1)y, L, =hmy. [4.133]

But there is a curious twist to this story, for the algebraic theory of angular momentum
permits / (and hence also m) to take on half-integer values (Equation 4.119), whereas
the analytic method yielded eigenfunctions only for infeger values (Equation 4.29).
You might reasonably guess that the half-integer solutions are spurious, but it turns
out that they are of profound importance, as we shall see in the following sections.

«Problem 4.22

(@) Whatis L, Y/? (No calculation allowed!)

(b) Use the result of (a), together with the fact that L,¥; = hlY/, to determine
Y}(8, ¢), up to a normalization constant.

(c) Determine the normalization constant by direct integration. Compare your final
answer to what you got in Problem 4.5.

Problem 4.23 In Problem 4.3 you showed that

Y} (8, ) = —/15/87 sin cose®.

Apply the raising operator to find Y22 (4, ¢). Use Equation 4.121 to get the normal-
ization.

Problem 4.24

(a) Prove that the spherical harmonics are orthogonal (Equation 4.33). Hinr: This
requires no calculation, if you invoke the appropriate theorem.

(b) Prove the orthogonality of the hydrogen wave functions ¥, (r, 8, ¢) (Equa-
tion 4.90).

Problem 4.25 Two particles of mass m are attached to the ends of a massless rigid
rod of length a. The system is free to rotate in three dimensions about the center (but
the center point itself is fixed).

(a) Show that the allowed energies of this rigid rotor are

K@ +1)

E, = , for n=0,1,2,...

ma?
Hint: Firstexpress the (classical) energy in terms of the total angular momentum.,

(b) What are the normalized eigenfunctions for this system? What is the degeneracy
of the nth energy level?




154

Chap. 4 Quantum Mechanics in Three Dimensions

4.4 SPIN

In classical mechanics, arigid object admits two kinds of angular momentum: orbital
(L = r x p), associated with the motion of the center of mass, and spin (S = Jw).
associated with motion abour the center of mass. For example, the earth has orbital
angular momentum attributable to its annual revolution around the sun, and spin
angular momentum coming from its daily rotation about the north-south axis. In
the classical context this distinction is largely a matter of convenience, for when
you come right down to it, S is nothing but the sum total of the “orbital” angular
momenta of all the rocks and dirt clods that go to make up the earth, as they circle
around the axis. But an analogous thing happens in quantum mechanics, and here
the distinction is absolutely fundamental. In addition to orbital angular momentum.
associated (in the case of hydrogen) with the motion of the electron around the nucleus
(and described by the spherical harmonics), the electron also carries another form
of angular momentum, which has nothing to do with motion in space (and which is
not, therefore, described by any function of the position variables r, 8, ¢) but which
is somewhat analogous to classical spin (and for which, therefore, we use the same
word). It doesn’t pay to press this analogy too far: The electron (as far as we know) is
a structureless point particle, and its spin angular momentum cannot be decomposed
into orbital angular momenta of constituent parts (see Problem 4.26).?' Suffice it to
say that elementary particles carry intrinsic angular momentum (S) in addition to
their “extrinsic” angular momentum (L).

The algebraic theory of spin is a carbon copy of the theory of orbital angular
momentum, beginning with the fundamental commutation relations*:

(S, Sy1=ihS., [S,,S)=ihS., [S:, S]=IihS,. [4.134]
It follows (as before) that the eigenvectors of S? and S, satisfy*
S sm) = h2s(s + Dlsm);  S.|sm) =hm|sm); [4.135]

and

Selsm) =hys(s + 1) —m(m £ 1) |s (m £ 1)), [4.136]

21For a contrary interpretation, see Hans C. Ohanian, “What is Spin?”, Am. J. Phys. 54, 500 (1986).

22we shall take these as postulates for the theory of spin; the analogous formulas for orbital angular
momentum (Equations 4.98 and 4.99) were derived from the known form of the operators (Equation 4.97).
In a more sophisticated treatment they can both be obtained from the rotational invariance of the three-
dimensional world [see, for example, Leslie E. Ballentine, Quantum Mechanics (Englewood Cliffs, NJ:
Prentice Hall, 1990), Section 3.3]. Indeed, these fundamental commutation relations apply to all forms
of angular momentum, whether spin, orbital, or the combined angular momentum of a composite system.
which could include some spin and some orbital.

23 Because the eigenstates of spin are not functions, I revert to the “ket” notation for them. (I could
have done the same in Section 4.3, writing |/ m) in place of ¥”, but in that context the function notation
seems more natural.) By the way, I'm running out of letters, so I'll use m for the eigenvalue of S, just as
I did for L, (some authors write m; and m at this stage, just to be absolutely clear).
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where S. = S, £¢5,. But this time the eigenvectors are not spherical harmonics
(they’re not functions of 6 and ¢ at all), and there is no a priori reason to exclude the
half-integer values of s and m:
1 3
= 1L, = ..
2 2

It so happens that every elementary particle has a specific and immutable value
of s, which we call the spin of that particular species: pi mesons have spin 0; electrons
have spin 1/2; photons have spin 1; deltas have spin 3/2; gravitons have spin 2; and so
on. By contrast, the orbital angular momentum quantum number / (for an electron in a
hydrogen atom, say) can take on any (integer) value you please, and will change from
one to another when the system is perturbed. But s is fixed, for any given particle,
and this makes the theory of spin comparatively simple.?*

s=0, m=-—-s,—s+1,...,5—1,s. [4.137]

Problem 4.26 If the electron is a classical solid sphere, with radius

P

re [4.138]

" dmegmc?’
(the so-called classical electron radius, obtained by assuming that the electron’s
mass is attributable to energy stored in its electric field, via the Einstein formula
E = mc?), and its angular momentum is (1 /2)h, then how fast (in m/s) is a point on
the “equator” moving? Does this model for spin make sense? (Actually, the radius
of the electron is known experimentally to be much less than 7., but this only makes
matters worse.)

4.4.1 Spin 1/2

By far the most important case is s = 1/2, for this is the spin of the particles that
make up ordinary matter (protons, neutrons, and electrons), as well as all quarks and
all leptons. Moreover, once you understand spin 1/2, it is a simple matter to work
out the formalism for any higher spin. There are just rwo eigenstates: |% %), which
we call spin up (informally, 1), and |3 (—1)), which we call spin down ({). Using
these as basis vectors, the general state of a spin-1/2 particle can be expressed as a
two-element column matrix (or spinor):

X = (‘,j) =ax, +bx-, [4.139]

*Indeed, in a mathematical sense, spin 1/2 is the simplest possible nontrivial quantum system, for
it admits just two possible states. In place of an infinite-dimensional Hilbert space, with all its subtleties
and complications, we find ourselves working in an ordinary two-dimensional vector space; in place of
unfamiliar differential equations and fancy functions, we are confronted with 2 x 2 matrices and two-
component vectors. For this reason, some authors begin quantum mechanics with a treatment of the
spin-1/2 system. But the price of mathematical simplicity is conceptual abstraction, and I prefer not to do
it that way.
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X4 = (é) (4.140)

X- = (?) [4.141]

for spin down. Meanwhile, the spin operators become 2 x 2 matrices, which we can
work out by noting their effect on x, and x_: Equation 4.135 says

with

representing spin up, and

Sx+ = %hz)(+; S’ x- = %hzx_; S:x+ = 2X+; S:x- = —%x_: [4.142]

and Equation 4.136 gives
Six- =hxy; S_x+=hx—; Six+=S8_x-=0. [4.143]

Now, Sy = S £S5, s0
S = %(S+ +S8.) and S, = %(&L ~ 8, [4.144]

and it follows that

A A A A
Six+ = SX- Sx- = S X+ Syx+ = T X Syx- = 2 X+ [4.145]

3,(10 0 1 00
2 _ T32 . — . — .
§=n (o 1>’S+‘h<o o)’S“ (1 o)’ [4.146)

n(0 1 R0 —i\. o _h(1 0
Sx_§<1 O),Sy_§<i O),SZ_E<O _1>. [4.147]

It’s a little tidier to divide off the factor of /2: S = (% /2)o, where

(0 1\,  _ (0 =i\, _{(1 0

These are the famous Pauli spin matrices. Notice that S, S,, S., and $? are all
Hermitian (as they should be, since they represent observables). On the other hand,
S, and S_ are not Hermitian—evidently they are not observable.

The eigenspinors of S, are (of course)

Thus

while

h h
X4 = ((1)>, (eigenvalue + 5); X_ = <?>, (eigenvalue — E). [4.149]
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If you measure S, on a particle in the general state y (Equation 4.139), you could get
+7/2, with probability |a|?, or — /2, with probability |b|. Since these are the only
possibilities,

la|® + 1b]* = 1 [4.150]

(i.e., the spinor must be normalized).”

But what if, instead, you chose to measure S,? What are the possible results,
and what are their respective probabilities? According to the generalized statisti-
cal interpretation, we need to know the eigenvalues and eigenspinors of S,. The
characteristic equation is

2
A h/2| 2_(h _.h
a2 0 (1) sansh

Not surprisingly, the possible values for S, are the same as those for S,. The eigen-
spinors are obtained in the usual way:

hio 1 o hf« B o

_— = :I:— = ZI: )

(1 0)(5)-+3(5)=(0) -+ (3)
so B = £a. Evidently the (normalized) eigenspinors of S, are

i 1

1 h —= h

X = ( V2 ) (eigenvalue + 5): x& = ( va ) (cigenvalue — 3). [4.151]
V2 T2

As the eigenvectors of a Hermitian matrix, they span the space; the generic spinor x

can be expressed as a linear combination of them:

a+b\ <a—b> ® al
= —_— . 152
X (ﬁ)’” + 7 pa [ ]

If you measure S, the probability of getting +%/2 is (1/2)|a + b|?, and the prob-
ability of getting —%/2 is (1/2)|a — b|*>. (You should check for yourself that these
probabilities add up to 1.)

Example. Suppose a spin 1/2 particle is in the state

1 (1 + i)

x=7l, )
If you measure S;, the probability of getting +%/2 is |(1 + )/+/6]> = 1/3, and the
probability of getting —%/2 is |2/+/6]* = 2/3. If you measure S,, the probability of

ZPeople often say that |a|? is the “probability that the particle is in the spin-up state”, but this
is sloppy language; the particle is in state y—not x4 —and what the speaker really means is that if you
measured S;, |a|? is the probability you'd get /2, which is an entirely different assertion.
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getting +#/2 is (1/2)|(3 + i)/+/6]*> = 5/6, and the probability of getting —7/2 is
(1/2)|(—=1 + i)/+/6]*> = 1/6. Evidently the expectation value of S is

AV AN
6\ 2 6\ 2) 3

which we could also have obtained more directly:
1—i 2 0 h/2)<(1+i)/f6) h
S)y=xSx=— — =—.
) = x5 (Jé ﬁ)(h/z 0 2//6 3

I"d like now to walk you through an imaginary measurement scenario involving
spin 1/2, because it serves to illustrate in very concrete terms some of the abstractideas
we discussed back in Chapter 1. Let’s say we start out with a particle in the state y . If
someone asks, “What is the z-component of that particle’s spin angular momentum?".
we could answer unambiguously: +7 /2. For a measurement of S; is certain to return
that value. But if our interrogator asks instead, “What is the x-component of that
particle’s spin angular momentum?”, we are obliged to equivocate: If you measure
S, the chances are 50-50 of getting either /2 or —%/2. If the questioner is a
classical physicist, or a “realist” (in the sense of Section 1.2), he will regard this as an
inadequate—not to say impertinent—response: “Are you telling me that you don't
know the true state of that particle?”” On the contrary; I know precisely what the state
of the particle is: x. “Well, then, how come you can’t tell me what the x-component
of its spin is?” Because it simply does not have a particular x-component of spin.
Indeed, it cannot, for if both S, and S, were well defined, the uncertainty principle
would be violated.

At this point our challenger grabs the test tube and measures the x-component
of its spin; let’s say he gets the value +7/2. “Aha!” (he shouts in triumph), “You
lied! This particle has a perfectly well-defined value of S;: 1t’s %/2.” Well, sure—it
does now, but that doesn’t prove it had that value, prior to your measurement. “You
have obviously been reduced to splitting hairs. And anyway, what happened to your
uncertainty principle? I now know both S, and S,.” I'm sorry, but you do not: In
the course of your measurement, you altered the particle’s state; it is now in the state
Xi"), and whereas you know the value of S;, you no longer know the value of S..
“But I was extremely careful not to disturb the particle when I measured S, ."* Very
well, if you don’t believe me, check it our: Measure S,, and see what you get. (Of
course, he may get +% /2, which will be embarrassing to my case—but if we repeat
this whole scenario over and over, half the time he will get —%/2.)

To the layperson, the philosopher, or the classical physicist, a statement of
the form “this particle doesn’t have a well-defined position” (or momentum, or

26Neils Bohr was anxious to track down the mechanism by which the measurement of S, inevitably
destroys the value of S;, in gedanken experiments of this sort. His famous debates with Einstein include
many delightful examples, showing in detail how experimental constraints serve to enforce the uncertainty
principle.
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x-component of spin angular momentum, or whatever) sounds vague, incompetent,
or (worst of all) profound. It is none of these. But its precise meaning is, I think,
almost impossible to convey to anyone who has not studied quantum mechanics in
some depth. If you find your own comprehension slipping, from time to time (if
you don’t, you probably haven’t understood the problem), come back to the spin-1/2
system: It is the simplest and cleanest context for thinking through the conceptual
paradoxes of quantum mechanics.

Problem 4.27

(a) Check that the spin matrices (Equation 4.147) obey the fundamental commuta-
tion relation for angular momentum: [S, S,] = i%S;.

(b) Show that the Pauli spin matrices satisfy

O'jO'k = Ojk + i Z Ejklals [4153]
!

where the indices stand for x, y, or z, and €}y, is the Levi-Cirita symbol: +1 if
Jjkl = 123,231, or 312; —1if jkI = 132,213, or 321; 0 otherwise.

xProblem 4.28 An electron is in the spin state

X=A<34i).

(@) Determine the normalization constant A,
(b) Find the expectation values of S,, Sy, and S,.
(c) Find the “uncertainties” o, , o,, and a7, .

(d) Confirm that your results are consistent with all three uncertainty principles
(Equation 4.100 and its cyclic permutations—only with S in place of L, of
course).

xProblem 4.29 For the most general normalized spinor x (Equation 4.139), com-
pute (S,), (Sy), (S.), ($2), (52), and (S2). Check that (S7) + (S2) + (S2) = (§?).

xProblem 4.30

() Find the eigenvalues and eigenspinors of S,.

(b) If you measured S, on a particle in the general state x (Equation 4.139), what
values might you get, and what is the probability of each? Check that the
probabilities add up to 1.

(c) If you measured 5;2, what values might you get and with what probability?
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sxxProblem 4.31 Construct the matrix S, representing the component of spin angular
momentum along an arbitrary direction 7. Use spherical coordinates, so that

7 =sinfcosdi +sindsing j + cos b k. [4.154]
Find the eigenvalues and (normalized) eigenspinors of S,. Answer:
o _  cos0/2y \. o _ sin(0/2)
X+ = (e”’ sin@/2) )7 X~ T\ —e®cos(6/2) ) [4.155)

Problem 4.32 Construct the spin matrices (S, Sy, and ) for a particle of spin 1.
Hint: How many eigenstates of S, are there? Determine the action of S;, S, and S_
on each of these states. Follow the procedure used in the text for spin 1/2.

4.4.2 Electron in a Magnetic Field

A spinning charged particle constitutes a magnetic dipole. Its magnetic dipole
moment y is proportional to its spin angular momentum S:

u= yS; [4.156]

the proportionality constant y is called the gyromagnetic ratio.”” When a magnetic
dipole is placed in a magnetic field B, it experiences a torque, g x B, which tends
to line it up parallel to the field (just like a compass needle). The energy associated
with this torque is*®

so the Hamiltonian of a spinning charged particle, at rest” in a magnetic field B.
becomes
H=—-yB-8S, [4.158]

where S is the appropriate spin matrix (Equation 4.147, in the case of spin 1/2).

Example: Larmor precession. Imagine a particle of spin 1/2 at rest in a
uniform magnetic field, which points in the z-direction:

B = Byk. [4.159]

278ee, for example, D. Griffiths, Introduction to Electrodynamics, 2nd ed. (Englewood Cliffs, NJ:
Prentice Hall, 1986), page 239. Classically, the gyromagnetic ratio of a rigid object is g /2m, where g is
its charge and m is its mass. For reasons that are fully explained only in relativistic quantum theory, the
gyromagnetic ratio of the electron is almost exactly twice the classical value.

2Griffiths, (footnote 27), pages 246 and 268.

21f the particle is allowed to move, there will also be kinetic energy to consider; moreover, it will
be subject to the Lorentz force (¢v x B), which is not derivable from a potential energy function and hence

does not fit the Schriidinger equation as we have formulated it so far. I'll show you later on how to handle
this problem, but for the moment let’s just assume that the particle is free to rotate, but otherwise stationary.
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The Hamiltonian matrix is

_ _ yBh (1 0
H=—yBS. =~ (0 _1>. [4.160]

The eigenstates of H are the same as those of S,:

X+, withenergy £, = —(y Boh)/2, [4.161]
X-, withenergy E_ = +(y Boh)/2. )

Evidently, the energy is lowest when the dipole moment is parallel to the field—just
as it would be classically.

Since the Hamiltonian is time independent, the general solution to the time-
dependent Schrodinger equation,

9
ih—a-’ti — Hy, [4.162]

can be expressed in terms of the stationary states:

~iEst/h —iE_t/h ae'vHo!/?
x(®) =axie™ +t/ +by_e B = (be—inot/Z .

The constants a and b are determined by the initial conditions; say

x@)=<§),

where |a|? + |b|> = 1. With no essential loss of generality® I'll write a = cos(ct/2)
and b = sin(cr/2), where « is a fixed angle whose physical significance will appear

in a moment. Thus B2
cos(a/2)e'r o
x(t) = (Sin (@/2eivBoir2 ) {4.163]

To get a feel for what is happening here, let’s calculate the expectation value of
the spin {S) as a function of time:

(Se) = x () Sex (1)
i . ; B0 1Y [ cos(as2)e'rBer/?
— iy Bot/2 iyBot/2N .
(Cos(a/z)e 0 Sln(a/z)e 0 ) 2 < 1 O) (Sin(a/z)e—l}/Bot/z
= g sina cos(y Bot). [4.164]

Similarly,

() = X1 Sx(1) = 5 sinarsiny By, [4.165]

30This does assume that a and b are real; you can work out the general case if you like, but all it
does is add a constant to ¢.
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oZ+ >
(s
y
Figure 4.7: Precession of (S) in a uniform
X magnetic field.
and 5
(8:) = x(®)S.x(t) = 5 cosa. [4.166]

Evidently (S) is tilted at a constant angle « to the z-axis, and precesses about the field
at the Larmor frequency

just as it would classically®! (see Figure 4.7). No surprise here—Ehrenfest’s theorem
(in the form derived in Problem 4.21) guarantees that (S) evolves according to the
classical laws. But it’s nice to see how this works out in a specific context.

Example: the Stern-Gerlach experiment. In an inhomogeneous magnetic
field, there is not only a torque, but also a force, on a magnetic dipole®:

F=Vu - B). [4.168]

This force can be used to separate out particles with a particular spin orientation.
as follows. Imagine a beam of relatively heavy neutral atoms,” traveling in the
y-direction, which passes through a region of inhomogeneous magnetic field (Figure
4.8)—for example, .

B(x, y, z) = —axi + (By + az)k, {4.169]

where By is a strong uniform field and the constant ¢ describes a small deviation
from homogeneity. (Actually, what we’d like is just the z-component of this field, but

3 See, for instance, The Feynman Lectures on Physics (Reading, MA: Addison-Wesley, 1964).
Volume II, Section 34-3. Of course, in the classical case it is the angular momentum vector itself, not just
its expectation value, that precesses around the magnetic field.

3 Griffiths, (footnote 27), page 247. Note that F is the negative gradient of the energy (Equation
4.157).

33 We make them neutral to avoid the large-scale deflection that would otherwise result from the
Lorentz force, and heavy so we can construct localized wave packets and treat the motion in terms of
classical particle trajectories. In practice, the Stern-Gerlach experiment doesn’t work, for example, with a
beam of free electrons.



Sec. 4.4: Spin 163

T Spin up

™~ Spin down

Magnet

Figure 4.8: The Stern-Gerlach apparatus.

unfortunately that’s impossible—it would violate the electromagnetic law V- B = 0;
like it or not, the x-component comes along for the ride.) The force on these atoms is

F = ya (=S, + Sk).

But because of the Larmor precession about By, S, oscillates rapidly, and averages
to zero; the net force is in the z-direction:

F,=yas,, [4.170]

and the beam is deflected up or down, in proportion to the z-component of the spin
angular momentum. Classically we’d expect a smear, but in fact the beam splits into
2s + 1 individual beams, beautifully demonstrating the quantization of S;. (If you
use silver atoms, for example, all the inner electrons are paired in such a way that
their spin and orbital angular momenta cancel. The net spin is simply that of the
outermost—unpaired—electron, so in this case s = 1/2, and the beam splits in two.)

That argument was purely classical, up to the final step; “force” has no place in
a proper quantum calculation, and you might therefore prefer the following approach
to the same problem.>* We examine the process from the perspective of a reference
frame that moves along with the beam. In this frame the Hamiltonian starts out zero,
turns on for a time T (as the particle passes through the magnet), and then turns off
again:

0, fort < 0,
H(t)=1{ —y(Bo+az)S,, for0<t=<T, [4.171]
0, fort > T.

(Iignore the pesky x-component of B, which—for reasons indicated above—is irrel-
evant to the problem.) Suppose the atom has spin 1/2, and starts out in the state

x(t) =axy +bx-, fort <0
While the Hamiltonian acts, x (¢) evolves in the usual way:

x () =axpe Bt by e B for0<t <T,

34This argument follows L. Ballentine, Quantum Mechanics (Englewood Cliffs, NJ: Prentice Hall,
1990), page 172.
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where (from Equation 4.158)
h A
Ey =:F)/(B()+(XZ)§, [4.172

and hence it emerges in the state
x(t) = (aeVTBol2x ) @Y T/DZ o (pe=¥TBol2y ) mi@yT/Dz (¢ > T, [4.173

The two terms now carry momentum in the z-direction (see Equation 3.131); the
spin-up component has momentum

_ayTh

, [4.174
2

D:
and it moves in the plus-z direction; the spin-down component has the opposite
momentum, and it moves in the minus-z direction. Thus the beam splits in two, as
before. (Note that Equation 4.174 is consistent with the earlier result, Equation 4.170.
for in this case S; =%/2 and p, = F,T.)

The Stern-Gerlach experiment has played an important role in the philosophy
of quantum mechanics, where it serves both as the prototype for the preparation of a
quantum state and as an illuminating model for a certain kind of quantum measure-
ment. We casually assume that the initial state of a system is known (the Schrodinger
equation tells us how it subsequently evolves)—but it is natural to wonder how you
get a system into a particular state in the first place. Well, if you want to prepare a
beam of atoms in a given spin configuration, you pass an unpolarized beam through
a Stern-Gerlach magnet and select the outgoing stream you are interested in (closing
off the others with suitable baffles and shutters). Conversely, if you want to measure
the z-component of an atom’s spin, you send it through a Stern-Gerlach apparatus and
record which bin it lands in. T do not claim that this is always the most practical way
to do the job, but it is conceprually very clean and hence a useful context in-which to
explore the problems of state preparation and measurement.

Problem 4.33 In the first example (Larmor precession in a uniform magnetic field):

(a) Ifyoumeasured the component of spin angular momentum along the x-direction.
at time ¢, what is the probability that you would get +% /27

(b) Same question, but for the y-component.

(c) Same, but for the z-component.

xxProblem 4.34 An electron is at rest in an oscillating magnetic field
B = Bycos(wt)k,

where By and w are constants.
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(@) Construct the Hamiltonian matrix for this system.

(b) The electron starts out (at ¢ = 0) in the spin-up state with respect to the x-axis
[that is, x(0) = Xf)]. Determine x (¢) at any subsequent time. Beware: This
is a time-dependent Hamiltonian, so you cannot get x (¢) in the usual way from
stationary states. Fortunately, in this case you can solve the time-dependent
Schrodinger equation (Equation 4.162) directly.

(c) Find the probability of getting —#/2 if you measure S,. Answer:
B,
sin’ (J—/—B sin(cot)).
2w

(d) What is the minimum field (Bo) required to force a complete flip in S, ?

4.4.3 Addition of Angular Momenta

Suppose now that we have two spin-1/2 particles—for example, the electron and the
proton in the ground state® of hydrogen. Each can have spin up or spin down, so
there are four possibilities in all*:

Tt I [4.175]

where the first arrow refers to the electron and the second to the proton. Question:
What is the total angular momentum of the atom? Let

S=S0 4 §@ [4.176]

Each of the four composite states is an eigenstate of S,—the z-components simply
add

S = (S + 5D xxa = (S x0x + xS x2)
= (mix)xz + x1(thmax2) =h(m; + ma2)x1 x2,

[note that S acts only on x;, and S® acts only on x2]. So m (the quantum number
for the composite system) is just m; + ma:

tTm L
tdem = 0
tem =0
Wim = -1

351 put them in the ground state so there won’t be any orbital angular momentum to worry about.

36More precisely, each particle is in a linear combination of spin up and spin down, and the composite
system is in a linear combination of the four states listed.
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At first glance, this doesn’t look right: m is supposed to advance in integer
steps, from —s to +s, so it appears that s = 1—but there is an extra state with m = 0.
One way to untangle this problem is to apply the lowering operator S_ = s 4 g
to the state 11, using Equation 4.143:

-t = UM+ 1D
Bt +1 B =R+ 1.

Evidently the three states with s = 1 are (in the notation |s m)):

iy = 11
0oy = —%(NWLM) s = 1 (triplet). [4.177)
-1 = i

(As a check, try applying the lowering operator to |10); what should you get? See
Problem 4.35.) This is called the triplet combination, for the obvious reason. Mean-
while, the orthogonal state with m = 0 carries s = 0:
1 .
{|OO) «/Q(Ti iT)} s = 0 (singlet). [4.178]
(If you apply the raising or lowering operator to this state, you’ll get zero. See Prob-
lem 4.35))

I claim, then, that the combination of two spin-1/2 particles can carry a total spin
of 1 or 0, depending on whether they occupy the triplet or the singlet configuration.
To confirm this, I need to prove that the triplet states are eigenvectors of S? with
eigenvalue 242 and the singlet is an eigenvector of $2 with eigenvalue 0. Now

S? = (S(l) + S(2)) . (S(l) + S(2)) — (S(l))2 + (S(2))2 +28M . 8@ [4.179]
Using Equations 4.142 and 4.145, we have
SU-SP) = P HED D)+ S HEP )+ D )

GGG )-C)EY

hZ
T =1, :

I

Similarly,
h2
SPSOan =7 .

It follows that
505010, =" Lot —riq210 - in="110, @150
4 .2 4 ’ '



Sec. 4.4: Spin 167

and

s -82100) = "1 W=t =21 +iD= —ﬁmm [4.181]
=75 0 N=-= . [4
Returning to Equation 4.179 (and again using Equation 4.142), we conclude that
3r% 3n*_h?
S?110) = (T+T+2Z>|lo>zzh2“0)’ [4.182]

50 |10) is indeed an eigenstate of S with eigenvalue 242; and
$%00) = (— +— - 2—) |00y =0, [4.183]

s0 |0 0) is an eigenstate of S? with eigenvalue 0. (I will leave it for you to confirm that
[11) and |1 —1) are eigenstates of S?, with the appropriate eigenvalue—see Prob-
lem 4.35.)

What we have just done (combining spin 1/2 with spin 1/2 to get spin 1 and
spin 0) is the simplest example of a larger problem: If you combine spin s; with spin
52, what total spins s can you get?”’ The answer® is that you get every spin from
(s1 + s2) down to (57 — s2)—o0r (52 — 51), if 52 > §1—in integer steps:

s=061+5), 51+ —10, (s1+5—-2), ..., |s1 — 5| [4.184]

(Roughly speaking, the highest total spin occurs when the individual spins are aligned
parallel to one another, and the lowest occurs when they are antiparallel.) For example,
if you package together a particle of spin 3/2 with a particle of spin 2, you could get a
total spin of 7/2, 5/2, 3/2, or 1/2, depending on the configuration. Another example:
If a hydrogen atom is in the state ¥y, the net angular momentum of the electron
(spin plus orbital) is [ + 1/2 or [ — 1/2; if you now throw in the spin of the proton,
the atom’s total angular momentum quantum number is / + 1, /, or/ — 1 (and / can
be achieved in two distinct ways, depending on whether the electron alone is in the
{ + 1/2 configuration or the / — 1/2 configuration).

The particular state |s m) with total spin s and z-component m will be some
linear combination of the composite states |s; m1)|s2 m2):

lsmy =" Cuslsimi)lsama) [4.185]

mi+my=m

(because the z-components add, the only composite states that contribute are those
for which m +m, = m). Equations 4.177 and 4.178 are special cases of this general

371 say spins for simplicity, but either one (or both) could just as well be orbital angular momentum
(for which, however, we would use the letter /).

38For a proof you must look in a more advanced text; see, for instance, Claude Cohen-Tannoudji,
Bernard Diu, and Franck Lalog, Quantum Mechanics (New York: John Wiley & Sons, 1977), Vol. 2,
Chapter X.
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Table 4.7: Clebsch-Gordan coefficients. (A square root sign is understood for
every entry; the minus sign, if present, goes outside the radical.)

1
1/2 X 112 § 11 pormns -
[+12+121 1o o X 52Kl a2
|+1/2 EANRA K [:2 2] 1]ar2 +3r
-1/2 112 |12 <1721 42 12|15 4is) si2 32
I-172 -122] 1 +1 1172 |45 —15] +12 +1/2
+1 —1/2| 2/5 355 52 372
= 0 +1/2| 35 -215] -1/2 ~112
1% 1/2 |3/ IR 0 -t/2| 35 25 52 32
P+142] 1 +124p -t +12]| 2/5 -3/5]-312 a2
2
w1 =12 | 13 2 32 2 32x1/2 -1 -1/2[ 455 15[ ¢
I 0 +1/2] 23-13}-1/2 12 Rl 2 si] 15 4] |
0-12| 2/3 1] ar Lazaz] =
-1 +12| 1/3 -2/3]-3/2 |+3/2 12 [1/4 3;4 2 1
1/2 +1/2 |3/4 -1/4
2x1|.3 [ 2] ] aex1].2 +12 + 0 o0
x1],3 x 1 1.5/ 2 21 w2l 2 1
22 52 32 12 12|12 -1/
12 41 1]e2 2 [+32 +1 1 1 )32 +ar2 Z12 4 i
2 0|13 25 T3z 025 35| 52 82 12 B —12(a4 vl 2
I“ +1|2/3 173 |+1/2 | 35 25 )+12 412 4R Z32 +1i2]1/4 —3/4]-2
+2 -1 110 _2/5 1/2 1-32 2] 1
1x1]1.2 410 3 2 1 {62 32 12
251 0+ 0 0 o0 S22 12
| XN RN KX 15 172 310 +12 -1]310 815 1/6
+1 02 12l 2 1 ¥ 0 -25 | 3 2 1 -1/2 ofa5 -5 -13[ 62 32
0+1|12 -12f 0 0 15 ~t2 30 -1 -1 ~32 +1 [ 1110 ~215 112 ] -3 32
+1 -1 |16 12 13 0 -11615 12 110 -12-1| 35 25] 52
0 0|23 0-13[2 1 -1 0|6&/15-1/6 -3/10f 3 2 32 0| 2/5 -3/5]-5/2
141|612 13 )1 -1 2 +1]115 -1/3 35 |2 2
|32 -1 1
0-tl12 2] 2 —1-1(2/3 3] 3
-1 0]z -12|-=2 -2 0]1/3 -2/3]-3
-1 ~1] 1 | EEE

form, with s; = s, = 1/2 (I used the informal notation 1 = [ 1), = |4 (1)),
The constants C;°2°  are called Clebsch-Gordan coefficients. A few of the simplest

mymym
cases are listed in Tzzlble 4.7.%° For example, the shaded column of the 2 x 1 table tells
us that
21) = [22)]1 1) + 21)10) — 120)(11).

V3 NG V2
In particular, if two particles (of spin 2 and spin 1) are at rest in a box, and the total
spin is 2, and its z-component is 1, then a measurement of S(l) could return the value
2% (with probability 1/3), or 7 (with probability 1/6), or O (with probability 1/2).
Notice that the probabilities add up to 1 (the sum of the squares of any column on the

Clebsch-Gordan table is 1).
These tables also work the other way around:

Isimi)lsama) =Y Cosst s m). [4.186]

5

For example, the shaded row in the 3/2 x 1 table tells us that
31 _ /351 131 111
|§§>|10>—\/; zz>+\/1islzz>—\[§‘zz>

3The general formula is derived in Arno Bohm, Quantum Mechanics: Foundations and Applica-
tions, 2nd ed. (New York: Springer-Verlag, 1986), p. 172.
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If you put particles of spin 3/2 and spin 1 in the box, and you know that the first has
my = 1/2 and the second has m, = 0 (so m is necessarily 1/2), and you measured the
total spin s, you could get 5/2 (with probability 3/5), or 3/2 (with probability 1/15),
or 1/2 (with probability 1/3). Again, the sum of the probabilities is 1 (the sum of the
squares of each row on the Clebsch-Gordan table is 1).

If you think this is starting to sound like mystical numerology, I don’t blame
you. We will not be using the Clebsch-Gordan tables much in the rest of the book,
but I wanted you to know where they fit into the scheme of things, in case you
encounter them later on. In a mathematical sense this is all applied group theory—
what we are talking about is the decomposition of the direct product of two irreducible
representations of the rotation group into a direct sum of irreducible representations.
(You can quote that to impress your friends.)

«Problem 4.35

(@) Apply S_ to |10) (Equation 4.177), and confirm that you get /271 —1).
(b) Apply S to |00) (Equation 4.178), and confirm that you get zero.

(c) Show that |11) and |1 —1) (Equation 4.177) are eigenstates of S?, with the
appropriate eigenvalue.

Problem 4.36 Quarks carry spin 1/2. Three quarks bind together to make a
baryon (such as the proton or neutron); two quarks (or more precisely a quark and
an antiquark) bind together to make a meson (such as the pion or the kaon). Assume
the quarks are in the ground state (so the orbital angular momentum is zero).

(a) What spins are possible for baryons?
(b) What spins are possible for mesons?

Problem 4.37

(@) A particle of spin 1 and a particle of spin 2 are at rest in a configuration such
that the total spin is 3, and its z-component is 1 (that is, the eigenvalue of S, is
). If you measured the z-component of the angular momentum of the spin-2
particle, what values might you get, and what is the probability of each one?

(b) An electron with spin down is in the state s, of the hydrogen atom. If you
could measure the total angular momentum squared of the electron alone (not
including the proton spin), what values might you get, and what is the probability
of each?

Problem 4.38 Determine the commutator of $? with S (where § = S© + §®),
Generalize your result to show that

(5%, 8] = 2in (ST x 8§, [4.187]
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Note: Because S{V does not commute with 2, we cannot hope to find states that are
simultaneous eigenvectors of both. To form eigenstates of S?, we need linear combi-
nations of eigenstates of SV, This is precisely what the Clebsch-Gordan coefficients
(in Equation 4.185) do for us. On the other hand, it follows by obvious inference fron:
Equation 4.187 that the sum S 4+ S@ does commute with S2, which only confirm-
what we already knew (see Equation 4,103).

FURTHER PROBLEMS FOR CHAPTER 4

«Problem 4.39 Consider the three-dimensional harmonic oscillator, for which
the potential is

Vr)= %maﬂr? [4.188

(a) Show that separation of variables in Cartesian coordinates turns this into three
one-dimensional oscillators, and exploit your knowledge of the latter to deter-
mine the allowed energies. Answer:

E, = (n +3/)ho. [4.189]

(b) Determine the degeneracy d(n) of E,,.

x+xxProblem 4.40 Because the three-dimensional harmonic oscillator potential (Equa-
tion 4.188) is spherically symmetric, the Schrodinger equation can be handled by
separation of variables in spherical coordinates as well as Cartesian coordinates. Use
the power series method to solve the radial equation. Find the recursion formula
for the coefficients, and determine the allowed energies. Check your answer against
Equation 4.189.

#xProblem 4.41

(@) Prove the three-dimensional virial theorem
2AT) = (r- VV) [4.190]
(for stationary states). Hint: Refer to Problem 3.53.
(b) Apply the virial theorem to the case of hydrogen, and show that
(T) = —E,; (V) =2E,. [4.191)
(c) Apply the virial theorem to the three-dimensional harmonic oscillator (Prob-
lem 4.39), and show that in this case

(T) = (V) = E,/2. [4.192]

g
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xxxProblem 4.42 The momentum-space wave function in three dimensions is de-
fined by the natural generalization of Equation 3.132:

#(p) = / e P DMy (r) dr. [4.193]

1
(2mh)3/2

(@) Find the momentum-space wave function for the ground state of hydrogen
(Equation 4.80). Hint: Use spherical coordinates, setting the polar axis along
the direction of p. Do the @ integral first. Answer:

(et 4.194
¢(P)—n(h) [+ @ap/W 14154

(b) Check that ¢ (p) is normalized.
(C) Use ¢(p) to calculate {p?).

(d) What is the expectation value of the kinetic energy in this state? Express your
answer as a multiple of £, and check that it is consistent with the virial theorem
(Equation 4.191).

Problem 4.43

(a) Construct the spatial wave function (1) for hydrogen in the state n = 3,1 = 2,
m = 1. Express your answer as a function of », 6, ¢, and a (the Bohr radius)
only—no other variables (p, z, etc.), or functions (¥, v, etc.), or constants (A4,
ay, etc.), or derivatives allowed (7 is okay, and e, and 2, etc.).

(b) Check that this wave function is properly normalized by carrying out the appro-
priate integrals over r, 8, and ¢.

(c) Find the expectation value of r* in this state. For what range of s is the result
finite?

+xxProblem 4.44 Suppose two spin-1/2 particles are known to be in the singlet con-
figuration (Equation 4.178). Let S{" be the component of the spin angular momentum
of particle number 1 in the direction defined by the unit vector 4. Similarly, let Sz()Z)
be the component of 2°s angular momentum in the direction b. Show that
712
(SHs?y = - cos6, [4.195]

a

where 6 is the angle between d and b.

s+xProblem 4.45 Work out the Clebsch-Gordan coefficients for the case 5; = 1/2,
s> = anything. Hint: You're looking for the coefficients 4 and B in

lsm) = Al 3)ls2 (m = 3)) + Bl3 (=)s2 (m + ),
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such that |sm) is an eigenstate of S2. Use the method of Equations 4.179 througt
4.182. If you can’t figure out what S (for instance) does to |s; my), refer back t
Equations 4.136 and 4.144. Use this general result to construct the (1/2) x 1 table
of Clebsch-Gordan coefficients, and check it against Table 4.7. Answer:

4= szim+1/2; B4 sz:Fm—l-l/Z’
250 + 1 257+ 1

where the signs are determined by s = s, £1/2.

Problem 4.46 Find the matrix representing S, for a particle of spin 3/2 (using
the basis of eigenstates of S,). Solve the characteristic equation to determine the
eigenvalues of S;.

xxxProblem 4.47 Work out the normalization factor for the spherical harmonics, a-

follows. From Section 4.1.2 we know that
Y" = Ble™? P (cos6);

the problem is to determine the factor B;" (which I quoted, but did not derive, in
Equation 4.32). Use Equations 4.120, 4.121, and 4.130 to obtain a recursion relation
giving B{”*' in terms of By". Solve it by induction on m to get B;" up to an overall
constant C (/). Finally, use the result of Problem 4.22 to fix the constant. You may find

the following formula for the derivative of an associated Legendre function useful:

dp"
(1= x) = = V1= a2 —mx P [4.196]

Problem 4.48 The electron in a hydrogen atom occupies the combined spin and

position state
1o 21
Ry §Y1X++ §Y1X— .

(a) Ifyoumeasured the orbital angular momentum squared (L?), what values might
you get, and what is the probability of each?

(b) Same for the z-component of orbital angular momentum (L ;).

() Same for the spin angular momentum squared (S?).

(d) Same for the z-component of spin angular momentum (S;).
Let J = L + S be the total angular momentum.

(e) If you measured J2, what values might you get, and what is the probability of
each?

(f) Same for J,.
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(g) If you measured the position of the particle, what is the probability density for
findingitatr, 6, ¢?

(h) If you measured both the z-component of the spin and the distance from the ori-
gin (note that these are compatible observables), what is the probability density
for finding the particle with spin up and at radius »?

xxxProblem 4.49

(&) For a function f(¢) that can be expanded in a Taylor series, show that
f(@+ o) = =M f(g)

(where ¢ is any constant angle). For thisreason, L, /% is called the generator of
rotations about the z-axis. Hint: Use Equation 4.129, and refer to Problem 3.55.

More generally, L - 7 /7 is the generator of rotations about the direction 7, in
the sense that exp(/L - fig /i) effects a rotation through angle ¢ (in the right-hand
sense) about the axis 7. In the case of spin, the generator of rotations is 8 - 7i/A. In
particular, for spin 1/2

x' = ei(“'ﬁ)"’/zx [4.197]

tells us how spinors rotate.

(b) Construct the (2 x 2) matrix representing rotation by 180° about the x-axis,
and show that it converts “spin up” () into “spin down” (x_), as you would
expect.

(c) Construct the matrix representing rotation by 90° about the y-axis, and check
what it does to x,.

(d) Construct the matrix representing rotation by 360° about the z-axis. If the
answer 18 not quite what you expected, discuss its implications.

(e) Show that -
et(a-n)fp/Z — cos((p/2) + l(fl -o) Sln((p/z) [4.198]

+x+Problem 4.50 The fundamental commutation relations for angular momentum
(Equations 4.98 and 4.99) allow for half-integer (as well as integer) eigenvalues. But
for orbital angular momentum only the integer values occur. There must be some
extra constraint in the specific form L = r x p that excludes half-integer values.*
Let a be some convenient constant with the dimensions of length (the Bohr radius,
say, if we’re talking about hydrogen), and define the operators

q1 12 [x + (az/h)Py]; p1L= % [px — (h/aZ)y];
q2 12 [x - (az/h)Py]§ m= % [Px + (h/az)y],

e
S

S

40This problem is based on an argument in Ballentine, (footnote 34), page 127.
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(@) Verify that [g1, g21 = [p1, p21 = 0; [g1, p1]l = (42, p2] = if. Thus the g’s and
the p’s satisfy the canonical commutation relations for position and momentum.
and those of index 1 are compatible with those of index 2.

(b) Show that
a 2
=7 (1 — p)-

h
L, = —(q? — g2
2a2(‘11 q;) + 7

(C) Check that L, = H| — H,, where each H is the Hamiltonian for a harmonic
oscillator with mass m = % /a? and frequency w = 1.

(d) We know that the eigenvalues of the harmonic oscillator Hamiltonian are (n —
1/2)hw, where n = 0, 1,2, ... (in the algebraic theory of Section 2.3.1, thi
follows from the form of the Hamiltonian and the canonical commutation rela-
tions). Use this to conclude that the eigenvalues of L, must be integers.

xxxProblem 4.51 In classical electrodynamics the force on a particle of charge ¢

moving with velocity v through electric and magnetic fields E and B is given by the
Lorentz force law:

F =g(E + v x B). [4.199]

This force cannot be expressed as the gradient of a scalar potential energy function.
and therefore the Schrodinger equation in its original form (Equation 1.1) cannot
accomodate it. But in the more sophisticated form

g
ih%-—t— = Hv [4.200]

there is no problem,; the classical Hamiltonian*! is

1
H= 2—(p — qA)2 +q0, [4.201]
m

where A is the vector potential (B = V x A) and ¢ is the scalar potential (E = — Vg —
dA/d1), so the Schrodinger equation (making the canonical substitution p — (i /A)V)

becomes )
o 1
ih— = [—— (EV - qA> +q<p} v, [4.202)
ot 2m \ i
(@) Show that
d(r) 1
— = —{((p — qA)). [4.203]
dt m

418ee, for example, H. Goldstein, Classical Mechanics, 2nd ed., Addison-Wesley, Reading, MA.
1980, page 346.
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(b) As always (see Equation 1.32) we identify d(r)/dt with {v). Show that

d 2
m% =g(E) + —?——((p xB—Bxp) - q—((A x B)). [4.204]
t 2m m

(C) In particular, if the fields E and B are uniform over the volume of the wave

packet, show that
d{v)
m— == g(E + (v) x B), [4.205]
so the expectation value of (v) moves according to the Lorentz force law, as we

would expect from Ehrenfest’s theorem.

xxxProblem 4.52 [Refer to Problem 4.51 for background.] Suppose
B
A=2(j—y). and ¢=KZ,
where By and K are constants.

(@) Find the fields E and B.

(b) Find the allowed energies, for a particle of mass m and charge g, in these fields.

+xxProblem 4.53 [Refer to Problem 4.51 for background.] In classical electrodynam-
ics the potentials A and ¢ are not uniquely determined*; the physical quantities are
the fields, E and B.

(@) Show that the potentials

A
(p/z(p—y, A=A+ VA [4.206]
(where A is an arbitrary real function of position and time) yield the same fields
as ¢ and A. Equation [4.206] is called a gauge transformation, and the theory

is said to be gauge invariant.

(b) In quantum mechanics the potentials play a more direct role, and it is of interest
to know whether the theory remains gauge invariant. Show that

U = Ay [4.207]

satisfies the Schrodinger equation [4.202] with the gauge-transformed potentials
¢’ and A’. Since ¥’ differs from W only by a phase factor, it represents the

428ee, for example, Griffiths, (footnote 27), section 10.2.4.
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same physical state*’, and the theory is gauge invariant (see Section 10.2.4 for
further discussion).

43That is to say, (r), d(r)/dt, etc. are unchanged. Because A depends on position, (p) (with
p represented by the operator (3/i)V) does change, but as we found in Equation [4.203], p does
not represent the mechanical momentum (mv) in this context (in Lagrangian mechanics it is so-called
canonical momentum).




CHAPTER 5

IDENTICAL PARTICLES

5.1 TWO-PARTICLE SYSTEMS

For a single particle, the wave function W(r, ¢) is a function of the spatial coordinates
r and the time 7 (we’ll ignore spin for the moment). The wave function for a two-
particle system is a function of the coordinates of particle one (r;), the coordinates
of particle two (r,), and the time:

W(r, ry,1). [5.1]
Its time evolution is determined (as always) by the Schrodinger equation:
ov
ih— = HY, [5.2]
ot
where H is the Hamiltonian for the whole system:
o, R? 2
H=——V o — V4Vt 5.3
3 L 2y 2+ V(r, 1) [5.3]

(the subscript on V indicates differentiation with respect to the coordinates of particle
I or particle 2, as the case may be). The statistical interpretation carries over in the
obvious way:

N (ry, 12, )2 d°ry dry [5.4]

is the probability of finding particle 1 in the volume d>r; and particle 2 in the volume
d’ry; evidently ¥ must be normalized in such a way that

/|\y(r1,r2,z)|2d3r1 d*r, = 1. [5.5]
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For time-independent potentials, we obtain a complete set of solutions by sep-
aration of variables:

W(r), 12 0) = Y (e r)e” [5:6
where the spatial wave function () satisfies the time-independent Schrodinger equa-
tion:

h? h2 ,

Viv — 5 —Viv + Vv = Ey, [5.7
21’}1]

and F is the total energy of the system.

xxProblem 5.1 Typically, the interaction potential depends only on the vector
r = r; — I, separating the two particles. In that case the Schrodinger equation
separates, if we change variables from ry, rytor, R = (mir; + mar)/(my + mz
(the center of mass).

(@) Show thatr; =R+ (u/m)r,1r; = R~ (u/mo)r,and V| = (u/mz) Vg + V..
= (u/m)Vg — V,, where

M [5.8]

= ——o
m| + my

is the reduced mass of the system.
(b) Show that the (time-independent) Schrédinger equation becomes

2

hh

TS0+ ma) Vi — —V2¢+V(l')¢f Eyr.

() Solve by separation of variables, letting ¢ (R, r) = ¥z (R)¥(r). Note that ¢«
satisfies the one-particle Schridinger equation, with the total mass (m + mz)
in place of m, potential zero, and energy E g, while ¥, satisfies the one-particle
Schrodinger equation with the reduced mass in place of m, potential ¥ (r), and
energy E,. The total energy is the sum: E = E + E,. Note: What this tells
us is that the center of mass moves like a free particle, and the relative motion
(that is, the motion of particle 2 with respect to particle 1) is the same as if we
had a single particle with the reduced mass, subject to the potential ¥. Exactly
the same separation occurs in classical mechanics'; it reduces the two-body
problem to an equivalent one-body problem.

Problem 5.2 In view of Problem 5.1, we can correct for the motion of the nucleus
in hydrogen by simply replacing the electron mass with the reduced mass:

(@) Find (to two significant digits) the percent error in the binding energy of hydro-
gen (Equation 4.77) introduced by our use of m instead of i.

ISee, for example, Jerry Marion, Classical Dynamics, 2nd ed. (New York: Academic Press 1970).
Section 8.2.
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(b) Find the separation in wavelength between the red Balmer lines
(n =3 — n = 2) for hydrogen and deuterium.

(¢) Find the binding energy of pesitronium (in which the proton is replaced by a
positron—positrons have the same mass as electrons but opposite charge).

(d) Suppose you wanted to confirm the existence of muonic hydrogen, in which the
electron is replaced by a muon (same charge, but 206.77 times heavier). Where
(ie., at what wavelength) would you look for the “Lyman-a” line
n=2—->n=1)

5.1.1 Bosons and Fermions

Suppose particle 1 is in the (one-particle) state v, (r), and particle 2 is in the state
Y (r). In that case Y (ry, r2) is a simple product:

Y (T, 1) = Yo(r)¥p(ry). [5.9]

Of course, this assumes that we can tell the particles apart—otherwise it wouldn’t
make any sense to claim that number 1 is in state 1, and number 2 is in state 1,; all
we could say is that one of them is in the state v, and the other is in state v, but
we wouldn’t know which is which. If we were talking about classical mechanics this
would be a silly objection: You can always tell the particles apart, in principle—just
paint one of them red and the other one blue, or stamp identification numbers on
them, or hire private detectives to follow them around. But in quantum mechanics
the situation is fundamentally different: You can’t paint an electron red, or pin a label
on it, and a detective’s observations will inevitably and unpredictably alter the state,
raising doubts as to whether the two had perhaps switched places. The fact is, all
electrons are utterly identical, in a way that no two classical objects can ever be. It is
not merely that we don’t happen to know which electron is which; God doesn’t know
which is which, because there is no such thing as “this” electron, or “that” electron;
all we can legitimately speak about is “an” electron.

Quantum mechanics neatly accommodates the existence of particles that are
indistinguishable in principle: We simply construct a wave function that is noncom-
mittal as to which particle is in which state. There are actually two ways to do it:

Vi(r1, 12) = A[Ya () ¥s(r2) £ Y (r) ¥, (r2)]. [5.10]

Thus the theory admits two kinds of identical particles: boesons, for which we use the
plus sign, and fermions, for which we use the minus sign. Photons and mesons are
bosons; protons and electrons are fermions. It so happens that

[5.11]

all particles with integer spin are bosons, and
all particles with half-integer spin are fermions.
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This connection between spin and “statistics” (as we shall see, bosons and fermions
have quite different statistical properties) can be proved in relativistic quantum me-
chanics; in the nonrelativistic theory it must be taken as an axiom.

It follows, in particular, that two identical fermions (for example, two electrons)
cannot occupy the same state. For if ¥, = ¥, then

Y (11, 12) = A[Ya (X)) ¥a(r2) — Ya(r)va ()] =0,

and we are left with no wave function at all. This is the famous Pauli exclusion
principle. It is not (as you may have been led to believe) a bizarre ad hoc assumption
applying only to electrons, but rather a consequence of the rules for constructing
two-particle wave functions, applying to all identical fermions.

I assumed, for the sake of argument, that one particle was in the state 1, and
the other in state 1, but there is a more general (and more sophisticated) way to
formulate the problem. Let us define the exchange operator P which interchanges
the two particles:

Pf(r;,ry) = f(ra, 1)) [5.12]

Clearly, P? = 1, and it follows (prove it for yourself) that the eigenvalues of P are £1.
If the two particles are identical, the Hamiltonian must treat them the same: m; = m-
and V (11, r3) = V (1, ry). It follows that P and H are compatible observables,

[P, H] =0, [5.13]

and hence we can find a complete set of functions that are simultaneous eigenstates of
both. That is to say, we can find solutions to the Schrodinger equation that are either
symmetric (eigenvalue +1) or antisymmetric (eigenvalue —1) under exchange:

Y(ry, ry) = ¥ (rz, ry) (+ for bosons, — for fermions). [5.14]

Moreover, if a system starts out in such a state, it will remain in such a state. The new
law (I'1l call it the symmetrization requirement) is that for identical particles the
wave function is not merely allowed, but required to satisfy Equation 5.14, with the
plus sign for bosons and the minus sign for fermions.? This is the general statement.
of which Equation 5.10 is a special case.

2]t is sometimes suggested that the symmetrization requirement (Equation 5.14) is nothing new—
that it is forced by the fact that P and H commute. This is false: It is perfectly possible to imagine a system
of two distinguishable particles (say, an electron and a positron) for which the Hamiltonian is symmetric.
and yet there is no requirement that the wave function be symmetric (or antisymmetric). But identical
particles have to occupy symmetric Of antisymmetric states, and this is a completely new fundamental
law—on a par, logically, with Schrédinger’s equation and the statistical interpretation. Of course, there
didn’t have to be any such things as identical particles; it could have been that every single particle in
nature was clearly distinguishable from every other one. Quantum mechanics allows for the possibility of
identical particles, and nature (being lazy) seized the opportunity. (But I'm not complaining—this makes
matters enormously simpler!)
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Example. Suppose we have two noninteracting® particles, both of mass m, in
the infinite square well (Section 2.2). The one-particle states are

Yu(x) = \/g Sin(%x), E, = n’K

(where K = m2h%/2ma?). If the particles are distinguishable, the composite wave
functions are simple products:

Vniny (X1, %2) = Y, X)) ¥n, (X2),  Egpn, = (n% + I’l%)K

For example, the ground state is
2. .
Y11 = —sin(zwx,/a) sin(wxz/a), E; = 2K;
a
the first excited state is doubly degenerate:
2
V2 = —sin(wx, /a) sin(Qrx,/a), Epp =5K,
a

2
Vo1 = —sin2mx, /a) sin(wxy/a), Ey =5K;
a

and so on. If the two particles are identical bosons, the ground state is unchanged,
but the first excited state is nondegenerate:

? [sin(mwx; /a) sin(2wx, /a) + sin(2wx; /a) sin(w x, /a)]

(still with energy SK). And if the particles are identical fermions, there is no state
with energy 2K; the ground state is

—? [sin(rrxy /a) sin(2rxy/a) — sin(2wx; /a) sin(wxy/a)],

and its energy is 5K.

xProblem 5.3

(@) If v, and v, are orthogonal, and both normalized, what is the constant 4 in
Equation 5.107

(b) If 4, = ¥, (and itis normalized), what is 4? (This case, of course, occurs only
for bosons.)

3They pass right through one another—never mind how you would set this up in practice! I'll
ignore spin—if this bothers you (after all, a spinless fermion is a contradiction in terms), assume they’re
in the same spin state.
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Problem 5.4

(a) Write down the Hamiltonian for two identical noninteracting particles in the
infinite square well. Verify that the fermion ground state given in the example
is an eigenfunction of H, with the appropriate eigenvalue.

(b) Find the next two excited states (beyond the ones given in the example)—wave
functions and energies—for each of the three cases (distinguishable, identical
bosons, identical fermions).

5.1.2 Exchange Forces

To give you some sense of what the symmetrization requirement actually does, I'm
going to work out a simple one-dimensional example. Suppose one particle is in
state 1, (x), and the other is in state v, (x), and these two states are orthogonal and
normalized. If the two particles are distinguishable, and number 1 is the one in state
Y., then the combined wave function is

Y(x1, x2) = Yo (x1)¥p(x2); [5.15]

if they are identical bosons, the composite wave function is (see Problem 5.3 for the
normalization)

1
Yy (x1, x2) = E[Wa(xl)Wb(xZ) + Yp(x1) ¥ (x2)]; [5.16]

and if they are identical fermions, it is
1

ﬁ[%(xl)%(xz) — Yp(x)¥alx2)]. (5.17]

Let’s calculate the expectation value of the square of the separation distance
between the two particles,

Y_(x1, x2) =

(G = x2)%) = (x7) + (x3) = 2{xyx2). (5.18)

Case 1: Distinguishable particles. For the wave function in Equation 5.15.
we have

(x}) = f X Wa () dx, f e (x2) P dxa = (x%),

the expectation value of x? in the one-particle state ,),
P P

(x3) =f|wa(x1)|2dx1/x§|wb(xz)|2dxz= (x%)s,
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and
(X1x2) = /x1|10(x1)|2dx1/lelﬁ(xz)lzdxz = (xX)a{x)s.
In this case, then,

(1 — x2)%)a = (XN + (X2 — 2(x)a (x)s. [5.19]

(Incidentally, the answer would—of course—be the same if particle 1 had been in
state v, and particle 2 in state ,.)

Case 2: Identical particles. For the wave functions in Equations 5.16 and
5.17,

o = 5[ veoran [k
+ f X 1Ys ) dx, f |¥a(x2) I dxz
+ / X[ Ya(x1) Y (x1) dxy / Vb (X2)*Ya (x2) dxs
£ [ v [ vawar v dx]

1

= 5[<x2>a +(xM)p £0£0] = = ((x%), + (x%)s) .

NS

Similarly,
(x3) = % (% + (x%)a) -
(Naturally, (x7) = (x?), since you can’t tell them apart.) But
(rixy) = %[fxrlwa(xl)lzdxlflewb(xz>|2dxz
+fx1|wb(x1)|2dx1/xzwa(xz)rzdxz
ifxlllfa(xl)*lﬁb(xl)dxlfleﬁb(xz)*lﬁa(xz)dxz

i/xﬂlfb(xl)*llfa(xl)dxl/lelfa(xz)*llfb(xz)dxz]
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1
= ((x)alx)s + (X)6(X)a £ (X)an(X)sa £ (X)ba(X)as)
2

= (x)alx)p = [(X)asl’

where

(Xas = / Ve (X) s (x) dx. [5.20

Evidently

((x1 = x2)%)e = (D) + (D) = 2(x)a(x)s F 20(x)asl*. [5.21

Comparing Equations 5.19 and 5.21, we see that the difference resides in the
final term:

(Ax))) 2 = (AX)P)a F 21{x)ap|%; [5.22

identical bosons (the upper signs) tend to be somewhat closer together, and identica.
fermions (the lower signs) somewhat farther apart, than distinguishable particles ir
the same two states. Notice that (x),, vanishes unless the two wave functions actually
overlap [if ¥, (x) is zero wherever v, (x) is nonzero, the integral in Equation 5.20 i~
itself zero]. So if v, represents an electron in an atom in Chicago and 1, represent-
an electron in an atom in Seattle, it’s not going to make any difference whether you
antisymmetrize the wave function or not. As a practical matter, therefore, it’s okay
to pretend that electrons with nonoverlapping wave functions are distinguishable
(Indeed, this is the only thing that allows physicists and chemists to proceed at all.
for in principle every electron in the universe is linked to every other one via the
antisymmetrization of their wave functions, and if this really mattered, you wouldn't
be able to talk about any one electron until you were prepared to deal with them all'

The interesting case is when there is some overlap of the wave functions. The
system behaves as though there were a “force of attraction” between identical bosons.
pulling them closer together, and a “force of repulsion” between identical fermions.
pushing them apart. We call it an exchange force, although it’s not really a force at
all—no physical agency is pushing on the particles; rather, it is a purely geometricai
consequence of the symmetrization requirement. It is also a strictly quantum me-
chanical phenomenon, with no classical counterpart. Nevertheless, it has profound
consequences. Consider, for example, the hydrogen molecule (H;). Roughly speak-
ing, the ground state consists of one electron in the atomic ground state (Equation
4.80) centered on nucleus 1, and one electron in the atomic ground state centered at
nucleus 2. If electrons were bosons, the symmetrization requirement (or, if you like.
the “exchange force™) would tend to concentrate the electrons toward the middle.
between the two protons (Figure 5.1a), and the resulting accumulation of negative
charge would attract the protons inward, accounting for the covalent bond that holds
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+ F F + F + + F
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p p p p

(@) (b)

Figure 5.1: Schematic picture of the covalent bond: (a) Symmetric configura-
tion produces attractive force; (b) antisymmetric configuration produces repul-
sive force.

the molecule together. Unfortunately, electrons aren’t bosons, they’re fermions, and
this means that the concentration of negative charge should actually be shifted to the
wings (Figure 5.1b), tearing the molecule apart!

But wait. We have been ignoring spin. The complete state of the electron in-
cludes not only its position wave function, but also a spinor, describing the orientation
of its spin*:

Y(r)x(s). [5.23]

When we put together the two-electron state, it is the whole works, not just the
spatial part, that has to be antisymmetric with respect to exchange. Now, a glance
back at the composite spin states (Equations 4.177 and 4.178) reveals that the singlet
combination is antisymmetric (and hence would have to be joined with a symmetric
spatial function), whereas the three triplet states are all symmetric (and would require
an antisymmetric spatial function). Evidently, then, the singlet state should lead to
bonding, and the triplet to antibonding. Sure enough, the chemists tell us that covalent
bonding requires the two electrons to occupy the singlet state, with total spin zero.’

xProblem 5.5 Imagine two noninteracting particles, each of mass m, in the infinite
square well. If one is in the state v, (Equation 2.24) and the other in state v,
orthogonal to v,, calculate ((x; — x,)?), assuming that (a) they are distinguishable
particles, (b) they are identical bosons, and (c) they are identical fermions.

Problem 5.6 Suppose you had three particles, one in state ¥, (x), one in state ¥, (x),
and one in state ¥.(x). Assuming that ¥,, ¥,, and 1. are orthonormal, construct
the three-particle states (analogous to Equations 5.15, 5.16, and 5.17) representing
(a) distinguishable particles, (b) identical bosons, and (c) identical fermions. Keep in
mind that (b) must be completely symmetric under interchange of any pair of particles,
and (c) must be completely anti-symmetric in the same sense.) Nore: There’s a cute

“In the absence of coupling between spin and position, we are free to assume that the state is
separable in its spin and spatial coordinates. This just says that the probability of getting spin up is
independent of the location of the particle. In the presence of coupling, the general state would take the
form of a linear combination: ¥ (r) x4+ + ¥— () x-.

3In casual language, it is often said that the electrons are “oppositely aligned” (one with spin up,
and the other with spin down). This is something of an oversimplification, since the same could be said of
the m = O triplet state. The precise statement is that they are in the singlet configuration.
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trick for constructing completely antisymmetric wave functions: Form the Slater
determinant, whose first row is v, (x1), ¥(x1), ¥.(x;), etc., whose second row i~
Ya(x2), ¥ (x2), o (x2), etc., and so on (this device works for any number of particles).

5.2 ATOMS

A neutral atom, of atomic number Z, consists of a heavy nucleus, with electric charge
Ze, surrounded by Z electrons (mass m and charge —e). The Hamiltonian for this
system is®

h? 1\ Ze?) 1/ 1 Z, ¢
H = A V- - Z E . [5.24
Z { 2m <4neo) r } + 2 <4neo> = Ir; — 1] [5-24]

J=1

The term in curly brackets represents the kinetic plus potential energy of the jth
electron in the electric field of the nucleus; the second sum (which runs over all
values of j and k except j = k) is the potential energy associated with the mutual
repulsion of the electrons (the factor of 1/2 in front corrects for the fact that the
summation counts each pair twice). The problem is to solve Schrodinger’s equation.

Hy = Ev, [5.25]

for the wave function ¥ (r;, s, ..., rz). Because electrons are identical fermions.
however, not all solutions are acceptable: only those for which the complete state
(position and spin),

w(r17r27""rz)X(sl’sz’"'VSZ)’ [5'26]

is antisymmetric with respect to interchange of any two electrons. In particular, no
two electrons can occupy the same state.

Unfortunately, the Schrodinger equation with the Hamiltonian in Equation 5.24
cannot be solved exactly (at any rate, it hasn 't been) except for the very simplest case.
Z =1 (hydrogen). In practice, one must resort to elaborate approximation methods.
Some of these we shall explore in Part II; for now I plan only to sketch some of the
qualitative features of the solutions, obtained by neglecting the electron repulsion
term altogether. In section 5.2.1 we’ll study the ground state and excited states of
helium, and in section 5.2.2 we’ll examine the ground states of higher atoms.

1’m assuming the nucleus is stationary. The trick of accounting for nuclear motion by using the
reduced mass (Problem 5.1) works only for the two-body problem—hydrogen; fortunately, the nucleus is so
much more massive than the electrons that the correction is extremely small even in that case (see Problem
5.2a), and it is smaller still for the heavier atoms. There are more interesting effects, due to magnetic
interactions associated with electron spin, relativistic corrections, and the finite size of the nucleus. We’ll
look into these in later chapters, but all of them are minute corrections to the “purely Coulombic” atom
described by Equation 5.24.
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Problem 5.7 Suppose you could find a solution ¥(ry,rs,...,rz) to the
Schrodinger (Equation 5.25) for the Hamiltonian in Equation 5.24. Describe how
you could construct from it a completely symmetric function and a completely an-
tisymmetric function, which also satisty the Schrodinger equation, with the same
energy.

5.2.1 Helium

After hydrogen, the simplest atom is helium (Z = 2). The Hamiltonian,

? 1 262 ? 1 262 1 &2
H={-—V— — -V —_— —, [5.27
{ 2m ! 4mey 1 } + { 2 dmey ry ] + 4mey r; — 1y} [ ]

consists of two hydrogenic Hamiltonians (with nuclear charge 2e), one for electron
1 and one for electron 2, together with a final term describing the repulsion of the
two electrons. It is this last term that causes all the problems. If we simply ignore it,
the Schrodinger equation separates, and the solutions can be written as products of
hydrogen wave functions:

lﬁ(rh r) = Ynim (1‘1)¢n/1/m/(l‘2), [5.28]

only with half the Bohr radius (Equation 4.72), and four times the Bohr energies
(Equation 4.70). The total energy would be

E = 4(E, + Ey), [5.29]

where E, = —13.6/n? eV. In particular, the ground state would be

8
Yo(ri, 12) = Yroo(T)diop(r2) = —e 720/ [5.30]
(see Equation 4.80), and its energy would be
Ep =8(—13.6eV) = —109eV. [5.31]

Because v is a symmetric function, the spin state has to be antisymmetric, so the
ground state of helium is a singlet configuration, with the spins “oppositely aligned”.
The actual ground state of helium is indeed a singlet, but the experimentally deter-
mined energy is —78.975 eV, so the agreement is not very good. But this is hardly
surprising: We ignored electron repulsion, which is certainly not a small contribution.
Itis clearly positive (see Equation 5.27), which is comforting—evidently it brings the
total energy up from —109 to —79 eV (see Problem 5.10).

The excited states of helium consist of one electron in the hydrogenic ground
state and the other in an excited state:

Ynim ¥100- [5.32]
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[If you try to put both electrons in excited states, one immediately drops to the ground
state, releasing enough energy to knock the other one into the continuum (£ > 0.
leaving you with a helium ion (He™) and a free electron. This is an interesting sys-
tem in its own right—see Problem 5.8—but it is not our present concern.] We can
construct from this both symmetric and antisymmetric combinations, in the usual
way (Equation 5.10); the former go with the antisymmetric spin configuration (the
singlet), and they are called parahelium, while the latter require a symmetric spin
configuration (the triplet), and they are known as orthohelium. The ground state
1s necessarily parahelium; the excited states come in both forms. Because the sym-
metric spatial state brings the electrons closer together (as we discovered in Section
5.1.2), we expect a higher interaction energy in parahelium, and indeed it is exper-
imentally confirmed that the parahelium states have somewhat higher energy than
their orthohelium counterparts (see Figure 5.2).

Problem 5.8

(a) Suppose you put both electrons in a helium atom into the n = 2 state; what
would the energy of the emitted electron be?

(b) Describe (quantitatively) the spectrum of the helium jon, He™.

Problem 5.9 Discuss (qualitatively) the energy level scheme for helium (a) if elec-
trons were identical bosons, and (b) if electrons were distinguishable particles (but
still with the same mass and charge). Pretend the electrons still have spin 1/2.

xxProblem 5.10

(@) Calculate ((1/|r; — r,])) for the state ¥y (Equation 5.30). Hint: Do the d°r»
integral first, using spherical coordinates and setting the polar axis along ry, so
that

Iri — | = rl2 + r22 — 2r1ry cos 6;.

The 6, integral is easy, but be careful to take the positive root. You’ll have to
break the 7, integral into two pieces, one ranging from 0 to 7, the other from
r| to co. Answer: 5/4a.

(b) Use your result in (a) to estimate the electron interaction energy in the ground
state of helium. Express your answer in electron volts, and add it to Ey (Equa-
tion 5.31) to get a corrected estimate of the ground-state energy. Compare the
experimental value. Note: Of course, we’re still working with an approximate
wave function, so don’t expect perfect agreement.
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Figure 5.2: Energy level diagram for helium (the notation is explained in Section
5.2.2). Note that parahelium energies are uniformly higher than their orthohelium
counterparts. The numerical values on the vertical scale are relative to the ground
state of ionized helium (He*): 4 x (—13.6 eV) = —54.4 eV; to get the total energy of
the state, subtract 54.4 eV.

5.2.2 The Periodic Table

The ground-state electron configurations for heavier atoms can be pieced together
in much the same way. To first approximation (ignoring their mutual repulsion al-
together), the individual electrons occupy one-particle hydrogenic states (r, [, m),
called orbitals, in the Coulomb potential of a nucleus with charge Ze. If electrons
were bosons (or distinguishable particles), they would all shake down to the ground
state (1,0,0), and chemistry would be very dull indeed. But electrons are in fact iden-
tical fermions, subject to the Pauli exclusion principle, so only two can occupy any
given orbital (one with spin up, and one with spin down—or, more precisely, in the
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singlet configuration). There are n? hydrogenic wave functions (all with the same
energy E,) for a given value of n, so the n = 1 shell has room for two electrons, the
n = 2 shell holds eight, n = 3 takes 18, and in general the nth shell can accomodate
2n? electrons. Qualitatively, the horizontal rows on the Periodic Table correspond
to filling out each shell (if this were the whole story, they would have lengths 2.
8, 18, 32, 50, etc., instead of 2, 8, 8, 18, 18, etc.; we’ll see in a moment how the
electron-electron repulsion throws the counting off).

With helium, the n = 1 shell is filled, so the next atom, lithium (Z = 3), ha~
to put one electron into the n = 2 shell. Now, for » = 2 we can have [ = 0 or
! = 1, which of these will the third electron choose? In the absence of electron-
electron interactions, they both have the same energy (the Bohr energies depend on
n, remember, but not on /). But the effect of electron repulsion is to favor the lowest
value of /, for the following reason: Angular momentum tends to throw the electron
outward (more formally, the expectation value of » increases with increasing /, for a
given n), and the farther out an electron gets, the more effectively the inner electron~
screen the nucleus (roughly speaking, the innermost electron “sees” the full nuclear
charge Ze, but the outermost electron sees an effective charge hardly greater than e).
Within a given shell, therefore, the state with lowest energy (which is to say, the most
tightly bound electron) is / = 0, and the energy increases with increasing /. Thus the
third electron in lithinm occupies the orbital (2,0,0). The next atom (beryllium, with
Z = 4) also fits into this state (only with “opposite spin”), but boron (Z = 5) has to
make use of / = 1.

Continuing in this way, we reach neon (Z = 10), at which point the n = 2 shell
is filled, and we advance to the next row of the periodic table and begin to populate the
n = 3 shell. First there are two atoms (sodium and magnesium) with / = 0, and then
there are six with / = 1 (aluminum through argon). Following argon there “should”
be 10 atoms with n = 3 and / = 2; however, by this time the screening effect is so
strong that it overlaps the next shell, so potassium (Z = 19) and calcium (Z = 20)
choose n = 4,1 = 0, in preference to n = 3,/ = 2. After that we drop back to pick
up the n = 3, ] = 2 stragglers (scandium through zinc), followed by n = 4,1 = |
(gallium through krypton), at which point we again make a premature jump to the
next row (n = 5) and wait until later to slip in the / = 2 and / = 3 orbitals from the
n = 4 shell. For details of this intricate counterpoint, refer to any book on atomic
physics.”

I would be delinquent if I failed to mention the archaic nomenclature for atomic
states, because all chemists and most physicists use it (and the people who make up the
Graduate Record Exam love this kind of thing). For reasons known best to nineteenth-
century spectroscopists, [ = 0 is called s (for “sharp”), / = 1 is p (for “principal”).
I =2isd (“diffuse”), and/ = 3is f (“fundamental™); after that I guess they ran out of

7See, for example, U. Fano and L. Fano, Basic Physics of Atoms and Molecules (New York: John
Wiley & Sons, 1959), Chapter 18, or the classic by G. Herzberg, Atomic Spectra and Atomic Structure
(New York: Dover, 1944).
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imagination, because the list just continues alphabetically (g, A, i, etc.).® The state of
a particular electron is represented by the pair n/, with # (the number) giving the shell
and [ (the letter) specifying the orbital angular momentum; the magnetic quantum
number m is not listed, but an exponent is used to indicate the number of electrons
that occupy the state in question. Thus the configuration

(1)*(25)*2p)* [5.33]
tells us that there are two electrons in the orbital (1,0,0), two in the orbital (2,0,0), and
two in some combination of the orbitals (2,1,1), (2,1,0), and (2,1,—1). This happens
to be the ground state of carbon.

In that example there are two electrons with orbital angular momentum quantum
number 1, so the total orbital angular momentum quantum number L (capital L,
instead of /, to indicate that this pertains to the fotal, not to any one particle) could be
2, 1, or 0. Meanwhile, the two (1s) electrons are locked together in the singlet state,
with total spin zero, and so are the two (2s) electrons, but the two (2p) electrons could
be in the singlet configuration or the triplet configuration. So the total spin quantum
number S (capital, again, because it’s the total) could be 1 or 0. Evidently the grand
total (orbital plus spin) J could be 3, 2, 1, or 0. There exist rituals (Hund’s rules’)
for figuring out what these totals will be, for a particular atom. The result is recorded
as the following hieroglyphic:

28+, [5.34]

(where S and J are the numbers, and L the letter—capitalized, this time, because
we’re talking about the fotals). The ground state of carbon happens to be > Py: The
total spin is 1 (hence the 3), the total orbital angular momentum is 1 (hence the P), and
the grand total angular momentum is zero (hence the 0). In Table 5.1 the individual
configurations and the total angular momenta (in the notation of Equation 5.34) are
listed, for the first four rows of the Periodic Table.

x*+xProblem 5.11

(a) Figure out the electron configurations (in the notation of Equation 5.33) for the
first two rows of the Periodic Table (up to neon), and check your results against
Table 5.1.

(b) Figure out the corresponding total angular momenta, in the notation of Equation
[5.34], for the first four elements. List all the possibilities for boron, carbon,
and nitrogen.

8The shells themselves are assigned equally arbitrary nicknames, starting (don’t ask me why) with
K: the K shellisn = 1, the L shellis n = 2, M is n = 3, and so on (at least they re in alphabetical order).

9See, for example, Stephen Gasiorowicz, Quantum Physics (New York: John Wiley & Sons, 1974),
Chapters 18 and 19.



192 Chap. 5 Identical Particles

Table 5.1: Ground-state electron configurations for the first four rows of the
Periodic Table.

Z  Element Configuration

1 H (1s) 281

2 He (1s)? 15

3 Li (He) (2s) 281/

4  Be (He)(2s)? 1Sy

5 B (He)(25)*(2p) 2Pij2

6 C (He)(25)*(2p)* R

7 N (He)(2s)*(2p)° 832

8 O (He)(2s)*(2p)* P

9 F (He)(25)’(2p)° Py
10 Ne (He)(25)2(2 p)® 1y
11 Na (Ne)(3s) 281,
12 Mg (Ne)(3s)? 15
13 Al (Ne)(3s)*(3p) 2Py
14 Si (Ne)(35)*(3p)? 3p
15 (Ne)3s*(3p)° “S3p
16 S (Ne)(3s)2 (3 p)* p
17 ¢l (Ne)(35)2(3p)° 2P
18  Ar (Ne)(35)2(3p)® BRY
19 K (Ar)(4s) 281
20 Ca (Ar)(4s)? 1o
21 Sc (Ar)(45)% (3d) D3
2 T (Ar)(45)?(3d)? B
23V (Ar)(45)?(3d)° B
24 Cr (Ar)(45)(3d)° 785
25 Mn (An)(4s)2(3d)° 832
26 Fe (Ar)(4s)? (3d)° 3Dy
27 Co (An)(4s5)2(3d)7 4 Fop
28 Ni (Ar)(4s)*(3d)8 3F
29 Cu (Ar)(4s)(3d)'1° 281,
30 Zn (An(49)2(3d)'0 18
31 Ga (An(4s)*(3)%4p) Py
32 Ge AD@Es)23d)04p)? 3R
33 As (AD(4s)?(3d)°(4p)® 483
34 Se (An4s)2Gd)°4py* *p
35 Br (A4)°3d)!°@4p)® 2Py
36 Kr (AN4s)’(3d) %4p)® 1S

(c) Hund’s first rule says that, all other things being equal, the state with the highest
total spin will have the lowest energy. What would this predict in the case of
the excited states of helium?
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(d) Hund’s second rule says that if a subshell (n, /) is no more than half filled,
then the lowest energy level has J = |L — §}; if it is more than half filled, then
J = L + § has the lowest energy. Use this to resolve the boron ambiguity in
(b).

(e) Use Hund’s rules and the fact that a symmetric spin state must go with an

antisymmetric position state (and vice versa) to resolve the carbon ambiguity in
(b). What can you say about nitrogen?

Problem 5.12 The ground state of dysprosium (element 66, in the sixth row of the
Periodic Table) is listed as ° Iz. What are the total spin, total orbital, and grand total
angular momentum quantum numbers? Suggest a likely electron configuration for
dysprosium.

5.3 SOLIDS

In the solid state, a few of the loosely bound outermost valence electrons in each atom
become detached and roam around throughout the material, no longer subject only to
the Coulomb field of a specific “parent” nucleus, but rather to the combined potential
of the entire crystal lattice. In this section we will examine two extremely primitive
models: first, the electron gas theory of Sommerfeld, which ignores all forces (except
the confining boundaries), treating the wandering electrons as free particles in a
box (the three-dimensional analog to an infinite square well); and second, Bloch’s
theory, which introduces a periodic potential representing the electrical attraction of
the regularly spaced, positively charged, nuclei (but still ignores electron-electron
repulsion). These models are no more than the first halting steps toward a quantum
theory of solids, but already they reveal the critical role of the Pauli exclusion principle
in accounting for the “solidity” of solids, and provide illuminating insight into the
remarkable electrical properties of conductors, semiconductors, and insulators.

5.3.1 The Free Electron Gas

Suppose the object in question is a rectangular solid, with dimensions /., [,, /,, and
imagine that an electron inside experiences no forces at all, except at the impenetrable
walls:

fO0O<x<l,0<y<l,,0<z<l)

otherwise. [5.35]

07
WL%D—{w,
The Schrodinger equation,

h2
—5 VY = Ey,
2m
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separates in Cartesian coordinates: ¥ (x, y, z) = X(x)Y () Z(z), with
B d*X ndy W d’z
2mdx? T dmdyr T YT 2m d22

and E = E; + E, + E.. Letting

=FE.Z,

2mE, 2mFE _ /2mE;

we obtain the general solutions

X(x) = Ay sin(kyx) + B, cos(k,x), Y(y) = Ay sin(kyy) + By cos(ky,y),

Z(z) = A, sin(k,z) + B, cos(k,z).

The boundary conditions require that X(0) = Y(0) = Z(0) = 0, so B, = B, =
B, =0,and X(l;) =Y(,) =Z(,) =0, s0

ke =n,m, ki, =n,m, k. =n,m, [5.36:
where each » is a positive integer:
ne=12,3...,n,=123 ...,n,=1,2,3, .... [5.37]

The (normalized) wave functions are

8 . [(mm . (n,7 . [ nm
Ynonyn, = L sm( L x) sin (—lyTy) sm( L z), [5.38]

and the allowed energies are

Wr? (n? ni n? R2k?
nnyn, — TS - 2 == A 39
Ennn 2m <l§+l§+lzz 2m 15391

where k is the magnitude of the wave vector k = (%, , ky, k).

If you imagine a three-dimensional space, with axes &, , ky, k., and planes drawn
inatk, = (w/l,), 2n/l), Bn/l,), ..., at ky = (m/l)), 2n/l,), 3n/ly), ..., and
at k; = (n/l,), 2n/l;), Bn/l,), ..., each intersection point represents a distinct
(one-particle) stationary state (Figure 5.3). Each block in this grid, and hence also
each state, occupies a volume

=— [5.40]
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kX

Figure 5.3: Free electron gas. Each intersection on the grid represents an al-
lowed energy. Shading indicates one block; there is one state for every block.

of “k-space,” where ¥V = I,1,l, is the spatial volume of the object itself. Now
suppose our sample contains N atoms, and each atom contributes g free electrons.
(In practice, N will be enormous—on the order of Avogadro’s number, for an object
of macroscopic size.) If electrons were bosons (or distinguishable particles), they
would all settle down to the ground state, ¥/1;;./° But electrons are in fact identical
fermions subject to the Pauli exclusion principle, so only two of them can occupy any
given state. They will fill up one octant of a sphere in k-space,'’ whose radius & is
determined by the fact that each pair of electrons requires a volume 7/ ¥ (Equation
5.40):

101'm assuming there is no appreciable thermal excitation, or other disturbance, to lift the solid out
of its collective ground state. If you like, I'm talking about a “cold” solid, though (as you will show in
Problem 5.13c), typical solids are still “cold,” in this sense, far above room temperature.

UBecause N is such a huge number, we need not worry about the distinction between the actual
jagged edge of the grid and the smooth spherical surface that approximates it.
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Thus
kr = 3pmH)3, (541
where
q .
= — 5.42
p=- [

is the free electron density (the number of free electrons per unit volume).

The boundary separating occupied and unoccupied states, in k-space, is called
the Fermi surface (hence the subscript F). The maximum occupied energy is called
the Fermi energy Er; evidently, for a free electron gas,

h2
Ep= ﬁ@pnz)zﬂ. [5.43]

The fotal energy of the electron gas can be calculated as follows: a shell of thickness
dk (Figure 5.4) contains a volume

1
g(4nk2)dk,

so the number of electron states in the shell is

20(1/2)nk*dk] ¥V
(73/V)

2
= Fk dk.

Figure 5.4: One octant of a spherical shell in 4-space.
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Each of these states carries an energy A2k%/2m (Equation 5.39), so the energy of the
shell is

B2y
dE = — — K2 dk, [5.44]
2m m?
and hence the total energy is
nv [k RSV R2(3niNg)’3
Eo = Pdk=—£— = y 23, 5.4
T 2m2m _[) 1072m 1072m [5.43]

This quantum mechanical energy plays a role rather analogous to the internal
thermal energy (U) of an ordinary gas. In particular, it exerts a pressure on the walls,
for if the box expands by an amount dV, the total energy decreases:
2h*(3n%Ng)*s 2 dv
dE = _""(—T[—?‘)_‘V_Sﬂ dV = —=Ew—

3 107%m 3 vV
and this shows up as work done on the outside (d W = P dV') by the quantum pressure
P. Evidently

P=

[5.46]

2Eq _ 2 Kkp _ G)PR? ,
3V 31omtm . sm '
Here, then, is a partial answer to the question of why a cold solid object doesn’t
simply collapse: There is a stabilizing internal pressure that has nothing to do with
electron-electron repulsion (which we have ignored) or thermal motion (which we
have excluded) but is strictly quantum mechanical, and derives ultimately from the
antisymmetrization requirement for the wave functions of identical fermions. It is
sometimes called degeneracy pressure, although “exclusion pressure” might be a
better term.'?

Problem 5.13 The density of copper is 8.96 gm/cm?, and its atomic weight is 63.5
gm/mole.

(a) Calculate the Fermi energy for copper (Equation 5.43). Assume g, = 1, and
give your answer in electron volts.

(b) What is the corresponding electron velocity [set Er = (1/2)mv?]? Is it safe to
assume that the electrons in copper are nonrelativistic?

(c) At what temperature would the characteristic thermal energy (kg T, where kp is
the Boltzmann constant and 7 is the Kelvin temperature) equal the Fermi energy,
for copper? Note: This is called the Fermi temperature. As long as the actual
temperature is substantially below the Fermi temperature, the material can be
regarded as “cold”, with most of the electrons in the ground-state configuration.
Since the melting point of copper is 1356 K, solid copper is always cold.

12%e derived Equations 5.41, 5.43, 5.45, and 5.46 for the special case of an infinite rectangular
well; but they hold for containers of any shape as long as the number of particles is extremely large.
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(d) Calculate the degeneracy pressure (Equation 5.46) of copper, in the electron gas
model.

Problem 5.14 The bulk modulus of a substance is the ratio of a small decrease
in pressure to the resulting fractional increase in volume:

dPpP

B=-V—.

dv
Show that B = (5/3) P, in the free electron gas model, and use your result in Prob-
lem 5.13(d) to estimate the bulk modulus of copper. Note: The observed value is
13.4 x 10'° N/m2, but don’t expect perfect agreement—after all, we’re neglecting
all electron-nucleus and electron-electron forces! Actually, it is rather surprising that
this calculation comes as close as it does.

5.3.2 Band Structure

We’re now going to improve on the free electron model by including the forces exerted
on the electrons by the regularly spaced, positively charged, essentially stationary
nuclei. The qualitative behavior of solids is dictated to a remarkable degree by
the mere fact that this potential is periodic—its actual shape is relevant only to the
finer details. To show you how it goes, I'm going to develop the simplest possible
example: a one-dimensional Dirac comb, consisting of evenly spaced delta-function
wells (Figure 5.5). But before I get to that, we need to know a bit about the general
theory of periodic potentials.

Consider, then, a single particle subject to a periodic potential in one dimension:

Vix+a)=V(). [5.47}
Bloch’s theorem tells us that the solutions to the Schrodinger equation,

By, YW= E 5.48
ﬁ_dx—z—i_ () = Ev, [5.48]

r V(x)

-2a -a a 2a 3a 4a 5a 6a

Figure 5.5: The Dirac comb, Equation 5.57.
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for such a potential, can be taken to satisfy the condition
Yx +a) =5 (x) [5.49]

for some constant K,

Proof: Let D be the “displacement” operator:
Df(x) = f(x +a). [5.50]
By virtue of Equation 5.47, D commutes with the Hamiltonjan:
[D, H] =0, [5.51]

and hence (see Section 3.4.1) we are free to choose eigenfunctions of H that
are simultaneously eigenfunctions of D: Dy = Ay, or

Yx +a) = Ap(x). [5.52]

Now 1 is certainly not zero [if it were, then—since Equation 5.52 holds for
all x—we would immediately obtain ¢ (x) = 0, which is not a permissible
eigenfunction], so, like any nonzero complex number, it can be expressed as an

exponential: ‘
A= ek [5.53]

for some constant K. QED.

At this stage Equation 5.53 is merely a strange way to write the eigenvalue 2,
but in a moment we will discover that K is in fact real, so that although ¥ (x) itself
is not periodic, | (x)? is:

[ (x +a) = [y )], [5.54]

as one would certainly expect.'

Of course, no real solid goes on forever, and the edges are going to spoil the
periodicity of ¥ (x) and render Bloch’s theorem inapplicable. However, for any
macroscopic crystal, containing something on the order of Avogadro’s number of
atoms, it is hardly imaginable that edge effects can significantly influence the behav-
ior of electrons deep inside. This suggests the following device to salvage Bloch’s
theorem: We wrap the x-axis around in a circle and connect it onto its tail, after a
large number N & 10?* of periods; formally, we impose the boundary condition

¥ (x + Na) = ¢ (x). [5.55]

3Indeed, you might be tempted to reverse the argument, starting with Equation 5.54, as a way
of proving Bloch’s theorem. It doesn’t work, for Equation 5.54 alone would allow the phase factor in
Equation 5.49 to be a function of x.
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It follows (from Equation 5.49) that

e VK (x) = Y (x),

soeVke =1 or NKa = 2zn, or

2
k="

Vo (=0 L E2 ). [5.56]

In particular, for this arrangement K is necessarily real. The virtue of Bloch’s theorem
is that we need only solve the Schrodinger equation within a single cell (say, on the
interval 0 < x < a); recursive application of Equation 5.49 generates the solution
everywhere else.

Now suppose the potential consists of a long string of delta-function wells (the
Dirac comb):

N-1
V) =—a) 8x - ja). [5.57]
=0

The wells are supposed to represent, very crudely, the electrical attraction of the nuclei
in the lattice. (In Figure 5.5 you must imagine that the x-axis has been “wrapped
around,” as suggested in the previous paragraph, so the Nth well actually appears at
x = —a.) No one would pretend that this is a realistic model, but remember, it is only
the effect of periodicity that concerns us here; the classic study'* used a repeating
rectangular pattern, and many authors still prefer that one.!” In the region 0 < x < a
the potential is zero, so

hZ d2¢
—— L =Evy,
2m dx? v
or ‘ ,
d=yr )
bl Ap— S
dx? v
where
2mE
k= o [5.58]

as usual. (I'll work out the positive-energy solutions; the negative-energy states can
be obtained in exactly the same way, using x = +/—2mE /h, or by simply substituting
k — ix in the final result [5.64].)

The general solution is

¥(x) = Asin(kx) + Beos(kx), (0 <x <a). [5.59]

4R deL. Kronig and W, G. Penney, Proc. R. Soc. Lond., ser. A, 130, 499 (1930).

158ee, for instance, D. Park, Introduction 1o the Quantum Theory, 3rd ed., (New York: McGraw-Hill,
1992).



Sec. 5.3: Solids 201

According to Bloch’s theorem, the wave function in the cell immediately to the lef
of the origin is

Y(x) = e K Asink(x +a) + Beosk(x +a)], (—a<x <0). [560]
At x = 0, ¥ must be continuous, so
B = e %[ 4 sin(ka) + B cos(ka)]; [5.61]
its derivative suffers a discontinuity proportional to the strength of the delta function
(see Equation 2.107):
kA4 — e K9%[ A4 cos(ka) — Bsin(ka)] = —27'"233. [5.62]

Solving Equation 5.61 for 4 sin(ka) yields
A sin(ka) = [¢'%® — cos(ka)]B. [5.63]

Substituting this into Equation 5.62, and canceling k B, we find
4 . ‘ 2
[eKe — cos(ka)][1 — €K cos(ka)] + e K sin(ka) = —hmT: sin(ka),
which simplifies to

cos(Ka) = cos(ka) — 7—’7% sin(ka). [5.64]
This is the fundamental result from which all else follows. For the Kronig-Penney po-
tential (see footnote 15), the formula is more complicated, but it shares the qualitative
features we are about to explore.
Equation 5.64 determines the possible values of k, and hence the allowed en-
ergies. To simplify the notation, let

aa

m
z=ka, and B= h—z, [5.65]
so the right side of Equation 5.64 can be written
f(2) =cos(z) — B ) [5.66]

The constant j is a dimensionless measure of the “strength” of the delta function. In
Figure 5.6 I have plotted f'(z) for the case § = 1. The important thing to notice is that
£ (2) strays outside the range (—1, +1), and in such regions there is no hope of solving
Equation 5.64, since | cos(Ka)| < 1. These gaps represent forbidden energies; they
are separated by bands of allowed energies. Within a given band, virtually any energy
is allowed, for according to Equation 5.56 Ka = 27n/N, where N is a huge number,
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f(z)A

N, e e ! \— prm \eermre, prereees e ] ateitesto g e, prsd e povoed
1st gap 2nd gap 3rd gap 4th gap
band band band band

Figure 5.6: Graph of f(z) (Equation 5.66) for 8 = 1, showing allowed bands
separated by forbidden gaps.

and n can be any integer. You might imagine drawing N horizontal lines on Figure
5.6, at values of cos(27rn/N) ranging from +1 (n = 0) down to —1 (n = N /2), and
back almostto+1 (n = N — 1)—at this point the Bloch factor e'X“ recycles, so no new
solutions are generated by further increasing n. The intersection of each of these lines
with f(z) yields an allowed energy. Evidently there are N /2 positive-energy states
in the first band (joined by N /2 negative-energy states) and N in all the higher bands.
they are so closely spaced that for most purposes we can regard them as forming a
continuum (Figure 5.7).

So far, we’ve only put one electron in our potential. In practice there will be
Ng of them, where g is again the number of “free” electrons per atom. Because ot

Figure 5.7: The allowed positive
energies for a periodic potential.
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the Pauli exclusion principle, only two electrons can occupy a given spatial state,
so if g = 1, they will just fill the negative-energy half of the first band, if g = 2
they will completely fill the first band, if g = 3 they half fill the second band, and
so on. (In three dimensions, and with more realistic potentials, the band structure
may be more complicated, but the existence of bands, separated by forbidden gaps,
persists—band structure is the signature of a periodic potential.) Now, if a band is
entirely filled, it takes a relatively large energy to excite an electron, since it has to
jump across the forbidden zone. Such materials will be electrical insulators. On
the other hand, if a band is only partly filled, it takes very little energy to excite an
electron, and such materials are typically conductors. If you dope an insulator with
a few atoms of larger or smaller ¢, this puts some “extra” electrons into the next
higher band, or creates some holes in the previously filled one, allowing in either
case for weak electric currents to flow; such materials are called semiconductors. In
the free electron model a/l solids should be excellent conductors, since there are no
large gaps in the spectrum of allowed energies. It takes the band theory to account
for the extraordinary range of electrical conductivities exhibited by the solids in
nature.

Problem 5.15

(a) Using Equations 5.59 and 5.63, show that the wave function for a particle in the
periodic delta function potential can be written in the form

Y(x) = Clsin(kx) + e Kosink(a — x)], (0 <x <a).

(Don’t bother to determine the normalization constant C.)

(b) There is an exception: At the bottom of a band, where ka = Ka = jm, (a)
yields ¥ (x) = 0. Find the correct wave function for this case. Note what
happens to v at each delta function.

Problem 5.16 Find the energy at the top of the first allowed band, for the case
B =5, correct to three significant digits. For the sake of argument, assume o/a = 1
eV.

Problem 5.17 Suppose we used delta-function spikes, instead of wells (so that
the electrons are repelled, instead of attracted, by the nuclei). Draw the analogs to
Figures 5.6 and 5.7 (using the same values of the parameters—except for their signs).
How many allowed energies are there in each band? What is the energy at the top of
the jth band?

Problem 5.18 Show thatmosr of the energies determined by Equation 5.64 are dou-
bly degenerate. What are the exceptional cases? Hint: Tryitfor N =1,2,3,4, ...,
to see how it goes. What are the possible values of cos(K a) in each case?
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5.4 QUANTUM STATISTICAL MECHANICS

At absolute zero, a physical system occupies its lowest energy configuration. As w«
turn up the temperature, random thermal activity will begin to populate the excitec
states, and this raises the following question: If we have a large number N of particle~
in thermal equilibrium at temperature 7', what is the probability that a given particic
would be found to have a specific energy E;? Note that the “probability” in questior
has nothing to do with quantum indeterminacy—exactly the same question arises 1*
classical statistical mechanics. The reason we must be content with a probabilisii.
answer is that we are typically dealing with enormous numbers of particles, and w«
could not possibly expect to keep track of each one separately, whether or not the
underlying mechanics is deterministic.

The fundamental assumption of statistical mechanics is that in thermal
equilibrium every distinct state with the same roral energy E is equally probable
Random thermal motions constantly shift energy from one particle to another anc
from one form (rotational, kinetic, vibrational, etc.) to another, but (absent extern.
influences) the roral is fixed by conservation of energy. The assumption (and it's =
deep one, worth thinking about) is that this continual redistribution of energy doe-
not favor any particular state. The temperature 7 is simply a measure of the tota.
energy, for a system in thermal equilibrium. The only new twist introduced by
quantum mechanics has to do with how we count the distinct states, and this depend-
critically on whether the particles involved are distinguishable, identical bosons. or
identical fermions. The arguments are relatively straightforward, but the arithmer.
gets pretty dense, so I’'m going to begin with an absurdly simple example, so you'l.
have a clear sense of what is at issue when we come to the general case.

5.4.1 Example

Suppose we have just three noninteracting particles (all of mass m) in the one-
dimensional infinite square well (Section 2.2). The total energy is

7'[2 2 -
E:EA+EB+EC=M—a5(ni+n§+n§) [5.67

(see Equation 2.23), where n 4, ng, and nc are positive integers. Now suppose, for
the sake of argument, that £ = 243(w%42?/2ma?), which is to say,

n +n% 4+ nk =243, [5.68

There are, as it happens, 10 combinations of positive integers, the sum of whose
squares is 243: All three could be 9, or two could be 3 and one 15 (which occurs in
three permutations), or one could be 5, one 7, and one 13 (six permutations). Thu~
(n4, ng,nce) is one of the following:
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(97 9’ 9)1
(3,3,15), (3,15,3), (15,3, 3),
(6,7,13), (5,13,7), (7,5,13), (7,13,5), (13,5,7), (13,7,5).

If the particles are distinguishable, each of these represents a distinct quantum
state, and the fundamental assumption of statistical mechanics says that in thermal
equilibrium!® they are all equally likely. But I’m not interested in knowing which
particle is in which (one-particle) state, only the total number of particles in each
state—the occupation number N, for the state v,,. The collection of all occupation
numbers for a given three-particle state we will call the configuration. If all three
are in 1), the configuration is

0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,...) [5.69]

(i.e., No = 3, all others zero). If two are in vr; and one is in 5, the configuration is

0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,...) [5.70]

(i.e., N3 = 2, Ni5 = 1, all others zero). And if there is one particle in 5, one in 7,
and one in 13, the configuration is

0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,...) [5.71]

(ie., Ns = Ny = Nj3 = 1, all others zero.) Of these, the third is the most probable
configuration, because it can be achieved in six different ways, whereas the second
occurs three ways, and the first only one.

Returning now to my original question, if we select one of these three particles
at random, what is the probability (P,) of getting a specific (allowed) energy E,?
Well, the chances are 1 in 10 that the system is in the first configuration (Equation
5.69), and in that event we are certain to get Ey, so Py = 1/10. The chances are
3 in 10 that the system is in the second configuration (Equation 5.70), and in that
case there is a 2/3 probability of getting E3, and 1/3 probability of getting E|s, so
Py = (3/10) x (2/3) = 1/5,and P;5 = (3/10) x (1/3) = 1/10. And the chances
are 6in 10 that the system is in the third configuration, in which case the probability is
1/3 each that we’ll get Es, E4, and Ej3,50 Ps = P; = Pj3 = (6/10) x (1/3) = 1/5.
As a check, we note that

15How the particles maintain thermal equilibrium, if they really don’t interact at all, is a problem I'd
rather not worry about—maybe God reaches in periodically and stirs things up (being careful not to add
or remove any energy). In real life, of course, the continual redistribution of energy is caused precisely
by interactions between the particles, so if you don’t approve of divine intervention let there be extremely
weak interactions—sufficient to thermalize the system (at least, over long time periods) but too small to
alter the stationary states and the allowed energies appreciably.
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1 1 1 1 1 1
P+ Ps+P 4+ P+ P Pi=-dt—db—-af — =4+ —=1
3+ Ps + P;+ Py + Pi3+ s 5+5+5+10+5+10

But that’s when the particles are distinguishable. If in fact they are identicu.
fermions, the antisymmetrization requirement (leaving aside spin, for simplicity) ex-
cludes the first and second configurations (which assign two—or, worse still, three—
particles into the same state), and there is just one state with the third configuratior.
(see Problem 5.19). For identical fermions, then, Ps = P; = Py3 = 1/3 (and agair.
the sum of the probabilities is 1). On the other hand, if they are identical bosons the
symmetrization requirement allows for one state with each configuration (see Prob-
lem 5.19), s0 Py = 1/3, Py = (1/3) x (2/3) = 2/9, Pis = (1/3) x (1/3) = 1/9.
and Ps = P; = Pj3 = (1/3) x (1/3) = 1/9. As always, the sum s 1.

The purpose of this example was to show you how the counting of states depend~
on the nature of the particles. In one respect it was actually more complicated than
the realistic situation, in which N is a huge number. For as N grows, the most
probable configuration (in this example, N5 = N; = N3 = 1, for the case ot
distinguishable particles) becomes overwhelmingly more likely than its competitors.
so that, for statistical purposes, we can afford to ignore the others altogether. The
distribution of individual particle energies, at equilibrium, is simply their distribution
in the most probable configuration. (If this were true for N = 3—which, obviously. it
is not—we would conclude that Ps = P; = Pj3 = 1/3 for the case of distinguishable
particles.) I'll return to this point in Secticn 5.4.3, but first we need to generalize the
counting procedure itself.

«Problem 5.19

(a) Construct the completely antisymmetric wave function ¥ (x4, X3, x¢) for three
identical fermions, one in the state 15, one in the state 17, and one in the state

Y.

(b) Construct the completely symmetric wave function ¥ (x 4, x g, xc) for three iden-
tical bosons, (i) if all three are in state yrg, (ii) if two are in state 13 and one
is in state 1,3, and (iii) if one is in state 15, one in state Y-, and one in state

Y13.

«Problem 5.20 Suppose you had three particles in a one-dimensional harmonic
oscillator potential, in thermal equilibrium, with a total energy E = (9/2)hw.

() Ifthey are distinguishable particles (but all with the same mass), what are the pos-
sible occupation-number configurations, and how many distinct (three-particle)
states are there for each one? What is the most probable configuration? If you
picked a particle at random and measured its energy, what values might you get.
and what is the probability of each one? What is the most probable energy?
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(b) Do the same for the case of identical fermions (ignoring spin, as in the Example
in Section 5.4.1).

(¢) Do the same for the case of identical bosons (ignoring spin).

5.4.2 The General Case

Now consider an arbitrary potential, for which the one-particle energies are E;, £,
Es, ..., with degeneracies dy, d, ds, . .. (i.e., there are d, distinct one-particle states
with the same energy E,). Suppose we put N particles (all with the same mass) into
this potential; we are interested in the configuration (N1, Ny, N3, ...), for which there
are N particles with energy E;, N, particles with energy E,, and so on. Question:
How many different ways can this be achieved (or, more precisely, how many distinct
states correspond to this particular configuration)? The answer, Q(N;, N2, N3, .. .),
depends on whether the particles are distinguishable, identical fermions, or identical
bosons, so we’ll treat the three cases separately.'’

First, assume the particles are distinguishable. How many ways are there to
select (from the N available candidates) the N to be placed in the first “bin”? Answer:
the binomial coefficient, “N choose N;”:

N\ _ N!
(Nl) T NIV =Nl [5.72]

For there are N ways to pick the first particle, leaving (N — 1) for the second, and so
on:

Nt
(N - NV
However, this counts separately the Ni! different permutations of the Ny particles,
whereas we don’t care whether number 37 was picked on the first draw, or on the
twenty-ninth draw; so we divide by N;!, confirming Equation 5.72. Now, how many
different ways can those N, particles be arranged wirhin the first bin? Well, there
are d; states in the bin, so each particle has d; choices; evidently there are (d;)™
possibilities in all. Thus the number of ways to put N; particles, selected from a total
population of N, into a bin containing d; distinct options, is

NIN—DN=2--(N=N, +1) =

N
NiI(N — N
The same goes for bin 2, of course, except that there are now only (N — N;) particles
left to work with:
(N - NDd)*
NyI(N — Ny — No)!’

17The presentation here follows closely that of Amnon Yariv, An Introduction to Theory and Appli-
cations of Quantum Mechanics (New York: John Wiley & Sons, 1982).
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and so on. It follows that

O(N1, N2, N3, .0

_ NWY (N — N)'d)” (N — Ny — Np)1dy”
= N!I(N = N»)! Na'(N — Ny — No)! N3!(N — Ny — N2 — Ny)!

N N> N3 00
:N!ML'_'=N11_[“’ (5.7
n=1

N
NN ING! - - Nl

(You should pause right now and check this result for the Example in Section 5.4.1—
see Problem 5.21.)

The problem is a lot easier for identical fermions. Because they are indisur.-
guishable, it doesn’t matter which particles are in which states—the antisymmetriz.-
tion requirement means that there is just one N-particle state in which a specific s¢:
of one-particle states is occupied. Moreover, only one particle can occupy any giver

state. There are
dn
N,

ways to choose the N, occupied states in the nth bin,'® so

! dy! -,
O(Ny, Na, N3, ...) BIN,,!(dn—Nn)!' (5.7
(Check it for the Example in Section 5.4.1—see Problem 5.21.)

The calculation is hardest for the case of identical bosons. Again, the sym-
metrization requirement means that there is just one N-particle state in which a spe-
cific set of one-particle states is occupied, but this time there is no restriction on the
number of particles that can share the same one-particle state. For the nth bin, the
question becomes: how many different ways can we assign N, identical particle~
to d, different slots? There are many ways to solve this combinatorial problem: ar.
especially clever method involves the following trick: Let dots represent particles anc
crosses represent partitions, so that, for example, ifd, =5and N, =7,

o e X & X0 o0 X & X

would indicate that there are two particles in the first state, one in the second, three
in the third, one in the fourth, and none in the fifth. Note that there are N, dots and
(d, — 1) crosses (partitioning the dots into d, groups). If the individual dots anc
crosses were labeled, there would be (N, + d, — 1)! different ways to arrange them
But for our purposes the dots are all equivalent—permuting them (N, ! ways) does not

18This should be zero, of course, if N, > dy, and it is, provided that we consider the factorial o -
negative integer to be infinite.
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change the state. Likewise, the crosses are all equivalent—permuting them [(d,, — 1)!

ways] changes nothing. So there are in fact
N, +d, — D! ., -
(N + W (Natdy—1 [5.75]
N, — D! Ny

distinct ways of assigning the N, particles to the d, one-particle states in the nth bin,
and we conclude that

& (N, +d, — 1)
Q(Ny, N2, N3, ...) = ]1 SATRVR [5.76]

(Check it for the Example in Section 5.4.1—see Problem 5.21.)

xProblem 5.21 Check Equations 5.73, 5.74, and 5.76 for the Example in Section
54.1.

*+Problem 5.22 Obtain Equation 5.75 by induction. The combinatorial question is
this: How many different ways can you put N identical balls into d baskets (never
mind the subscript » for this problem). You could stick all N of them into the third
basket, or all but one in the second basket and one in the fifth, or two in the first and
three in the third and all the rest in the seventh, etc. Work it out explicitly for the
cases N = 1, N =2, N =3, and N = 4; by that stage you should be able to deduce
the general formula.

5.4.3 The Most Probable Configuration

In thermal equilibrium, every state with a given total energy E and a given particle
number N is equally likely. So the most probable configuration (N, N2, N3, ...)
is the one that can be achieved in the largest number of different ways—it is that
particular configuration for which Q(Ny, N, N3, ...) is a maximum, subject to the
constraints

o0
ZN" =N [5.77]
n=1
and
o0
ZN"E" =E. (5.78]
n=1

The problem of maximizing a function F(x;, x2, X3, .. .) of several variables, subject
to the constraints f] (x|, x2, X3, ...) = 0, fa(x1, X2, x3,...) = 0, etc., is most con-
veniently handled by the method of Lagrange multipliers'®: We introduce the new
function

9gee, for example, Mary Boas, Mathematical Methods in the Physical Sciences, 2nd ed. (New
York: John Wiley & Sons, 1983), Chapter 4, Section 9.
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G(xl,xz,x3,...,Al,kz,...) = F+)\.1f1 +)\.2f2+ [57‘*J
and set all its derivatives equal to zero:
G G
— =0 =0. [5.8¢
0x, O0Ay

In our case it’s a little easier to work with the logarithm of Q, instead of ¢/
itself——this turns the products into sums. Since the logarithm is a monotonic functior.
of its argument, the maxima of Q and In(Q) occur at the same point. So we let

[ ¢] [ ¢]
G=ln(Q)+a|N=Y N, |+B|E-) NE |, (5.81
n=1 n=1

where « and 8 are the Lagrange multipliers. Setting the derivatives with respect to v
and B equal to zero merely reproduces the constraints (Equations 5.77 and 5.78): 1-
remains, then, to set the derivative with respect to N, equal to zero.

If the particles are distinguishable, then Q is given by Equation 5.73, and w«
have

G =In(N1)+ Y [N, In(d,) — In(N, )]

n=1

+a|:N—iNni|+ﬂ|:E—iNnEni|. [5.82
n=1

n=1
Assuming that the relevant occupation numbers (N,,) are large, we can invoke Stir-
ling’s approximation:

Inz) = zIn(z) —z forz>>1 [5.83

to write

G~ Y [N, In(d,) — N, In(N,)) + N; — aN, = BE,N,]

n=1

+In(NY) +aN + BE. [5.84
It follows that

aG
N,

— In(d,) — In(N,) — a — BE,. [5.85)

205ee George Arfken, Mathematical Methods for Physicists, 3rd ed. (Orlando, FL: Academ.
Press, 1985), Section 10.3. If the relevant occupation numbers are not large—as in the Example of Sectior
5.4.1—then statistical mechanics simply doesn’t apply. The whole point is to deal with such enormou~
numbers that statistical inference is a reliable predictor. Of course, there will always be one-particle state-
of extremely high energy that are not populated at all; fortunately, Stirling’s approximation holds also for
z = 0. 1 use the word “relevant” to exclude any stray states right at the margin, for which N, is neither
huge nor zero.




Sec. 5.4: Quantum Statistical Mechanics 211

Setting this equal to zero and solving for N,, we conclude that the most probable
occupation numbers for distinguishable particles are

N, = d,e”@TBED, [5.86]

If the particles are identical fermions, then Q is given by Equation 5.74, and
we have

G= Zl {In(d,!) — In(N,!) — In[(d, — N,)'1}

+a[N—§:Nn:|+ﬂl:E—§:NnEn:|. [5.87]
n=1 n=1

This time we must assume not only that N, is large, but also that d,, >»> N,,?' so that
Stirling’s approximation applies to both terms. In that case

G~ Y [In(d,) = Nyln(Ny) + Ny = (d = N) In(dy = N,)

n=I

+ (dy — N,)) —aN, — ﬂE,,N,,] +aN + BE, [5.88]
SO

3G

- = =In(Ny) +In(d, — N,) — @ — BE,. [5.89]

Setting this equal to zero and solving for N,,, we find the most probable occupation
numbers for identical fermions:

dy

Nn = e@tBE) | 17

[5.90]

Finally, if the particles are identical bosons, then Q is given by Equation 5.76,
and we have

G= Z {In[(N, + d» — D] —In(N, 1) — In[(d, — D]}

n=1

+ o l:N — iNnjl +8 [E - iNnEn:l . [5.91]
n=1 n=1

21Ty one dimension the energies are nondegenerate (see Problem 2.42), but in three dimensions d,
typically increases rapidly with increasing a (for example, in the case of hydrogen, d, = n?). So it is not
unreasonable to assume that for most of the occupied states d, >> 1. On the other hand, d, is certainly not
much greater than N, at absolute zero, where all states up to the Fermi level are filled, and hence d, = N,,.
Here again we are rescued by the fact that Stirling’s formula holds also for z = 0.
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Assuming (as always) that N, > 1, and using Stirling’s approximation:
o0
G~ Y {(Na+dy = DInN, +dn = 1) = Ny +dy = 1) = Na In(Np)
n=1
+ N, —In[(d, — 1)!] —aN, — BE,N,} +aN + BE, (592

SO

G
= In(N, +d, — 1) —In(N,)) — & — BE,. [5.93
IN,
Setting this equal to zero and solving for N,, we find the most probable occupation
numbers for identical bosons:
d, — 1

Nn= —apEr —1°

[5.94]

(For consistency with the approximations already invoked, we should really drop the
1 in the numerator, and I shall do so from now on.)

Problem 5.23 Use the method of Lagrange multipliers to find the area of the
largest rectangle, with sides parallel to the axes, that can be inscribed in the ellipse

(x/a)* + (y/b)* = L.
Problem 5.24

() Find the percent error in Stirling’s approximation for z = 10.

(b) What is the smallest integer z such that the error is less than 1%?

5.4.4 Physical Significance of ¢ and

The parameters  and B came into the story as Lagrange multipliers, associated
with the total number of particles and the total energy, respectively. Mathematically.
they are determined by substituting the occupation numbers (Equations 5.86, 5.90.
and 5.94) back into the constraint equations (Equations 5.77 and 5.78). To cam
out the summation, however, we need to know the allowed energies (E,) and their
degeneracies (d,) for the potential in question. As an example, I'll work out the case
of a three-dimensional infinite square well; this will enable us to infer the physical
significance of o and B.
In Section 5.3.1 we determined the the allowed energies (Equation 5.39):

2
Ey = h—kz, [5.95]

2m

where
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ko [Ths Tny 7N

- (777

As before, we convert the sum into an integral, treating k as a continuous variable,
with one state (or, for spin s, 2s + 1 states) per volume 73/ ¥ of k-space. Taking as
our “bins” the spherical shells in the first octant (see Figure 5.4), the “degeneracy”
(that is, the number of states in the bin) is

l4nk*dk  V 2

= gm =5 [5.96]

k

For distinguishable particles (Equation 5.86), the first constraint (Equation 5.77) be-
comes

3/2
N = Le—a /oo e—ﬂhzkz/ka2 dk = Ve ™ ( m 2) ,
272 0 2 Bh

SO

3/2

2
eV (2”‘8 i ) . [5.97]
14 m

The second constraint (Equation 5.78) says

2 372
= Lze‘°’—71— T epieim g = Y (—m 2> ,
2 2m Jo 2B 2nph

or, putting in Equation 5.97 for ¢7¢,

E= 3N [5.98]

28°
(If you include the spin factor, 25 + 1, in Equation 5.96, it cancels out at this point,
so Equation 5.98 is correct regardless of spin.)
Equation 5.98 is reminiscent of the classical formula for the average kinetic

energy of an atom at temperature 7%
E 3
= = ki, (5.99]

where k g is the Boltzmann constant. This suggests that 8 is related to the temperature:

1

=—, 1
T {5.100]

B

22See, for example, David Halliday and Robert Resnick, Fundamentals of Physics, 3rd ed. extended
(New York: John Wiley & Sons, 1988), Section 21-5.
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To prove that this holds in general, and not simply for distinguishable particles in e
three-dimensional infinite square well, we would have to demonstrate that differe=
substances in thermal equilibrium with one another have the same value of 8. The
argument is sketched in many books,? but I shall not reproduce it here—I will simpl»

adopt equation [5.100] as the definition of T'.
It is customary to replace & (which, as is clear from the special case of Equaticr
5.97, is a function of T') by the so-called chemical potential,

w(T) = —aksT, [5.101

and rewrite Equations 5.86, 5.90, and 5.94 as formulas for the most probable numbe -
of particles in a particular (one-particle) state with energy € (to go from the numbe:
of particles with a given energy to the number of particles in a particular state witr
that energy, we simply divide by the degeneracy of the state):

e (€M ksl MAXWELL-BOLTZMANN
1
n(€) =3 ele—w/ksT 4 1° FERMI-DIRAC (5.102

1

The Maxwell-Boltzmann distribution is the classical result for distinguishable par-
ticles; the Fermi-Dirac distribution applies to identical fermions, and the Bose-
Einstein distribution is for identical bosons.

The Fermi-Dirac distribution has a particularly simple behavior as T — 0:

(e—u)/ksT 0, ife <u(0),
¢ - {oo, if e > (0),

80

1, ife < u(0),

n(€) - {0, if e > p(0).

All states are filled, up to an energy ©(0), and none are occupied for energies above

this (Figure 5.8). Evidently the chemical potential at absolute zero is precisely the
Fermi energy:

[5.103

w0 = Ep. [5.104
As the temperature rises, the Fermi-Dirac distribution “softens” the cutoff, as indicated
by the rounded curve in Figure 5.8.
For distinguishable particles in the three-dimensional infinite square well, we
found (Equation 5.98) that the total energy at temperature T is

3
E = ENkBT; [5.105,

23See, for example, Yariv, footnote 17, Section 15.4.
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l«—1=0

—— 1>0

\_

Er=p(0) €

Figure 5.8: Fermi-Dirac distribution for 7 = 0 and for 7 somewhat above zero.

from Equation 5.97 it follows that

I'would like to work out the corresponding formulas for identical fermions and bosons,
using Equations 5.90 and 5.94 in place of Equation 5.86. The first constraint (Equation

5.77) becomes
vV e’} k2
T 22 /0 LB 2m)—p) kT £ | dk [5.107]

(with the plus sign for fermions and minus for bosons), and the second constraint
(Equation 5.78) reads

14 h2 0 k4
E=—— dk. 5.108
272 2m /0 [ ]

el K /2m)— )/ ks T 4 |

The first of these determines 1(T), and the second determines E(T) (from the latter
we obtain, for instance, the heat capacity C = 3 £/dT). Unfortunately, the integrals
cannot be evaluated in terms of elementary functions, and I shall leave it for you to
explore the matter further (see Problems 5.25 and 5.26).

Problem 5.25 Evaluate the integrals (Equations 5.107 and 5.108) for the case of
identical fermions at absolute zero. Compare your results with Equations 5.43 and
5.45. (Note that for electrons there is an extra factor of 2 in Equations 5.107 and
5.108, to account for the spin degeneracy.)

xxxProblem 5.26

(a) Show that for bosons the chemical potential must always be less than the mini-
mum allowed energy. Hint: n(¢) cannot be negative.

(b) In particular, for the ideal bose gas (identical bosons in the three-dimensional
infinite square well), u(T) < O for all T. Show that in this case u(7T) mono-
tonically increases as T decreases, assuming that N and ¥ are held constant.
Hint: Study Equation 5.107, with the minus sign.
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(C) A crisis (called bose condensation) occurs when (as we lower T) w(T') hiz
zero. Bvaluate the integral, for u = 0, and obtain the formula for the criticz
temperature T, at which this happens. Note: Below the critical temperature. the
particles crowd into the ground state, and the calculational device of replacing
the discrete sum (Equation 5.77) by a continuous integral (Equation 5.107
loses its validity. See F. Mandl, Staristical Physics (London: John Wiley &
Sons, 1971), Section 11.5. Hint:

o0 xs—l
/ dx =T (s)¢(s), [5.10%
0 e* —1

where I is Euler’s gamma function and ¢ is the Riemann zeta function. Loos
up the appropriate numerical values. '

(d) Find the critical temperature for “*He. Its density, at this temperature, is 0.1%
gm/cm?. Note: The experimental value of the critical temperature in *He is 2.1°
K. The remarkable properties of *He in the neighborhood of T, are discussed 1~
the reference cited in (c).

5.4.5 The Blackbody Spectrum

Photons (quanta of the electromagnetic field) are identical bosons with spin 1, but the:
are a very special case because they are massless particles, and hence intrinsicall»
relativistic. We can include them here, if you are prepared to accept four assertior.-
that do not really belong to nonrelativistic quantum mechanics:

(1) The energy of a photon is related to its frequency by the Planck formul.
E=hv =ho.

(2) The wave number k is related to the frequency by k = 27/x = w/c, where .
is the speed of light.

(3) Only two spin states occur (the quantum number m can be 41 or —1, but n-
0).

(4) The number of photons is not a conserved quantity; when the temperature rises
the number of photons (per unit volume) increases.

In view of item 4, the first constraint equation (Equation 5.77) does not apply
We can take account of this by simply setting @ — 0, in Equation 5.81 and everythinzg
that follows. Thus the most probable occupation number for photons is (Equatior.
5.94)
di

N, = W‘j‘]‘. [5.110

For free photons in a box of volume V, d; is given by Equation 5.96,** multiplied b
2 for spin (item 3), and expressed in terms of w instead of k (item 2):

241 truth, we have no business using this formula, which came from the (nonrelativistic) Schroding -
equation; fortunately, the degeneracy is exactly the same for the relativistic case. See Problem 5.3.2.
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Figure 5.9: Planck’s formula for the blackbody spectrum, Equation 5.112.

14
dy = ?wz dw. [5.111]
mec

So the energy density N,hiw/V , in the frequency range dow, is p(w) dw, where

ho?

T — [5.112]

plw) =

This is Planck’s famous blackbody spectrum, giving the energy per unit volume,
per unit frequency, in an electromagnetic field at equilibrium at temperature 7. It is
plotted, for three different temperatures, in Figure 5.9.

Problem 5.27 Use Equation 5.112 to determine the energy density in the wave-
length range dA. Hint: set p(w)dw = p(A)dA, and solve for p(1). Derive the Wien
displacement law for the wavelength at which the blackbody energy density is a

maximum: ,
2.90 x 10~° mK
Amay = ——— . [5.113]
T
You’ll need to solve the transcendental equation (5 — x) = 5¢™*, using a calculator

(or a computer); get the numerical answer accurate to three significant digits.
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Problem 5.28 Derive the Stefan-Boltzmann formula for the total energy density

in blackbody radiation:
E 2k}
Z = T4 = (7.57 x 1071 Im™3K~4) 7*. 5.114)
v (15h3c3> ( ) [ ‘

Hint: Use the hintin Problem 5.26(c) to evaluate the integral. Note that¢ (4) = 7#/90.

FURTHER PROBLEMS FOR CHAPTER 5

Problem 5.29 Suppose you have three particles, and three distinct one-particle
states (¥4 (x), ¥»(x), and .(x)) are available. How many different three-particle
states can be constructed (a) if they are distinguishable particles, (b) if they are iden-
tical bosons, and (c) if they are identical fermions? [The particles need not be in
different states—jr, (x1)¥,(x2)¥,(x3) would be one pos51b111ty if the particles are
distinguishable.]

Problem 5.30 Calculate the Fermi energy for electrons in a two-dimensional infi-
nite square well. (Let o be the number of free electrons per unit area.)

ssxxProblem 5.31 Certain cold stars (called white dwarfs) are stabilized against grav-
itational collapse by the degeneracy pressure of their electrons (Equation 5.46). As-
suming constant density, the radius R of such an object can be calculated as follows:

(@) Write the total electron energy (Equation 5.45) in terms of the radius, the number
of nucleons (protons and neutrons) N, the number of electrons per nucleon g.
and the mass of the electron m.

(b) Look up, or calculate, the gravitational energy of a uniformly dense sphere.
Express your answer in terms of G (the constant of universal gravitation), R, M.
and M (the mass of a nucleon). Note that the gravitational energy is negative.

(c) Find the radius for which the total energy, (a) plus (b), is a minimum. Answer:

R 9_7_[ 2/3 h2q5/3
- GmM?AIN1/3'

(Note that the radius decreases as the total mass increases!) Put in the actual
numbers, for everything except N, using ¢ = 1/2 (actually, g decreases a bit as
the atomic number increases, but this is close enough for our purposes). Answer:
R=17.6x105N"15,

(d) Determine the radius, in kilometers, of a white dwarf with the mass of the sun.

(e) Determine the Fermi energy, in electron volts, for the white dwarf in (d), and
compare it with the rest energy of an electron. Note that this system is getting
dangerously relativistic (see Problem 5.32).

x+xProblem 5.32 We can extend the theory of a free electron gas (Section 5.3.1) to
the relativistic domain by replacing the classical kinetic energy, £ = p?/2m, with

the relativistic formula, E = /p*c? + m2c* — mc®>. Momentum is related to the
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wave vector in the usual way: p = %k. In particular, in the extreme relativistic limit,
E = pc =hck.

(@)

(b)

(©

Replace 2k /2m in Equation 5.44 by the ultrarelativistic expression, ck, and
calculate Eyy in this regime.

Repeat parts (a) and (b) of Problem 5.31 for the ultrarelativistic electron gas.
Notice that in this case there is no stable minimum, regardless of R; if the
total energy is positive, degeneracy forces exceed gravitational forces and the
star will expand, whereas if the total is negative, gravitational forces win out
and the star will collapse. Find the critical number of nucleons N, such that
gravitational collapse occurs for N > N,. This is called the Chandrasekhar
limit. Answer: 2.0 x 10°7. What is the corresponding stellar mass (give your
answer as a multiple of the sun’s mass). Stars heavier than this will not form
white dwarfs, but collapse further, becoming (if conditions are right) neutron
stars.

At extremely high density, inverse beta decay, e~ + p* — n + v, converts
virtually all of the protons and electrons into neutrons (liberating neutrinos,
which carry off energy, in the process). Eventually neurron degeneracy pressure
stabilizes the collapse, just as electron degeneracy does for the white dwarf (see
Problem 5.31). Calculate the radius of a neutron star with the mass of the sun.
Also calculate the (neutron) Fermi energy, and compare it to the rest energy of
a neutron. Is it reasonable to treat such a star nonrelativistically?

xxxProblem 5.33

(@)

(b)
(0

Find the chemical potential and the total energy for distinguishable particles in
the three-dimensional harmonic oscillator potential (Problem 4.39). Hint: The
sums in Equations 5.77 and 5.78 can be evaluated exactly in this case—no need
to use an integral approximation, as we did for the infinite square well. Note
that by differentiating the geometric series,

! =ix”, [5.115]

you can get

d X o0 ;
E(l—x>=,;)(n+l)x

and similar results for higher derivatives. Answer:

3 1+e—hw/k5T
E = Eth (m) . [5.116]

Discuss the limiting case k3T < hw.

Discuss the classical limit, k3 T >> hw, in the light of the equipartition theorem
(see, for example, Halliday and Resnick, footnote 22, Section 21-9). How many
degrees of freedom does a particle in the three-dimensional harmonic oscillator
possess?
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APPLICATIONS




CHAPTER 6

TIME-INDEPENDENT
PERTI{RBATION THEORY

6.1 NONDEGENERATE PERTURBATION THEORY

6.1.1 General Formulation

Suppose we have solved the (time-independent) Schrodinger equation for some po-
tential (say, the one-dimensional infinite square well):

Hoy) = BNy, [6.1]
obtaining a complete set of orthonormal eigenfunctions, 1/},?,

WoAY2) = Sum, [6.2]

and the corresponding eigenvalues EC. Now we perturb the potential slightly (say,
by putting a little bump in the bottom of the well—Figure 6.1). We’d like to solve for
the new eigenfunctions and eigenvalues:

Hl/fn = En‘/fn’ [63]

but unless we are very lucky, we’re unlikely to be able to solve the Schrédinger
equation exactly, for this more complicated potential. Perturbation theory is a
systematic procedure for obtaining approximate solutions to the perturbed problem
by building on the known exact solutions to the unperturbed case.

Yy 14
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V%)

Figure 6.1: Infinite square well with
small perturbation.

To begin with, we write the new Hamiltonian as the sum of two terms:
H=H"4+,H, [6.4

where H’ is the perturbation. For the moment we’ll take A to be a small number; later
we’ll crank it up to 1, and H will be the true, exact Hamiltonian. Writing 1, and £,
as power series in A, we have

Yn = YO+ AP X224 [6.5]

E,=EX+ AE' + 22E2 4., [6.6)

Here E] is the first-order correction to the n™ eigenvalue, and ! is the first-order
correction to the n' eigenfunction; £ and 2 are the second-order corrections, and
so on. Plugging Equations 6.4, 6.5, and 6.6 into Equation 6.3, we have

(H° + A H) YL + Ay} + 222 4+ ]
= (Ep + AE, + N Ef + - )W, + My + 2797+,
or (collecting like powers of A):
HOYY + A(H Yy + H'Y) + A2 (HOY2 + H'Y ) + -
= EQYC + MEW, + Eyyd) + A2 (ESY2 + Eprs + E2Y) + .

To lowest order (1°) this yields H%? = E2v%, which is nothing new (just Equation
6.1). To first order (A1),

H%) + H'Y) = Egyr, + Enry. [6.7]
To second order (12),
Ho%Y? + H'Yy = EQYe + Eyyry + E2yrd, [6.8]

and so on. (I'm done with A, now—it was just a device to keep track of the different
orders—so crank it up to 1.)
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Figure 6.2: Constant perturbation over
the whole well.

6.1.2 First-Order Theory

Taking the inner product of Equation 6.7 with y0 [that is, multiplying by (9)* and
integrating],

[ WAE) + WNEY) = EJGI) + BV
But A is Hermitian, so
WA H ) = (HYL1¥,) = (ESyLy)) = EQWolv),

and this cancels the first term on the right. Moreover, (¥|¢%) = 1, so!

= (YOI H'|[y). [6.9]

This is the fundamental result of first-order perturbation theory; as a practical matter,
it may well be the most important equation in quantum mechanics. It says that the
first-order correction to the energy is the expectation value of the perturbation in the
unperturbed state.

Example. The unperturbed wave functions for the infinite square well are

(Equation 2.24)
/2 nmw
l/f x)= ;sm (—a—x>.

Suppose first that we perturb the system by simply raising the “floor” of the well by a
constant amount ¥ (Flgure 6.2). Inthat case H' = VQ, and the first-order correction
to the energy of the n'" state is

= (Y2Voly?) = Vo(w 21wy = V.

UIn this context it doesn’t matter whether we write (0| H'y0) or (y0|H'|¢0) (with the extra
vertical bar) because we are using the wave function itself to “label” the state. But the latter notation is
preferable because it frees us from this specific convention.
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Figure 6.3: Constant perturbation over
half the well.

The corrected energy levels, then, are E, = ES + Vy; they are simply lifted by the
amount V. Of course! The only surprising thing is that in this case the first-order
theory yields the exact answer. Evidently, for a consrant perturbation ail the higher
corrections vanish.> If, on the other hand, the perturbation extends only halfway
across the well (Figure 6.3), then

2V, [ T Vi
E! = midl sin® (Lx> dx = =2
a Jo a 2

Inthis case every energy level is lifted by V5 /2. That’s not the exact result, presumably.
but it does seem reasonable as a first-order approximation.

Equation 6.9 is the first-order correction to the energy; to find the first-order
correction to the wave function we first rewrite Equation 6.7:

(H = EQy) = —(H' — EDy?. [6.10]

The right side is a known function, so this amounts to an inhomogeneous differential
equation for v!. Now, the unperturbed wave functions constitute a complete set, so
¥ (like any other function) can be expressed as a linear combination of them:

Yy = iyl [6.11]
m#n

[There is no need to include m = n in the sum, for if ¢! satisfies Equation 6.10, so
too does (! + ay?), for any constant &, and we can use this freedom to subtract
off the ¥ term.?] If we could determine the coefficients ¢, we’d be done. Well,
putting Equation 6.11 into Equation 6.10, and using the fact that the 0 satisfies the

ZIncidentally, nothing here depends on the specific nature of the infinite square well—the same
result applies for any potential, when the perturbation is constant.
3 Alternatively, a glance at Equation 6.5 reveals that any 1//,? component in 1//,} might as well be

pulled out and combined with the first term. We are only concerned, for the moment, with solving the
Schrodinger equation (Equation 6.3), and the v, we get will not, in general, be normalized.
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unperturbed Schridinger equation (Equation 6.1), we have

3 (ES — EDclyh = —(H — E)yy.
m#n

Taking the inner product with 1/f,0 ,

STES - EDe® (WP 1vh) = =W LH 19) + Ey (WP 1)
msEn

If | = n, the left side is zero, and we recover Equation 6.9; if [ # n, we get

(E? — EDe™ = —(y|H'|¥D),

or 0 0
H/
cm = ———<'/g"2|_ 2/;""), [6.12]
SO
y=y WUn H1V0) o (6.13]
/ " msn (E,? - Ef(:l) " '

Notice that the denominator is safe, since there is no coefficient withm = n, as long as
the unperturbed energy spectrum is nondegenerate. But if two different unperturbed
states share the same energy, we’re in serious trouble (we divided by zero to get
Equation 6.12); in that case we need degenerate perturbation theory, which I'll
come to in Section 6.2.

That completes first-order perturbation theory: E! is given by Equation 6.9,
and v/} is given by Equation 6.13. I should warn you that whereas perturbation theory
often yields surprisingly accurate energies (that is, EV+E 1 is quite close to the exact
value E,), the wave functions are notoriously poor.

xProblem 6.1 Suppose we put a delta-function bump in the center of the infinite
square well:
H =ad(x —a/2),

where « is a constant. Find the first-order correction to the allowed energies. Explain
why the energies are not perturbed for even n.

«Problem 6.2 For the harmonic oscillator [V (x) = (1/2)kx?], the allowed energies
are
E,=n+1/hw, =012 ..),

where @ = +/k/m is the classical frequency. Now suppose the spring constant
increases slightly: £ — (1 4 €)k. (Perhaps we cool the spring, so it becomes less
flexible.)
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(a) Find the exact new energies (trivial, in this case). Expand your formula a- -
power series in €, up to second order.

(b) Now calculate the first-order perturbation in the energy, using Equation 6.~
What is H' here? Compare your result with part (a). Hint: It is not necessary —
in fact, it is not permirted—to calculate a single integral in doing this problerr

Problem 6.3 Two identical bosons are placed in an infinite square well (Equatio-
2.15). They interact weakly with one another, via the potential

Vix1, x2) = —aVpd(xy — x2)

(where V) is a constant with the dimensions of energy and a is the width of the well

(a) First, ignoring the interaction between the particles, find the ground state anc
first excited state—both the wave functions and the associated energies.

(b) Use first-order perturbation theory to calculate the effect of the particle-particic
interaction on the ground and first excited state energies.

6.1.3 Second-Order Energies
Proceeding as before, we take the inner product of the second-order equation (Equa-
tion 6.8) with 0
U HOY?) + (W H ) = EXn 1) + Ep(Uliv,) + EXUIvD).
Again, we exploit the Hermiticity of H°:
(Wl HOW) = (HU 1) = EJR19,),

so the first term on the left cancels the first term on the right. Meanwhile, (¥0]/0) = 1
and we are left with a formula for E2:

E} = (Y| H' W) — Ey(¥l1v,).

But
WUl =Yy llyn)
m#£n
SO
0 H' 0 0 H 0
=wf,?inf,b=;c§:><w3|mw2>=;("""' Vol Wl 1),

or, finally,

Z I{ l/fmli'ifll/fn)l . [6.14]

m#n
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This is the fundamental result of second-order perturbation theory. We could proceed
to calculate the second-order correction to the wave function (1//3), the third-order
correction to the energy, and so on, but in practice Equation 6.14 is ordinarily as high
as it is useful to pursue this method.

xxProblem 6.4

(a) Find the second-order correction to the energies ( E2) for the potential in Problem
6.1. Note: You can sum the series explicitly to obtain the result —2m (a/7hn)?,
for odd n.

(b) Calculate the second-order correction to the ground-state energy (E}) for the
potential in Problem 6.2. Check that your result is consistent with the exact
solution.

x+Problem 6.5 Consider a charged particle in the one-dimensional harmonic oscil-
lator potential. Suppose we turn on a weak electric field (E) so that the potential
energy is shifted by an amount H' = —gEx.

(a) Show that there is no first-order change in the energy levels, and calculate the
second-order correction. Hint: See Problem 3.50.

(b) The Schrédinger equation can be solved exactly in this case by a change of
variables: x' = x — (q E/mw?). Find the exact energies, and show that they are
consistent with the perturbation theory approximation.

6.2 DEGENERATE PERTURBATION THEORY

If the unperturbed states are degenerate—that is, if two (or more) distinct states
(0 and ¥?) share the same energy—then ordinary perturbation theory fails: c{”
(Equation 6.12) and E? (Equation 6.14) blow up (unless, possibly, the numerator
vanishes, (y)| H'|y?) = 0—a loophole that will be important to us later on). In the
degenerate case, therefore, there is no reason to trust even the firsr-order correction
to the energy (Equation 6.9), and we must look for some other way to handle the
problem.

6.2.1 Twofold Degeneracy

Suppose that
Ho%? = E%0,  HO) = E%), and (y°|y)) =0. [6.15]

a’

Note that any linear combination of these states,

Y0 = ay? + By, [6.16]
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is still an eigenstate of H°, with the same eigenvalue E?:
Ho%% = EO°. [6.17

Typically, the perturbation (H') will “break” the degeneracy: As we increase A (from
0 to 1), the common unperturbed energy E° splits into two (Figure 6.4).

The essential problem is this: When we turn off the perturbation, the “upper” state
reduces down to one linear combination of ¥ and 1//,9, and the “lower” state reduces
to some other linear combination, but we don’t know a priori what these “good™
linear combinations will be. For this reason we can’t even calculate the first-order
energy (Equation 6.9) because we don’t know what unperturbed states to use.

For the moment, therefore, let’s just write the “good” unperturbed states in the
general form (Equation 6.16), keeping @ and 8 adjustable. We want to solve the
Schradinger equation,

Hy = Evy, (6.18]

with H = HY + AH’ and
E=E +AE" 4+ NE* +--, v=y +ayp' +2%%% 4., [6.19]

Plugging these into Equation 6.18, and collecting like powers of 1, as before, we find

HYO 4 AHY + HOYY 4 = EOY° + A(E'YO + B ) + -
But HO%0 = E%;° (Equation 6.17), so the first terms cancel; at order A! we have
Hy'+ H'y® = E%!' + E'y°. [6.20]
Taking the inner product with ¥2:
Wl W) + W HYO) = E°(ydiyty + BN (901 0).

Because H' is Hermitian, the first term on the left cancels the first term on the right.
Putting in Equation 6.16 and exploiting the orthonormality condition Equation 6.15.
we obtain

(W H WD) + Bl H |y)) = o« EY,

Figure 6.4: “Lifting” of a degeneracy by a
perturbation.
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or, more compactly,
aWag+ BWap = aE', [6.21]

where
Wi = WH' YD), G, j=a,b). [6.22]

Similarly, the inner product with ¥ yields
aWpa + BWyy = BE'. [6.23]

Notice that the W s are (in principle) known—they are just the “matrix elements”
of H', with respect to the unperturbed wave functions ¥ and l//‘b Multiplying
Equation 6.23 by W, and using Equation 6.21 to eliminate BW4p, we find

a[WasWpa — (E' = Waa)(E' = Wip)1 = 0. [6.24]

If @ is not zero, Equation 6.24 yields an equation for E L
(EY2 — E'Waa + Wip) + WaaWop —~ WapWsa) = 0. 6.25]
Invoking the quadratic formula, and noting (from Equation 6.22) that Wy, = W},

we conclude that

[Wea + WiV Waa = Wi + AW [6.26]

L1
Ei=>

This is the fundamental result of degenerate perturbation theory; the two roots corre-
spond to the two perturbed energies.

But what if @ is zero? In that case 8 = 1, Equation 6.21 says W, = 0,
and Equation 6.23 gives E ! = W,,. This is actually included in the general result
(Equation 6.26), with the plus sign (the minus sign corresponds to & = =18=0).
What’s more, the answers,

EL =Wy = WIH WD), EL=Wu=@HY,),

are precisely what we would have obtained using nondegenerate perturbatlon theory
(Equation 6.9)—we have simply been lucky: The states l/fa and l/fb were already the
“correct” linear combinations. Obviously, it would be greatly to our advantage if we
could somehow guess the “good” states right from the start. In practice, we can often
do so by exploiting the following theorem:

Theorem: Let 4 be a Hermitian operator that commutes with A’ If ¥ and
1 are eigenfunctions of 4 with distinct eigenvalues,

Ay = pyy, Ayy =vyy, andp#v,

then W5 = 0 (and hence ¥ and ) are the “good” states to use in perturbation
theory).
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Proof: By assumption, [4, H'] = 0, so

Wolld, Hlyd) = 0
Wl AH'Y)) — (Yo H Ay))
= (AYIH'Y)) — (WO H'vy))
= (W= VHY)) = (1 — V)W
But i # v, s0 W, = 0. QED

Moral: If you’re faced with degenerate states, look around for some Hermitian
operator 4 that commutes with H’; pick as your unperturbed states ones that are si-
multaneously eigenfunctions of H° and 4. Then use ordinary first-order perturbation
theory. If you can’t find such an operator, you’ll have to resort to Equation 6.26, but
in practice this is seldom necessary.

Problem 6.6 Let the two “good” unperturbed states be

¥ = asy? + Bayd,

where oy and B are determined (up to normalization) by Equation 6.21 (or Equation
6.23), with Equation 6.26 for E.. Show explicitly that

(@) Y are orthogonal ((y9[y0) = 0);
b @UH 1Y) =0;
© (wH YY) = EL

Problem 6.7 Consider a particle of mass m that is free to move in a one-dimensional
region of length L that closes on itself (for instance, a bead which slides frictionlessly
on a circular wire of circumference L; Problem 2.43).

(@) Show that the stationary states can be written in the form
1 ,
Yn(x) = ﬁez’"""“, (=L/2 <x < L)2),

where n = 0, &1, 2, ..., and the allowed energies are

g _ 2 (nah)?
"Tm L '
Notice that—with the exception of the ground state (n = 0)—these are all
doubly degenerate.

(b) Now suppose we introduce the perturbation

H = _Voe—xz/az’
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where a <« L. (This puts a little “dimple” in the potential at x = 0, as though
we bent the wire slightly to make a “trap.”’) Find the first-order correction to
E,, using Equation 6.26. Hint: To evaluate the integrals, exploit the fact that
a <« L to extend the limits from %L /2 to f00; after all, H’ is essentially zero
outside —a < x < a.

(C) What are the “good” linear combinations of v, and ¥_, for this problem? Show
that with these states you get the first-order correction using Equation 6.9.

(d) Find a Hermitian operator A that fits the requirements of the theorem, and show
that the simultaneous eigenstates of H° and 4 are precisely the ones you found
in (¢).

6.2.2 Higher-Order Degeneracy

In the previous section I assumed the degeneracy was twofold, but it is easy to see
how the method generalizes. Rewrite Equations 6.21 and 6.23 in matrix form:

Wae Wap Yy (@
(Wba Wbb)(ﬂ>_E (ﬂ) 16271

Evidently the E'’s are nothing but the eigenvalues of the W -matrix; Equation 6.25
is the characteristic equation (Equation 3.70) for this matrix, and the “good” linear
combinations of the unperturbed states are the eigenvectors of W. In the case of
n-fold degeneracy, we look for the eigenvalues of the n x »n matrix

Wi = (| H'[¥)). (6.28]

In the language of linear algebra, finding the “good” unperturbed wave functions
amounts to constructing a basis in the degenerate subspace that diagonalizes the
perturbation H'. Once again, if you can think of an operator 4 that commutes with
H’, and use the simultaneous eigenfunctions of 4 and H 0 then the W matrix will
automatically be diagonal, and you won’t have to fuss with solving the characteristic
equation.

Example. Consider the three-dimensional infinite cubical well (Problem 4.2):

0. if0<x<a0<y<aand0<z<a; 49

Vix,yz)= :
x5, 2) o0 otherwise.

The stationary states are

'/fr?xn,.nz(x, y,z) = (%)3/2 sin (%x) sin (%y) sin (%z) . [6.30]
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Figure 6.5: The perturbation increases the
potential by an amount ¥} in the shaded sector.

where n,, ny, and n; are positive integers. The corresponding allowed energies are

2h2

i
By, = 550 + 1 + 1), (6.31]

Notice that the ground state (¥11) is nondegenerate; its energy is

2h?
E) =3—, 6.32
0 2ma? [6.32]
But the first excited state is (triply) degenerate:
VYa =V, ¥ = Y121, and Y. = Yy, [6.33]
all share the energy
24,2
w*h
E)=3—. [6.34]
ma
Now let’s introduce the perturbation
H = Vo, 1f0<).c<a/2and0<y<a/2; [6.35]
0, otherwise.

This raises the potential by an amount ¥} in one quarter of the box (see Figure 6.5).
The first-order correction to the ground state energy is given by Equation 6.9:

233 aj2
E(%=('/f111|H/|'/f111>=<5> VO/O sinz(gx) dx

a/2 a 1
/ sin? (zr_y) a’y/ sin’ (—Jzz) dz = =V,
0 a 0 a 4

which is just what we would expect.
For the first excited state we need the full machinery of degenerate perturbation
theory. The first step is to construct the matrix #. The diagonal elements are the

[6.36]
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same as for the ground state (except that the argument of one of the sines is doubled);
you can check for yourself that

1
Waea = Wpp = We = ZVO

The off-diagonal elements are more interesting:
) 3 a2
W = (—> Vo/ sin? (zx) dx
a 0 a
/ alz (27 ¢ (2 oy
sin (—y) sin| —y ) dy [ sin|—z]sin (—z) dz.
0 a a 0 a a

But the z integral is zero (as it will be also for W), so

Wab=Wac=0'
Finally,
2\° alz {2
Wp = | — VO/ sm(—x)sm —x ) dx
a 0 a a
aj2 (o LT 4 T 16
/0 sin (7)/) sin (;—y) a’y/o sin (;z) dz = §PV0'
Thus
v 1 0 0
W=IO(O 1 K>, [6.37]
0 « 1

where k = (8/3m)? ~ 0.7205.
The characteristic equation for W (or rather, for 4W / V5, which is easier to work
with) is
1 —-w)—«k?1 —w) =0,

and the eigenvalues are
wy=1; w=14+xk~17205 ws=1-«k=0.279.
To first order in A, then,

EY + aVo/4,
Ei(0) = 3§ E) + A1 4+ k)Vo/4, [6.38]
EY 4+ A(1 — x)Vo/4,

where EV is the (common) unperturbed energy (Equation 6.34). The perturbation
lifts the degeneracy, splitting E(l) into three distinct energy levels (see Figure 6.6).
Notice that if we had naively applied nondegenerate perturbation theory to this prob-
lem, we would have concluded that the first-order correction (Equation 6.9) is the
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E(0

E‘o

|
I Figure 6.6: Lifting of the degeneracy in
! the example (Equation 6.38).

same for all three states, and equal to Vy/4—which is actually correct only for the
middle state.
Meanwhile, the “good” unperturbed states are linear combinations of the form

¥ = av, + By + v, [6.39°

where the coefficients (@, 8, and y) form the eigenvectors of the matrix W:

(511)6)--6)

Forw=1lwegeta =1, =y =0;forw = l+xwegeta =0,8=+y =1/42
(I normalized them as I went along.) Thus the “good” states are*

Y
Y0 = { Wb+ o) /2, [6.40]
(s — ¥e) V2.

Problem 6.8 Suppose we perturb the infinite cubical well (Equation 6.29) by
putting a delta-function “bump” at the point (a/4, a/2, 3a/4):

H =a’Vyd(x —a/4)8(y — a/2)8(z — 3a/4).

Find the first-order corrections to the energy of the ground state and the (triply de-
generate) first excited states.

“We might have guessed this result right from the start by noting that the operator P, which
interchanges x and y, commutes with H'. Its eigenvalues are +1 (for functions that are even under the
interchange) and —1 (for functions that are odd). In this case v, is already even, (¥ + ¥.) is even, and
(¥p — ) is odd. However, this is not quite conclusive, since any linear combination of the even states
would still be even. What we’d really like is an operator with three distinct eigenvalues in the degenerate
subspace.
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+«Problem 6.9 Considera quantum system with just three linearly independent states.
The Hamiltonian, in matrix form, is

(1—-¢) 0 O
H=V0( 0 1 6),
0 € 2

where V) is a constant and ¢ is some small number (¢ < 1).

(a) Write down the eigenvectors and eigenvalues of the unperturbed Hamiltonian
(e =0).
(b) Solve for the exact eigenvalues of H. Expand each of them as a power series in

€, up to second order.

(c) Use first- and second-order nondegenerate perturbation theory to find the ap-
proximate eigenvalue for the state that grows out of the nondegenerate eigen-
vector of H?. Compare the exact result from (b).

(d) Use degenerate perturbation theory to find the first-order correction to the two
initially degenerate eigenvalues. Compare the exact results.

6.3 THE FINE STRUCTURE OF HYDROGEN

In our study of the hydrogen atom (Section 4.2), we took the Hamiltonian to be

n* 2]
He—ty_ % _ [6.41]
2m dmegr
(electron kinetic energy plus Coulombic potential energy). But this is not quite the
whole story. We have already learned how to correct for the motion of the nucleus:
Just replace m by the reduced mass (Problem 5.1). More significant is the so-called
fine structure, which is actually due to two distinct mechanisms: a relativistic
correction, and spin-orbit coupling. Compared to the Bohr energies (Equation
4.70), fine structure is a tiny perturbation—smaller by a factor of &%, where
2
e 1
= 6.42
* = dmeghc ~ 137.036 [6.42]

is the famous fine structure constant. Smaller still (by another factor of «) is the
Lamb shift, associated with the quantization of the Coulomb field, and smaller by yet
another order of magnitude is the hyperfine structure, which is due to the magnetic
interaction between the dipole moments of the electron and the proton. This hierarchy
is summarized in Table 6.1.
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Table 6.1: Hierarchy of corrections to the Bohr energies of hydrogen.

Bohr energies:  of order  o’mc?

Fine structure:  of order a*mc?

Lamb shift:  of order a’mc?
Hyperfine splitting: ~ of order  (m/m,)a*mc?

In the present section we will analyze the fine structure of hydrogen, as an application
of time-independent perturbation theory.

Problem 6.10

(a) Express the Bohr energies in terms of the fine structure constant and the rest
energy (mc?) of the electron.

(b) Calculate the fine structure constant from first principles (i.e. without recourse
to the empirical values of €, ¢, %, and ¢). Note: The fine structure constant is un-
doubtedly the most fundamental pure (dimensionless) number in all of physics:
It relates the basic constants of electromagnetism (the charge of the electron).
relativity (the speed of light), and quantum mechanics (Planck’s constant). If
you can solve part (b), you have the most certain Nobel Prize in history waiting
for you. But I wouldn’t recommend spending a lot of time on it right now; many
smart people have tried and given up.

6.3.1 The Relativistic Correction
The first term in the Hamiltonian is supposed to represent Kinetic energy:

] 2
T = Emv2 = —%, [6.43]

and the canonical substitution p— (#/i)V yields the operator

T =——V- [6.44]
2m
But Equation 6.43 is the classical equation for kinetic energy; the relativistic formula

1S )
T=—TC__ _ .2 [6.45]

V1= (v/c)?
The first term is the total relativistic energy (not counting pofential energy, which
we aren’t concerned with at the moment), and the second term is the rest energy—
the difference is the energy attributable to motion. We need to express T in terms of the
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(relativistic) momentum,

muv
p= [6.46]
V1= (v/c)?
instead of velocity. Notice that
2,22 2.4 2 2.4
7 2 g4 mvCct+mc’[l = (v/e)] mc 2.2
_ = = (T
petme = /ey = ey ~ T Fmen

$0

T =/ p2c + m2c* — mc?. [6.47]
This relativistic equation for kinetic energy reduces (of course) to the classical result
(Equation 6.43), in the nonrelativistic limit p <« mc; expanding in powers of the
small number (p/mc), we have

reme i G e[ G - G )

2 4
p p
=i 6.48
2m  8m3c? [6.48]
The lowest-order” relativistic contribution to the Hamiltonian is evidently
4
/ p
H=-—"_ 6.49
" 8m3c? [6.49]

In first-order perturbation theory, the correction to E), is given by the expectation
value of H’ in the unperturbed state (Equation 6.9):

1
El — H/ — _ ~4 —_ — 52 2 . 6.50
V= (H) =~ WP = s (PUIFY). 1650)
Now the Schrodinger equation (for the unperturbed states) says
P =2m(E — V), [6.51]
and hence®
1 1 2 1 2 2
E =- ((E=V))=——=I[E“=2E(V)+ (V)] [6.52]
2mc? 2mc?

SThe kinetic energy of the electron in hydrogen is on the order of 10 eV, which is miniscule
compared to its rest energy (511,000 eV), so the hydrogen atom is basically nonrelativistic, and we can
afford to keep only the lowest-order correction. In Equation 6.48, p is the relativistic momentum (Equation
6.46), not the classical momentum mv. It is the former that we now associate with the quantum operator
—ihV, in Equation 6.49.

There is some sleight-of-hand in this maneuver, which exploits the Hermiticity of 5* and of
(E — V). In truth, the operator p* is not Hermitian, for states with / = 0, and the applicability of
perturbation theory to Equation 6.49 is therefore called into question. Fortunately, the exact solution is
available; it can be obtained by using the (relativistic) Dirac equation in place of the (nonrelativistic)
Schrédinger equation, and it confirms the results we obtain here by less rigorous means. (See Problem
6.17.) .
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So far, this is entirely general; but we’re interested in the case of hydrogen, for whict.
V(r) = —(1/4meg)e?/r:

1 &2 1 A\ 1
El =— 21 2F, - =), 6.53%
" 2mc? {E" + (47teo> (r> + (471’EO> (r2>j] [

where E, is the Bohr energy of the state in question.
To complete the job, we need the expectation values of 1/7 and 1 /r* in the
(unperturbed) state ¥, (Equation 4.89). The first is easy (see Problem 6.11):

1 1
(=)= [6.54
v

— T 5
nla

where a is the Bohr radius (Equation 4.72). The second is not so simple to derive
(see Problem 6.28), but the answer is’

1 1 ..
(r_2> = m [6.55°

It follows that
2

L Y (i L (2 !
T 2me? | " "\4dney ) na dmey ) (+1/2n3a2 |’

or, eliminating a (using Equation 4.72) and expressing everything in terms of £,
(using Equation 4.70),

E? 4n
El=—_"7 _ . .
T 2me? [l+ 1/2 3] [6.56]

Notice that the relativistic correction is smaller than E, by a factor of E,/mc* ~
2 x 1075,

You might have noticed that I used nondegenerate perturbation theory in this
calculation even though the hydrogen atom is highly degenerate. But the pertur-
bation is spherically symmetrical, so it commutes with L? and L. Moreover, the
eigenfunctions of these operators (taken together) have distinct eigenvalues for the
n? states with a given E,. Luckily, then, the wave functions ¥, are “good” states
for this problem, so as it happens the use of nondegenerate perturbation theory was
legitimate.

xProblem 6.11 Use the virial theorem (Problem 4.41) to prove Equation 6.54.

"The general formula for the expectation value of any power of r is given in Hans A. Bethe and
Edwin E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, (New York: Plenum, 1977).
p. 17.
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Problem 6.12 In Problem 4.43, you calculated the expectation value of #* in the
state yr37;. Check your answer for the special cases s = 0 (trivial), s = —1 (Equation
6.54), s = —2 (Equation 6.55), and s = —3 (Equation 6.63). Comment on the case
s ==

xxProblem 6.13 Find the (lowest-order) relativistic correction to the energy levels of
the one-dimensional harmonic oscillator. Hint: Use the technique of Problem 2.37.

6.3.2 Spin-Orbit Coupling

Imagine the electron in orbit around the nucleus; from the electron’s point of view,
the proton is circling around it (Figure 6.7). This orbiting positive charge sets up
a magnetic field B in the electron frame, which exerts a torque on the spinning
electron, tending to align its magnetic moment () along the direction of the field.
The Hamiltonian (Equation 4.157) is

H=—-uB. [6.57]

The Magnetic Field of the Proton. If we picture the proton (from the elec-
tron’s perspective) as a continuous current loop (Figure 6.7), its magnetic field can
be calculated from the Biot-Savart law:

I
B = HO_,
2r
with an effective current I = e/ T, where e is the charge of the proton and T is the
period of the orbit. On the other hand, the orbital angular momentum of the electron
(in the rest frame of the nucleus) is L = rmv = 2xmr?/T. Moreover, B and L point

in the same direction (up, in Figure 6.7), so

1 e
B=———L. 6.58
47 eg mc2rd [6.58]

(T used ¢ = 1/, /€pup to eliminate 1 in favor of €;.)

B, L

— Figure 6.7: Hydrogen atom, from the

e , .
electron’s perspective.
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q m

Figure 6.8: A ring of charge, rotating about its axis.

The Magnetic Dipole Moment of the Electron. The magnetic dipole me-
ment of a spinning charge is related to its (spin) angular momentum; the proportional-
ity factor is the gyromagnetic ratio (which we already encountered in Section 4.4.2
Let’s derive it, using classical electrodynamics. Consider first a charge g smearec
out around a ring of radius », which rotates about the axis with period 7' (Figure 6.8
The magnetic dipole moment of the ring is defined as the current (g/T') times the
area (77r?):

_gqnr?
=

n

If the mass of the ring is m, its angular momentum is the moment of inertia (mr-
times the angular velocity 2/ T'):

2rmr?

S =
T

The gyromagnetic ratio for this configuration is evidently u/S = g/2m. Notice
that it is independent of » (and T'). If [ had some more complicated object, such a~
a sphere (all 1 require is that it be a figure of revolution, rotating about its axis). |
could calculate p and S by chopping it into little rings and adding their contributions.
As long as the mass and the charge are distributed in the same manner (so that the
charge-to-mass ratio is uniform), the gyromagnetic ratio will be the same for each
ring, and hence also for the object as a whole. Moreover, the directions of 4 and S
are the same (or opposite, if the charge is negative), so

= ()s

That was a purely classical calculation, however; as it turns out, the electron’s mag-
netic moment is twice the classical answer:

u, = -S8. (6.59]
m



Sec. 6.3: The Fine Structure of Hydrogen 241
The “extra” factor of 2 was explained by Dirac in his relativistic theory of the electron.?

The Spin-Orbit Interaction. Putting all this together, we have

= (2 L s.L
T \dmey ) mic2r3 )

But there is a serious fraud in this calculation: I did the analysis in the rest frame
of the electron, but that’s nor an inertial system—it accelerates as the electron orbits
around the nucleus. You can get away with this if you make an appropriate kinematic
correction, known as the Thomas precession.’ In this context it throws in a factor of
1/2:

H = (i> L s (6.60]

07\ 8mep ) m2cr3 ) )

This is the spin-orbit interaction; apart from two corrections (the modified gyromag-
netic ratio for the electron and the Thomas precession factor—which, coincidentally,
exactly cancel one another), it is just what you would expect on the basis of a naive
classical model. Physically, it is attributable to the torque exerted on the magnetic
dipole moment of the spinning electron, by the magnetic field of the proton, in the
electron’s instantaneous rest frame.

Now the quantum mechanics. In the presence of spin-orbit coupling, the Hamil-
tonian no longer commutes with L and S, so the spin and orbital angular momenta
are not separately conserved (see Problem 6.14). However, H] does commute with
L?, $%, and the total angular momentum

J=L+8, [6.61]

and hence these quantities are conserved (Equation 3.148). To put it another way, the
eigenstates of L, and §, are not “good” states to use in perturbation theory, but the
eigenstates of L?, 8% J2 and J, are. Now

J2=(@L+S) (L+S) = L* + §* + 2L - S,

8We have already noticed that it can be dangerous to picture the electron as a spinning sphere
(see Problem 4.26), and it is not too surprising that this naive classical model gets the gyromagnetic ratio
wrong. Incidentally, quantum electrodynamics reveals tiny corrections to Equation 6.59; the calculation
of the so-called anomalous magnetic moment of the electron stands as one of the greatest achievements
of theoretical physics.

°One way of thinking of it is that we are continually stepping from one inertial system to another;
Thomas precession amounts to the cumulative effect of all these Lorentz transformations. We could avoid
this problem, of course, by staying in the lab frame, in which the nucleus is at rest. In that case the field of
the proton is purely electric, and you may well wonder why it exerts any torque on the electron. Well, the
fact is that a moving magnetic dipole acquires an electric dipole moment, and in the lab frame the spin-orbit
coupling is due to the interaction of the electric field of the nucleus with the electric dipole moment of
the electron. Because this analysis requires more sophisticated electrodynamics, it seems best to adopt
the electron’s perspective, where the physical mechanism is more transparent. For a related discussion, see
V. Namias, Am. J. Phys., 57, 171 (1989).
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SO 1
L.S= 5(JZ—LZ—S2), [6.62

and therefore the eigenvalues of L - S are

hZ
5[j(j+ D —I1d+1) —s(s+ D]

In this case, of course, s = 1/2. Meanwhile, the expectation value of 1/ P (see

Problem 6.30) is
1 1
—=) = 6.63
<r3) Id+172)1 + DHn3a®’ [6.63.
and we conclude that
By = &L @DLUGHD A+ D ~3/4)
so T VSOl T Rreg m2c? I+ 1/2)d + Dn3a3 ’
or, expressing it all in terms of E,:
E} [(njU+D) —IU+1) - 3/41}
El = ) 6.64
¥ me? { I+1/20+1) L6641

It is remarkable, considering the totally different physical mechanisms in-
volved, that the relativistic correction and the spin-orbit coupling are of the same
order (E2/mc?). Adding them together, we get the complete fine-structure formula
(see Problem 6.15):

BLo Br (3o [6.65]
57 2me? j+1/2)° )
Combining this with the Bohr formula, we obtain the grand result for the energy levels
of hydrogen, including fine structure:

£ - 13.6eV 1+(x2 n 3 [6.66]
VT p2 n2\j+1/2 4)]) ‘

Fine structure breaks the degeneracy in / (that is, for a given n, the different allowed
values of / do not all carry the same energy); the energies are determined by n and
(see Figure 6.9). The azimuthal eigenvalues for orbital and spin angular momentum
(m; and m) are no longer “good” quantum numbers—the stationary states are linear
combinations of states with different values of these quantities; the “good” quantum
numbers are n, [, s, j, and m;."°

0T, write |/ m;) (for given [ and s) as a linear combination of [/ m;)|s ms) we would use the
appropriate Clebsch-Gordan coefficients (Equation 4.185).
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Figure 6.9: Energy levels of hydrogen, including fine structure (not to scale).

Problem 6.14 Evaluate the following commutators: (a) [L - S, L], (b) [L - S, S,
©L-S,JL,@IL-S, L2, () [L-S, 8], ) [L - S, J2). Hinr: L and S satisfy the
fundamental commutation relations for angular momentum (Equations 4.98, 4.99,
and 4.134), but they commute with each other.

xProblem 6.15 Derive the fine structure formula (Equation 6.65) from the relativis-
tic correction (Equation 6.56) and the spin-orbit coupling (Equation 6.64). Hint: Note
that j = ]+ 1/2; treat the plus sign and the minus sign separately, and you’ll find
that you get the same final answer either way.

«+Problem 6.16 The most prominent feature of the hydrogen spectrum in the visible
region is the red Balmer line, coming from the transition n = 3 ton = 2. First
of all, determine the wavelength and frequency of this line, according to the Bohr
theory. Fine structure splits this line into several closely spaced lines; the question
is: How many, and what is their spacing? Hint: First determine how many sublevels
the n = 2 level splits into, and find E}s for each of these, in eV. Then do the same for
n = 3. Draw an energy level diagram showing all possible transitions from n = 3
to n = 2. The energy released (in the form of a photon) is (E3 — E;) + AE, the
first part being common to all of them, and the AE (due to fine structure) varying
from one transition to the next. Find AE (in eV) for each transition. Finally, convert
to photon frequency, and determine the spacing between adjacent spectral lines (in
Hz)—not the frequency interval between each line and the unperturbed line (which
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is, of course, unobservable), but the frequency interval between each line and the nex:
one. Your final answer should take the form, “The red Balmer line splits into (77"
lines. In order of increasing frequency, they come from the transitions (1) j = (777
to j = (272), (2) j = (27?) to j = (??7), and so on. The frequency spacing betweer.
line (1) and line (2) is (???) Hz, the spacing between line (2) and line (3) is (?77) Hz.
and so on.”

Problem 6.17 The exact fine-structure formula for hydrogen (obtained from the
Dirac equation without recourse to perturbation theory) is''

-1/2

2 -1

E,; =mc

2
1+
(n —U+1/2)+V/ (G +1/2)2 = 062>

Expand to order o* (noting that « < 1), and show that you recover Equation 6.66.

6.4 THE ZEEMAN EFFECT

When an atom is placed in a uniform external magnetic field Bey, the energy levels
are shifted. This phenomenon is known as the Zeernan effect. For a single electron.
the perturbation is

Hjy = —(py + ) - Bex, [6.67]

where e
p,=——S [6.68]

m

is the magnetic dipole moment associated with electron spin, and

o= ——L [6.69]
2m

is the dipole moment associated with orbital motion.'? Thus

Hy, = 2 (L +2S) - Bex.. [6.70]

2m
The nature of the Zeeman splitting depends critically on the strength of the
external field in comparison with the internal field (Equation 6.58) that gives rise
to spin-orbit coupling. For if Bex < Bint, then fine structure dominates, and H,
can be treated as a small perturbation, whereas if Bext 3> Bin, then the Zeeman

11 Bethe and Salpeter (footnote 7) page 83.

12The gyromagnetic ratio for orbital motion is just the classical value (¢ /2m)—it is only for spin
that there is an “extra” factor of 2.
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effect dominates, and fine structure becomes the perturbation. In the intermediate
zone, where the two fields are comparable, we need the full machinery of degenerate
perturbation theory, and it is necessary to diagonalize the relevant portion of the
Hamiltonian “by hand”. In the following sections we shall explore each of these
regimes briefly, for the case of hydrogen.

Problem 6.18 Use Equation 6.58 to estimate the internal field in hydrogen, and
characterize quantitatively a “strong” and “weak” Zeeman field.

6.4.1 Weak-Field Zeeman Effect

If Bext < Bint, fine structure dominates (Equation 6.66); the “good” quantum num-
bers are n, I, j, and m; (but not m; and m,, because—in the presence of spin-orbit
coupling—L and S are not separately conserved). In first-order perturbation theory,
the Zeeman correction to the energy is

EL = (nljmj|Hylnl jm;) = Z—fn—Bext~(L+ZS). [6.71]

Now L + 28 = J + S; unfortunately, we do not immediately know the expectation
value of S. But we can figure it out as follows: The total angular momentum J = L+ S
is constant (Figure 6.10); L and S precess rapidly about this fixed vector. In particular,
the (time) average value of S is just its projection along J:

S-D
7 J.
ButL = J-S,s0 L2 = J? + §2 —2] - S, and hence

Save = [672]

1 h?
$ J=3(+8 -1 ="+ D+s+ D=1+, [673]

from which it follows that

S-J

jG+H -1+ 1D +3/4
(L+28)=((1+7>J)=|:1+

2jj+D

} (1. 16.74]

Figure 6.10: In the presence of spin-orbit

L coupling, L and S are not separately
conserved; they precess about the fixed
total angular momentum, J.
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1gBext

b))
¢

m; =112

—13.6eV (1 + 0%/4) ¢

Figure 6.11: Weak-field Zeeman
splitting of the ground state; the
Mo 2 upper line (m; = 1/2) has slope 1, the
! .
lower line (m; = —1/2) has slope —1

The term in square brackets is known as the Landé g-factor, g;.
We may as well choose the z-axis to lie along Bey; then

Ey = ppgsBeum;, [6.7%

where "
g = 2 — 5788 x 1075 eV/T [6.76
2m

is the so-called Bohr magneton. The rotal energy is the sum of the fine-structure
part (Equation 6.66) and the Zeeman contribution (Equation 6.75). For example. the
ground state (n = 1,/ = 0, j = 1/2, and therefore g; = 2) splits into two levels:

—13.6eV(l +a?/4) £ p Bex, 6.7

with the plus sign for m; = 1/2, and minus for m; = —1/2. These energies arc
plotted (as functions of Bey) in Figure 6.11.

«Problem 6.19 Consider the (eight) n = 2 states, |2 [ jm;). Find the energy o:
each state, under weak-field Zeeman splitting, and construct a diagram like Figure
6.11 to show how the energies evolve as By increases. Label each line clearly, anc
indicate its slope.

6.4.2 Strong-Field Zeeman Effect

If Boyt > Bin, the Zeeman effect dominates'; with Bey in the z direction, the “good”
quantum numbers are now 7, [, m;, and m; (but not j and m ; because—in the presence
of the external torque—the total angular momentum is not conserved, whereas L, anc

131n this regime the Zeeman effect is also known as the Paschen-Back effect.
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S, are). The Zeeman Hamiltonian is
, e
HZ = %Bext(Lz +28;),

and the “unperturbed” energies are

13.6 eV

Enmm, = "2 + g Bex(my + 2my). [6.78]

In first-order perturbation theory, the fine-structure correction to these levels is
Ef = (nlmymg|(H + H ) Inlm;m,). [6.79]

The relativistic contribution is the same as before (Equation 6.56); for the spin-orbit
term (Equation 6.60) we need

(S L) = (SH (L) + (SHLy) + (SH(L.) = WPmym [6.80]

(note that (S) = (S,) = (Ly) = (L,) = O for eigenstates of S, and L,). Putting all
this together (Problem 6.20), we conclude that

136V L (3 [+ —mm,
Bu=—p¢ [4n [1(1+1/2)(1+1)“' [6.81]

(The term in square brackets is indeterminate for / = 0; its correct value in this case
is 1—see Problem 6.22.) The total energy is the sum of the Zeeman part (Equation
6.78) and the fine-structure contribution (Equation 6.81).

Problem 6.20 Starting with Equation 6.79 and using Equations 6.56, 6.60, 6.63,
and 6.80, derive Equation 6.81.

sx«Problem 6.21 Consider the eight n = 2 states, |2 /m;m,). Find the energy of
each state, under strong-field Zeeman splitting. (Express your answers as the sum of
three terms, as in Equation 6.77: the Bohr energy; the fine structure, proportional to
o?: and the Zeeman contribution, proportional to u g Bex:.) If you ignore fine structure
altogether, how many distinct levels are there, and what are their degeneracies?

Problem 6.22 If / = 0, then j = s, m; = my, and the “good” states are the
same (jn m;)) for weak and strong fields. Determine £ ‘Z (from Equation 6.71) and
the fine structure energies (Equation 6.66), and write down the general result for the
! = 0 Zeeman effect—regardless of the strength of the field. Show that the strong-
field formula (Equation 6.81) reproduces this result, provided that we interpret the
indeterminate term in square brackets as 1.
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6.4.3 Intermediate-Field Zeeman Effect

In the intermediate regime, neither H é nor Hf’S dominates, and we must treat the two
on an equal footing, as perturbations to the Bohr Hamiltonian (Equation 6.41):

H = Hj + H,. [6.82]

I'll confine my attention here to the case » = 2 and choose as the basis for de-
generate perturbation theory the states characterized by /, j, and m;."* Using the
Clebsch-Gordan coefficients (Problem 4.45 or Table 4.7) to express | j m ) as a linear
combination of |/ m;)|s my), we have

:O{wl 33 = 100)53),

v = 133H = 10003 F),
¥ 13 3) 1115 3),
o= 133 = |1—1|1:21>,

o] ¥ o= 3 = V2RO, + VIS ),
ve = 135 = =VIBNOIi)  + V2311157,
vo= 123 = JIBN-LIEH  + V2BI0)5 S,
Vs 135 -VZBN -l + VIS0 .

In this basis the nonzero matrix elements of H[ are all on the diagonal, and
given by Equation 6.65; H, has four off-diagonal elements, and the complete matrix

—W is (see Problem 6.23)
(Sy=B 0O 0 0 0 0 0 0
0 Sy+8 0 0 0 0 0 0
0 0 y-28 0 0 0 0 0
0 0 0 y+28 0 0 0 0
0 0 0 0 y-2ip 4p 0 0
0 0 0 0 28 Ssy—-1p 0 0
Vi
0 0 0 0 0 0 y+3i8  $B
0 0 0 0 0 0 2p 5y 41p

where
y = (a/8)213.6 eV and B = ugBe.-

The first four eigenvalues are displayed along the diagonal; it remains only to find the
eigenvalues of the two 2 x 2 blocks. The characteristic equation for the first is

11
A+ M6y = B) + 5y = T vB) =0,

14You can use 7, m;, m; states if you prefer—this makes the matrix elements of /. é easier but those
of Hi more difficult; the / -matrix will be more complicated, but its eigenvalues (which are independent

of basis) are the same either way.
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Table 6.2: Energy levels for the n = 2 states of hydrogen, with fine structure and
Zeeman splitting.

€1
€2
€3
€4
€5
€6
€7

€8

E, -5y +8
E;-5y-8
E,—y+28
E,—y-28
Ey ~3y + B/2+ /4y + 2/3)yB + B2/4
E» =3y + B/2— /4y + 2/3)yB + B2/4
Ey—3y — B2+ /4y — 2/3)yB + B*/4
Ex—3y — B/2—\/ay? — 2/3)yB + B2/4

and the quadratic formula gives the eigenvalues:

Ax = =3y +(B/2) £ V42 + (2/3)vB + (B2/4). [6.83]

The eigenvalues of the second block are the same, but with the sign of 8 reversed.
The eight energies are listed in Table 6.2, and plotted against By in Figure 6.12. In
the zero-field limit (8 = 0) they reduce to the fine-structure values; for weak fields
(B < y) they reproduce what you got in Problem 6.19; for strong fields (8 > y)
we recover the results of Problem 6.21 (note the convergence to five distinct energy
levels, at very high fields, as predicted in Problem 6.21).

Problem 6.23 Work out the matrix elements of H}, and H/, and construct the
W -matrix given in the text, forn = 2.

x+xxProblem 6.24 Analyze the Zeeman effect for the n = 3 states of hydrogen in the
weak, strong, and intermediate field regimes. Construct a table of energies (analogous

Weak

Intermediate { Strong

Figure 6.12: Zeeman splitting of the n = 2
states of hydrogen in the weak,

16Boxt intermediate, and strong field regimes.
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to Table 6.2), plot them as functions of the external field (as in Figure 6.12), and check
that the intermediate-field results reduce properly in the two limiting cases.

6.5 HYPERFINE SPLITTING

The proton itself constitutes a magnetic dipole, though its dipole moment is much

smaller than the electron’s because of the mass in the denominator (Equation 6.59):
e e

=& p, = ——S.. [6.84]

P e

By = 2m,, m,

(The proton is a composite structure, made up of three quarks, and its gyromagnetic
ratio is not as simple as the electron’s—hence the g-factor,'” whose measured value
is 5.59 as opposed to 2.00 for the electron.) According to classical electrodynamics.
a dipole y sets up a magnetic field'®

o . 2100

B=—=[3(u F)F - ul+ ——ps’ ). [6.85]
Anr 3

So the Hamiltonian (Equation 6.57) of the electron, in the magnetic field due to the

proton’s magnetic dipole moment, is

poge® [3(Sp-A(Se-7) —Sy-Sel | moge?

+ S, - Se8°(r). [6.86]

H, =
hi 8orm pm, r3 3mpme

According to perturbation theory, the first-order correction to the energy (Equa-
tion 6.9) is the expectation value of the perturbing Hamiltonian:

£l _ poge*  3(S, - F)(Se-F)—Sp - Se

)

M 8m m, 3
2
Hoge
+ 082 (s, Sl ) [6.87]
3mpm,

In the ground state (or any other state for which / = 0) the wave function is spherically
symmetrical, and the first expectation value vanishes (see Problem 6.25). Meanwhile.
from Equation 4.80 we find that |y,00(0)|> = 1/(ra?), so

2
El, = "% s, .8,), [6.88]

3mmpmea’

5The Landé g-factor, in Equation 6.74, plays a similar role in the proportionality between the
electron’s total magnetic moment (&; + ;) and its total angular momentum J.
161f you are unfamiliar with the delta function term in Equation 6.85, you can derive it by treating

the dipole as a spinning charged spherical shell, in the limit as the radius goes to zero and the charge goes
to infinity (with g held constant). See D. J. Griffiths, Am. J. Phys. 50, 698 (1982).
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Figure 6.13: Hyperfine splitting in the ground state of hydrogen.

in the ground state. This is called spin-spin coupling because it involves the dot
product of two spins (contrast spin-orbit coupling, which involves S - L).

In the presence of spin-spin coupling, the individual spin angular momenta are
no longer conserved; the “good” states are eigenvectors of the fotal spin,

S=S,+S5,. [6.89]

As before, we square this out to get
1
S,-S. = E(S2 — 52— 55). [6.90]

But the electron and proton both have spin 1/2, so S2 = S; = (3/4)h*. In the triplet
state (spins “parallel”) the total spin is 1, and hence S? = 2A2; in the singlet state the

total spin is 0, and $? = 0. Thus

1 _
Ehf_

4 . )
dgh [+1/4, (triplet); [6.91]

3mpm2cia* | —3/4, (singlet).

Spin-spin coupling breaks the spin degeneracy of the ground state, lifting the
triplet configuration and depressing the singlet (see Figure 6.13).
The energy gap is evidently

h4
AE= 8

mpmgc

The frequency of the photon emitted in a transition from the triplet to the singlet state
is

AE
V== = 1420 MHz, [6.93]

and the corresponding wavelength is ¢/v = 21 cm, which falls in the microwave
region. This famous “21-centimeter line” is among the most pervasive and ubiquitous
forms of radiation in the universe.
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Problem 6.25 Let a and b be two constant vectors. Show that

/(a -r)(b-r)sin@dbd¢ = 4%(3- b). [6.94

The integration is over the usual range: 0 < 8 < 7,0 < ¢ < 2mw. Use this result to
demonstrate that

(3(Sp “F)S. - F) =8, - Se
3

) =0,

-
for states with / = 0. Hint: 7 = sin6 cos ¢7 + sin 6 sin ¢ + cos Ok.

Problem 6.26 By appropriate modification of the hydrogen formula, determine the
hyperfine splitting in the ground state of (a) muonic hydrogen (in which a muon—
same charge and g-factor as the electron, but 207 times the mass—substitutes for
the electron), (b) positronium (in which a positron—same mass and g-factor as the
electron, but opposite charge—substitutes for the proton}, and (¢) muonium (in which
an antimuon—same mass and g-factor as a muon, but opposite charge—substitutes for
the proton). Hint: Don’t forget to use the reduced mass (Problem 5.1) in calculating
the “Bohr radius” of these exotic “atoms.”. Incidentally, the answer you get for
positronium (4.85 x 10~* eV) is quite far from the experimental value (8.41 x 107*
eV); the large discrepancy is due to pair annihilation (e* + e~ — y + y), which
contributes an extra (3/4)A E and does not occur (of course) in ordinary hydrogen.
muonic hydrogen, or muonium. See Griffiths (footnote 16) for further details.

FURTHER PROBLEMS FOR CHAPTER 6

xxProblem 6.27 Suppose the Hamiltonian H, for a particular quantum system.

is a function of some parameter A; let E,(1) and ¥,(1) be the eigenvalues and
eigenfunctions of H (). The Feynman-Hellmann theorem states that

9E, 0H
EYN - (I/Inlﬁwfﬁ [6~95]

assuming either that £, is nondegenerate, or—if degenerate—that the ,,’s are the
g g 24
“good” linear combinations of the degenerate eigenfunctions).

(@) Prove the Feynman-Hellmann theorem. Hinr: Use Equation 6.9.

(b) Apply it to the one-dimensional harmonic oscillator, (i) using A = o (this yields
a formula for the expectation value of V'), (ii) using A = % (this yields (7')), and
(iii) using A = m (this yields a relation between (7'} and (V')). Compare your
answers to Problem 2.37 and the virial theorem predictions (Problem 3.53).
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*»xProblem 6.28 The Feynman-Hellmann theorem (Problem 6.27) can be used to
determine the expectation values of 1/r and 1/r? for hydrogen.'” The effective
Hamiltonian for the radial wave functions is (Equation 4.53)

R4 RPId+1) 1

2mdr?  2m  r? Aegr’

and the eigenvalues (expressed in terms of /)'? are (Equation 4.70)

me*

 32m2h% (Jax + 1+ D

n

(a) Use A = e in the Feynman-Hellmann theorem to obtain (1/r). Check your
result against Equation 6.54.

(b) Use A = to obtain (1/r?). Check your answer with Equation 6.55.

+xxProblem 6.29 Prove Kramers’ relation:

s+ 1
2

(r) = 25 + Da(r'Y + %[(21 F 12 =525 =0, [6.96]

which relates the expectation values of » to three different powers (s, s — 1, and
s — 2), for an electron in the state vy, of hydrogen. Hint: Rewrite the radial
equation (Equation 4.53) in the form

Il+1 2 1
u//:[(Jr) N }u’

r2 ar n2a?

and use itto express f(ur*u”)dr interms of (r*), (r*~1), and (+*~2). Then use integra-
tion by parts to reduce the second derivative. Show that [ (ursu')dr = —(s/2)(r*"1),
and [(u'r*u)dr = —[2/(s + 1)] [ (u"r**'u')dr. Take it from there.

Problem 6.30

(@) Plugs =0,5s = 1,s = 2, and s = 3 into Kramers’ relation (Equation 6.96)
to obtain formulas for (r~1), (r), (r?), and (r3). Note that you could continue
indefinitely, to find any positive power.

(b) In the other direction, however, you hit a snag. Put in s = —1, and show that
all you get is a relation between (r=2) and (r3).

17¢, sanchez del Rio, Am. J. Phys., 50, 556 (1982); H. S. Valk, Am. J. Phys., 54, 921 (1986).

18 part (b) we treat / as a continuous variable; n becomes a function of /, according to Equation
4.67, because jmax, Which must be an integer, is fixed. To avoid confusion, I have eliminated n, to reveal
the dependence on / explicitly.
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(c) But if you can get (r—2) by some other means, you can apply the Kramers’
relation to obtain the rest of the negative powers. Use Equation 6.55 (which
is derived in Problem 6.28) to determine (r~*), and check your answer against
Equation 6.63.

sxxxProblem 6.31 When an atom is placed in a uniform external electric field Ey,, the
energy levels are shifted—a phenomenon known as the Stark effect. In this problem
we analyze the Stark effect for the n = 1 and » = 2 states of hydrogen. Let the field
point in the z direction, so the potential energy of the electron is

Hi = —eEez = —eEcqr cosé.

Treat this as a perturbation on the Bohr Hamiltonian (Equation 6.41); spin is irrelevant
to this problem, so ignore it.

(a) Show that the ground-state energy is not affected by this perturbation, in first
order.

(b) The first excited state is fourfold degenerate: V20, Y211, ¥210, ¥21—1. Using de-
generate perturbation theory, determine the first-order corrections to the energy.
Into how many levels does E, split?

(C) What are the “good” wave functions for part (b)? Find the expectation value of
the electric dipole moment (p, = —er), in each of these “good” states. Notice
that the results are independent of the applied field—evidently hydrogen in its
first excited state can carry a permanent electric dipole moment.

Hint: There are a lot of integrals in this problem, but almost all of them are
zero. So study each one carefully before you do any calculations: If the ¢ integral
vanishes, there’s not much point in doing the r and 6 integrals! Partial answer:
W13 = W31 = 3ea Ee; all other elements are zero.

xxxProblem 6.32 Consider the Stark effect (Problem 6.31) for the n = 3 states of
hydrogen. There are initially nine degenerate states, ¥r3, (neglecting spin, of course),
and we turn on an electric field in the z direction.

(a) Construct the 9 x 9 matrix representing the perturbing Hamiltonian. Partial an-
swer: (300]2]310) = =364, (310]2|320) = —34/3a, (31 £1|2|32+1) =
—(9/2)a.

(b) Find the eigenvalues and their degeneracies.

Problem 6.33 Calculate the wavelength, in centimeters, of the photon emitted
under a hyperfine transition in the ground state (n = 1) of deuterium. Deuterium
is “heavy” hydrogen, with an extra neutron in the nucleus. The proton and neutron
bind together to form a deuteron, with spin 1 and magnetic moment
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Figure 6.14: Hydrogen atom surrounded by six point charges (crude model for
a crystal lattice); Problem 6.34.

the deuteron g-factor is 1.71.

x+xxProblem 6.34 Inacrystal, the electric field of neighboring ions perturbs the energy
levels of an atom. As a crude model, imagine that a hydrogen atom is surrounded by
three pairs of point charges, as shown in Figure 6.14.
(Spin is irrelevant to this problem, so ignore it.)

(@) Assuming that r < dj, r « dp, and r < dj3, show that

H' = Vo +3(Bix* + Boy* + 325 — (B + B2 + B3)r7,

where

€ i
b= e ;’—3 and Vo = 2(Bd2 + Pod2 + Bsd?).

(b) Find the lowest-order correction to the ground-state energy.

(c) Calculate the first-order corrections to the energy of the first excited states (n =
2). Into how many levels does this fourfold degenerate system split, (i) in the
case of cubic symmetry, 8; = B, = B;; (ii) in the case of orthorhombic
symmetry, B; = B, # Bs; (iii) in the general case of tetragonal symmetry
(all three different)?




CHAPTER 7

THE VARIATIONAL PRINCIPLE

7.1 THEORY

o 14’ Ad

Suppose you want to calculate the ground-state energy E, for a system described by
the Hamiltonian H, but you are unable to solve the (time-independent) Schrodinger
equation. Pick any normalized function r whatsoever.

Theorem:

Eg < (Y|H|Y) = (H). [7.1]

That is, the expectation value of H in the (presumably incorrect) state ¥ is certain to
overestimate the ground-state energy. Of course, if ¥ just happens to be one of the
excited states, then obviously (H) exceeds E,; but the theorem says that the same
holds for any ¥ whatsoever.

Proof: Since the (unknown) eigenfunctions of / form a complete set, we can
express ¥ as a linear combination of them':

V=) catn, with Hyy = Eyf,.

UTf the Hamiltonian admits scattering states, as well as bound states, then we’1l need an integral as
well as a sum, but the argument is unchanged.
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Since ¥ is normalized,

1= (yly) = Zcmx/fm Zc,,x/m—ZZc::,c,,(x/fmlx/fn):Dcnlz

(assuming the eigenfunctions have been orthonormalized: (Y |¥») = 8pn). Mean-
while,

= cntnl HY cathn) = D D i EncalWml¥n) = ) Ealeal”
But the ground-state energy is, by definition, the smallest eigenvalue, so E; < E,,
and hence
H) > EgZ|Cn|2 = Eg.

QED

Example 1. Suppose we want to find the ground-state energy for the one-
dimensional harmonic oscillator:

a2 @ 1
T 2mdx? 2

Of course, we already know the exact answer, in this case (Equation 2.49):
E; = (1/2)hw; but this makes it a good test of the method. We might pick as
our “trial” wave function the gaussian,

Y(x) = de7 7, (7.2]

where b is a constant and 4 is determined by normalization:

o0 1/4
1= |A|2/ e dy = (AP = 4= AN [7.3]
oo 2b T

Now
(H)y =(T)+ V), (7.4]
where, in this case,
2 d2 _bxz h2b
(T) |A| / de ) dx = =—. [7.5]
and
2bx? o’
bl A —2bx = _,
4 mw 214 / %
) ) )
hb
(Hy = 22 4+ 22 17.6]

2m 8b
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According to the theorem, this exceeds E, for any b; to get the rightest bounc
let’s minimize (H) with respect to b:

a'(H)_h2 mw2_0:>b_ma)
db>" " 2m 8b2 v
Putting this back into (H), we find
1
(H)min = Eha). [7.”

In this case we hit the ground-state energy right on the nose—because (obviously) |
“Just happened” to pick a trial function with precisely the form of the actual grounc
state (Equation 2.48). But the gaussian is very easy to work with, so it’s a popular
trial function even when it bears little resemblance to the true ground state.

Example 2. Suppose we’re looking for the ground state energy of the delta-

function potential:
2 2

7
H=——— —ad(x).
a0
Again, we already know the exact answer (Equation 2.109): E, = —ma’ J2R%. A
before, we’ll use a gaussian trial function (Equation 7.2). We’ve already determined
the normalization and calculated (T'); all we need is

2 [T o 2b
(V) = —ald]| e §x)dx = —ay/ —.
o T
Evidently,
Rb 2b
(H) = — —a,] =, [7.8]
2m T
and we know that this exceeds E, for all . Minimizing it,
d B2 o 2ma?
db( ) 2m 2nb xh?
So
ma?
<H>miﬂ = - ﬂhz s [79]

which is indeed somewhat higher than E,, since 7 > 2.

I said you can use any (normalized) trial function ¥ whatsoever, and this is
true in a sense. However, for discontinuous functions it takes some fancy footwork
to assign a sensible interpretation to the second derivative (which you need, in order
to calculate (7')). Continuous functions with kinks in them are fair game, however:
the next example shows how to handie them.
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Example 3. Find an upper bound on the ground-state energy of the one-
dimensional infinite square well (Equation 2.15), using the “triangular” trial wave
function (Figure 7.1)*:

Ax, if0<x<a/2,
(x) = {A(a—x), ifa/2 <x <a, [7.10]
0, otherwise,

where A4 is determined by normalization:

_ 2 arz 2 ¢ 2 _ ZEi — _2_ E
1 =14] Zdx+ | (@—x)*dx|=|4] = A= . [7.11]
0 a2 12 ava

In this case

4, if0<x<a/2
d ’ = —_ ]
d—w=[—A, ifa/2 <x <a,
* 0, otherwise,
as indicated in Figure 7.2. Now, the derivative of a step function is a delta function

(see Problem 2.24b):

Ay

T = AS(x) —248(x —a/2) + Aé(x — a), [7.12]

and hence

h24
(H) = > f[a(x) —25(x — a/2) + 8(x — )Y (x) dx
[7.13]
B4 A% 12R%
ST VO WDy @I= =

Figure 7.1: Triangular trial wave function for the infinite square well (Equation 7.10).

2There is no point in trying a function (such as the gaussian) that extends outside the well, because
you’ll get (V') = oo, and Equation 7.1 tells you nothing.
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dyldx A

are a

xY

-A+

Figure 7.2: Derivative of the wave function in Figure 7.1.

The exact ground state is £, = w2h*/2ma? (Equation 2.23), so the theorem works
(12 > 7).

The variational principle (as Equation 7.1 is called) is extremely powerful.
and embarrassingly easy to use. What a chemist does, to find the ground-state energy
of some complicated molecule, is write down a trial wave function with a large number
of adjustable parameters, calculate {H), and tweak the parameters to get the lowest
possible value. Even if ¥ has no relation to the true wave function, one often gets
miraculously accurate values for E,. Naturally, if you have some way of guessing a
realistic yr, so much the better. The only rrouble with the method is that you never
know for sure how close you are to the target—all you can be certain of is that you’ve
got an upper bound. Moreover, the technique applies only to the ground state (see.
however, Problem 7.4).

«Problem 7.1 Use the gaussian trial function (Equation 7.2) to obtain the low-

est upper bound you can on the ground-state energy of (a) the linear potential:
V (x) = a|x|; (b) the quartic potential: V (x) = ax*.

«xProblem 7.2 Find the best bound on E ¢ for the one-dimensional harmonic oscil-

lator using a trial wave function of the form

¥(x) =

x2 4 b2’

where 4 is determined by normalization and b is an adjustable parameter.

Problem 7.3 Find the best bound on E, for the delta-function potential —a8(x —
a/2), using the triangle trail function (Equation 7.10). (This time a is an adjustable
parameter.)
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Problem 7.4

(a) Prove the following corollary to the variational principle: If (|/,) = 0, then
(H) > E, where E[ is the energy of the first excited state.

Thus, if we can find a trial function that is orthogonal to the exact ground state, we
can get an upper bound on the first excited state. In general, it’s difficult to be sure
that v is orthogonal to ¥, since (presumably) we don’t know the latter. However, if
the potential ¥ (x) is an even function of x, then the ground state is likewise even, and
hence any odd trial function will automatically meet the condition for the corollary.

(b) Find the best bound on the first excited state of the one-dimensional harmonic
oscillator using the trial function

vx) = Axe 7,

Problem 7.5

(@) Use the variational principle to prove that first-order nondegenerate perturbation
theory always overestimates (or at any rate never underestimates) the ground-
state energy.

(b) In view of (a), you would expect that the second-order correction to the ground
state is always negative. Confirm that this is indeed the case, by examining
Equation 6.14.

7.2 THE GROUND STATE OF HELIUM

The helium atom (Figure 7.3) consists of two electrons in orbit around a nucleus
containing two protons (also some neutrons, which are irrelevant to our purpose).
The Hamiltonian for this system (ignoring fine structure and smaller corrections) is

h? e (2 2 1
H=—— (V2 +V3) — —_ = = . 7.14
Zm( 1 + 2) 47[6() (i‘] + r |l'1 - l'2|> [ ]

Our problem is to calculate the ground-state energy, Eg—the amount of energy it
would take to strip off the two electrons. (Given Ej it is easy to figure out the
“jonization energy” required to remove a single electron—see Problem 7.6.) E, has
been measured very accurately in the laboratory:

E, =—78975eV (experimental). [7.15]

This is the number we would like to reproduce theoretically.
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IF1-72l

—9 -2

+2e Figure 7.3: The helium atom.

It is curious that such a simple and important problem has no known exact
solution.” The trouble comes from the electron-electron repulsion,

e2 1

= — [7.16]
4meg |1y — 17|

If we ignore this term altogether, H splits into two independent hydrogen Hamilto-
nians (only with a nuclear charge of 2e, instead of e); the exact solution is just the
product of hydrogenic wave functions:

8
Yo(ry, 12) = Yri00(X ) Yi00(r2) = me_z(”“”/a, [7.17]

and the energy is 8E; = —109 eV (Eq. [5.31]).* This is a long way from —79 eV,
but it’s a start.

To get a better approximation for £, we’ll apply the variational principle, using
1o as the trial wave function. This is a particularly convenient choice because it’s an
eigenfunction of most of the Hamiltonian:

Hyy = (BE| + Vee)¥o. [7.18]
Thus
(H) =8E; + (Vee), [7.19]
where? ,
2 8 —4(ri+r2)/a
Vee) = ( c ) (—3> f Prdn [7.20]
4mey ma r; — 13|

3There doexist exactly soluble three-body problems with many of the qualitative features of helium,
but using non-Coulombic potentials (see Problem 7.15).

“Here a is the ordinary Bohr radius and E, = —13.6/n2 ¢V is the nth Bohr energy; recall that
for a nucleus with atomic number Z, E, — Z2E, anda — a /Z (Problem 4.17). The spin configuration
associated with Equation 7.17 will be antisymmetric (the singlet).

5You can, if you like, interpret Equation 7.19 as first-order perturbation theory, with V., as H'.
However, I regard this as a misuse of the method, since the perturbation is roughly equal in size to the
unperturbed potential. I prefer, therefore, to think of it as a variational calculation, in which we are looking
for an upper bound on E,.
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62 Tl

X2

Figure 7.4: Choice of coordinates for the r; integral (Equation 7.20).

I'll do the r integral first; for this purpose ry is fixed, and we may as well orient the
r, coordinate system so that the polar axis lies along r; (see Figure 7.4). By the law
of cosines,

Iry — | = r12 + r22 — 2rirpcos b, [7.21]
and hence
*4rz/a —4r2/a
L= f r2 sin 6y dryd6rdes. [7.22]
|r1 - r2| \/ + 73 — 2riryco86;

The ¢, integral is trivial (27r); the 9, integral is

do, =
r3+r? —2rirycos; hir 0

/ sin 6, \/;’12 +r? —2rrc086; |2

1
= — ( r]2+r22 + 21y — rl2 +r22 —2r1r2>

nr;

2/1‘1, ifr2<r1,
2/1‘2, ifr2 >n.

1 r o
L =4n (— f e~%2/a 2dr2 +f e /ey, dr2>
r Jo |

3
- [1 - (1 + 34) —4’1/“] . [7.24]
81‘1

1
=—I(rn+mrn)—In—nll= { [7.23]
rnr

Thus
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It follows that (V,,) is equal to

2 8 2
T E——

The angular integrals are easy (47), and the r; integral becomes

o 2r? 5a*
—4rja “r —8r/a dr = 2.
/ [’e (”L a)e } "

Finally, then,

Ve = = () = 25y = 34 [7.25
“rT 4q 4meg ) p=ore o |
and therefore
(Hy=—109eV +34eV = —75eV. [7.26°

Not bad (remember, the experimental value is —79 eV). But we can do better.

Can we think of a more realistic trial function than vy (which treats the two
electrons as though they did not interact at all)? Rather than completely ignoring
the influence of the other electron, let us say that, on the average, each electron
represents a cloud of negative charge which partially shields the nucleus, so that the
other electron actually sees an effective nuclear charge (Z) that is somewhat Jess than 2.
This suggests that we use a trial function of the form

Z3
Yi(ry, 1) = me‘”’“"z)/“. [7.27]

We’ll treat Z as a variational parameter, picking the value that minimizes (H).

This wave function is an eigenstate of the “unperturbed” Hamiltonian (neglect-
ing electron repulsion), but with Z, instead of 2, in the Coulomb terms. With this in
mind, we rewrite H (Equation 7.14) as follows:

o, . et (Z Z
H=—-—(Vi+V; - -+ —
2m ry 2

47[6()
[7.28]
e? ((Z-2) (Z-2) 1
+ + .
dmeg r r Iry — 1o
The expectation value of H is evidently
) e? 1
(HYy =2Z"E1+2Z —2) (=) + (Vee). [7.29]
drey ) 1

Here (1/r) is the expectation value of 1/7 in the (one-particle) hydrogenic ground
state yrig0 (but with nuclear charge Z); according to Equation 6.54,

<l> = —Z— [7.30]
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The expectation value of ¥, is the same as before (Equation 7.25), except that instead
of Z = 2 we now want arbitrary Z—-so we multiply a by 2/Z:

2
V) = 22 ( ‘ ) LN [7.31]
Ra

Putting all this together, we find
(H) = [2Z2 —4Z(Z-2)— (5/4Z] E, = [—2Z% 4+ (27/4)Z1E;. [1.32]

According to the variational principle, this quantity exceeds E, for any value
of Z. The lowest upper bound occurs when {H) is minimized:

d
—(H) =[-4Z + (27 E, =
dZ( ) =[—4Z + (27/4)]E, =0,
from which it follows that .
= — = 1.69. 7.33
6 [ ]

This is a reasonable result; it tells us that the other electron partially screens the
nucleus, reducing its effective charge from 2 down to 1.69. Putting in this value for
Z,we find
316

(H) = = (E) Ey=-T75¢eV. [7.34]

The ground state of helium has been calculated with great precision in this way,
using increasingly complicated trial wave functions with more and more adjustable
parameters.® But we're within 2% of the correct answer, and, frankly, at this point
my own interest in the problem begins to fade.

Problem 7.6 Using E; = —79.0 eV for the ground-state energy of helium, cal-
culate the ionization energy (the energy required to remove just one electron). Hint:
First calculate the ground-state energy of the helium ion, He*, with a single electron
orbitting the nucleus; then subtract the two energies.

«Problem 7.7 Apply the techniques of this Section to the H™ and Li* ions (each has
two electrons, like helium, but nuclear charges Z = 1 and Z = 3, respectively). Find
the effective (partially shielded) nuclear charge, and determine the best upper bound
on E,, for each case. Note: In the case of H™ you should find that (H) > —13.6 eV,
which would appear to indicate that there is no bound state at all, since it is energet-
ically favorable for one electron to fly off, leaving behind a neutral hydrogen atom.
This is not entirely surprising, since the electrons are less strongly attracted to the
nucleus than they are in helium, and the electron repulsion tends to break the atom
apart. However, it turns out to be incorrect. With a more sophisticated trial wave

SE. A. Hylleraas, Z. Phys. 65,209 (1930); C. L. Pekeris, Phys. Rev. 115, 1216 (1959).
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function (see Problem 7.16) it can be shown that £, < —13.6 eV, and hence tha:
a bound state does exist. It’s only barely bound, however, and there are no excited
bound states,” so H™ has no discrete spectrum (all transitions are to and from the
continuum). As a result, it is difficult to study in the laboratory, although it exists ir
great abundance on the surface of the sun.®

7.3 THE HYDROGEN MOLECULE ION

Another classic application of the variational principle is to the hydrogen molecule
ion, HY, consisting of a single electron in the Coulomb field of two protons (Figure
7.5). We shall assume for the moment that the protons are fixed in position, a specified
distance R apart, although one of the most interesting byproducts of the calculation
is going to be the actual value of R. The Hamiltonian is

72 2 11
H:——Vz—e—(—+l>, [7.35]

2m dmeg \r1  n

where 7| and r, are the distances to the electron from the respective protons. As
always, the strategy will be to guess a reasonable trial wave function, and invoke
the variational principle to get a bound on the ground-state energy. (Actually, our
main interest is in finding out whether this system bonds at all—that is, whether its
energy is less than that of a neutral hydrogen atom plus a free proton. If our trial wave
function indicates that there is a bound state, a betfer trial function can only make the
bonding even stronger.)

To construct the trial wave function, imagine that the ion is formed by taking a
hydrogen atom in its ground state (Equation 4.80),

1
PYe(r) = “\/ﬁe_r/a, [7.36]

and then bringing in a proton from far away and nailing it down a distance R away.
If R is substantially greater than the Bohr radius, a, the electron’s wave function

—-e

Figure 7.5: The hydrogen molecule
* B +e lom, Hj.

"Robert N. Hill, J. Math. Phys. 18, 2316 (1977).

8For further discussion, see Hans A. Bethe and Edwin E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (New York: Plenum 1977), Section 34.
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probably isn’t changed very much. But we would like to treat the two protons on an
equal footing, so that the electron has the same probability of being associated with
either one. This suggests that we consider a trial function of the form

¥ = A[Yg(r) + Yg(r2)] . [7.37]

(Quantum chemists call this the LCAO technique, because we are expressing the
molecular wave function as a /inear combination of atomic orbitals.)
Our first task is to normalize the trial function:

1= [weae= ] [ oo Pas

+ / Vg(r2)* d’r +2 / Ve W(ry) d*r . [7.38]

The first two integrals are 1 (since v, itself is normalized); the third is more tricky.
Let

1
I = (Yo(r)Ye(r2)) = — / e~ ritra Py [7.39]

Picking coordinates so that proton 1 is at the origin and proton 2 is on the z-axis at
the point R (Figure 7.6), we have

¥l =randr = Vr2 + R2 — 2rRcosd, [7.40]
and therefore
1 J—— .
I=— [ eleeVriHRimrReostla 2 sing drdode. [7.41]
Ta
ZA

2
) ro=r2+R?-2rRcos 8

r1=r

<Y

X

Figure 7.6: Coordinates for the calculation of / (Equation 7.39).
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The ¢ integral is trivial (277). To do the 9 integral, let

y=+/r2+ R2— 2rRcosf, so that d(y*) =2ydy = 2rRsin6 do.

Then
T AR Roms 1 iR
/ eV +R2—2rRcosf/a sing do = — e—Y/ﬂydy
0

FR Ji—ri

— [T+ Rt @) — e — R+ a)].
;

The r integral is now straightforward:

2 0 R
I = <] R/ (r+R+a)e ?rdr + e ®* | (R=r+a)rdr
3
a‘R 0 0

o
—f—eR/“/ (r = R+a)e /% dr].
R

Evaluating the integrals, we find (after some algebraic simplification),

2
" [l H(B) 1 (5) } 7.42)
a 3\a

I is called an overlap integral; it measures the amount by which ,(r;) overlaps
Yg(r2) (notice that it goesto 1 as R — 0, and to 0 as R — ©00). In terms of /, the
normalization factor (Equation 7.38) is

|A> = L [7.43)
2(0+1)

Next we must calculate the expectation value of H in the trial state . Noting

that
Pt m £ L) i = Bt
- r) = F
2m 471'60 7 g\t Pl
(where E; = —13.6 eV is the ground-state energy of atomic hydrogen)—and the

same with 7 in place of »;—we have

h2 2
HY = A [——vz _ € (l + %)} [We(r) + Ve ()]

2m 4eg \ 1y

62

1 1
=Ev— A4 (47‘[60) l:gllfg(rl) + ;Wg(h)]-

It follows that
2

(H) = E, —2|A|2< ¢

dre ) l: I//g(rl)l_hpg(rl) Ilfg(rl)l_llpg(rZ) :I [7.44]
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I'll let you calculate the two remaining quantities, the so-called direct integral,

1
D= a<1//g(rl)|;;|1pg(rl)>a [7.45]
and the exchange integral,
1
X=a <Wg(r1)la Wg(rz)>. [7.46]
The results (see Problem 7.8) are
a a
D= - (145)e2R0 7.47
2 +x)e [7.47]
and
R —R/a
X=[(14+—])e . [7.48]
a

Putting all this together, and recalling (Equations 4.70 and 4.72) that
E| = —(e?/4meg)(1/2a), we conclude that

(D + X)]

— | E}.
1+

According to the variational principle, the ground-state energy is less than (H). Of

course, this is only the electron’s energy—there is also potential energy associated
with the proton-proton repulsion:

(H) = [1 +2 [7.49]

e 1 2a
pp = 4]‘[60—]5 — ——RTEI [750]

Thus the total energy of the system, in units of — £ and expressed as a function of
x = R/a, is less than

[7.51]

- 2yp—x —2x
F(x)=_1+z{(1 2/3)xYe™ + (1 + x)e }
X

14+ +x4+(1/3)x2)e*

This function is plotted in Figure 7.7. Evidently bonding does occur, for there exists
aregion in which the graph goes below —1, indicating that the energy is less than that
of a neutral atom plus a free proton (to wit, —13.6 eV). The equilibrium separation
of the protons is about 2.4 Bohr radii, or 1.27 A.

xProblem 7.8 Evaluate D and X (Equations 7.45 and 7.46). Check your answers
against Equations 7.47 and 7.48.

xxProblem 7.9 Suppose we used a minus sign in our trial wave function (Equa-
tion 7.37):
¥ = AlYg(r) — Ye(r)]. [7.52]
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F(x)
0 —
-0.5
L Equilibrium
B X
-1 t ¥ } t } ] 3
— 1 U‘/4/5 6
1.2+

Figure 7.7: Plot of the function F(x), Equation 7.51, showing existence of a
bound state.

Without doing any new integrals, find F(x) (the analog to Equation 7.51) for this
case, and construct the graph. Show that there is no evidence of bonding. (Since
the variational principle only gives an upper bound, this doesn’t prove that bonding
cannot occur for such a state, but it certainly doesn’t look promising). Note: Actually.
any function of the form

¥ = AlYg(r) + €Yo (r)] [7.53]

has the desired property that the electron is equally likely to be associated with ei-
ther proton. However, since the Hamiltonian (Equation 7.35) is invariant under the
interchange P:rj <> 1, its eigenfunctions can be chosen to be simultaneously eigen-
functions of P. The plus sign (Equation 7.37) goes with the eigenvalue +1, and the
minus sign (Equation 7.52) with the eigenvalue —1; nothing is to be gained by con-
sidering the ostensibly more general case (Equation 7.53), though you’re welcome to
try it, if you’re interested.

sxsxxProblem 7.10 The second derivative of F(x), at the equilibrium point, can be used

to estimate the natural frequency of vibration (w) of the two protons in the hydrogen
molecule ion (see Section 2.3). If the ground-state energy (hiw/2) of this oscillator
exceeds the binding energy of the system, it will fly apart. Show that in fact the
oscillator energy is small enough that this will not happen, and estimate how many
bound vibrational levels there are. Nofe: You’re not going to be able to obtain the
position of the minimum—still less the second derivative at that point—analytically.
Do it numerically, on a computer.




Further Problems for Chapter 7 271

FURTHER PROBLEMS FOR CHAPTER 7

Problem 7.11 Find the lowest bound on the ground state of hydrogen you can get
using a gaussian trial wave function

() = de ",

where A is determined by normalization and b is an adjustable parameter. Answer:
—11.5eV.

x+Problem 7.12 If the photon had a nonzero mass (m, # 0), the Coulomb potential
would be replaced by a Yukawa potential, of the form

2 e

drey r
where 4 = m,c/h. With a trial wave function of your own devising, estimate the
binding energy of a “hydrogen” atom with this potential. Assume pa < 1, and give
your answer correct to order (ua)?.

Problem 7.13 Suppose you're given a quantum system whose Hamiltonian Hj
admits just two eigenstates, ¥, (with energy E,), and v, (with energy E;). They are
orthogonal, normalized, and nondegenerate (assume E, is the smaller of the two).
Now we turn on a perturbation H’, with the following matrix elements:

(Wal H'lYa) = (ol H' W) = 0; (Yl H' W) = (V| H'|Yha) = h. [7.55]

(a) Find the exact eigenvalues of the perturbed Hamiltonian.

{b) Estimate the energies of the perturbed system using second-order perturbation
theory.

(¢) Estimate the ground-state energy of the perturbed system using the variational
principle, with a trial function of the form

¥ = (cosp)a + (sing) Yy, [7.56]

where ¢ is an adjustable parameter. (Note that writing the linear combination
in this way guarantees that 1 is normalized.)

(d) Compare your answers to (a), (b), and (c). Why is the variational principle so
accurate in this case?

Problem 7.14 As an explicit example of the method developed in Problem 7.13,
consider an electron at rest in a uniform magunetic field B = B,k, for which the
Hamiltonian is (Equation 4.158):

Sz, [7.57]
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The eigenspinors, x, and x,, and the corresponding energies, E, and Ej, are given
in Equation 4.161. Now we turn on a perturbation, in the form of a uniform field in

the x direction:
eB,

m

H = Sk. [7.58!

(@) Find the matrix elements of H’, and confirm that they have the structure of
Equation 7.55. What is A?

(b) Using your result in Problem 7.13(b), find the new ground-state energy, in
second-order perturbation theory.

(c) Using your result in Problem 7.13(c), find the variational principle bound on
the ground-state energy.

xxxProblem 7.15 Although the Schridinger equation for helium itself cannot be
solved exactly, there exist “helium like” systems that do admit exact solutions. A
simple example® is “rubber-band helium”, in which the Coulomb forces are replaced
by Hooke’s law forces:

n? 1 A
H= —%(v% +V3) + Emw2(r12 +r3) - me2|r1 -k [7.59]

(a) Show that the change of variables from ry, ry, to

u= %(rl +r), v= %(r] —T7) [7.60]

turns the Hamiltonian into two independent three-dimensional harmonic oscil-
lators:

& 2, 1 5, s 2 1 2 2
H= —%Vu—f—zmwu + —ﬁVU—f—E(l—A)mwv . [7.61]

(b) What is the exact ground-state energy for this system?

(c) If we didn’t know the exact solution, we might be inclined to apply the method
of Section 7.2 to the Hamiltonian in its original form (Equation 7.59). Do so
(but don’t bother with shielding). How does your result compare with the exact
answer? Answer: (H) = 3how(1 — A/4).

xxxProblem 7.16 In Problem 7.7 we found that the trial wave function with shielding
(Equation 7.27), which worked well for helium, is inadequate to confirm the existence

For a more sophisticated model, see R. Crandall, R. Whitnell, and R. Bettega, Am. J. Phys. 52.
438 (1984).
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of a bound state for the negative hydrogen ion. Chandrasekhar'® used a trial wave
function of the form

Y(ry, 1) = A[Y1 (r) YR (r) + ()Y (m)], [7.62]

z3 Z3
Yi(r) = ;T—;lge_z‘r/a, and Y (r) = ﬁe_zﬂ/“. [7.63]

In effect, he allowed two different shielding factors, suggesting that one electron
is relatively close to the nucleus and the other is farther out. (Because electrons
are identical particles, the spatial wave function must be symmetrized with respect
to interchange. The spin state—which is irrelevant to the calculation—is evidently
antisymmetric.) Show that by astute choice of the adjustable parameters Z, and Z»
you can get (H) less than —13.6 eV. Answer:

where

£ 8 7, 60 15y 14 11 ¢ 14
Hy=——1[- 2 = — =Xy == —xy’ ==y ),
(H) x6+y6<x+x+2xy PV TRY Y T 2y>
where x = Z1 + Z; and y = 2/ Z{Z;. Chandrasekhar used Z; = 1.039 (since this
is larger than 1, the motivating interpretation as an effective nuclear charge cannot

be sustained, but never mind—it’s still an acceptable trial wave function) and Z, =
0.283.

Problem 7.17 The fundamental problem in harnessing nuclear fusion is getting the
two particles (say, two deuterons) close enough together for the attractive (but short-
range) nuclear force to overcome the Coulomb repulsion. The “brute force” method is
to heat the particles to fantastic temperatures and allow the random collisions to bring
them together. A more exotic proposal is muon catalysis, in which we construct a
“hydrogen molecule ion”, only with deuterons in place of protons, and a muon in place
of the electron. Predict the equilibrium separation distance between the deuterons in
such a structure, and explain why muons are superior to electrons for this purpose.'

105, Chandrasekhar, Astrophys. J. 100, 176 (1944).

" The classic paper on muon-catalyzed fusion is J. D. Jackson, Phys. Rev. 106, 330 (1957); for a
recent popular review, see J. Rafelski and S. Jones, Scientific American, November 1987, page 84.



CHAPTER 8

THE WKB
APPROXIMATION

The WKB (Wentzel, Kramers, Brillouin)' method is a technique for obtaining ap-
proximate solutions to the time-independent Schrodinger equation in one dimension
(the same basic idea can be applied to many other differential equations, and to the
radial part of the Schrodinger equation in three dimensions). It is particularly useful
in calculating bound-state energies and tunneling rates through potential barriers.

The essential idea is as follows: Imagine a particle of energy £ moving through
a region where the potential ¥ (x) is constant. If E > V, the wave function is of the
form

Y (x) = 4™, with k= 2m(E - V)/h.

The plus sign indicates that the particle is traveling to the right, and the minus sign
means it is going to the left (the general solution, of course, is a linear combination
of the two). The wave function is oscillatory, with constant wavelength A = 27 /k
and constant amplitude 4. Now suppose that ¥ (x) is not constant, but varies rather
slowly in comparison to A, so that over a region containing many full wavelengths
the potential is essentially constant. Then it is reasonable to suppose that i remains
practically sinusoidal, except that the wavelength and the amplitude change slowly
with x. This is the inspiration behind the WKB approximation. In effect, it identi-
fies two different levels of x-dependence: rapid oscillations, modulated by gradual
variation in amplitude and wavelength.

n Holland it’s KWB, in France it’s BWK, and in England it’s JWKB (for Jeffreys).
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By the same token, if £ < V' (and V' is constant), then ¢ is exponential:

Y(x) = Ae™*,  with « =/2m(V — E)/h.

And if ¥ (x) is not constant, but varies slowly in comparison with 1/x, the solution
remains practically exponential, except that 4 and k are now slowly varying functions
of x.

Now, there is one place where this whole program is bound to fail, and that is
in the immediate vicinity of a classical turning point, where £ = V. For here A (or
1/x) goes to infinity, and V' (x) can hardly be said to vary “slowly” in comparison.
As we shall see, a proper handling of the turning points is the most difficult aspect
of the WKB approximation, though the final results are simple to state and easy to
implement.

8.1 THE “CLASSICAL” REGION

The Schrédinger equation,

n d*y
5 +V )y =Ey,

can be rewritten in the following way:

d2 2
Ef— = —%w, [8.1]
where
p(x) = /2mlE — V (x)] [8.2]

is the classical formula for the momentum of a particle with total energy E and
potential energy V (x). For the moment, I'll assume that £ > V (x), so that p(x) is
real; we call this the “classical” region, for obvious reasons—classically the particle
is confined to this range of x (see Figure 8.1). In general, ¢ is some complex function;
we can express it in terms of its amplitude, A(x), and its phase, ¢ (x)—both of which
are real:

Y (x) = A(x)e' ™, (8.3]
Using a prime to denote the derivative with respect to x, we find

dy

L = (4 +id¢)e?,
dx

and
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Turning points
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Figure 8.1: Classically, the particle is confined to the region where E > V' (x).

dzlﬁ ” AT . " "2
—— =[4"+24'¢ +id¢" — A($)°). [8.4]
dx

Putting this into Equation 8.1,

p2

W
This is equivalent to two real equations, one for the real part and one for the imaginary
part:

A +24'¢ +idy' — A@) = -5 A. [8.5]

2 r 2
A" — A = —p—zA, or A"=4 L(qb’)2 - p—z] [8.6]
h h
and
24'¢' + A¢" =0, or (4%¢) =0. [8.7)

Equations 8.6 and 8.7 are entirely equivalent to the original Schrodinger equa-
tion. The second one is easily solved:

A2 =C?,  or A=i [8.8]
V&
where C is a (real) constant. The first one (Equation 8.6) cannot be solved in general—
so here comes the approximation: We assume that the amplitude A varies slowly, so
that the 4” term is negligible. (More precisely, We assume that A”/A is much less
than both (¢')% and p?/#%.) In that case we can drop the left side of Equation 8.6,
and we are left with
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and therefore

1
¢(x) = i;lfp(x) dx. [8.9]

(I’1l write this as an indefinite integral, for now—any constant of integration can be
absorbed into C, which thereby becomes complex.) It follows, then, that

Px) = —\/%ei%f"(x)dx, [8.10]

and the general (approximate) solution will be a linear combination of two such terms,
one with each sign.

Notice that s
IC]

P = 0 [8.11]
p(x)

which says that the probability of finding the particle at point x is inversely pro-
portional to its (classical) momentum (and hence its velocity) at that point. This is
exactly what you would expect—the particle doesn’t spend long in the places where
it is moving rapidly, so the probability of getting caught there is small. In fact, the
WKB approximation is sometimes derived by starting with this “semiclassical” ob-
servation, instead of by dropping the 4” term in the differential equation. The latter
approach is cleaner mathematically, but the former offers a more plausible physical
rationale.

Example: Potential well with two vertical walls. Suppose we have an
infinite square well with a bumpy bottom (Figure 8.2):

some specified function, if0 < x < a,
Vix)= ] [8.12]
00, otherwise.

> Figure 8.2: Infinite square well
with a bumpy bottom.
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Inside the well [assuming E > V' (x) throughout] we have

1 . .
~ l¢(X) —l¢(x)
1//(x) = —“—(x) [C+€ + C_e ],

or, more conveniently,

Yix) = T/}U](_T) [Cising (x) + Cacos ()], [8.13

where (exploiting the freedom noted earlier to impose a convenient lower limit on the
integral)

o(x) = 1/ p(x"dx'. [8.14
k Jo

Now ¥ (x) must go to zero at x = 0, so, since ¢(0) = 0, C; = 0. Also, ¥ (x) goes
to zero at x = q, SO

p@)=nr (n=1,2,3...). [8.15]

Conclusion:

f p(x)dx = nmh. [8.16]
0

This quantization condition is our main result; it determines the (approximate) allowed
energies.

For instance, if the well has a flat bottom [V (x) = 0], then p(x) = v/2mE (a
constant), and Equation 8.16 says pa = nwh, or

n2m2h?

"= 2ma?
which are precisely the energy levels of the original infinite square well (Equa-
tion 2.23). In this case the WKB approximation yields the exact answer (the am-

plitude of the true wave function is constant, so dropping A" cost us nothing).

+Problem 8.1 Use the WKB approximation to find the allowed energies (E,) of
an infinite square well with a “shelf”, of height ¥, extending half-way across (see
Figure 6.3):
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Vo, if0<x <a/2,
Vix)y=4 0, ifa/2 <x <a,

00, otherwise.

Express your answer in terms of V; and EC = (n7wh)?/2ma? (the nth allowed energy
for the “unperturbed” infinite square well, with no shelf). Assume that E ? > Vp, but
do not assume that E,, > V;. Compare your result with what we got in Section 6.1.2,
using first-order perturbation theory. Note that they are in agreement if either V; is
very small (the perturbation theory regime) or n is very large (the semiclassical WKB
regime).

x+xProblem 8.2 Anilluminating alternative derivation of the WKB formula (Equation
8.10) is based on an expansion in powers of . Motivated by the free particle wave
function, ¥ = A exp(xipx/h), we write
Y(x) = el

where f(x) is some complex function. (Note that there is no loss of generality here—
any nonzero function can be written in this way.)

(a) Put this into Schridinger’s equation (in the form of Equation 8.1), and show
that

inf" = (f)? +p*=0.
(b) Write f(x) as a power series in h:
) = o) +Rfi@) +R f00) + -,
and, collecting like powers of #, show that
P =p% ifg =2ffl, ifi =2ffi+(f)’, et

(c) Solve for fy(x) and fi(x), and show that—to first order in A—you recover
Equation 8.10.

Note: The logarithm of a negative number is defined by In(—z) = In(z) +insm, where
n is an odd integer. If this formula is new to you, try exponentiating both sides, and
you’ll see where it comes from.
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8.2 TUNNELING

So far, T have assumed that £ > ¥/, so that p(x) is real. But we can easily write down
the corresponding result in the nonclassical region (E < ¥')—it’s the same as before
(Equation 8.10), only now p(x) is imaginary®:

) = —eetr [ Il [8.17]
|p(x)]

Consider, for example, the problem of scattering from a rectangular barrier with
a bumpy top (Figure 8.3). To the left of the barrier (x < 0),

v(x) = Ae'** + Be i, [8.18]

where 4 is the incident amplitude, B is the reflected amplitude, and k = V2mE /A
(see Section 2.7). To the right of the barrier (x > a),

¥ (x) = Fe'*; (8.19]

F is the transmitted amplitude, and the tunneling probability is

_|FP

= [8.20]

In the tunneling region (0 < x < a), the WKB approximation gives

V(x)

Y

Figure 8.3: Scattering from a rectangular barrier with a bumpy top.

2In this case the wave function is real, and the analogs to Equations 8.6 and 8.7 do not follow
necessarily from Equation 8.5, although they are still sufficient. If this bothers you, study the alternative
derivation in Problem 8.2.
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Figure 8.4: Qualitative structure of the wave function, for scattering from a high,
broad barrier.
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But if the barrier is very high and/or very wide (which is to say, if the probability of
tunneling is small), then the coefficient of the exponentially increasing term (C) must
be small (in fact, it would be zero if the barrier were infinitely broad), and the wave
function looks something like® Figure 8.4. The relative amplitudes of the incident and
transmitted waves are determined essentially by the total decrease of the exponential
over the nonclassical region:

Lipy

e
14|

-4 [ lpehldx
9

so that

1 a
TX=e?, with y= fz_/ [p(x)|dx. [8.22]
0

Example: Gamow’s theory of alpha decay. In 1928, George Gamow (and,
independently, Condon and Gurney) used this result to provide the first theoretical
account of alpha decay (the spontaneous emission of an alpha particle—two protons
and two neutrons—by certain radioactive nuclei). Since the alpha particle carries a
positive charge (2e), it will be electrically repelled by the leftover nucleus (charge Ze)
as soon as it gets far enough away to escape the nuclear binding force. Gamow pictured
the potential energy curve for the alpha particle as a finite square well (representing
the attractive nuclear force), extending out to r; (the radius of the nucleus), joined
to a repulsive Coulombic tail (Figure 8.5). If E is the energy of the emitted alpha
particle, the outer turning point (r;) is determined by

3This heuristic argument can be made more rigorous—see Problem 8.10.
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V(r)

Coulomb repulsion
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l_— Nuclear binding

p

Figure 8.5: Gamow’s model for the potential energy of an alpha particle in a

radioactive nucleus.

1 2Z¢&
=E. [8.23]

4x € 2
The exponent y (Equation 8.22) is evidently*

1 [~ 1 2Ze 2mE (7]
}’=h-/- \/2m< ¢ —E)dr: ;ln f r—z-—ldr
n r r

dmey 1

[8.24]

v2mE
;ln [rz cos™ \/ri/r — rir — rl)] .

Typically, r; < r», and we can simplify this result. The argument of the inverse
cosine is close to zero, so the angle itself is close to /2. Callit 8 = (7/2) — €.

then
cos @ = cos(r/2) cos € + sin{r/2) sine = sine = ¢,
and hence
-1 /N7 r
cos —_——= - = -_
r 2 r

“4In this case the potential does not drop to zero on both sides of the barrier (moreover, this is really
a three-dimensional problem), but the essential inspiration, contained in Equation 8.22, is all we realiy

need.
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Thus
2mE z
y = 7:” [%rz - 2@] = K=~ Ko/Zry, [8.25]
where
2 2
K E< ¢ )” 2 1.980MeV'72, [8.26]
4meq h
and

2 172
4
K: = (4;0) T 148 (8.27]

(One fermi, fm, is 10713 m, which is about the size of a typical nucleus.)

If we imagine the alpha particle rattling around inside the nucleus, with an
average velocity v, the average time between “collisions” with the “wall” is about
2ri /v, and hence the frequency of collisions is v/2r|. The probability of escape at
each collision is e, so the probability of emission, per unit time, is (v/2r;)e2",
and hence the lifetime of the parent nucleus is about

_ 2r1

T="¢%, [8.28]

v
Unfortunately, we don’t know v—but it hardly matters, for the exponential factor
varies over a fantastic range (25 orders of magnitude) as we go from one radioac-
tive nucleus to another; relative to this the variation in v is pretty insignificant. In
particular, if you plot the logarithm of the experimentally measured lifetime against
1/+/E (related to y by Equation 8.25), the result is a beautiful straight line (Figure
8.6), confirming that the lifetime of an alpha emitter is governed by the difficulty of
penetrating the Coulomb barrier.

*Problem 8.3 Use Equation 8.22 to calculate the approximate transmission proba-
bility for a particle of energy E that encounters a finite square barrier of height V, > E
and width 2a. Compare the exact result (Prob. 2.32) in the WKB regime T « 1.

x+Problem 8.4 Calculate the lifetimes of U?*® and Po?2, using Equation 8.28, with
Equation 8.25 for y. Hint: The density of nuclear matter is relatively constant (i.e.,
the same for all nuclei), so (r;)? is proportional to A (the number of neutrons plus
protons). Empirically,

r = (1.07 fm)AlS3, [8.29]

The energy of the emitted alpha particle is determined by Einstein’s formula
(E = mc?):
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Figure 8.6: Graph of the logarithm of the lifetime versus 1/+E, for several alpha
emitters. From David Park, Introduction to the Quantum Theory, 3rd ed. (New
York: McGraw-Hill, 1992). (See acknowledgment in Preface.)

2 _myc? — myc?, [8.30]

E =myc
where m,, is the mass of the parent nucleus, m, is the mass of the daughter nucleus.
and m, is the mass of the alpha particle (which is to say, the He* nucleus). To figure
out what the daughter nucleus is, note that the alpha particle carries off two proton-
and two neutrons, so Z decreases by 2 and A by 4. Look up the relevant nuclear
masses. To estimate v, use £ = (1/2)myv?; this ignores the (negative) potential
energy inside the nucleus, and surely underestimates v, but it’s about the best we can
do at this stage. Incidentally, the experimental lifetimes are 6 x 10° years and 0.5 u.
respectively.

8.3 THE CONNECTION FORMULAS

In the discussion so far I have assumed that the “walls” of the potential well (or
the barrier) are vertical, so that the “exterior” solution is simple and the boundar
conditions trivial. As it turns out, our main results (Equations 8.16 and 8.22) are
reasonably accurate even when the edges are not so abrupt (indeed, in Gamow’s theory
they were applied to just such a case). Nevertheless, it is of some interest to study
more closely what happens to the wave function at a turning point (E = V), where
the “classical” region joins the “nonclassical” region and the WKB approximation
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itself breaks down. In this section I'll treat the bound-state problem (Figure 8.1); you
get to do the scattering problem for yourself (Problem 8.10).

For simplicity, let’s shift the axes over so that the right-hand turning point occurs
at x = 0 (Figure 8.7). In the WKB approximation, we have

3 0 /d/ i 0 /d/
\/h[Beifxp(X) o +Ce_ﬁfxp(x) X:I, ifx <0,
P(x) = *

—L [ pen) dx! .
—L_De ”fo lp(x)ldx, ifx > 0.

A/ |px)]

[Assuming that ¥ (x) remains greater than E for all x > 0, we can exclude the
positive exponent in this region, because it blows up as x — o0.] Our task is to
join the two solutions at the boundary. But there is a serious difficulty here: In the
WKB approximation, ¥ goes to infinity at the turning point, where p(x) — 0. The
true wave function, of course, has no such wild behavior—as anticipated, the WKB
method simply fails in the vicinity of a turning point. And yet, it is precisely the
boundary conditions at the turning points that determine the allowed energies. What
we need to do, then, is splice the two WKB solutions together, using a “patching”
wave function that straddles the turning point.

Since we only need the patching wave function (y,,) in the neighborhood of the
origin, we’ll approximate the potential by a straight line:

[8.31]

V{x)ZE+V'0)x, [8.32]

and solve the Schrodinger for this linearized V'

Linearized
potential
Turning
point
E
Patching
region
X
Classical 0 Nonclassical
region region

Figure 8.7: Enlarged view of the right-hand turning point.

3Warning: The following argument is quite technical, and you may wish to skip it on a first reading.
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;’; d;‘”;’ + (B + V0¥, = Ey,
or
d;;”;’ =d’xy,, [8.33]
where
Im 1/3
o= I:h—zV’(O):I : (8.34]

The «’s can be absorbed into the independent variable by defining

z=wx, [8.35]
so that
d*y,
T2 = zYp. [8.36]

This is Airy’s equation, and the solutions are called Airy functions.’ Since the Airy
equation is a second-order differential equation, there are two linearly independent

Table 8.1: Some properties of the Airy functions.

d?y
Differential Equation: i zy.
Solutions: Linear combinations of Airy Functions, 4i(z) and Bi(z).
1 e $3
Integral Representation: Ai(z) = — f cos (—3— + sz) ds
14
0
1 *® $ S3
Bi(z) = — e T fsin| = +sz) |ds
T Jy 3
Asymptotic Forms:
. 1 _232 . 1 . [2 32, T
Ai(z) 2ﬁ21/4 3 Ai(z) 77;2:;)1_” sln[g(—z) + 'Z
z>»0 | 5 2k 0
. 3/2 . 32, %
B B ~—_— Z(=n)3 ot
i(z) ~ «/— —=a¢ i(2) N7 cos[3( )7+ 4]

SClassically, a linear potential means a constant force, and hence a constant acceleration—the
simplest nontrivial motion possible, and the starting point for elementary mechanics. It is ironic that the
same potential in quantum mechanics gives rise to unfamiliar transcendental functions, and plays only a
peripheral role in the theory.
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Figure 8.8: Graph of the Airy functions.

Airy functions, 4i(z) and Bi(z); the general solution is a linear combination of these.
Ai and Bi are related to Bessel functions of order 1/3; some of their properties are
listed in Table 8.1 and they are plotted in Figure 8.8. Evidently the patching wave

function is

Vp(x) = adi(ax) + bBi(ax), [8.37]

for appropriate constants ¢ and b.

Now ¥, is the (approximate) wave function in the neighborhood of the origin;
our job is to match it to the WKB solutions in the overlap regions on either side
(see Figure 8.9). These overlap zones are close enough to the turning point that the
linearized potential is reasonably accurate (so that v, is a good approximation to the
true wave function), and yet far enough away from the turning point that the WKB
approximation is reliable.” In the overlap regions Equation 8.32 holds, and therefore
(ip the notation of Equation 8.34)

p(x) = \/2m(E — E—V'(0O)x) = ha’/?/=x. [8.38]

In particular, in overlap region 2,

TThis is a delicate double constraint, and it is possible to concoct potentials so pathological that no
such overlap region exists. However, in practical applications this seldom occurs. See Problem 8.8.
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Figure 8.9: Patching region and the two overlap zones.

X X 2
/ [pGNHldx’ = hoe3/2/ Vx'dx' = gh(oex)yz,
0 0
and therefore the WKB wave function (Equation 8.31) can be written as

~ D —%(@x)¥? [8.39]
VOOE T |

Meanwhile, using the large-z asymptotic forms® of the Airy functions (from Table
8.1), the patching wave function (Equation 8.37) in overlap region 2 becomes

Yp(x) = —ien’”? HCOR [8.40]

a b
2 /7 @)’ Jrlax)’

Comparing the two solutions, we see that

4
a=./—=D, and b=0, [8.41]
ah

Now we go back and repeat the procedure for overlap region 1. Once again.
p(x) is given by Equation 8.38, but this time x is negative, so

0
/ p(xdx = %h(—oex)y2 [8.42]

and the WKB wave function (Equation 8.31) is

8 At first glance it seems absurd to use a large-z approximation in this region, which after all is
supposed to be reasonably close to the tuming point at z = 0 (so that the linear approximation to the
potential is valid). But notice that the argument here is arx, and if you study the matter carefully (see
Problem 8.8) you will find that there is (typically) a region in which ax is large, but at the same time it is
reasonable to approximate ¥ (x) by a straight line.
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1
ﬁa3/4(_x)1/4

Meanwhile, using the asymptotic form of the Airy function for large negative z
(Table 8.1), the patching function (Equation 8.37, with » = 0) reads

¥(x) & [Berbt-en®” 4 Ceitmen™]. [8.43]

2 32 X
3( ox) +4i|

~ a .
Yp(x) = m sin

VL : YA 2l [/ e i e—f”/4e‘i§(‘“")3/2]. [8.44]
T{—ax I

Comparing the WKB and patching wave functions in overlap region 1, we find

4 ginj4 _ B and % /A — ¢

27 Vha 2i/m Vha

3

or, putting in Equation 8.41 for a,
B=—id™*D, and C =ie"/*D. [8.45]

These are the so-called connection formulas, joining the WKB solutions at either
side of the turning point. We’re done with the patching wave function now—its
only purpose was to bridge the gap. Expressing everything in terms of the one
normalization constant D, and shifting the turning point back from the origin to an
arbitrary point x;, the WKB wave function (Equation 8.31) becomes

j% sin [}l [ p(x)dx' + %], if x < xy;
Yx) = 1 fx ()] dx’ [8.46]
—L2_ iy if x > x,.

V1p@)l ’

Example: Potential well with one vertical wall. Imagine a potential well
that has one vertical side (at x = 0) and one sloping side (Figure 8.10). In this case
¥ (0) = 0, so Equation 8.46 says

1 [* 14
- pxX)dx +—=nn, (n=1,2,3,..),
hJo 4

or

/ 2 p(x)dx = (n - 1) mh. [8.47]
0 4

For instance, consider the “half-harmonic oscillator”,
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W(x)

X
Figure 8.10: Potential well with one vertical wall.
_J1 2,2 if 0
Vix) =4 smwx®, ifx >0, [8.48]
0, otherwise.
In this case
p(.X') = \/2m[E - (1/2)”16()2)(2] = Mw, /x22 — xz’
where

is the turning point. So

X2 X2 E
/ p(x)dx:ma)/ ,/x%—xzdxzzma)xzz:n——,
0 0 4 2w

and the quantization condition Equation 8.47 yields

1 37 1
E,=2n—-3 =z 50 =, . 4
(n 2)ha) (2 73 )ha) [8.49]
In this particular case the WKB approximation actually delivers the exact allowed
energies (which are precisely the odd energies of the full harmonic oscillator—see

Problem 2.38).

Example: Potential well with no vertical walls. Equation 8.46 con-
nects the WKB wave functions at a turning point where the potential slopes upward
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AV(X) | | | |
| | | |
| | \\' /
| | | |
E E E
| | | |
| ! | |
| I | |
| | | |
X X4 X X
L

Figure 8.11: Upward-sloping and downward-sloping turning points.

(Figure 8.11a); the same reasoning, applied to a downward-sloping turning point
(Figure 8.11b), yields (Problem 8.9)

-+ [T e s’

ifx < xp;

[8.50]

N «/lp(x
Ok )
(x / p(xdx' + ], if x > xy.
p X1

In particular, if we’re talking about a potential well (Figure 8.11c), the wave function
in the “interior” region (x| < x < x3) can be written either as

Lo
Y(x) = sinf(x), where 6,(x) = 7?1,/ pxdx + %

2D
vV p(x)
(Equation 8.46), or as

/

~ 2D = ey - T
PYx) = mx_)smel(x), where 6,(x) = h/x1 p(x)dx )

(Equation 8.50). Evidently the arguments of the sine functions must be equal,
modulo 7:° 8; = 8; + nm, from which it follows that

X2 1
/ px)dx = (n - —2-) wh, with n=1,2,3,.... [8.51]

X1

This quantization condition determines the allowed energies for the “typical”
case of a potential well with two sloping sides. Notice that it differs from the formulas

9Not 2w—an overall minus sign can be absorbed into the normalization factors D and D/
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for two vertical walls (Equation 8.16) or one vertical wall (Equation 8.47) only in
the number that is subtracted from n (0, 1/4, or 1/2). Since the WKB approximation
works best in the semiclassical (large n) regime, the distinction is more in appearance
than in substance. In any event, the result is extraordinarily powerful, for it enables
us to calculate (approximate) allowed energies without ever solving the Schrodinger
equation, by simply evaluating one integral. The wave function itself has dropped
out of sight.

*+xProblem 8.5 Consider the quantum mechanical analog to the classical problem of
a ball (mass m) bouncing elastically on the floor.

(a)

(b)

()

(d)

What is the potential energy, as a function of height x above the floor? (For
negative x, the potential is infinite—the ball can’t get there at all.)

Solve the Schrédinger equation for this potential, expressing your answer in
terms of the appropriate Airy function [note that Bi(z) blows up for large z, and
hence does not yield a normalizable wave function]. Don’t bother to normalize

v (x).

Using g = 9.80 m/s? and m = 0.100 kg, find the first four allowed energies.
in Joules, correct to three significant digits. Hint: see Milton Abromowitz
and Irene A. Stegun, Handbook of Mathematical Functions (New York: Dover
1970), page 478; the notation is defined on page 450.

What is the ground state energy, in eV, of an electron in this gravitational field?
How high off the ground is this electron, on the average? Hint: Use the virial
theorem to determine (x).

*Problem 8.6 Analyze the bouncing ball (Problem 8.5) using the WKB approxima-

tion.

(a)
(b)

(c)

Find the allowed energies E, in terms of m, g, and .

Now put in the particular values given in Problem 8.5(c), and compare the WKB
approximation to the first four energies with the “exact” resuits.

About how large would the quantum number n have to be to give the ball an
average height of, say, 1 meter above the ground?

*Problem 8.7 Use the WKB approximation to find the allowed energies of the
harmonic oscillator.

Problem 8.8 Consider a particle of mass m in the nth stationary state of the har-
monic oscillator (angular frequency ).

(a)

Find the turning point x;.
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(b) How far (d) could you go above the turning point before the error in the linearized
potential (Equation 8.32, but with the turning point at x,) reaches 1%? That s,
if

V(xy+d) = Vin(x2 + d)
V(x2)

=0.01,

what is d?

(c) The asymptotic form of Ai(z) is accurate to 1% as long as z > 5. For the d in
part (b), determine the smallest n such that @d > 5. (For any n larger than this,
there exists an overlap region in which the linearized potential is good to 1%
and the large-z form of the Airy function is good to 1%.)

++«Problem 8.9 Derive the connection formulas at a downward-sloping turning point,
and confirm Equation 8.50.

s+xProblem 8.10 Use appropriate connection formulas to analyse the problem of
scattering from a barrier with sloping walls (Figure 8.12). Begin by writing the WKB
wave function in the form

e ’ ’ Y ’ ’
«/1( ) [Aeiﬂ P 1 getil, pmdx] (x <x1);
px

_W(x) ~ | 1 Ce%‘/: |p(x"ldx’ " De_%f"j Ip(x') dx’ () <x<x ); [852]
A 1Pl ’ 1 .

Y "y dx'
\/;T)C)I:Fe”f‘sz) x}, (x > x2).

Do not assume C = 0. Calculate the tunneling probability, T = | F|?/|4|?, and show
that your result reduces to Equation 8.22 in the case of a broad, high barrier.

V(x) A
S /\
E

|

|

|

|

!

X4 Xo X

Figure 8.12: Barrier with sloping walls.
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FURTHER PROBLEMS FOR CHAPTER 8

x+Problem 8.11 Use the WKB approximation to find the allowed energies of the
general power-law potential:

Vix) =alx]”,

where v is a positive number. Check your result for the case v = 2. Answer:
()
i+
E,=a|(-1/2h ) ———v 27 : 8.53
[( /2) ma T (111) [8.53]

x+Problem 8.12 Use the WKB approximation to find the bound-state energy for the
potential in Problem 2.48. Compare the exact answer. Answer:

—[9/8) — (1/V2)2a?/m.

Problem 8.13 For spherically symmetrical potentials, we can apply the WKB ap-
proximation to the radial equation, (Equation 4.37). Inthe case/ = 0, itis reasonable?
to use Equation 8.47 in the form

/ " p(rydr = (n— 1/4yeh, (8.54]
0

where rg is the turning point (in effect, we treat » = 0 as an infinite wall). Apply this
formula to estimate the allowed energies of a particle in the logarithmic potential

V(r) =Vyln@r/a)

(for constants Vy and a). Treat only the case / = 0. Show that the spacing between
the levels is independent of mass. Partial answer:

4
En+1—En =V01n(n+3/ )

n—1/4

++Problem 8.14 Use the WKB approximation in the form

/ " pr)ydr =(n—1/2)7h [8.55]

r

% Application of the WKB approximation to the radial equation raises some delicate and subtle
problems, which I will not go into here. The classic paper on the subject is R. Langer, Phys. Rev. 51, 669
(1937).
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V(x)

: /N 1
NN

Figure 8.13: Symmetric double well; Problem 8.15.

to estimate the bound state-energies for hydrogen. Don’t forget the centrifugal term
in the effective potential Equation 4.38. The following integral may help:

b
1
/ VG —a)b—x) = Z(b - Ja) [8.56]
« X 2
Note that you recover the Bohr levels when n >> [ and n > 1/2. Answer:

—13.6eV

E,; = . 8.57
T2+ /I D (8571

sx+xProblem 8.15 Consider the case of a symmetrical double-well, such as the one
pictured in Figure 8.13. We are interested in bound states with £ < V' (0).

(a) Write down the WKB wave functions in regions (i) x > x3, (il) x; < x < X,
and (iii) 0 < x < x;. Impose the appropriate connection formulas at x; and x
(this has already been done, in Equation 8.46, for x; you will have to work out
x1 for yourself), to show that

e FNLGTS 0
Vip(x)|
V=] 2D T T )
) sin | - : p(xdx' + 7| (1)
D LMl = b [ e
2cosfe J: +sinfe *JSx 7 , (il
J|p<x>|[ ) D

where

0= —/ 2 p(x)dx. [8.58]
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The WKB Approximation

Because V' (x) is symmetric, we need only consider even (+) and odd (—) wave
functions. In the former case ¥'(0) = 0, and in the latter case ¥ (0) = 0. Show
that this leads to the following quantization condition:

tanf = +2¢?, [8.59]
where
1 i ! !
¢Efl/ Ip(x"Hdx’. [8.60]
—x)

Equation 8.59 determines the (approximate) allowed energies (note that £ comes
into x; and x5, so 6 and ¢ are both functions of E).

We are particularly interested in a high and/or broad central barrier, in which
case ¢ is large and e is huge. Equation 8.59 then tells us that # must be very
close to a half-integer multiple of r. With this in mind, write § = (n+1/2)m +¢,
where || <1, and show that the quantization condition becomes

1 1
= (n + 5) nF 5e‘¢. [8.61]
Suppose each well is a parabola'':

1ma)z(x +a)?, ifx <0,

Vix)=1{2 [8.62]
%ma)z(x —a)?, ifx>0.
Sketch this potential, find 6 (Equation 8.58), and show that
1 h
EF=(n+=)hoF Leo, [8.63]
2 2

Note: If the central barrier were impenetrable (¢ — o), we would simply have
two detached harmonic oscillators, and the energies £, = (n+1/2)hw would be
doubly degenerate, since the particle could be in the left well or in the ri ght one.
When the barrier becomes finite, putting the two wells into “communication”,
the degeneracy is lifted. The even states (") have slightly lower energy, and
the odd ones (") have slightly higher energy.

UEvenif v (x) is not strictly parabolic in each well, this calculation of 6, and hence the result (Equa-

tion 8.63), will be approximately correct, in the sense discussed in Section 2.3, withw = /V"(xp)/m.
where xg is the position of the minimum.
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(e) Suppose the particle starts out in the right well—or, more precisely, in a state
of the form

1
V2

which, assuming the phases are picked in the “natural” way, will be concentrated
in the right well. Show that it oscillates back and forth between the wells, with
a period

W(x,00 = —=, +v,),

2 2
T = ie“’. [8.64]

w

() Calculate ¢, for the specific potential in part (d), and show that for ¥ (0) > E,
¢ ~ mowa*/h.




CHAPTER 9

TIME-DEPENDENT
PERTURBATION THEORY

20

Up to this point, practically everything we have done belongs to the subject that
might properly be called quantum statics, in which the potential energy function is
independent of time: V (r,t) = V (r). In that case the (time-dependent) Schrodinger
equation,
HVY = ih 3_\11
at

can be solved by separation of variables:
W(r, 1) = (e 57,
where () satisfies the time-independent Schrédinger equation,
Hyr = Evr.

Because the time dependence of W is carried by the exponential factor (e 7*£//*), which
cancels out when we construct the physically relevant quantity |¥|?, all probabilities
and expectation values are constant in time. By forming linear combinations of these
stationary states we obtain wave functions with more interesting time dependence,
but even then the possible values of the energy, and their respective probabilities, are
constant.

If we want to allow for transitions between one energy level and another, we
must introduce a time-dependent potential (quantum dynamics). There are precious
few exactly solvable problems in quantum dynamics. However, if the time-dependent
portion of the Hamiltonian is small compared to the time-independent part, it can be
treated as a perturbation. My purpose in this chapter is to develop time-dependent
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perturbation theory, and study its most important application: the emission or absorp-

tion of radiation by an atom—a process known in the old Bohr theory as a quantum
jump.

9.1 TWO-LEVEL SYSTEMS

To begin with, let us suppose that there are just two states of the (unperturbed) system,
¥, and . They are eigenstates of the unperturbed Hamiltonian Hy:

HOWa = ana and HOWb = Ebwb, [91]

and they are orthonormal:

(Walp) = 3ap- [9.2]

Any state can be expressed as a linear combination of them; in particular,
V(0) =ca¥, + co Ve [9.3]

The states v, and v, might be position-space wave functions, or spinors, or
something more exotic—it doesn’t matter. It is the time dependence that concerns
us here, so when I write W(¢), I simply mean the state of the system at time ¢.
In the absence of any perturbation, each component evolves with its characteristic
exponential factor:

W(t) = coprae B 4 cpyppe B [9.4]

We say that |c,|? is the “probability that the particle is in state v, —by which we
really mean the probability that a measurement of the energy would yield the value
E,. Normalization of W requires, of course, that

lcal® + |epl*> = 1. [9.5]

9.1.1 The Perturbed System

Now suppose we turn on a time-dependent perturbation H'(?). Since ¥, and ¥,
constitute a complete set, the wave function W () can still be expressed as a linear
combination of them. The only difference is that ¢, and ¢, are now functions of t:

W(t) = ca(t)Pae B+ cy(t) e o /R, [9.6]

[1 could absorb the exponential factors into ¢, (¢) and ¢5(t), and some people prefer to
do it this way, but I think it is nicer to keep visible that part of the time dependence that
would be present even without the perturbation.] The whole problem is to determine
¢, and ¢, as functions of time. If, for example, the particle started out in the state v,
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so that ¢,(0) = 1 and ¢, (0) = 0, and at some later time ¢; we find that ¢,(¢;) = 0.
cp(t)) = 1, we shall report that the system underwent a transition from v, to 5.

We solve for ¢, (¢) and ¢, (¢) by demanding that W (¢) satisfy the time- dependent
Schrédinger equation,

EN
HY =il where H=H+H(). [9.7]

From Equations 9.6 and 9.7, we find

cal Hovrae ™ /" + cyl Howple ™ /7 + o H'YrgJe™ /"

+ cb[H/wb]e—iEbt/fl = ih I:C-,awae—iEat/h + ébwbe_.iEb,/h

+eats (_1 a) e B g e (_1717) e—zEbt/h]‘

h

In view of Equation 9.1, the first two terms on the left cancel the last two terms on
the right, and hence

ca[H/wa]e—iE,,t/h + cb[H/wb]e—iEbt/h = ih [éa wae—ﬁ'Eat/h + C-,bwbe—iEbt/h] . [98]

To isolate ¢,, we use the standard trick: Take the inner product with ,, and
exploit the orthogonality of ¥, and v, (Equation 9.2):

Ca (walH/lwa)e_iEat/h + c[)(walH/lwb)e—iEbt/h — ihéae_iE"t/h.
For short, we define
H}; = (Wil H'lY); [9.9]

note that the Hermiticity of H' entails iji = (H};)*. Multiplying through by

—(i/h)e'Ea!/"  we conclude that
i
h

Similarly, the inner product with v, picks out ¢;:

[ca H, +cp H‘;be_i(E”_E”)'/h] . [9.10]

Cq =

ca(W | H'[Wa)e™ 5/ +cy (ol H'|Yp)e™ B0 = icye™ B,

and hence .

i

h

Equations 9.10 and 9.11 determine ¢,(¢) and c;(¢); taken together, they are

completely equivalent to the (time- dependent) Schrodinger equation, for a two-level

system. Typically, the diagonal matrix elements of H' vanish (see Problem 9.4 for
the more general case in which the diagonal terms are not zero):

ép = —= [coHyy + caHype' ErmER] [9.11]

H, = H), =0. [9.12]
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In that case the equations simplify:

Ca = —j Hye '™y, 0.13]
ép = —%H,;aei“’otca,
where
Ey— F
wo = —”—h— [9.14]

(We’ll assume that E > E,, so wy > 0.)

xProblem 9.1 A hydrogen atom is placed in a (time-dependent) electric field E =
E (t)lg. Calculate all four matrix elements Hi’j of the perturbation H' = —eEz
between the ground state (n = 1) and the (quadruply degenerate) first excited states
(n = 2). Also show that H;, = 0 for all five states. Note: There is only one integral
to be done here, if you exploit oddness with respect to z. As a result, only one of the
n = 2 states is “accessible” from the ground state by a perturbation of this form, and
therefore the system functions as a two-level configuration— assuming transitions to
higher excited states can be ignored.

xProblem 9.2 Solve Equation 9.13 for the case of a time-independent perturbation,
assuming that ¢, (0) = 1 and ¢,(0) = 0. Check that |c,()|> + |cp(£)|* = 1. Note:
Ostensibly, this system oscillates between “pure ¥7,” and “some v,”. Doesn’t this
contradict my general assertion that no transitions occur for time-independent pertur-
bations? No, but the reason is rather subtle: In this case v, and v, are not, and never
were, eigenstates of the Hamiltonian—a measurement of the energy never yields E,
or Ep. Intime-dependent perturbation theory we typically contemplate turning on the
perturbation for a while, and then turning it off again, in order to examine the system.
At the beginning, and at the end, ¥, and 1, are eigenstates of the exact Hamilto-
nian, and only in this context does it make sense to say that the system underwent
a transition from one to the other. For the present problem, then, assume that the
perturbation was turned on at time ¢ = 0, and off again at time r—this doesn’t affect
the calculations, but it allows for a more sensible interpretation of the result.

Problem 9.3 Suppose the perturbation takes the form of a delta function (in time):
H = Us(t — ty);

assume that U,, = Upp = 0, and let U,y = . If ¢,(—00) = 1 and ¢(—oc) = 0,
find ¢, (¢) and ¢ (¢), and check that |c,(#)|> + |cp(£)|> = 1. What is the probability
(P,_,p) that a transition occurs? Hint: Refer to Problem 2.24. Answer: P, =
(o /82 /(1 + |a? /40%)%.
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9.1.2 Time-Dependent Perturbation Theory

So far, everything is exact: We have made no assumption about the size of the pertur-
bation. But if H' is “small”, we can solve Equations 9.13 by a process of successive
approximations, as follows. Suppose the particle starts out in the lower state:

ca(0) =1, ¢p(0)=0. [9.15]

If there were no perturbation at all, they would stay this way forever:

Zeroth Order:
P =1, 2w =0. [9.16]

To calculate the first-order approximation, we insert these values on the right side of
Equation 9.13:

First Order: 4
Ca
=0 = =1
T c,'(t)
dey Lo it M L o
I = —szae = ¢ = ~ A H;,()e dt’. [9.17}

Now we insert these expressions on the right to obtain the second-order approxima-
tion:

Second Order:
d . ] . t ) ,
dcta - _%Hébe~m, (ﬁé)/ H, e di' =
0

1 wr | [ ot
c}}>(t)=1—h—2 /0 H,, (e '™ [ /0 Hy,t"e™" dt”] dr',  [9.18]

while ¢ is unchanged, 61(12) @) = c,gl)(t). [Notice that in my notation ¢{?(¢) includes

the zeroth order term; the second-order correction would be the integral term alone.]

In principle, we could continue this ritual indefinitely, always inserting the
n®-order approximation into the right side of Equation 9.13 and solving for the
(n + 1)® order. Notice that ¢, is modified in every even order, and ¢, in every
odd order. Incidentally, the error in the first-order approximation is evident in the fact
that ¢V (6)2 + |cP ()12 # 1 (the exact coefficients must, of course, obey Equation
9.5). However, [c{"(1)|* + |cl(,1)(t)|2 is equal to 1 to first order in H', which is all
we can expect from a first-order approximation. And the same goes for the higher
orders.
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x+Problem 9.4 Suppose you don’t assume that H), = Hj, = 0.
(@) Find ¢,(¢) and c,(¢) in first-order perturbation theory, for the case c,(0) =
1, ¢, (0) = 0. Show that Icél)(l‘)l2 + Ic,(,l)(t)l2 = 1, to first order in H'.
(b) There is a nicer way to handle this problem. Let

f 13

d, = e ft; H","(t/)d'/ca, dy=e"Jo H’;”('/)d'/cb. [9.19]
Show that
d, = —%ei"’Hébe_i“’O’db; dy = —%e“""’H,ﬁae"""”da, [9.20]
where g
P(t) = 5/0 (H,,(t" — H,,()]drt'. [9.21]

So the equations for d, and dj, are identical in structure to Equation 9.13 (with
an extra factor ’? tacked onto H').

(c) Use the method in part (b) to obtain c,(¢) and c;(¢) in first-order perturbation
theory, and compare your answer to (a). Comment on any discrepancies.

xProblem 9.5 Solve Equation 9.13 to second order in perturbation theory, for the
general case ¢,(0) = a, cp(0) = b.

xxProblem 9.6 Calculate c,(t) and c;(¢), to second order, for the perturbation in
Problem 9.2. Compare your answer with the exact result.

9.1.3 Sinusoidal Perturbations
Suppose the perturbation has sinusoidal time dependence:

H'(r,t) = V(r) cos(wt), [9.22]

so that
H, = Vgp cos(wt), [9.23]

where
Vab = (YalV [¥p). [9.24]

(As before, I'll assume that the diagonal matrix elements vanish, since this is almost
always the case in practice.) To first order (from now on we’ll work exclusively in
first order) we have (Equation 9.17)

. t . t
1 . ; iV . ’ . ’
cp(t) = —sza/ cos(wt’)e' " dt' = ——ﬂ/ [e'("’°+“’)t + e'(’”""“’)’] dr’
0 0
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[9.25]

Via PAC R | ellw—o) _ 1
2h [ wy + o wy — W ]

This is the answer, but it’s a little cumbersome to work with. Things simplify
substantially if we restrict our attention to driving frequencies (w) that are very close to
the transition frequency (wy), so that the second term in the square brackets dominates:
specifically, we assume

wy + 0> |wy — ol. [9.26]

This is not much of a limitation, since perturbations at other frequencies have a

negligible probability of causing a transition anyway.! Dropping the first term, we
have ” s

Voa €07 o2 —i(wo—

X227 [eflemw)/2 _ —iwe—w)i/2

() 2h wy—w [ ]

_ Yo sinl@o = /2] s, [9.27]

h wy— W
The transition probability—the probability that a particle which started out in the

state v, will be found, at time ¢, in the state y,—is

Vap)? sin®[(wo — w)t/2]

e —w)? [9.28]

Pas(®) = lesOP =]

The most remarkable feature of this result is that, as a function of time, the
transition probability oscillates sinusoidally (Figure 9.1). After rising to a maximum
of Va2 /0 (wo — w)?—necessarily much less than 1, else the assumption that the
perturbation is “small” would be invalid— it drops back down to zero! At times
t, = 2n7/|wy — w|, where n = 1, 2, 3, ..., the particle is certain to be back in the
lower state. If you want to maximize your chances of provoking a transition, you
should not keep the perturbation on for a long period: You do better to turn it off after
a time 7 /|wy — |, and hope to “catch” the system in the upper state. In Problem 9.7
it is shown that this “flopping” is not an artifact of perturbation theory—it also occurs
in the exact solution, though the flopping frequency is modified somewhat.

As I noted earlier, the probability of a transition is greatest when the driving
frequency is close to the “natural” frequency wy. This is illustrated in Figure 9.2,
where P,_,; is plotted as a function of w. The peak has a height of (|V|t /2h)? and
a width 47 /¢; evidently it gets higher and narrower as time goes on. (Ostensibly,
the maximum increases without limit. However, the perturbation assumption breaks
down before it gets close to 1, so we can believe the result only for relatively small ¢.
In Problem 9.7 you will see that the exact result never exceeds 1.)

UIn the following sections we will be applying this theory to the case of ligh, for which w ~ 104
Hz, so the denominator in both terms is huge, except (for the second one) in the neighborhood of wy.



Sec. 9.1: Two-Level Systems 305

P(t) 4

2n 4n 6n t
Joog ~ )] Jodg — @] |wg — w|

Figure 9.1: Transition probability as a function of time, for a sinusoidal pertur-
bation (Equation 9.28).

P(w)A

—Wf g w

(wg - 2n/t) (wq + 27/t)

Figure 9.2: Transition probability as a function of driving frequency (Equation 9.28).

x+Problem 9.7 The first term in Equation 9.25 comes from the ¢/ /2 part of cos(w?),
and the second from e~'*’ /2. Thus dropping the first term is formally equivalent to
writing H' = (V/2)e™'*, which is to say,

Vba —iwt

2 ¢
[The latter is required to make the Hamiltonian matrix Hermitian—or, if you prefer,
to pick out the dominant term in the formula analogous to Equation 9.25 for c,(z).]
If you make this so-called rotating wave approximation at the beginning of the
calculation, Equation 9.13 can be solved exactly, with no need for perturbation theory
and no assumption about the strength of the field.

Vab i
et

Hl;a = 2

H, = [9.29]

(@) Solve Equation 9.13 in the rotating wave approximation (Equation 9.29) for the
usual initial conditions: ¢,(0) = 1, ¢,(0) = 0. Express your results [c,(¢) and
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¢ ()] in terms of the Rabi flopping frequency,

1
w, = 5\/(70) — w0)? + ([Vas| /R)*. [9.30]

(b) Determine the transition probability, F,_.;(¢), and show that it never exceeds 1.
Confirm that |, (£)]? + |cp()]* = 1.

(C) Check that P,_,(t) teduces to the perturbation theory result (Equation 9.28)
when the perturbation is “small”, and state precisely what small means in this
context, as a constraint on V.

(d) At what time does the system first return to its initial state?

9.2 EMISSION AND ABSORPTION OF RADIATION

9.2.1 Electromagnetic Waves

An electromagnetic wave (I'll refer to it as “light,” though it could be infrared, ul-
traviolet, microwave, X-ray, etc.; these differ only in their frequencies) consists of
transverse (and mutually perpendicular) oscillating electric and magnetic fields (Fig-
ure 9.3). An atom, in the presence of a passing light wave, responds primarily to the
electric component. If the wavelength is long (compared to the size of the atom), we
can ignore the spatial variation in the field’; the atom, then, is exposed toa sinusoidally
oscillating electric field

E = E;cos(wr) k [9.31]
(for the moment "1l assume that the light is monochromatic and polarized along the
z-direction). The perturbing Hamiltonian is’

H' = —qEpz cos(wt), [9.32]
where g is the charge of the electron.® Evidently’

H,, = —pEgcos(wt), where g =q(Pplzlia). [9.33]

2For visible light A ~ 5000 A, while the diameter of an atom is around 1 A, so this approximation
is reasonable; but it would nor be for X-rays. Problem 9.20 explores the effect of spatial variation in the
field.

3The energy of a charge ¢ in a static field E is —¢ f E - dr. You may well object to the use of
an electrostatic formula for a manifestly time-dependent field. T am implicitly assuming that the period of
oscillation is long compared to the time it takes the charge to move around (within an atom).

4 As usual, we assume that the nucleus is heavy and stationary; it is the wave function of the electron
we are concerned with.

5The letter g is supposed to remind you of electric dipole moment (for which, in electrodynamics,
the letter p is customarily used—in this context it is rendered as a squiggly & to avoid confusion with
momentum). In fact, p is the off-diagonal matrix element of the z-component of the dipole moment
operator gr.
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Electric field
z
/ D|rect|on of
propagation
Magnetic field

Figure 9.3: An electromagnetic wave.

Typically, ¥ is an even or odd function of z; in either case z||? is odd, and integrates
to zero (see Problem 9.1 for some examples). This licenses our usual assumption that
the diagonal matrix elements of H’ vanish. Thus the interaction of light with matter
is governed by precisely the kind of oscillatory perturbation we studied in Section
9.1.3, with

Ve = — Eo. [9.34]

9.2.2 Absorption, Stimulated Emission, and Spontaneous Emission

If an atom starts out in the “lower” state ,, and you shine a polarized monochromatic
beam of light on it, the probability of a transition to the “upper” state ¥, is given by
Equation 9.28, which (in view of Equation 9.34) takes the form

5 p— [9.35]
In this process, the atom absorbs energy E; — E, = hay from the electromagnetic
field. We say that it has “absorbed a photon” (Figure 9.4a). [As I mentioned earlier,
the word “photon” really belongs to quantum electrodynamics (the quantum theory
of the electromagnetic field), whereas we are treating the field itself classically. But
this terminology is convenient, as long as you don’t read more into it than is really
there.]

ZKK

a) Absorption b) Stimulated emission c) Spontaneous emission

Fxgure 9.4: Three ways in Wthh light interacts with atoms. (a) absorption,
(b) stimulated emission, (c) spontaneous emission.

Pop(t) = (IS’JIEo)Z sinz[(a)o — a))t/Z].
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I could, of course, go back and run the whole derivation for a system that starts
off in the upper state [c,(0) = 0, ¢,(0) = 1]. Do it for yourself, if you like; it comes
out exactly the same—except that this time we’re calculating Py, = |¢, (t)|?, the
probability of a transition down to the lower level:

[9.36]

Po() = <|6<>|E0)2 sin”[(@o — w)t/2]
h (wp — w)?
(It has to come out this way—all we’re doing is switching a <> b, which substitutes
—awy for wg. When we get to Equation 9.25 we keep the first term, with —wp + @ in
the denominator, and the rest is the same as before.) But when you stop to think of it.
this is an absolutely astonishing result: If the particle is in the upper state, and you
shine light on it, it can make a transition to the lower state, and in fact the probability
of such a transition is exactly the same as for a transition upward from the lower state.
This process, which was first discovered by Einstein, is called stimulated emission.

In the case of stimulated emission the electromagnetic field gains energy hwo
from the atom; we say that one photon went in and rwo photons came out—the original
one that caused the transition plus another one from the transition itself (Figure 9.4b).
This raises the possibility of amplification, for if I could obtain a bottle of atoms, all
in the upper state, and trigger it with a single incident photon, a chain reaction would
occur, with the first photon producing 2, and these 2 producing 4, and so on. We'd
have an enormous number of photons coming out, all with the same frequency and
at virtually the same instant. This is, of course, the principle behind the laser (light
amplification by stimulated emission of radiation). Note that it is essential (for laser
action) to get a majority of the atoms into the upper state (a so-called population
inversion), because absorption (wWhich costs one photon) competes with stimulated
emission (which produces one); if you started with an even mixture of the two states,
you’d get no amplification at all.

There is a third mechanism (in addition to absorption and stimulated emission)
by which radiation interacts with matter; it is called spontaneous emission. Here an
atom in the excited state makes a transition downward, with the release of a photon but
without any applied electromagnetic field to initiate the process (Figure 9.4c). This is
the mechanism that accounts for the normal decay of an atomic excited state. At first
sight it is far from clear why spontaneous emission should occur at all. If the atom
is in a stationary state (albeit an excited one), and there is no external perturbation,
it should just sit there forever. And so it would, if it were really free of all external
perturbations. However, in quantum electrodynamics the fields are nonzero even in
the ground state—just as the harmonic oscillator (for example) has nonzero energy
(to wit, iw/2) in its ground state. You can turn out all the lights, and cool the room
down to absolute zero, but there is still some electromagnetic radiation present, and
it is this “zero-point” radiation that serves to catalyze spontaneous emission. When
you come right down to it, there is really no such thing as truly spontaneous emission;
it’s all stimulated emission. The only distinction to be made is whether the field that
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does the stimulating is one that you put there, or one that God put there. In this sense
itis exactly the reverse of the classical radiative process, in which it’s all spontaneous
and there is no such thing as stimulated emission.

Quantum electrodynamics is beyond the scope of this book,® but there is a lovely
argument due to Einstein” which interrelates the three processes (absorption, stimu-
lated emission, and spontaneous emission). Einstein did not identify the mechanism
responsible for spontaneous emission (perturbation by the ground-state electromag-
netic field), but his results nevertheless enable us to calculate the spontaneous emission
rate, and from that the natural lifetime of an excited atomic state. Before we turn to
that, however, we need to consider the response of an atom to non-monochromatic,
unpolarized, incoherent electromagnetic waves coming in from all directions—such
as it would encounter, for instance, if it were immersed in thermal radiation.

9.2.3 Incoherent Perturbations

The energy density in an electromagnetic wave is®

"= %"Eg, [9.37]

where E is (as before) the amplitude of the electric field. So the transition probability
(Equation 9.36) is (not surprisingly) proportional to the energy density of the fields:

,sin’[(wp — w)t /2]

(wp — w)?

2u
P, =— 9.38
b () 60h2|6’9| [ ]

But this is for a monochromatic perturbation, consisting of a single frequency w. In
many applications the system is exposed to electromagnetic waves at a whole range
of frequencies; in that case ¥ — p(w)dw, where p(w)dw is the energy density in the

SFor an especially nice treatment, see Rodney Loudon, The Quantum Theory of Light, 2nd ed.
(Oxford: Clarendon Press, 1983).

7Einstein’s paper was published in 1917, well before the Schrodinger equation. Quantum electro-
dynamics comes into the argument via the Planck blackbody formula (Equation 5.112), which dates from
1900.

8See, for example, D. Halliday and R. Resnick, Fundamentals of Physics, 3rd ed., extended (New
York: John Wiley & Sons, 1988), Section 38-5. In general, the energy per unit volume in electromagnetic
fields is

u = (e0/2)E* + (1/2u0) B
For electromagnetic waves, the electric and magnetic contributions are equal, so
U= eoE2 = eoEg cosz(wt),

and the average over a full cycle is (ep/2)E2, since the average of cos? (or sin?) is 1/2.
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frequency range dw, and the net transition probability takes the form of an integral:’

o0 . 2 _
Pb->a(t)=6—0%ls’=>|2 fo p(w){sm Lo ”)’/ZJ}dw. [9.39]

(wo — w)?

Ordinarily, the term in curly brackets is sharply peaked about wy (Figure 9.2),
whereas p(w) is relatively broad; in that case we may as well replace p(w) by p(wp)
and take it outside the integral:

Izsol2 O)f sin’[(wp — w)t/2]

o [9.40]

Changing variables to x = (wo—wo)?/2, extending the limits of integrationto x = oo
(since the integrand is essentially zero out there anyway), and looking up the definite

integral
00 12
/ P lix=m, [9.41]
o X
we find )
7|p]
Pya(t) = ——p(@o)t. [9.42]
6071

This time the transition probability is proportional to ¢. The bizarre “flopping” phe-
nomenon characteristic of a monochromatic perturbation gets “washed out” when we
hit the system with an incoherent spread of frequencies. In particular, the transition
rate (R = d P/dt) is now a constant:

b4
Roa = — 017 p(wp). [9.43]
Goh

So far, we have assumed that the perturbing wave is coming in along the
x-direction (Figure 9.3) and polarized in the z-direction. But we shall be interested
in the case of an atom bathed in radiation coming from all directions, and with all
possible polarizations; the energy in the fields [p(w)] is shared equally among these
different modes. What we need, in place of |p|?, is the average of |7 - g|?, where

® = q{Yplria) [9.44]

(generalizing Equation 9.33), and the average is over both polarizations () and over
all incident directions. This averaging can be carried out as follows.

9Equation 9.39 assumes that the perturbations at different frequencies are independent, so that the
total transition probability is a sum of the individual probabilities. If the different components are coherent
(phase correlated), then we should add amplitudes [cy ()], not probabilities (Ies(£)}?), and there will be
cross-terms. For the applications we will consider the perturbations are always incoherent.
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Polarization: For propagation in the z-direction, the two possible polarizations
are 7 and j, so the polarization average (subscript p) is

R 1 . . 1 1 .
G- gy, =310 )+ (G- p)]= S+ p)) =59 sin’0,  [945]
where 6 is the angle between g and the direction of propagation.
Propagation direction: Now let’s set the polar axis along g and integrate over

all propagation directions to get the polarization—propagation average (subscript pp):

2

G902, = = [[Lo2sin20]sinoavas = 2 ["sin*oa0 = 2. 046
n.p)pp_4ﬂ S sin" 6 | sin ¢ = i sin = 3.[. ]

So the transition rate for stimulated emission from state b to state a, under the
influence of incoherent, unpolarized light incident from all directions, is

b4

Ry = —|p|? , 947
b 360712 Ipl /0(0)0) [ ]

where @ is the matrix element of the electric dipole moment between the two states
{Equation 9.44) and p(wyp) is the energy density in the fields, per unit frequency,
evaluated at wy = (Ep — E;)/h.°

9.3 SPONTANEOUS EMISSION

9.3.1 Einstein’s A and B coefficients

Picture a container of atoms, N, of them in the lower state (¥,), and Nj of them in
the upper state (). Let 4 be the spontaneous emission rate,!! so that the number of
particles leaving the upper state by this process, per unit time, is N5 4. The transition
rate for stimulated emission, as we have seen (Equation 9.47), is proportional to
the energy density of the electromagnetic field—call it By, p(wp). The number of
particles leaving the upper state by this mechanism, per unit time, is Ny By, o (wyp).
The absorption rate is likewise proportional to p(wp)~—call it B,y 0 (wp); the number
of particles per unit time joining the upper level is therefore N, B,;p0(wp). All told,

then,
dN,
o= —NpA — NpBpap(wp) + NaBgpp(wp). [9.48]

10This is a special case of Fermi’s Golden Rule for time-dependent perturbation theory.
HNormally I"d use R for a transition rate, but out of deference to der Alte everyone follows Einstein’s
notation in this context.

12 Assume that N, and N are very large, so we can treat them as continuous functions of time, and
ignore statistical fluctuations.
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Suppose that these atoms are in thermal equilibrium with the ambient field, so
that the number of particles in each level is constant. In that case d Ny /dt = 0, and

it follows that
A

(Na/Nb)Bab - Bba '
On the other hand, we know from elementary statistical mechanics*? that the number

of particles with energy E, in thermal equilibrium at temperature 7, is proportional
to the Boltzmann factor, exp(— E/kpT), so

[9.49]

p(wp) =

N, e ElksT

e __ Shwo/kgT
N = EmT =¢ wo/ksT [9.50]

and hence
A
ehoo/kaT By — By,
But Planck’s blackbody formula Equation 5.112 tells us the energy density of
thermal radiation;

p(wo) = [9.51]

3

pl@) =3 ;W—,:TT]; [9.52]
comparing the two expressions, we conclude that
Bay = By, [9.53]
and o
A= %Bba- [9.54}

Equation 9.53 confirms what we already knew: that the transition rate for stimulated
emission is the same as for absorption. But it was an astonishing result in 1917—
indeed, Einstein was forced to “invent” stimulated emission in order to reproduce
Planck’s formula. Our present attention, however, focuses on Equation 9.54, for this
tells us the spontaneous emission rate (4)—which is what we are looking for—in
terms of the stimulated emission rate [By, p(wp)]—which we already know. From
Equation 9.47 we read off

By, =

T
el [9.55]
0

and it follows that the spontaneous emission rate is

_ Ip?

= . 9.56
3meghc? 5.56]

13See, for example, Charles Kittel and Herbert Kroemer, Thermal Physics, 2nd ed. (New York:
Freeman, 1980), Chapter 3.
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Problem 9.8 As a mechanism for downward transitions, spontaneous emission
competes with thermally stimulated emission (stimulated emission for which Planck
radiation is the source). Show that at room temperature (7 = 300 K) thermal stimula-
tion dominates for frequencies well below 5 x 10'2 Hz, whereas spontaneous emission
dominates for frequencies well above 5 x 10'? Hz. Which mechanism dominates for
visible light?

9.3.2 The Lifetime of an Excited State

Equation 9.56 is our fundamental result; it gives the transition rate for spontaneous
emission. Suppose, now, that you have a bottle full of atoms, with N;(¢) of them in
the excited state. As a result of spontaneous emission, this number will decrease as
time goes on; specifically, in a time interval dt you will lose a fraction 4 d¢ of them:

dNy = —AN,dt [9.57]

(assuming there is no mechanism to replenish the supply)."* Solving for Ny (¢), we
find
Ny(t) = Np(0)e™™; [9.58]

evidently the number remaining in the excited state decreases exponentially, with a
time constant

= [9.59]

We call this the lifetime of the state—technically, it is the time it takes for Ny(t) to
reach 1/e & 0.368 of its initial value.

I have assumed all along that there are only two states for the system, but
this was just for notational simplicity—the spontaneous emission formula (Equa-
tion 9.56) gives the transition rate for ¥, — ¥, regardless of any other allowed states
(see Problem 9.14). Typically, an excited atom has many different decay modes (that
is, ¥ can decay to a large number of different lower-energy states, ¥4,, Ya,» Yy, - - -)-
In that case the transition rates add, and the net lifetime is

1
T= )
A+ A+ A3+

[9.60]

Example. Suppose a charge ¢ is attached to a spring and constrained to oscillate
along the x-axis. Say it starts out in the state |n) (Equation 2.50) and decays by
spontaneous emission to state |n’). From Equation 9.44, we have

® = qlnlxin)i.

14 This situation is not to be confused with the case of thermal equilibrium, which we considered
in the previous section. We assume here that the atoms have been lifted out of equilibrium, and are in the
process of cascading back down to their equilibrium levels.
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You calculated the matrix elements of x back in Problem 3.50:

[ h
(n|x|n/> = “—__‘(V nlan,n’—l + \/E(Sn’,n—l),
2mw

where @ is the natural frequency of the oscillator (I use the overbar to distinguish it
from the frequency of the emitted radiation, although as we’ll see in a moment the
two turn out to be equal, and at that point I’1] drop the bar). But we’re talking about
emission, so n' must be lower than n; for our purposes, then,

nh .
=0 n_1l. [9.61]
2mw

Evidently transitions occur only to states one step lower on the “ladder,” and the
frequency of the photon emitted is
E, —E, 1/2aw — (0’ + 1/2)hw
w="n "t ARG - @ FVDRD s 5 9.62)
/] /]
Not surprisingly, the system radiates at the classical oscillator frequency. The transi-
tion rate (Equation 9.56) is

pP=9q

2 2
ng’w
- Mg 9.63
6megmc’ 9631
and the lifetime of the n'™ stationary state is
6megmc’
7 = mne [9.64]
ngw

Meanwhile, each radiated photon carries an energy A, so the power radiated is Ahw:

2,2

q*w
= —— (nhw),
6megmce? (nhe)

or, since the energy of an oscillator in the n'" state is £ = (n + 1 /2w,

2.2 1
p=_9¢ <E - 2hw> . [9.65]

6w egmc’

This is the average power radiated by a quantum oscillator with (initial) energy E.

For comparison, let’s determine the average power radiated by a classical os-
cillator with the same energy. According to classical electrodynamics, the power
radiated by an accelerating charge g is given by the Larmor formula:"

2.2
g4 [9.66]

6mepc’’

3See, for example, David J. Griffiths Introduction to Electrodynamics, 2nd ed. (Englewood Cliffs.
NIJ: Prentice-Hall, 1989), Section 9.1.4.
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For a harmonic oscillator with amplitude xo, x(¢) = xo cos(wt), and the acceleration
is @ = —xpw? cos(wt). Averaging over a full cycle, then,
7 xg ot
T 127epc3’

But the energy of the oscillator is £ = (1 /2)ma)2x§, 50 xg = 2E/mw?, and hence

2 2

g w
=——E. 9.67
6megme’ 671
This is the average power radiated by a classical oscillator with energy £. In the
classical limit (# — 0) the classical and quantum formulas agree'®; however, the
quantum formula (Equation 9.65) protects the ground state: If £ = (1/2)hw the

oscillator does not radiate.

Problem 9.9 The half-life (7//,) of an excited state is the time it would take for
half the atoms in a large sample to make a transition. Find the relation between ¢, 2
and t (the “lifetime” of the state).

+xxProblem 9.10 Calculate the lifetime (in seconds) for each of the four n = 2 states
of hydrogen. Hint: You’ll need to evaluate matrix elements of the form {(v100]x[¥200),
(¥100]¥|¥211), and so on. Remember that x = rsinf cos¢, y = rsiné sin ¢, and
z = r cos A. Most of these integrals are zero, so scan them before you start calculating.
Answer: 1.60 x 1072 seconds for all except 300, which is infinite.

9.3.3 Selection Rules

The calculation of spontaneous emission rates has been reduced to a matter of eval-
uating matrix elements of the form

(¥sr|¥a).

As you will have discovered if you worked Problem 9.10 (if you didn’t, go back right
now and do so!), these quantities are very often zero, and it would be helpful to know
in advance when this is going to happen, so we don’t waste a lot of time evaluating
unnecessary integrals. Suppose we are interested in systems like hydrogen, for which
the Hamiltonian is spherically symmetrical. In that case we may specify the states
with the usual quantum numbers 7, /, and m, and the matrix elements are

(n'I'm’{r|nlm).

161 fact, if we express P in terms of the energy above the ground state, the two formulas are
identical.
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Clever exploitation of the angular momentum commutation relations and the her-
miticity of the angular momentum operators yields a set of powerful constraints on
this quantity.

Selection rules involving m and m’: Consider first the commutators of L, with
x, y, and z, which we worked out in Chapter 4 (see Equation 4.122):

[L.,x]=ihy, [L;, yl=—ihx, [L,; z]=0. [9.68]
From the third of these it follows that
0= (n'I'm'|[L;, zllnlm) = (n'I'm'|(L.z — zL.)Inlm)
= (n'I'm'|[(m'h)z — z(mh)]|nlm) = (m' — m)A(n'I'm’|z|nlm).
Conclusion:
Either m’ = m, orelse (n'I'm’'|z|nlm) = 0. [9.69]

So unless m' = m, the matrix elements of z are always zero.
Meanwhile, from the commutator of L, with x we get

(w'l'm'|[L,, x]|nlm) = (0 I'm’|(L,x — xL,)|nlm)
= (m' —mh(n'l'm'|x|nlm) = ih(n'I'm'|y|nlm).
Conclusion:

(m' —m)(n'U'm'|x|nlm) = i(n'I'm’|y|nim) [9.70]

So you never have to compute matrix elements of y—you can always get them from
the corresponding matrix elements of x.
Finally, the commutator of L, with y yields

(n'U'm’|[L;, yllnlm) = (0'I'm'|(L,y — yL,)|nlm)
=(m —mh@n'I'm|yjnlm) = —ih(n'I'm’|x|nlm).
Conclusion:
(m' —m)(n'I'm’|\ylnim) = —i (n'U'm’|x|nlm) [9.71]
In particular, combining Equations 9.70 and 9.71,
(m' —m)*(n'I'm’\x|nlm) = i(m’ — m)(n'I'm’|y\nim) = (n'I'm’)x|nim),

and hence

either (m' — m)? = 1, orelse (n'I'm’|x|nlm) = (n'U'm'\ylnlm) = 0. [9.72]
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From Equations 9.69 and 9.72 we obtain the selection rule for m:

No transitions occur unless Am = £1 or 0. [9.73]

This is an easy result to understand if you remember that the photon carries
spin 1, and hence its value of m is 1, 0, or —1"; conservation of (the
z-component of ) angular momentum requires that the atom give up whatever the
photon takes away.

Selection rules involving / and /": In Problem 9.11 you are asked to derive the
following commutation relation:

[L%, (L% 1] = 2% (rL? + LPp). [9.74]

As before, we sandwich this commutator between (n'l’'m’| and |nim) to derive the
selection rule:

(' Um'|[L*, [L?, ] Inlm) = 20*(n'U'm’|(cL* + L) |nlm)
=201 + D) + V(I + DY’ U |xinlm) = (0’ I'm’|(L*[L?, ¥] — [L?, ¥]L%)|nim)
=R*I'A + 1) — I + DY Um/|[L?, ¥)|nlm)

=RV + 1) =11 + D)nUm'|(L*r — rL%)|nim)

=r*UA + D) = 1d + DP(n'Um|xnlm). [9.75]
Conclusion:
Either 21 + ) + /(' + D] =['d’ + 1) = I + D]?
or else (n'l'm’|r|nlm) = 0. [9.76]
But
U@+ —-id+D)=0"+1+Dd' =D
and

AL+ D+ + D= +1+ D+ =D -1,

so the first condition in Equation 9.76 can be written

[ +1+ 1> =1 =D*=11=0. [9.77]

7When the polar axis is along the direction of propagation, the middle value does not occur, and
if you are only interested in the number of linearly independent photon states, the answer is 2, not 3.
However, in this case the photon need not be going in the z-direction, and all three values are possible.
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=0 I=1 I=2 1=3
n=4
n=3
n=2
n=1

Figure 9.5: Allowed decays for the first four Bohr levels in hydrogen.

The first factor cannot be zero (unless I’ = | = 0—this loophole is closed in Prob-
lem 9.12), so the condition simplifies to I’ = [ £ 1. Thus we obtain the selection rule
for I:

No transitions occur unless Al = +£1. [9.78]

Again, this result (though scarcely trivial to derive) is easy to interpret. The photon
carries spin 1, so the rules for addition of angular momentum would allow // =141,
I'!'=1,orl' =1 —1 (for electric dipole radiation the middle possibility—though
permitted by conservation of angular momentum—does not occur).

Evidently not all transitions to lower-energy states can proceed by spontaneous
emission; some are forbidden by the selection rules. The scheme of allowed transi-
tions for the first four Bohr levels in hydrogen is shown in Figure 9.5. Note that the
2.8 state (Yr00) is “stuck”: It cannot decay, because there is no lower-energy state
with [ = 1. It is called a metastable state, and its lifetime is indeed much longer
than that of, for example, the 2 P states (211, ¥210, and ¥21_1). Metastable states do
eventually decay, either by collisions or by what are (misleadingly) called forbidden
transitions (Problem 9.20), or by multiphoton emission.

x+Problem 9.11 Prove the commutation relation Equation 9.74. Hint: First show

that
[L?, z) = 2ih(xL, — yL, — ihz).

Use this and the fact thatr - L = r - (r x p) = 0 to demonstrate that
[L%,[L% 2]] = 2% (zL* + L?2).

The generalization from z to r is trivial.
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Problem 9.12 Plug the “loophole” in Equation 9.78 by showing thatif ! =1 =0
then (n'I'm’|r|inim) = 0.

s+xProblem 9.13 An electron in the n = 3, = 0, m = 0 state of hydrogen decays
by a sequence of (electric dipole) transitions to the ground state.

(a) What decay routes are open to it? Specify them in the following way:

1300) — |nlm) — |n'U'm’y — ... — |100).

(b) If you had a bottle full of atoms in this state, what fraction of them would decay
via each route?

(C) What is the lifetime of this state? Hint: Once it’s made the first transition, it’s
no longer in the state |300), so only the first step in each sequence is relevant
in computing the lifetime. When there is more than one decay route open, the
transition rates add.

FURTHER PROBLEMS FOR CHAPTER 9

x% Problem 9.14 Develop time-dependent perturbation theory for a multilevel sys-
tem, starting with the generalization of Equations 9.1 and 9.2:

HOWn =E, Yns (wnwfm) = Sum. [979]
At time t = O we turn on a perturbation H'(t), so that the total Hamiltonian is

H=Hy+ H(@). [9.80]

(a) Generalize Equation 9.6 to read

V() =) calt)yme™ 5, [9.81]
and show that ]
lm = —;7 ;an,;ne“Em‘E")’/h, [9.82)
where
Hy = (Ym|H'|Yrn). [9.83]

(b) If the system starts out in the state ¥y, show that (in first-order perturbation
theory)

: t
cn(t) =1 - ;7/ Hyy@hdt [9.84)
0
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Time-Dependent Perturbation Theory

and .
e (t) = —Pil / H. (e En=ENB gy (m £ N). [9.85]
0

For example, suppose H' is constant (except that it was turned on at ¢ = 0 and
switched off again at some later time 7). Find the probability of transition from
state NV to state m (m # N), as a function of t. Answer:

, Sin’[(Ex — En)t/2h)
(EN - Em)2

41 H x| [9.86]

Now suppose H’ is a sinusoidal function of time: H' = V cos(wt). Making
the usual assumptions, show that transitions occur only to states with energy
E,, = En £ hw, and the transition probability is

5 Sin*[(Ey — Ep =+ ho)t/2R]
(EN - Em ihw)z

Suppose a multilevel system is immersed in incoherent electromagnetic radia-
tion. Using Section 9.2.3 as a guide, show that the transition rate for stimulated
emission is given by the same formula (Equation 9.47) as for a two-level system.

Problem 9.15 For the examples in Problem 9.14 (c) and (d), calculate ¢, (1), to
first order. Check the normalization condition:

D lem@F =1, [9.88]

and comment on any discrepancy. Suppose you wanted to calculate the probabil-
ity of remaining in the original state y»; would you do better to use |cy (2)]?, or

1- Zm;&]v |Cm(t)|2?

Problem 9.16 A particle starts out (at time ¢ = 0) in the N state of the infinite
square well. Now water leaks into the well, and then drains out again, so that the
bottom is at uniform potential ¥y (¢), with Vo(0) = Vo(T) = 0.

(@)

(b)

Solve the exact equation (Equation 9.82) for ¢, (¢), and show that the wave
function changes phase, but no transitions to other states occur. Find the phase
change ¢ (T') in terms of the function V().

Analyze the same problem in first-order perturbation theory, and compare your
answers.

Note: The same result holds whenever the perturbation simply adds a constant

(constant in x, that is, not in ¢) to the potential; it has nothing to do with the infinite
square well as such. See Problem 1.13.
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xProblem 9.17 A particle of mass m is initially in the ground state of the (one-
dimensional) infinite square well. At time ¢ = 0 a “brick” is dropped into the well,
so that the potential becomes
Vo, ifO0<x <a/2,
Vixy=430, ifa/2<x<a,
00, otherwise,
where Vo « E;. After a time T, the brick is removed, and the energy of the particle
is measured. Find the probability (in first-order perturbation theory) that the energy
is now Ej.

Problem 9.18 Justify the following version of the energy-time uncertainty prin-
ciple (due to Landau): AEAt > h/2, where At is the time it takes to execute a
transition involving an energy change AE, under the influence of a constant pertur-
bation (see Problem 9.14c¢.) Explain more precisely what A E and A¢ mean in this
context.

ssxProblem 9.19 An electron is at rest at the origin, in the presence of a magnetic
field whose magnitude (By) is constant but whose direction rides around at constant
angular velocity w on the lip of a cone of opening angle «:

B(t) = Bolsin @ cos(wt)? + sina sin(wt) ] + cos ak). [9.89]

(a) Construct the 2 x 2 Hamiltonian matrix (Equation 4.158) for this system.

(b) Find the exact solution to the (time-dependent) Schrodinger equation, assuming
the particle starts out with spin up. Hins: You can do it from scratch, or by
noting that in this case the rotating wave approximation is exact, and refering
to Problem 9.7. Answer:

_ (lcos(rt/2) + i[(w + w cos @) /A] sin(At /2)] e~ !/
X = ( i[(w; sina)/A] sin(rt/2)e'!/? , [9.90]

where

w) = —eBy/m and A= \/wz + w? 4 20w cosa. [9.91]

(c) Now treat the same problem by (first-order) time-dependent perturbation theory:
use Equation 9.17 to calculate the (approximate) probability of a transition from
spin up (the initial state) to spin down, as a function of time, and compare the
exact answer (from part b). State the criterion on the strength of the field that
determines whether perturbation theory is applicable in this case.

sxxProblem 9.20 In Equation 9.31 we assumed that the atom is so small (in compar-
ison to the wavelength of light) that spatial variations in the field can be ignored. The
true electric field would be

E(r,1) = Egcos(k - r — wt). [9.92]
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If the atom is centered at the origin, then k- r <« 1 over the relevant volume

(k|

= 2n/A, so k-r ~ r/A « 1), and that’s why we could afford to drop this

term. Suppose we Keep the first-order correction:

E(r, r) = Eg[cos(wt) + (k - r) sin{wr)]. [9.93]

The first term gives rise to the allowed (electric dipole) transitions we considered
in the text; the second gives rise to so-called forbidden (magnetic dipole and elec-
tric quadrupole) transitions (higher powers of k - r lead to even more “forbidden”
transitions, associated with higher multipole moments'®).

(@

(b)

(4]

Obtain the spontaneous emission rate for forbidden transitions (don’t bother to
average over polarization and propagation directions, though this should really
be done to complete the calculation). Answer:

2,,5

#l(al(ﬁ D)k - 1)|b)[%. [9.94]

Rb—)d =

Show that for a one-dimensional oscillator, the forbidden transitions go from
level n to level n — 2, and the transition rate (suitably averaged over 7 and k) is

hq*win(n — 1)

R =
157 egm?2cs

[9.95]
Find the ratio of the “forbidden” rate to the “allowed” rate, and comment on the
terminology. (Note: w is the frequency of the photon, not the oscillator.)

Show that the 25 — 1S transition in hydrogen is not possible even by a “for-
bidden” transition. (As it turns out, this is true for all the higher multipoles as
well; the dominant decay is in fact by a two-photon emission, and the lifetime
is about a tenth of a second.'®)

Problem 9.21 We have encountered stimulated emission, (stimulated) absorption,
and spontaneous emission ... how come there’s no such thing as spontaneous ab-
sorption?

8For a systematic treatment (including the role of the magnetic field), see David Park, Introduction

to the Quantum Theory, 3rd ed. ( New York: McGraw-Hill, 1992), Chapter 11.

19See Masataka Mizushima, Quantum Mechanics of Atomic Spectra and Atomic Structure, New

York: Benjamin, 1970), Section 5.6.



CHAPTER 10

THE ADIABATIC
APPROXIMATION

10.1 THE ADIABATIC THEOREM

10.1.1 Adiabatic Processes

Imagine a perfect pendulum, with no friction or air resistance, oscillating back and
forth in a vertical plane. If I grab the support and shake it in a jerky manner, the bob
will swing around in a wild chaotic fashion. But if I very gently and steadily move the
support (Figure 10.1), the pendulum will continue to swing in a nice, smooth way, in
the same plane (or one parallel to it) with the same amplitude. This gradual change
in the external conditions characterizes an adiabatic process. Notice that there are
two characteristic times involved: 7;, the “internal” time, representing the motion of
the system itself (in this case the period of the pendulum’s oscillations), and 7T, the
“external” time, over which the parameters of the system change appreciably (if the
pendulum were mounted on an oscillating platform, for example, 7, would be the
period of the platform’s motion). An adiabatic process is one for which 7, > T;.'
The basic strategy for analyzing an adiabatic process is first to solve the prob-
lem with the external parameters held fixed, and only at the end of the calculation
allow them to change with time. For example, the classical period of a pendulum
of (constant) length L is 2w 4/L/g; if the length is now gradually changing, the

For an interesting discussion of classical adiabatic processes, see Frank S. Crawford, Am. J. Phys.
58, 337 (1990).
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\ Figure 10.1: Adiabatic motion: If the
\ case is transported very gradually, the
\ pendulum inside keeps swinging with the
=i same amplitude, in a plane parallel to the
original one.

period will presumably be 27 \/L(t)/g. When you stop to think about it, we actually
use the adiabatic approximation (implicitly) all the time without noticing it. A case
in point is our discussion of the hydrogen molecule ion (Section 7.3). We began
by assuming that the nuclei were at rest, a fixed distance R apart, and we solved
for the motion of the electron. Once we had found the ground state energy of the
system as a function of R, we located the equilibrium separation and from the cur-
vature of the graph we obtained the frequency of vibration of the nuclei (Problem
7.10). In molecular physics this technique (beginning with nuclei at rest, calculating
electronic wave functions, and using these to obtain information about the positions
and—relatively sluggish—motion of the nuclei) is known as the Born-Oppenheimer
approximation.

In quantum mechanics, the essential content of the adiabatic approximation
can be cast in the form of a theorem. Suppose that the Hamiltonian changes gradually
from some initial form H’ to some final form H/ (Figure 10.2). The adiabatic
theorem states that if the particle was initially in the nth eigenstate of H', it will be

f
Hi /

~Y

Figure 10.2: A model for adiabatic change in the Hamiltonian, from H’ to H/.
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Ly - I ‘
2a x a 2a x a 2a x

(a) (b} (c)
Figure 10.3: (a) Particle starts out in the ground state of the infinite square well.
(b) If the wall moves slowly, the particle remains in the ground state. () If the
wall moves rapidly, the particle is left (momentarily) in its initial state.

carried (under the Schrodinger equation) into the nth eigenstate of H/. (I assume
that the spectrum is discrete and nondegenerate throughout the transition from H' to
H/, so there is no ambiguity about the ordering of the states; these conditions can
be relaxed, given a suitable procedure for “tracking” the eigenfunctions, but I'm not
going to pursue that here.)

For example, suppose we prepare a particle in the ground state of the infinite

square well (Figure 10.3a):
; 2
W) = \/jsin (£x>. [10.1]
a a

If we now gradually move the right wall out to 2a, the adiabatic theorem says that the
particle will end up in the ground state of the expanded well (Figure 10.3b):

1 b4
f _ - .
vl (x) =, p sin (——2ax) [10.2]

(apart, perhaps, from a phase factor). Notice that we’re not talking about a small
change in the Hamiltonian (as in perturbation theory)—this one is a huge change. All
we require is that it happen slowly. By contrast, if the well expands suddenly, the
resulting state is still ¥’ (x) (Figure 10.3c), which is a complicated linear combination
of eigenstates of the new Hamiltonian (Problem 3.48).

«sxxProblem 10.1 The case of an infinite square well whose right wall expands at a
constant velocity (v) can be solved exactly.” A complete set of solutions is

D, (x, 1) =,/ 2 sin (ﬂx) ¢l mvxi=2Ean /2w [10.3]
w w

where w(¢) = a+vt is the width of the well and E}, = n?n*h? /2ma? is the nthallowed

28 W. Doescher and M. H. Rice, Am. J. Phys. 37, 1246 (1969).
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energy of the original well (width a). The general solution is a linear combination
of the ®’s:

o0

W, 0) =) 6, ®u(x, 1); [10.4]

n=1

the coefficients ¢, are independent of t.

(a)

(b)

(0

(d

Check that Equation 10.3 satisfies the time-dependent Schrodinger equation,
with the appropriate boundary conditions.

Suppose a particle starts out (+ = 0) in the ground state of the initial well:

Y(x,0) = \/gsin (gx) .

Show that the expansion coefficients can be written in the form

T
¢, = _/ ¢~ sin(nz) sin(z) dz, [10.5]
7T Jo

where @ = mva/2n%h is a dimensionless measure of the speed with which
the well expands. (Unfortunately, this integral cannot be evaluated in terms of
elementary functions.)

Suppose we allow the well to expand to twice its original width, so the “exter-
nal” time is given by w(7,) = 2a. The “internal” time is the period of the
time-dependent exponential factor in the (initial) ground state. Determine
T, and T;, and show that the adiabatic regime corresponds to o <« 1, so that
e~*Z 2 | over the domain of integration. Use this to determine the expansion
coefficients ¢,. Construct W(x, r), and confirm that it is consistent with the

adiabatic theorem.

Show that the phase factor in W (x, t) can be written in the form
1 t
6(t) = 3 f E(t"hdt, [10.6]
0

where E,(t) = n*nin? /2mw2 is the n™ insrantaneous eigenvalue, at time ¢.
Comment on this result.
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10.1.2 Proof of the Adiabatic Theorem

The adiabatic theorem is simple to state, and it sounds plausible, but it is not easy
to prove.’ Suppose the time-dependent part of the Hamiltonian can be written in the
form*

H@) =Vf@, [10.7]

where f(t) is a function that starts out zero (atf = 0) and increases to 1 (att = T),
Figure 10.4. Assume that the particle starts out in the n' eigenstate of the original
Hamiltonian:

W) =y [10.8]

and evolves into some state ¥ (¢). Our problem is to show that if the function f(#) rises
very gradually, then the probability that the particle, at time T, is in the nth eigenstate
of the final Hamiltonian (1//,{ ) is 1. More precisely, we must demonstrate that

1, ifm =n,

2 —
(T | —{0’ ifm £ n. [10.9]

(Of course, if the first of these is true, the second has to be, and vice versa. But it is
not clear at this stage which condition will be easier to prove.)

Assume for the moment that ¥ is small, so we can use first-order time-
independent perturbation theory to determine 1//,{ . From Equation 6.12,

v,
Sy 5 — 2y, 10.10
V=Y ]#ZmEm_Ekwk [10.10]
A ()
1 \
|
|
|
|
| >
T t

Figure 10.4: The function f(t), in Equation 10.7.

3The adiabatic theorem is usually attributed to Ehrenfest, who studied adiabatic processes in early
versions of the quantum theory. The first proof in modern quantum mechanics was given by Born and
Fock, Zeit. f Physik 51, 165 (1928). Other proofs will be found in Messiah, Quantum Mechanics (New
York: John Wiley & Sons, 1962), Vol. 11, Chapter XVII, Section 12, and J-T. Hwang and Philip Pechukas,
J. Chem. Phys. 67,4640 (1977). The argument given here is suggested by Gasiorowicz, Quantum Physics
(New York: John Wiley & Sons, 1974), Chapter 22, Problem 6.

4The assumption that H' is the product of an operator (V') and a (real) function of ¢ is not necessary
for the theorem itself, but it does make the proof less cumbersome. In Section 10.1.3 we will encounter a
case in which the different matrix elements of H' have different (complex) time dependences. As long as
the adiabatic approximation (in the form of Equation 10.15) holds for each of them, the adiabatic theorem
itself is valid.
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where
Vim = (WlV [¥m). [10.11]

(To simplify the notation, I'll drop the superscript i on eigenfunctions and eigenvalues
of the initial Hamiltonian; these are the “unperturbed” states for the problem.)

Meanwhile, we use first-order time-dependent perturbation theory to determine
W (T). From Equation 9.81,

W)=Y et)pe B, [10.12]
1
where (Equation 9.84)
) =1~ %V,,,, /Ot fihde [10.13]
and (Equation 9.85)
alt) = —%V,,, fot NG e L T [10.14]
This last integral can be evaluated using integration by parts. Note that
ol E—EDI'/h El;_lhE—ndiﬂ [ei(El—E,,)t’/h:l,

SO

V] t d (E—E ’
n N2 i n)t/h] dt’
E,—E,,_/O U [e

() = —

Vi ; tdf /
— n ¢ i(Ej—E)t/h _/ i(Ej—E)t'/h dt/ .
E, - E, {f( e 0 dl/e

[1 dropped the lower limit in the first term, because f(0) = 0.] Now comes the

adiabatic approximation: We want f(¢) to be a very gradual function, so that d f/dt

is extremely small. Specifically, we assume that
df |El - Enl

I 5 f [10.15]

then the last term makes a negligible contribution to ¢;{¢), and we conclude that

Vind Vin _
W(T) = [(1 —i )wn -2 5 1/f1:|€ S 110.16)
I#n n

where 4 is the area under the graph of f(¢), fromOto T.
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Putting together Equations 10.10 and 10.16, and exploiting the orthonormality
of the initial eigenfunctions, we find that

W)= 1+:224 > Vial? | izt [10.17)
! h ksn (En - Ek)2 , '

while, for m # n,

o) = {14078 ]| e

h m En
— L + ViViem iE T/
Enw—En 5y (En— E)(En — E2)
A nnVnm V" V”l 4
_ | v, " Z Kk o EnT/h. [10.18]
W(En—En) 4 (En— EQ)(En — E)

But wait: These wave functions were only accurate to first order in V', so the second-
order terms in Equations 10.17 and 10.18 are spurious (we have already thrown away
quantities of comparable size). To first order, we have

W) = { [1+i%2]eBmm, m=n, [10.19]
0 m # n.
It follows that
(D> =1, [10.20]
while (for m # n)
(D) )? =0. [10.21]

Ostensibly, either of these would suffice to establish the desired result (Equa-
tion 10.9). However, Equation 10.20 is only accurate to first order (in V'), whereas
Equation 10.21 is accurate to second order (and for that matter to third order as
well).> In truth, Equation 10.20 tells us nothing (it would be valid also for a nonadi-
abatic transformation); the crucial point is the cancellation of the first-order terms in
Equation 10.18, for this tells us that there will be no transitions to other states.’

5See Problem 9.15 for a discussion of the analogous situation in ordinary perturbation theory.

6In this context the word “transition” means from an eigenstate V) of the initial Hamiltonian
(H") to a different eigenstate 1/;,{ of the final Hamiltonian (H/). The adiabatic theorem says that if the
Hamiltonian changes gradually from H' to H/, there will be no such transitions. By contrast, in the
previous chapter we were always dealing with eigenstates of the same (unperturbed) Hamiltonian. At the
end of the process the perturbation was (explicitly or implicitly) turned off, and a “transition” meant from
one eigenstate of the unperturbed Hamiltonian to another eigenstate of the unperturbed Hamiltonian. The
transition amplitudes were of first order in H’ (Equations 9.17 and 9.85) and the transition probabilities of
second order (for example, Equations 9.28, 9.86, and 9.87). The essence of the adiabatic theorem (as we
shall see in the next paragraph) is that the transition amplitudes are only second order, and the transition
probabilities fourth order in the (small) perturbation.
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This shows that if the change in the Hamiltonian is both adiabatic and very
small (so that first-order perturbation theory can be applied), then there will be no
transitions. But what if the change, though gradual, is not small? In that case we
chop the interval T into N subintervals, so that the change in the Hamiltonian during
a single subinterval (AV)is of order ¥ /N; if N it large, then AV is small, and we can
apply the previous argument to each subinterval. If the transition amplitude (Equation
10.18) were first order in the perturbation, then the fozal transition amplitude would
go like

v(Z) s 10.22]
(%) &

(N steps, each making a contribution proportional to AV). The net result would be
of order V', and if ¥ is large, so too would be the transition amplitude. But in fact the
transition amplitude is second order, so the total goes like

2 2
N(—}VV) - —I]/—v— [10.23]

In the limit as N — oo, the transition amplitude goes to zero, regardless of the size
of V. QED

Problem 10.2 In the beginning of this chapter, I characterized an adiabatic process
informally as one for which T, > T,. How is this related to the precise condition
(Equation 10.15) required in the proof (in other words, what are T, and 7; here)?

10.1.3 An Example
Imagine an electron (charge —e, mass m) at rest at the origin, in the presence
of a magnetic field whose magnitude (By) is constant but whose direction sweeps out

a cone, of opening angle «, at constant angular velocity w (Figure 10.5):

B(¢) = Bo[sina cos(wt)i + sina sin(wt) ] + cos ak. [10.24]

The Hamiltonian (Equation 4.158) is

h B
H(t) = fp.s= 250 [sina cos(wt)o, + sina sin(wt)o, + cos wo,]
m
howy { cosa e sina

- (ei“" sine  —cosa ) ’ (10.25]

where B
w = -0, [10.26]

m
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Figure 10.5: Magnetic field sweeps
around on a cone, at angular velocity w,
Equation 10.24.

The normalized eigenspinors of H(¢) are

X+(t)=< cos(@/2) ) [10.27]

e’ sin{ar/2)
and
_ sin(or/2) )
X—(t) - (_eia)t COS((Y/Z)) » [1028]

they represent spin up and spin down, respectively, along the instantaneous direction
of B(¢) (see Problem 4.31). The corresponding eigenvalues are

Es=F—5. [10.29]

Suppose the electron starts out with spin up, along B(0):

_ [ cos(a/2)
x0= (e, [10.30]

The exact solution to the time-dependent Schridinger equation is (Problem 10.3)
[cos(m /2) + i 2 gin(r /2)] cos(a/2)e""
() = ' . [1031]
[cos(m /2) + =) gin(rs /2)] sin(ar/2)e /2

where

A= \/a)z + w? + 20w cosa, [10.32]

or, writing it as a linear combination of y, and x_,

x@®) = [cos (%t) + i———(w1 * c;cos ) sin (%)] ey (1)

At .
+i [% sin o sin (7)} e 2y _(1). [10.33]
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Evidently the (exact) probability of a transition to spin down (along the current di-
rection of B) is

2
D lx_ ()2 = [% sina sin (%)] . [10.34]

The adiabatic theorem says that this transition probability should vanish in the
limit 7, > T;, where T, is the characteristic time for changes in the Hamiltonian (in
this case, 1/w) and T7; is the characteristic time for changes in the wave function [in
this case, i1 /(£ — E_) = 1/w]. Thus the adiabatic approximation means w < w;:
The field rotates slowly, in comparison with the phase of the (unperturbed) wave
functions. In the adiabatic regime A = w, and therefore

A\ T
1O x_ ()2 = [3 sina sin (-)] -0, [10.35]
[43]] 2
as advertised. The magnetic field leads the electron around by its nose, with the spin

always pointing in the direction of B. By contrast, if w > w then A = w, and the
system bounces back and forth between spin up and spin down (Figure 10.6).

AKX (2

(cosinoc)2 e

o

21/ A 4/ 6rn/A 8n/A t

Figure 10.6: Plot of the transition probability, Equation 10.34, in the nonadia-
batic regime (v < wi).

*xxProblem 10.3 Check that Equation 10.31 satisfies the time-dependent Schrodinger

equation for the Hamiltonian (Equation 10.25). Note: This is the same as Problem
9.19(b), except that now the electron starts out with spin up along B, whereas in
Equation 9.90 it started out with spin up along z. Also confirm Equation 10.33,
and show that the sum of the squares of the coefficients is 1, as required for proper
normalization.
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10.2 Berry’s Phase

10.2.1 Nonholonomic Processes

Let us return to the classical model I used (in Section 10.1.1) to develop the notion
of an adiabatic process: a perfectly frictionless pendulum whose support is carried
around from place to place. I claimed that as long as the motion of the supportis very
slow, compared to the period of the pendulum (so that the pendulum executes many
oscillations before the support has moved appreciably), it will continue to swing in
the same plane (or one parallel to it), with the same amplitude (and, of course, the
same frequency).

But whatif I took this ideal pendulum up to the North Pole, and set it swinging—
say, in the direction of Portland (Figure 10.7). (For the moment, I’ll pretend the earth
is not rotating.) Very gently (that is, adiabatically), I carry it down the longitude line
passing through Portland, and on beyond, down to the equator. At this stage it is
swinging north-south. Now I carry it (still swinging north-south) partway around the
equator. And finally, I carry it back up to the North Pole, along the new longitude
line. It is clear that the pendulum will no longer be swinging in the same plane as
it was when I set out—indeed, the new plane makes an angle ® with the old one,
where © is the angle between the southbound and the northbound longitude lines.
Now © is equal to the solid angle () subtended (at the center of the earth) by the
path around which I carried the pendulum. For this path surrounds a fraction ® /27
of the northern hemisphere, so its area is 4 = (1/2)(®/2m)4x R? = ®R? (where R
is the radius of the earth), and hence

®=A4/R*=Q. [10.36]

D Pendulum
>

(S]

Portland

Figure 10.7; Itinerary for adiabatic

transport of a pendulum on the surface
of the earth.
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Figure 10.8: Arbitrary path on the surface
of a sphere, subtending a solid angle .

This is a particularly nice way to express the answer, because it turns out to be
independent of the shape of the path (Figure 10.8).”

Incidentally, the Foucault pendulum is an example of precisely this sort of
adiabatic transport around a closed loop on a sphere—only this time instead of me
carrying the pendulum around, I let the rotation of the earth do the job. The solid
angle subtended by a latitude line 8, (Figure 10.9) is

Q= fsin() déde¢ = 2n(— COSG)IgO =27(1 — cosbp). [10.37]

Relative to the earth (which has meanwhile turned through an angle of 277), the daily
precession of the Foucault pendulum is 257 cos 6p—a result that is ordinarily obtained
by appeal to Coriolis forces in the rotating reference frame,® but is seen in this context
to admit a purely geometrical interpretation.

A system such as this, which does not return to its original state when transporied
around a closed loop, is said to be nonholonomic. (The “transport” in question need
not involve physical motion: What we have in mind is that the external parameters of

z

Figure 10.9: Path of a Foucault
pendulum in the course of one day.

7You can prove this for yourself, if you are interested. Think of the circuit as being made up of tiny
segments of great circles (geodesics on the sphere); the pendulum makes a fixed angle with each geodesic
segment, so the net angular deviation is related to the sum of the vertex angles of the spherical polygon.

8See, for example, Jerry B. Marion, Classical Dynamics, 2nd ed. (New York: Academic Press,
1970), Section 11.4. Geographers measure latitude (1) up from the equator, rather than down from the
pole, so cos 6y = sin A.
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the system are changed in some fashion that eventually returns them to their initial
values.) Nonholonomic systems are ubiquitous—in a sense, every cyclical engine is
a nonholonomic device: At the end of each cycle the car bas moved forward a bit, or
a weight has been lifted slightly, or something. The idea has even been applied to the
locomotion of microbes in fluids at low Reynolds number.” My project for the next
section is to study the quantum mechanics of nonholonomic, adiabatic processes. The
essential question is this: How does the final state differ from the initial state, if the
parameters in the Hamiltonian are carried adiabatically around some closed cycle?

10.2.2 Geometric Phase

If the Hamiltonian is independent of time, then a particle which starts out in the nth
eigenstate ¥, (),

Hyra (x) = Epin(x),

remains in the n? eigenstate, simply picking up a phase factor:
W, (x, £) = Pn(x)e Et/E, [10.38]

If the Hamiltonian changes with time, then the eigenfunctions and eigenvalues them-
selves are time dependent:

H(t)Yn(x, 1) = En(O)¥a(x, 1) (10.39]

But the adiabatic theorem tells us that when H changes very gradually, a particle
which starts out in the nth eigenstate will remain in the n'" eigenstate—picking up at
most a time-dependent phase factor—even as the eigenfunction itself evolves. That
is to say,

U, (0, 1) = Y (x, 1)e 5 Jo B4 gin), [10.40]
The term

t
8,(t) = —%/0 E,(thdt [10.41]

is known as the dynamic phase; it generalizes the “standard” factor (—E,t /h) to the
case where E,, is a function of time. (You will have encountered dynamical phase
factors already, if you worked Problems 9.16 and and 10.1.) Any “extra” phase,
¥a(2), is called the geometric phase. At the moment we don’t know what it is,
or what physical significance (if any) it carries; all we can say is that the adiabatic
theorem does not rule out such a factor, since the particle is still “in the n' eigenstate”,
whatever the value of y,. [More precisely, a measurement of the energy attime ¢ would
be certain to return the value E,(t).] Indeed, since the eigenvalue equation (Equa-

9The pendulum example is an application of Hannay’s angle, which is the classical analog to
Berry’s phase. For a collection of papers on both subjects, see Alfred Shapere and Frank Wilczek, eds.,
Geometric Phases in Physics, (Singapore: World Scientific, 1989).
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tion 10.39) and the normalization condition only determine ¥, (x, ¢) up to an arbitrary
phase, and since this arbitrary phase could in principle be chosen independently at
each instant of time [though in practice we shall always take ¥, (x, t) to be a smooth
function of 7], we have to allow for an arbitrary phase factor in Equation [10.40].1°
Notice, incidentally, that energy is not conserved here. Of course not: Whoever is
changing the Hamiltonian is pumping energy into or out of the system.

If we plug Equation 10.40 into the (time-dependent) Schrédinger equation,

ov
ih—é—;— = H@)W, [10.42]
there emerges a simple formula for the time development of the geometric phase:
1/fn 6, i6, i R an i6, i
h[ l n l}’n En " 10n 5l ¥Vn " 7 On lyn:l
i ” Ypere'’ + i 77 Yype'e

= [HYyle® e = E e e,

whence g d
;/I" +iYn— 7~ 0. [10.43]
Taking the inner product with s, (which I assume has been normalized), we obtain
dyy Ay,
T il 2, [10.44]

Now v, (x, ¢) depends on ¢ because there is some parameter R(¢) in the Hamil-
tonian that is changing with time. [In Problem 10.1, R(¢) would be the width of the
infinite square well, whose right wall is expanding.] Thus

9y, _ oY, dR
3% — 3R E—’ [10.45]
so that p oy, dR
yn n
dt =1l oR ) dt’
and hence
Yy Ry Yy
yn(t)=z/(1/fn| L2 >Wd’ fR (1//,,| v )dR [10.46]

where R; and Ry are the initial and final values of R(¢). In particular, if the Hamil-
tonian returns to its original form after time 7', so that Ry = R;, then y,(T) = 0
—nothing very interesting there!

10For this reason, most people assumed until quite recently that the geometric phase was of no
conceivable physical significance. It was Michael Berry’s inspiration to realize that if you carry the
Hamiltonian around a closed cycle, bringing it back to its original form at the end, the relative phase at the
beginning and at the end of the process is a nonarbitrary quantity, with profound physical implications.
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However, I assumed (in Equation 10.45) that there is only one parameter in
the Hamiltonian that is changing. Suppose there are N of them: R;(z), R(¢), ...,
Ry (1); in that case

8wn _ 8wn de 8wn dRZ + 8wn dRN

=(V d——ls [10.47]
_( an) dt’ .

3t  ORy dt ' R, dt | 3Ry dr
where R= (Ry, R,, ..., Ry), and Vg is the gradient with respect to these parameters.
This time we have R
Y
@ =i [l Vath) - dR, [10.48]
R;

and if the Hamiltonian returns to its original form after a time 7, the net geometric
phase change is

Y(T) =i fwnwm/m .dR. [10.49)

This is a line integral around a closed loop in parameter space, and it is not, in
general, zero. Equation 10.49 was first obtained by Berry in 1984," and y,(7T) is
called Berry’s phase. Notice that y, (T') depends only on the path taken, not on how
Jast that path is traversed (provided, of course, that it is slow enough to validate the
adiabatic hypothesis). By contrast, the accumulated dynamic phase,

1 T
gn(T):_ﬁ/ En(t/)dt/’
0

depends critically on the elapsed time.

The derivation of Berry’s phase raises several questions, which I would like to
address before turning to some examples and applications.

1. Is y,(¢) real? If it’s not, then ¢/ is not a phase factor at all, but an ex-
ponential factor, and the normalization of W, (in Equation 10.40) is lost. Since the
time-dependent Schrédinger equation conserves probability, it must preserve nor-
malization. It would be comforting to check this, by showing explicitly that Equa-
tion 10.48 yields areal y,. In fact, this is very easy to do. First note that

Ver{¥nl,) =0 [10.50]

(because by assumption v, is normalized). So

(VeVn|¥n) + (YnlVeVn) = ($ulVRYA)" + (¥u|Va) =0.

Since (Y| VrYr,) plus its complex conjugate is zero, it follows that
(¥|Vriy) isimaginary, [10.51]
and hence, by Equation 10.48, y, (¢) is real. [Incidentally, if ¥, itself is real, then so

M. V. Berry, Proc. R. Soc. Lond. A 392,45 (1984), reprinted in Shapere and Wilczek, (footnote
9). Itis astonishing, in retrospect, that such a fundamental result escaped notice for 60 years.
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(obviously) is (| Vz ¥, )—this quantity is both real and imaginary, and it must there-
fore be zero. Evidently the geometric phase vanishes whenever the eigenfunctions
(of H(¢t)) are real.]

2. Is Berry’s phase measurable? We are accustomed to thinking that the
phase of the wave function is arbitrary—physical quantities involve |¥|?, and the
phase factor cancels out. But y,(T) can be measured, if (for example) we take a
beam of particles (all in the state W) and split it in two, so that one beam passes
through an adiabatically changing potential, while the other does not. When the two
beams are recombined, the total wave function has the form

\1/—1\1/ +1xp ir [10.52]
—"2 O 2 Oe b .

where Wy is the “direct” beam wave function, and I is the extra phase (in part dynamic,
and in part geometric) acquired by the beam subjected to the varying ). In this case

i A _
W[* = 71'%'2 (1+eT)(1+e7T)
1

= E|\1/0|2(1 +cosT) = [W|* cos?(I'/2). (10.53]

So by looking for points of constructive and destructive interference (where I" is an
even or odd multiple of 7, respectively), one can easily measure I'. (Berry, and
other early writers, worried that the geometric phase might be swamped by a larger
dynamic phase, but it has proved possible to arrange things so as to separate out the
two contributions.)

3. Where does the derivation invoke the adiabatic hypothesis? At first
glance, the argument going from Equation 10.40 to Equation 10.48 appears to have
proved altogether too much. Why doesn’t the derivation work in reverse, showing that
as long as y, (¢) is given by Equation 10.48, the expression in Equation 10.40 satisfies
the Schrédinger equation exactly—whether or not the process is adiabatic(!) (This
would, of course, be nonsense; it would imply that the adiabatic theorem is empty:
No transitions ever occur, even if the change in the Hamiltonian is far from gradual.)
The answer is that the step following Equation 10.43, in which we take the inner
product, cannot in general be reversed: Although Equation 10.43 implies Equa-
tion 10.44, Equation 10.44 does not imply Equation 10.43. In fact, there is a serious
fraud in the derivation, which I did not confess at the time because it somewhat spoils
the beauty of the argument. The truth is that although Equation 10.44 is correct, Equa-
tion 10.43 is not.'> For Equation 10.40 is only true in the extreme adiabatic limit—the

2ndeed, if you take Equation 10.43 at face value, it can be solved directly for y,:

dy, .0 _ %)
7 _zat(lnllfn)=>wn(X,t)—¢n(x)e ,

and hence (going back to Equation 10.40), .
-4 f E,(t)dt
Wy (x,t) = gnlx)e " Jo .

The geometric phase, in effect, soaks up the time dependence acquired by the eigenfunction ¥, (x, t) asa
consequence of the change in H. But this is completely false, as we shail see in the examples.
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exact solution would contain admixtures of other states:

Wn(x, 8) = Y (x, NP VPO 4 € Y e (O Ym(x, 1), [10.54]
msn

where € = T;/T, characterizes the departure from adiabaticity (it goes to zero in the
adiabatic limit). Inclusion of this term modifies Equation 10.43, to read

n n _ig, — 0
agp o w,,dy = —oithg ,ynéz[( o En +d )wm+cm :)/f } (10.55]
msn

Both terms on the left are first order in € (if the Hamiltonian didn’t change at all,
both 8, /3¢ and y, would be zero), but so are the first two terms on the right. The
final term is second order, so it can legitimately be ignored, but dropping the first two
(as I did, implicitly, in my derivation of Equation 10.43), is illegal. For consistency
(noting, while I'm at it, that y,, is already first order, so ¢’** = 1 on the right), I should
have written

G/ dy, -
1/; + i 1/;,, y =—¢ '9”62( cmEn + )1/f,,,, [10.56]
ot o

instead of Equation 10.43. Fortunately, the inner product (with v, kills the extra
term, and that’s how it comes about that Equation 10.44 is correct, even though
Equation 10.43, from which it was obtained, was not. (See Problem 10.7.)

When the parameter space is three dimensional, R = (Ry, Ry, R;), Berry’s
formula (Equation 10.49) is reminiscent of the expression for magnetic flux in terms
of the vector potential A. The flux, ®, through a surface S bounded by a curve C
(Figure 10.10), is

= /B-da. [10.57]
N

If we write the magnetic field in terms of the vector potential (B = V x A), and apply
Stokes’ theorem:

:f(vXA)-dazyfA.dr. (10.58]
N C

Figure 10.10: Magnetic flux through a
surface S bounded by the closed curve C.
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Thus Berry’s phase can be thought of as the “flux” of a “magnetic field”
“B” =iVr X (Y| Vgr,), [10.59]

through the (closed-loop) trajectory in parameter space. In the three-dimensional
case, then, Berry’s phase can be written as a surface integral,

yo(T) = i / [V X (Y| V¥)] - da. 10.60]

The magnetic analogy can be carried much further, but for our purposes Equa-
tion 10.60 is merely a convenient alternative expression for y,(T).

«Problem 10.4

(a) Use Equation 10.46 to calculate the geometric phase change when the infinite
square well expands adiabatically from width w; to width w,. Comment on this
result.

(b) If the expansion occurs at a constant rate (dw/dt = v), what is the dynamic
phase change for this process?

(c) If the well now contracts back to its original size, what is Berry’s phase for the
cycle?

Problem 10.5 The delta-function well (Equation 2.96) supports a single bound
state (Equation 2.111). Calculate the geometric phase change when « gradually
increases from ¢ to ap. If the increase occurs at a constant rate (da/dt = ¢), what
is the dynamic phase change for this process?

Problem 10.6 As I noted in the text (and Problems 10.4 and 10.5 confirm), if
Y, (x, ) is real, the geometric phase vanishes. You might try to beat this rap by
tacking an unnecessary (but perfectly legal) phase factor onto the eigenfunctions:
v, (x,t) = €'y, (x, t), where ¢, (R) is an arbitrary (real) function. Try it. You'll
get a nonzero geometric phase, all right, but note what happens when you put it back
into Equation 10.40. And for a closed loop it gives zero. Moral: For nonzero Berry’s
phase, you need (1) more than one time-dependent parameter in the Hamiltonian, and
(2) a Hamiltonian that yields nontrivially complex eigenfunctions.

10.2.3 An Example

The classic example of Berry’s phase is an electron at the origin, subjected to a
magnetic field of constant magnitude but changing direction. Consider first the special
case (analyzed in Section 10.1.3) in which B(t) precesses around at a constant angular
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velocity w, making a fixed angle ¢ with the z-axis. The exact solution (for an electron
that starts out with “spin up” along B) is given by Equation 10.33. In the adiabatic
regime, w < w1,

2
A= a)l\/l +2f)— cosa + (3) = w (1 + gcosa) =w; +wcosa, [10.61]
(]

an w
and Equation 10.33 becomes

X(t) o~ eiwlt/Zei(wcosa)t/Ze—iwt/2X+(t)

+ i [2 sina sin (%ﬂ)] eI 2y (1). {10.62]

)

As w/w; — 0 the second term drops out completely, and the result matches the
expected adiabatic form (Equation 10.40). The dynamic phase is

wnt

1 t
0.(t)=—— | Ei(thdt = — 10.63
4+ () 7 fo +()d > ( ]
(where £ = —hw; /2 is taken from Equation 10.29), so the geometric phase is
t
Vo (t) = (cosa — 1)%. [10.64]

For a complete cycle T = 27 /w, and therefore Berry’s phase is

y(T) = m(cosa — 1). [10.65]

Now consider the more general case, in which the tip of the magnetic field
vector sweeps out an arbitrary closed curve on the surface of a sphere of radius
r = By (Figure 10.11). The eigenstate representing spin up along B(#) has the form
(see Problem 4.31)

_ cos(6/2)
X+ = (eid’ Sin(G/Z)) ) [10.66]

Figure 10.11: Magnetic field of constant
magnitude but changing direction sweeps
out a closed loop.
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where 8 and ¢ (the spherical coordinates of B) are now both functions of time.
Looking up the gradient in spherical coordinates, we find

Ox+,  10x4 2 I x4 4
Uy, = Xrpy WX - X+
= 5 T e e ?

1 —(1/2)sin6/2) \ 4 1 0 R
=7 ((1/2)ei¢ cos(e/z)) 0+ —-= (ie“f’ sin(0/2)) é.  [10.67]
Hence

(X+|Vxy) = %[— sin(6/2) cos(G/Z)é + sin(8/2) cos(6/2)é

+ 2i [10.68]

sin®(6/2) ] B isinz(G /2) -

sin g rsinf

For Equation 10.60 we need the cur! of this quantity:

1 o | . [isinf@/)\|. .
— _ = —7. 10.6
rsiné 06 [sm& ( rsiné g 2r2r [10.69]

According to Equation 10.60, then,

Vx (x4|Vx4) =

1 1,

The integral is over the area on the sphere swept out by B in the course of the cycle,
so da = r?dQ 7, and hence

1 1
yi(T) = "E/dQ =52, [10.71]

where € is the solid angle subtended at the origin. This is a delightfully simple
result, and tantalizingly reminiscent of the classical problem with which we began
the discussion (transport of a frictionless pendulum around a closed path on the surface
of the earth). It says that if you take a magnet, and lead the electron’s spin around
adiabatically in an arbitrary closed path, the net (geometric) phase change will be
minus one half the solid angle swept out by the magnetic field vector. In view of
Equation 10.37, the general result is consistent with the special case Equation 10.65,
as of course it had to be.

Problem 10.7 Consider, once again, the special case of the precessing field (Sec-
tion 10.1.3).

(a) Use the eigenspinor (Equation 10.27) to determine (x.4.|(9 x+/3¢t)), and put the
result into Equation 10.44, for an alternative derivation of Equation 10.64.
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(b) Show that Equation 10.43 does not work, in this case. Use Equation 10.62 to
determine c_ (in Equation 10.54). Confirm that the last term in Equation 10.55
is second order in w (don’t forget the ¢ = w/w; out front). Show that y, (¢)
(Equation 10.64) does satisfy the corrected version of Equation 10.43, Equa-
tion 10.56.

s+x+xProblem 10.8 Work out the analog to Equation 10.71 for a particle of spin 1.
Answer: —$2 (for spin s the result is —s2/2).

10.2.4 The Aharonov-Bohm Effect

In classical electrodynamics the potentials (¢ and A)" are not directly measurable—
the physical quantities are the electric and magnetic fields:

E=-Vop——, B=VxA. [10.72]

The fundamental laws of the theory (Maxwell’s equations and the Lorentz force law)
make no reference to potentials, which are (from a logical point of view) no more
than convenient but dispensible scaffolding for getting a better purchase on the real
structure (the fields). Indeed, you’re perfectly free to change the potentials:

dA
¢—>(p’=(p~8—t, A—> A=A VA, [10.73]
where A is an arbitrary function of position and time; this is called a gauge transfor-
mation, and it has no effect at all on the fields.
In quantum mechanics the potentials play a more significant role, for the Hamil-
tonian (Equation 4.201) is expressed in terms of ¢ and A, not E and B:

1 [ 2
H=—|{-V—-gA) +g4g¢p. [10.74]
2m \ i

Nevertheless, the theory is still invariant under gauge transformations (see Problem
4.53), and it was taken for granted until quite recently that there could be no elec-
tromagnetic influences in regions where E and B are zero—any more than there can
be in the classical theory. But in 1959 Aharonov and Bohm!* showed that the vector
potential can affect the quantum behavior of a charged particle that never encoun-
ters an electromagnetic field. I’ll work out a simple example first, then discuss the

131 m sorry, but we have reached a notational impasse: It is customary in quantum mechanics to use
the letter ¥ for potential energy, but in electrodynamics the same letter is reserved for the scalar potential.
To avoid confusion I'll use ¢ for the scalar potential. See Problems 4.51, 4.52, and 4.53 for background
on this material.

14Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959). For a significant precursor, see W.
Ehrenberg and R. E. Siday, Proc. Phys. Soc. London B62, 8 (1949).
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Aharanov-Bohm effect itself, and finally indicate how it can be thought of as an
example of Berry’s phase.

Imagine a particle constrained to move in a circle of radius b (a bead on a
wire ring, if you like). Along the axis runs a solenoid of radius @ < b, carrying a
magnetic field B (see Figure 10.12). If the solenoid is extremely long, the field inside
is uniform, and the field outside is zero. But the vector potential outside the solenoid
is not zero; in fact (adopting the convenient gauge condition V - A = 0),"

o .
A=—¢, (>a), [10.75]
2ty

where ® = 7a’ B is the magnetic flux through the solenoid. Meanwhile, the solenoid
is uncharged, so the scalar potential ¢ is zero. In this case the Hamiltonian (Equa-
tion 10.74) becomes

1
H=5- [-7*V? + q*4% + 2ihgA - V]. [10.76]

But the wave function depends only on the azimuthal angle ¢, (§ = n/2and r = b)
so V — (¢/b)(d/d¢), and the Schrodinger equation reads

1 n d? g®\* ngd d _
%[-ﬁ%—ﬁ(ﬁ) i @) = Ev. 107

J

A" AT AVAVAVAvAvAvA S AvATATAvATAAAvATA A A AT A A" AT

Figure 10.12: Charged bead on a circular ring through which a long solenoid passes.

This is a linear differential equation with constant coefficients:

by dy _

15See, for instance, D. J. Griffiths, Introduction to Electrodynamics, 2nd ed. (Englewood Cliffs,
NI: Prentice Hall, 1989), Equation 5.65.
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where o o
_q _ 2mb°E 2
ﬁ = ij_h and € = h2 — /3 . [1079]
Solutions are of the form ‘
V= Ade'*?, [10.80]
with b
A=ﬁi\/ﬁ2+e=ﬁiﬁx/2mE. [10.81]
Continuity of ¥ (¢), at ¢ = 2, requires that A be an integer:
b
,B:tﬁx/ZmE=n, (10.82]
and it follows that
n? gd\?
n= T -——), =0,%1,42,...). 10.
e (n Znh) n=0 ) [10.83]

The solenoid lifts the twofold degeneracy of the bead on a ring (Problem 2.43):
Positive n, representing a particle traveling in the same direction as the current in
the solenoid, has a somewhat lower energy (assuming g is positive) than negative n,
describing a particle traveling in the opposite direction. And, more important, the
allowed energies clearly depend on the field inside the solenoid, even though the field
at the location of the particle is zero.'

More generally, suppose a particle is moving through a region where B is zero
(so V x A = 0), but A itself is not. (I'll assume that A is static, although the method
can be generalized to time-dependent potentials.) The (time-dependent) Schrddinger

equation,
1 (% g W
— | =-V—gA =ih— 10.84
I:Zm(i q)+V:|Lp SFPR [ ]

with potential energy V' -—which may or may not include an electrical contribution
q@—can be simplified by writing

U = ey, [10.85]

where

g(r) = 2 / rA(r’) -dr, [10.86]
hJo

1]t is a peculiar property of superconducting rings that the enclosed flux is quantized: ® =
(2mh/q)n’, where n' is an integer. In this case the effect is undetectable, since E, = (h%/2mb%)(n + n')2,
and (n + n') is just another integer. (Incidentally, the charge ¢ here turns out to be twice the charge of
an electron; the superconducting electrons are locked together in pairs.) However, flux quantization is
enforced by the superconductor (which induces circulating currents to make up the difference), not by the
solenoid or the electromagnetic field, and it does not occur in the example considered here.
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and @ is some (arbitrarily chosen) reference point. Note that this definition makes
sense only when V x A = 0 throughout the region in question—otherwise the line
integral depends entirely on the path taken from O to r, and hence does not define a
function of r. In terms of W', the gradient of W is

VU = e8(iVg)W' 4 8(VI);

but Vg = (g /R)A, so
/] ho,
(—'V - qA) v = 7e'gV\IJ', [1087]
i i

and it follows that )
h A
(—,v - qA) U = 12 SV, [10.88]
1

Putting this into Equation 10.84, and canceling the common factor of '8, we are left

with
2 ’

I gy +VV = iha )
2m ot
Evidently U’ satisfies the Schrodinger equation without A. If we can solve Equa-
tion 10.89, correcting for the presence of a (curl-free) vector potential is trivial: You

just tack on the phase factor ¢’¢.

Aharonov and Bohm proposed an experiment in which a beam of electrons is
split in two, and passed either side of a long solenoid, before being recombined (Fig-
ure 10.13). The beams are kept well away from the solenoid itself, so they encounter
only regions where B = 0. But A, which is given by Equation 10.75, is not zero, and
(assuming ¥ is the same on both sides), the two beams arrive with different phases:

[10.89]

4

Beam
recombined

Beam
split

A A"A-a-a-a-a-a-a-a g VVV\\lfvvaVVV oo

Solenoid

Figure 10.13: The Aharonov-Bohm effect: electron beam splits, with half pass-
ing either side of a long solenoid.
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q qP 1. A q
== | A .dr=-— -¢ - dp) =+-—. 10.90
g h/ =5 <r¢) (r¢de) 7 [10.90]
The plus sign applies to the electrons traveling in the same direction as A—which is
to say, in the same direction as the current in the solenoid. The beams arrive out of
phase by an amount proportional to the magnetic flux their paths encircle:

®
phase difference = ?h—. (10.91]

This phase shift leads to measurable interference (as in Equation 10.53), and has been
confirmed experimentally by Chambers and others."”

The Aharonov-Bohm effect can be regarded as an example of geometric phase,
as Berry himself noted in his first paper. Suppose the charged particle is confined to a
box (which is centered at point R outside the solenoid) by a potential ¥ (r — R)—see
Figure 10.14. (In a moment we’re going to transport the box around the solenoid,
so R will become a function of time, but for now it is just some fixed vector.) The
eigenfunctions of the Hamiltonian are determined by

1 [ 2
{ﬁ [—,V—qA(r)} + V(r—R)] Y = Euv,. [10.92]
z
We have already learned how to solve equations of this form:
Yn =€y, [10.93]
[~ ———]
(F-R

——
Figure 10.14: Particle confined to a box, by a potential ¥ (r — R).

17R. G. Chambers, Phys. Rev. Lett. 5,3 (1960).
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where!®

g=2 f A(r) - dr’ [10.94]
h Jr

and v’ satisfies the same eigenvalue equation, only with A — 0:

2
[—h—Vz +V(r-— R)} Y, = E. ;. [10.95]
2m

Notice that v, is a function only of the combination (r — R), not (like ¥r,) of r and
R separately.

Now let’s carry the box around the solenoid (in this case the process doesn’t
even have to be adiabatic). To determine Berry’s phase, we must first evaluate the
quantity (¥,,|Vz¥,). Noting that

Va¥a = Vi [e2¥,(r —R)] = —i%A(R)e"gx/f,’, (r — R) + €¥VRy, (r — R),

we find

(¥nl VRYn)
= fe—fg[w; r—R)e® [—i%A(R)t//,’, (r —R) + Vi, (r — R)] d’r

4
/]

A(R) — / [¥! (r — RV (r — R)d°r. [10.96]

The V with no subscript denotes the gradient with respect to r, and I used the fact
that Vz = —V, when acting on a function of (r — R). But the last integral is
i /h times the expectation value of momentum, in an eigenstate of the Hamiltonian
—(h*/2m)V? + ¥, which we know from Section 2.1 is zero. So

(V| VRY) = —i%A(R). [10.97]
Putting this into Berry’s formula (Equation 10.49), we conclude that
q q qe

() = = PAR) -dR == [ (V A)-da="—, [10.98]

which neatly confirms the Aharonov-Bohm result (Equation 10.91), and reveals that
the Aharonov-Bohm effect is a particular instance of geometric phase.'

181t is convenient to set the reference point O at the center of the box, for this guarantees that we
recover the original phase convention for ¥, when we complete the journey around the solenoid. If you use
a fixed point in space, for example, you’ll have to readjust the phase “by hand”, at the far end; this leads to
exactly the same answer, but it’s a crude way to do it. In general, when choosing the phase convention for
the eigenfunctions in Equation 10.39, you want to make sure that ¥, (x, T') = ¥, (x, 0) so thatno spurious
phase changes are introduced.

9Tncidentally, in this case the analogy between Berry’s phase and magnetic flux (Equation 10.59)
becomes almost an identity: “B” = (¢ /h)B.
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What are we to make of the Aharonov-Bohm effect? Evidently our classical
preconceptions are simply mistaken: There can be electromagnetic effects in regions
where the fields are zero. Note, however, that this does not make A itself measurable—
only the enclosed flux comes into the final answer, and the theory remains gauge
invariant.

Problem 10.9

(a) Derive Equation 10.76, from Equation 10.74.
(b) Derive Equation 10.88, starting with Equation 10.87.

FURTHER PROBLEMS FOR CHAPTER 10

+ % xProblem 10.10 Suppose the one-dimensional harmonic oscillator (mass m, fre-
quency w) is subjected to a driving force of the form F(t) = mao? f(t), where f(t) is
some specified function [I have factored out ma? for notational convenience; notice
that f(¢) has the dimensions of length]. The Hamiltonian is

2 52
d 1

2m a2 + Ema)zx2 — ma)zxf(t). [10.99]

Assume that the force was first turned on at time ¢t = 0: f(t) = 0 fort < 0.

This system can be solved exactly, both in classical mechanics and in quantum

mechanics.?

H(t) = —

(a) Determine the classical position of the oscillator, assuming it started out at rest
at the origin [x.(0) = X.(0) = 0]. Answer:

X () =w f F(t) sin[w(t — t)]dr. [10.100]
0

(b) Show that the solution to the (time-dependent) Schrodinger equation for this
oscillator, assuming it started out in the nth state of the undriven oscillator
[W(x,0) = ¥, (x), where ¥, (x) is given by Equation 2.50], can be written as

W(x,t) = Yulx — xc)e;',[—(n+%)hwt+mxc(x—%)+¢ j(.: f(t’)xc(t’)dt’]. (10.101]

(C) Show that the eigenfunctions and eigenvalues of H(¢) are

Un(x, ) = Yu(x — ) Ent) = (n + %) ho — %ma)zfz. (10.102]

0See Y. Nogami, Am. J. Phys. 59, 64 (1991) and references therein.
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(d) Show thatin the adiabatic approximation the classical position (Equation 10.100)
reduces to x.(t) = f(¢). Hint: Use the integration-by-parts trick of Section
10.1.2. State the precise criterion—analogous to Equation 10.15—for adia-
baticity.

(e) Confirm the adiabatic theorem for this example, by using the results in (c) and
(d) to show that

W(x,t) = P,(x, 1) D@ [(10.103]

Check that the dynamic phase has the correct form (Equation 10.41). Is the
geometric phase what you would expect?

x+xProblem 10.11 In time-dependent perturbation theory, we used the completeness
of the unperturbed eigenfunctions (of Hp) to expand W(x, t) (see Equation 9.81).
But we could as well use the instantaneous eigenfunctions of H(¢) (Equation 10.39),
since they, too, are complete:

W(x,t) = ch(t)l//n(x, 1)e', (10.104]

where 6,(¢) is given by Equation 10.41. We can use this expansion to develop an
adiabatic series, whose leading term is the adiabatic approximation itself and whose
successive terms represent the departure from perfect adiabaticity.

(a) Insert Equation 10.104 into the (time-dependent) Schrédinger equation, and
obtain the following formula for the coefficients:

. oY, 6 —
ém =~Z(Iﬁm| ;'/; Y, e @ om) [10.105)

(b) Suppose the system starts out in the N'h state; in the adiabatic approximation, it
remains in the N state, picking up (at most) a time-dependent geometric phase
(compare Equations 10.40 and 10.104):

cn(t) = 8, ye'®, [10.106]

Substitute this into the right side of Equation 10.105, and obtain the “first cor-
rection” to adiabaticity:

t
0 o
m(1) =cm(0)*f (Wml%)e”’”e’(g”“g'")dt’. [10.107]
0
This enables us to calculate transition probabilities in the nearly adiabatic

regime. To develop the “second correction,” we would insert Equation 10.107
on the right side of Equation 10.105, and so on.
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(C) As an example, apply Equation 10.107 to the driven-oscillator (Problem 10.10).
Show that (in the near-adiabatic approximation}) transitions are possible only to
the two immediately adjacent levels, for which

t
e () =i /’Z—;’D«/N+1f fhe' e ar,
0

enai() =i |22 N / fhe e dr'.
V 2n o

(The transition probabilities are the absolute squares of these, of course.)




CHAPTER 11

SCATTERING

11.1 INTRODUCTION

ey

11.1.1 Classical Scattering Theory

Imagine a particle incident on some scattering center (say, a proton fired at a heavy
nucleus). It comes in with an energy £ and an impact parameter b, and it emerges at
some scattering angle §—see Figure 11.1. (I'll assume for simplicity that the target
is azimuthally symmetrical, so the trajectory remains in one plane, and that the target
is very heavy, so the recoil is negligible.) The essential problem of classical scattering

Figure 11.1 The classical scattering
- problem, showing the impact parameter b
Scattering center and the scattering angle 6.
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theory is this: Given the impact parameter, calculate the scattering angle. Ordinarily,
of course, the smaller the impact parameter, the greater the scattering angle.

Example: Hard-sphere scattering. Suppose the target is a billiard ball, of
radius R, and the incident particle is a BB, which bounces off elastically (Figure
11.2). In terms of the angle o, the impact parameter is » = R sina, and the scattering
angle is 6 = 7 — 2a, so

T 6 6
b=Rsin|——=) = -1}. 11.1
sm(2 2) Rcos(2> [ ]
Evidently
2cos Y (b/R), ifb<R
= ’ = 11.2
o {0, if b > R. [11.2]

More generally, particles incident within an infinitesimal patch of cross-sectional
area do will scatter into a corresponding infinitesimal solid angle 42 (Figure 11.3).
The larger do is, the bigger d2 will be; the proportionality factor, D(9) = do/d<2,
is called the differential (scattering) cross-section':

do = D(8)dS. [11.3]

Figure 11.2: Elastic hard-sphere scattering.

I'This is terrible language: D isn’t a differential—if anything, it’s a derivative—and it isn’t a
cross-section. Tomy ear, the words “differential cross-section” would apply more properly to do. ButI'm
afraid we’re stuck with this terminology. I should also warn you that the notation D(#) is nonstandard:
Most people just call it do/d$2, but I think it will be less confusing if we give the differential cross-section
its own symbol.
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do

Figure 11.3: Particles incident in the area do scatter into the solid angle 4.

In terms of the impact parameter and the azimuthal angle ¢, do = bdbd¢ and
dQ2 = sin6 dbd¢, so

b
DO) = —

sin @

db
de
(Since 6 is typically a decreasing function of b, the derivative is actually negative—
hence the absolute value sign.)

. [11.4]

Example: Hard-sphere scattering (continued). In the case of hard-sphere
scattering (Equation 11.1),
db 1 . /8
d—9—=—§RSIH (5), [115]

SO

D@®) =

. 2
Rcos(8/2) ( Rsm(9/2)) _ R [11.6]

siné 2 4’
This example is unusual in that the differential cross-section is actually independent
of 6.

The total cross-section is the integral of D(8) over all solid angles:

o EfD(G)dQ; [11.7]

roughly speaking, it is the total area of incident beam that is scattered by the target.
For example, in the case of the hard sphere,

o= (R2/4)fd52 = R?, [11.8]
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which is just what we would expect: It’s the cross-sectional area of the sphere; BBs
incident within this area will hit the target, and those farther out will miss it completely.
But the virtue of the formalism developed here is that it applies just as well to “soft”
targets (such as the Coulomb field of a nucleus) that are not simply “hit or miss.”

Finally, suppose we have a beam of incident particles, with uniform intensity
(or luminesity, as particle physicists call it):

£ = number of incident particles per unit area, per unit time. [11.9]

The number of particles entering area do (and hence scattering into solid angle d<2),
per unit time, is dN = Ldo = LD(8) d2, so

1dN
DB = =—. 11.10
® 740 [ 1
This is often taken as the definition of the differential cross-section, because it makes
reference only to quantities easily measured in the laboratory: If the detector accepts
particles scattering into a solid angle d€2, we simply count the number recorded, per
unit time, divide by d€2, and normalize to the luminosity of the incident beam.

sxxProblem 11.1 Consider the problem of Rutherford scattering: An incident par-
ticle of charge ¢; and kinetic energy E scatters off a heavy stationary particle of
charge g3.

(a) Derive the formula relating the impact parameter to the scattering angle. Note:
This is not easy, and you might want to refer to a book on classical me-
chanics, such as Jerry B. Marion, Classical Dynamics of Particles and Sys-
tems, 2nd ed. (New York: Academic Press, (1970)), Section 9.5. Answer:
b = (q192/8meoE) cot(6/2).

(b) Determine the differential scattering cross-section. Answer:

2
q192
D@®) = . 11.11

© [léneoEsin2(9/2)] [ ]

(C) Show that the total cross-section for Rutherford scattering is infinite.

11.1.2 Quantum Scattering Theory

In the quantum theory of scattering, we imagine an incident plane wave, ¥ (z) =
Ae'*, traveling in the z-direction, which encounters a scattering potential, producing
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an outgoing spherical wave (Figure 11.4).2 That is, we will look for solutions to the
Schrodinger equation of the general form

etkr

V(r6)~ A le”‘z + f(6) } for large r. [11.12]

r

(The spherical wave must carry a factor of 1/r, because this portion of |¢ | must go
like 1/#2 to conserve probability.) The wave number & is related to the energy of the
incident particles in the usual way:

2mE
P

(As before, I shall assume the target is azimuthally symmetrical; in the more general
case the amplitude f of the outgoing spherical wave could depend on ¢ as well as 8.)
The whole problem is to determine the scattering amplitude f(6); it tells
you the probability of scattering in a given direction 6, and hence is related to the
differential cross-section. Indeed, the probability that the incident particle, traveling
at speed v, passes through the infinitesimal area do, in time dt, is (see Figure 11.5)

dP = [Yincigem|* dV = |A)* (v dt) do.

k= [11.13]

eikr

oikz

Figure 11.4: Scattering of waves; incoming plane wave generates outgoing
spherical wave.

ZFor the moment, there’s not much quantum mechanics in this; what we’re really talking about
is the scattering of waves, as opposed to classical particles, and you could even think of Figure 11.4
as a picture of water waves encountering a rock, or (better, since we’re interested in three-dimensional
scattering) sound waves bouncing off a basketball. In that case we’d write the wave function in the real
form
A{cos(kz) + f(9)costkr + 8)/r},

and f(8) would represent the amplitude of the scattered sound wave in the direction 8.
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do

vdt
Figure 11.5: The volume 4V of incident beam that passes through area do in time d¢.

But this is equal to the probability that the particle later emerges into the corresponding
solid angle d2:

A 2 2
dP = lecattered|2dV = d l2f| (vdt)rde,
¥

from which it follows that do = | f1* d€2, so

d
D) = E% = /) [11.14]

Evidently the differential cross-section (which is the quantity of interest to the ex-
perimentalist) is equal to the absolute square of the scattering amplitude (which is
obtained by solving the Schrodinger equation). In the next sections we will study
two techniques for calculating the scattering amplitude: partial wave analysis and
the Born approximation.

Problem 11.2 Construct the analogs to Equation 11.12 for one-dimensional and
two-dimensional scattering.

11.2 PARTIAL WAVE ANALYSIS

11.2.1 Formalism
As we found in Chapter 4, the Schrodinger equation for a spherically symmetrical
potential ¥ () admits the separable solutions

Y(r,0,9) = RN, ), [11.15]

where Y;" is a spherical harmonic (Equation 4.32) and u(r) = r R(r) satisfies the
“radial equation” (Equation 4.37):

" d*u BRIl + 1)
_ b = Eu. 11.
o 372 + [V(r) + 2 ]u Eu [11.16]




358

Chap. 11 Scattering

At very large r the potential goes to zero, and the centrifugal term is negligible, so

d’u
— &~ —k*u.
dr?
The general solution is ' '
u(r) = Ce'* + De~ir,

the first term fepresents an outgoing spherical wave, and the second an incoming
one—for the scattered wave, we evidently want D = 0. At very large r, then,
eikr
r

as we already deduced (on qualitative grounds) in the previous section (Equation
11.12),

That’s for very large r (more precisely, for k» > 1; in optics it would be called
the radiation zone). As in one-dimensional scattering theory, we assume that the
potential is “localized,” in the sense that exterior to some finite scattering region it is
essentially zero (Figure 11.6). In the intermediate region (where V' can be ignored
but the centrifugal term cannot),’ the radial equation becomes

d’u Il +1) )
T u= Tk
and the general solution (as we found in Section 4.1.3) is a linear combination of
spherical Bessel functions (Equation 4.45):

{11.17]

u(r) = Arji(kr) + Brn;(kr). [11.18]

However, neither j; (which is something like a sine function) nor r; (which is a sort
of generalized cosine function) represents an outgoing (or an incoming) wave. What
we need are the linear combinations analogous to ¢'*” and e='*"; these are known as
spherical Hankel functions:

BP(x) = i) +imx); AP () = jix) — in(x). [11.19]

The first few spherical Hankel functions are listed in Table 11.1. At large r, hl(l) (kr)

(the “Hankel function of the firstkind”) goes like ¢’*” / r, whereas & 1(2) (kr) (the “Hankel
function of the second kind™) goes like e ~#" /r; for outgoing waves we evidently need
spherical Hankel functions of the first kind:

R(r) = Ch" (kr). [11.20]

3What follows does not apply to the Coulomb potential, since 1/7 goes to zero more slowly than
1/r%, as r — 00, and the centrifugal term does not dominate in this region. In this sense the Coulomb
potential is not “localized.”
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kryd

Radiation
zone

Figure 11.6: Scattering from a
localized potential: the scattering region
(shaded), the intermediate region (where
V = 0), and the radiation zone

(where kr > 1).

Scattering
region

Thus the exact wave function, in the exterior region [where V (r) = 0], is

V(r.0,¢) =A le“‘z + Y CrmhV (kr)Y O, ¢)} : [11.21]
Im
Now, for very large r, the Hankel function goes like (—i)'*'e*" /kr (Table 11.1), so
ikr
V(. 0.6) ~ A {e"’“ + £0.9)° ] , [11.22]
¥
where
1
f6,9)= % Z(—i)lHCz,mYzm(a ®). [11.23]

I,m

This confirms more rigorously the general structure postulated in Equation 11.12,
and tells us how to compute the scattering amplitude, f (6, ¢), in terms of the partial
wave amplitudes C; ,,. Evidently the differential cross-section is

1 , ,
DO,¢)=1f6. ) = — @O C G (VY Y, [11.24]
k

Im I'.m’

Table 11.1: Spherical Hankel functions, 4" (x) and 1 (x).

(1 iz 2) et

hy' =—is- hy =i%

M _ (_ i _ 1Y),z @] i _ 1\ iz
hl —( 22 )e hl (zz Z)e

M _ (30 _ 3 i),z @ 33 i,z
h2 _( z z2+l)e h2 (z3 22 u)e
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and the total cross-section is

, 1
7= 5 2 L O CuCm [PV d = 5 T (Gl 111251
Im

Im I'\m

(Iused the orthonormality of the spherical harmonics, Equation 4.33, in the last step.)
In the previous paragraph I kept the possible ¢ dependence because it cost me
nothing. But if (as is ordinarily the case) V' is independent of ¢, then only terms with

m = ( survive (remember, Y ~ €™?). Now (from Equations 4.27 and 4.32)

21+1

Y26, ¢) = Py(cos 9), [11.26]

where F; is the /th Legendre polynomial. So for the case of azimuthal symmetry, the
exact wave function (in the exterior region) is

& 2+
Y 0) =4 [e"” + ;,/T;—clhfl)(krm(coso)] : [11.27]

the scattering amplitude is

£(6) = Z )’“‘/ 1C,P,(cose) [11.28]

=0

and the total cross-section is
1 [e.¢]
o= Yal [11.29]
1=0

11.2.2 Strategy

All that remains is to determine the partial wave amplitudes C; for the potential in
question. This is accomplished by solving the Schrédinger equation in the interior
region [where V (r) is distinctly nonzero] and matching this to the exterior solution
(Equation 11.27), using the appropriate boundary conditions. But first I need to do
a little cosmetic work, because as it stands my notation is hybrid: 1 used spherical
coordinates for the scattered wave, but Cartesian coordinates for the incident wave.
Before proceeding, it is useful to rewrite the wave function in a more consistent
notation.
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Of course, ¢** satisfies the Schrodinger equation with ¥ = 0. On the other
hand, T just argued that the general solution to the Schrodinger equation with V' = 0
can be written in the form

> [y m jikr) + B umi k)] (6, ).
Im

In particular, then, it must be possible to express e’** in this way. But e** is finite
at the origin, so no Neumann functions are allowed in the sum [n;(k7) blows up at
r = 0], and since z = r cos @ has no ¢ dependence, only m = 0 terms occur. The
expansion of a plane wave in terms of spherical waves is sometimes called Rayleigh’s
formula*:

o0

k2 =) "i' @1+ 1) jikr) Pi(cos ). [11.30]

1=0
Thus the wave function, in the exterior region, can be written in the more consistent
form

Yre)y=4y [il(zl + D) jikr) + 21—+1c,h§“(kr)] P(cos6).[11.31]
= 4

Example: Hard-sphere scattering. Suppose

oo, forr <a,
Ve = {0, forr > a. [11.32]

The boundary condition, then, is

¥ (a,6) =0, [11.33]
SO
Z[ Q@+ l)jl(ka)+‘/—2—l— h“’(ka)] Pcos®) =0  [11.34]
=0

for all 6, from which it follows (Problem 11.3) that

il i 2 *_ [11.35]

(1) (ka)

In particular, the total cross-section is

47 & Jika)
o= 2N\ +1)| 2LED [11.36]
K ; hy" (ka)

4For a guide to the proof, see George Arfken, Mathematical Methods for Physicists, 3rd ed.
(Orlando, FL: Academic Press, 1985), Exercise 12.4.7, page 665.
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That’s the exact answer, but it’s not terribly illuminating, so let’s consider the
limiting case of low-energy scattering: ka < 1. (Since k = 2m/A, this amounts to
saying that the wavelength is much greater than the radius of the sphere.) Referring
to Table 4.3, we note that n;(z) is much larger than Ji(2), for small z, so

VIR 1) R 16)
RV @) +in(2) n(z)

I . -}
et 2 2 (1137]
—@D1z=1 20 T 20+ 1 | @)
and hence
dr &1 27t
~ — = ka)H+2.
T St [(21)!] (ka)

But we’re assuming ka « 1, so the higher powers are negligible—in the low-energy
approximation the scattering is dominated by the / = 0 term. (This means that the
differential cross-section is independent of 6, just as it was in the classical case.)
Evidently

o~ 4ra?, [11.38]

for low-energy hard-sphere scattering. Surprisingly, the scattering cross-section is
four times the geometrical cross-section—in fact, o is the fotal surface area of the
sphere. This “larger effective size” is characteristic of long-wavelength scattering (it
would be true in optics, as well); in a sense, these waves “feel” their way around the
whole sphere, whereas classical particles only see the head-on cross-section.

Problem 11.3 Derive Equation 11.35, starting with Equation 11.34.

*x+Problem 11.4 Consider the case of low-energy scattering from a spherical delta-

function shell:

V(r)=ad(r —a),

where o and a are constants. Calculate the scattering amplitude £ (), the differential
cross-section D(6), and the total cross-section 0. Assume kg < 1, so that only
the / = 0 term contributes significantly. (To simplify matters, throw out all / #
0 terms right from the start. The main problem, of course, is to determine Cy.)
Express your answer in terms of the dimensionless quantity ¢ = 2maa/h>. Answer-:
o = 4na*¢?/(1 + ¢)2.
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11.3 THE BORN APPROXIMATION

11.3.1 Integral Form of the Schrédinger Equation

The time-independent Schrodinger equation,

h2
— — VY + V¢ =EY, {11.39]
2m
can be written more succinctly as
(V' + Ky = Q, [11.40]
where
2mE 2m
k= h and Q= ?Vw. [11.41]

This has the superficial form of the Helmholtz equation; note, however, that the
“inhomogeneous” term (Q) itself depends on . Suppose we could find a function
G(r) that solves the Helmholtz equation with a delta-function “source™:

(V2 + )G ) =8 ). [11.42]

Then we could express v as an integral:
Y(r) = / G(r — o) Q(xg) d°ry. [11.43]

For it is easy to show that this satisfies Schrédinger’s equation, in the form of Equation
11.40:

(¢+%5w&ﬁjfﬁw+k5G@—mﬂQ@wfm

=/¥u—MQmm%=Qm.

G(r) is called the Green’s function for the Helmholtz equation. (In general, the
Green’s function for a given differential equation represents the “response” to a delta-
function source.)

Qur first task® is to solve Equation 11.42 for G(r). This is most easily accom-
plished by taking the Fourier transform, which turns the differential equation into an
algebraic equation. Let

Gr) / e Tg(s)d’s. [11.44]

_ 1
- (2m)3/2

5Warning: You are approaching two pages of heavy analysis, including contour integration; if you
wish, skip straight to the answer, Equation 11.55.
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Then 1
(V*+1HG() = s / [(V* + KHe™ T] g(s) ds.
But
VieS T = —g2eiST, [11.45]
and (see Equation 2.126)
8 = Gy /e"“d3s, [11.46]

so Equation 11.42 says

1 2 . 1 ,
- _ k2 is-r 3¢ — / is.r d3
)7 /( s+ ket Tgs)ds ) e s
It follows® that |
g(s) = G RRE =) [11.47]
Putting this back into Equation 11.44, we find
1 is-r 1 3

Now r is fixed, as far as the s integration is concerned, so we may as well choose
spherical coordinates (s, 8, ¢) with the polar axis along r (Figure 11.7). Thens - r =
srcos 8, the ¢ integral is trivial (277), and the 6 integral is

T isrcosf o 2 si
/ ezsrcosG sin@ d6 = _e . — SlIl(S}’)‘ [1149]
0 isr 10 sr
Thus 1 2 [ gsi (s7) 1 00 in(s#)
s sin(sr § sin(sr
= = ds = ds. 11.
G(r) Gir ) B S = 13 _/;OO 2 _g2 8 [11.50]

The remaining integral is not so simple. It pays to revert to exponential notation
and factor the denominator:

; 00 se'sT 00 seisT
G0 =g [/_oo CEG T /_oo m"‘}

i
= —— 1 — D). 11.51
877.'27'( 1 2) [ ]
These two integrals can be evaluated using Cauchy’s integral formula:
1@y = o fa. [11.52]
(z —z0)

SThis is clearly sufficient, but it is also necessary, as you can easily show by combining the two
terms into a single integral and using Plancherel’s theorem, Equation 2.85.
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i3

\
\
\
\
\
|
‘[
¢ N \ Figure 11.7: Convenient coordinates for
t the integral in equation (11.48].

if zy lies within the contour (otherwise the integral is zero). In the present case the
integration is along the real axis, and it passes righs over the pole singularities at
+k. We have to decide how to skirt the poles—I'll go over the one at —k and under
the one at +k (Figure 11.8). (You’re welcome to choose some other convention if
you like—even winding seven times around each pole; you’ll get a different Green’s
function, but, as I'll show you in a minute, they’re all equally acceptable.)

For each integral in Equation 11.51 I must “close the contour” in such a way
that the semicircle at infinity contributes nothing. In the case of I, the factor e'*"
goes to zero when s has a large positive imaginary part; for this one I close above
(Figure 11.9a). The contour encloses only the singularity at s = +k, so

seisr 1 seisr
L = =2mi
! ,(ﬁlis—f-kils—kds m[s+k]

In the case of L, the factor e~**" goes to zero when s has a large negative imaginary
part, so we close below (Figure 11.9b); this time the contour encloses the singularity
ats = —k (and it goes around in the clockwise direction, so we pick up a minus sign):

se—isr 1 se—isr
L =— ds = —2mi
2 fﬁ[s—k]s—}-k s m[s—kil

=izt [11.53]
s=k

= —ime®. [11.54]

s=—k

AlL,S

‘:‘ * o
A\
S=-k S=+k Res

Figure 11.8: Skirting the poles in the contour integral (Equation 11.51).
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@ (b)
Figure 11.9: Closing the contour in equations [11.53] and [11.54].

Conclusion: "
i ) tr . ) etkr
G = o [(ime™™) = (—ime'™)] = = [11.55]

This, finally, is the Green’s function for the Helmholtz equation—the solution
to Equation 11.42, (If you got lost in all that analysis, you might want to check the
result by direct differentiation—see Problem 11.5.) Or rather, it is a Green’s function
for the Helmholtz equation, for we can add to G(r) any function Go(r) that satisfies
the homogeneous Helmholtz equation:

(V> + E)Go(r) = 0; [11.56)

clearly, the result (G + G ) still satisfies Equation 11.42. This ambiguity corresponds
precisely to the ambiguity in how to skirt the poles—a different choice amounts to
picking a different function G(r).

Returning to Equation 11.43, the general solution to the Schrodinger equation
takes the form

m

mo ey, & 115
, 1.57
s [V v g [11.57)

¥ (r) = Yo(r) —

where v/, satisfies the free particle Schrédinger equation,
(V2 + K)o = 0. [11.58]

Equation 11.57 is the integral form of the Schriodinger equation; it is entirely
equivalent to the more familiar differential form. At first glance it looks like an ex-
plicit solution to the Schrédinger equation (for any potential)—which is too good to
be true. Don’t be deceived: There’s a Y under the integral sign on the right-hand
side, so we can’t do the integral unless we already know the solution! Nevertheless,
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the integral form can be very powerful, and it is particularly well suited to scattering
problems, as we’ll see in the following section.

Problem 11.5 Check that Equation 11.55 satisfies Equation 11.42, by direct sub-
stitution. Hint: V*(1/r) = —4n83(r).

xxProblem 11.6 Show that the ground state of hydrogen (Equation 4.80) satisfies
the integral form of the Schrodinger equation, for the appropriate ' and E (note that
E is negative, so k = ix, where k = /—2mE [h).

11.3.2 The First Born Approximation

Suppose V (1) is localized about ry = O—that is, the potential drops to zero outside
some finite region (as is typical for a scattering problem), and we want to calculate
¥ (r) at points far away from the scattering center. Then |r| >> |ro| for all points that
contribute to the integral in Equation 11.57, so

r-r
|r—r0|2=r2+rg—2r.r0;r2(1—2 20), [11.59]
r
and hence
|r——r0|2r—f-r0. [1160]
Let
k = k7 [11.61]
then
eikll‘—l‘ol ~ eikre-—ik-l‘o’ [11.62]
and therefore ] ]
ezk|r-—r0| ezkr )
rp— = — ek, [11.63]

[In the denominator we can afford to make the more radical approximation
|r — rg| = r; in the exponent we need to keep the next term. If this puzzles you, try
writing out the next term in the expansion of the denominator. What we are doing
is expanding in powers of the small quantity (ry/r) and dropping all but the lowest
order.]

In the case of scattering, we want

Yo(r) = A, [11.64]
representing an incident plane wave. For large r, then,
eikr

Y(r) = 4" -

271,7'2 r ‘/e_ik'roV(rO)w(rO) d3r0- [1165]

7See, for example, D. J. Griffiths, Introduction to Electrodynamics, 2nd ed. (Englewood Cliffs, NJ:
Prentice Hall, 1989), p. 52.
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This is in the standard form (Equation 11.12), and we can read off the scattering
amplitude:

m - Ty
1O.6)= - / RV (T (o) d . [11.66]

So far, this is exact. Now we invoke the Born approximation: Suppose the
incoming plane wave is not substantially altered by the potential; then it makes sense
to use

¥ (o) & Yo(rg) = Ae*® = AeKTo, [11.67]

where

k' =&z, [11.68]

inside the integral. (This would be the exact wave function, if V were zero; it is
essentially a weak potential approximation.) In the Born approximation, then,

0, 9) = —# 0Ty (1) #Pr,. [11.69]

(In case you have lost track of the definitions of k and k’, they both have magnitude
k, but the former points in the direction of the incident beam, while the latter points
toward the detector—see Figure 11.10.)

In particular, for low-energy (long-wavelength) scattering, the exponential
factor is essentially constant over the scattering region, and the Born approximation
simplifies to

f6,9)=- / V() d’r, (low energy). [11.70]

2h?

(I dropped the subscript on r, since there is no occasion for confusion at this point.)

Figure 11.10: Two wave vectors in the
Born approximation: k points in the incident

direction, K’ in the scattered direction.
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Example: Low-energy soft-sphere® scattering. Suppose

Vo, ifr <a,
V(r)={0° o [11.71]
In this case the low-energy scattering amplitude is
m 4
f@,¢) = _Zﬁ?VO (§7m3> [11.72]
(independent of 6 and ¢), the differential cross-section is
2
do - {2mVya®
g == (——3h2 ) , [11.73]
and the total cross-section is
2mVoad\
o4y (";—hg“—) . [11.74]

For a spherically symmetrical potential, V' (r) = ¥ (r), (but not necessarily
at low energy), the Born approximation again reduces to a simpler form. Define

Kk =k —Kk, [11.75]

and let the polar axis for the r( integral lie along k, so that

(K —K) - 1y = k79 c0s 6. [11.76]
Then

N m
1e= 2mh?

The ¢ integral is trivial (277), and the 6, integral is one we have encountered before
(see Equation 11.49). Dropping the subscript on #, we are left with

/ eikr() cos V(ro)rg sin 6y dro déy d¢0 [1 177]

2 oo
fo) = _}z—;—n- / rV (r) sin(xr) dr, (spherical symmetry). [11.78]
K Jo

8You can’t apply the Born approximation to hard-sphere scattering (Vo = oo)—the integral blows
up. The point is that we assumed the potential is weak, and doesn’t change the wave function much in the
scattering region. But a hard sphere changes it radically—from Ae'** 1o zero.
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The angular dependence of f is carried by «; from Figure 11.10 we see that

« = 2kssin(0/2). [11.79]

Example: Yukawa scattering. The Yukawa potential (which is a crude
model for the binding force in an atomic nucleus) has the form

—ur

Vi) = pi—, [11.80]
r
where 8 and u are constants. The Born approximation gives
2mp > _ . 2mpB
)= ——— e Wsin(kr)dr = ——5———. 11.81
fo=-25" | (r) Fod D [11.81]

(You get to work out the integral for yourself in Problem 11.8.)

Example: Rutherford scattering. If we putin 8 = q1q2/4mey, 4 = 0,
the Yukawa potential reduces to the Coulomb potential, describing the electrical
interaction of two point charges. Evidently the scattering amplitude is

_ 2mqq2

0= ———, 11.82
1) A egh’? [ 1
or (using Equations 11.79 and 11.41),
9192
0= - - . [11.83]
! 167 €0 E sin’(9/2)
The differential cross-section is the square of this:
d 2
a9 =[ Nz } , [11.84]
a2 167 €y E sin“(6/2)

which is precisely the Rutherford formula (Equation 11.11). It happens that for the
Coulomb potential, classical mechanics, the Born approximation, and quantum field
theory all yield the same result. In computer parlance, the Rutherford formula is
amazingly “robust.”

xProblem 11.7 Find the scattering amplitude, in the Born approximation, for soft-
sphere scattering at arbitrary energy. Show that your formula reduces to Equation
11.72 in the low-energy limit.

Problem 11.8 Evaluate the integral in Equation 11.81 to confirm the expression
on the right.

=xProblem 11.9 Calculate the total cross-section for scattering from a Yukawa po-

tential in the Born approximation. Express your answer as a function of E.
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*Problem 11.10 For the potential in Problem 11.4,

(@) calculate f(0), D(0), and o, in the low-energy Born approximation;
(b) calculate f(6) for arbitrary energies, in the Born approximation;

{(c) show that your results are consistent with the answer to Problem 11.4, in the
appropriate regime.

11.3.3 The Born Series

The Born approximation is similar in spirit to the impulse approximation in classical
scattering theory. In the impulse approximation we begin by pretending that the
particle keeps going in a straight line (Figure 11.11), and compute the transverse
impulse that would be delivered to it in that case:

I=/Fldt. [11.85]

If the deflection is relatively small, this should be a good approximation to the trans-
verse momentum imparted to the particle, and hence the scattering angle is

6 =tan"'(I/p), [11.86]

where p is the incident momentum. This is, if you like, the “first-order” impulse
approximation (the zeroth-order is what we started with: no deflection at all). Like-
wise, in the zeroth-order Born approximation the incident plane wave passes by with
no modification, and what we explored in the previous section is really the first-order
correction to this. But the same idea can be iterated to generate a series of higher-order
corrections, which presumably converge to the exact answer.

Actual
F, trajectory
T e m— .1_. - _’.E./ ____________
b
Y .
Scattering center

Figure 11.11: The impulse approximation assumes that the particle continues
undeflected, and calculates the transverse momentum delivered.
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Figure 11.12: Diagrammatic interpretation of the Born series, Equation 11.91.

The integral form of the Schrodinger equation reads

Y (r) = Yo(r) + / g(r — ro)V (ro)y (ro) d°ro, (11.87]
where 1y is the incident wave,
eikr
g = T [11.88]

is the Green’s function (into which I have now incorporated the factor 2m /#?, for
convenience), and V is the scattering potential. Schematically,

¥ = o +/gV1/f' (11.89]

Suppose we take this expression for i, and plug it in under the integral sign:

v=vo+ / Vo + / ey, [11.90]

Iterating this procedure, we obtain a formal series for ¥:

¥ = o +/ng0 +/ngVwo +/ngVngo +oo +f(gV)"vfo +o (1191

In each term only the incident wave function (o) appears, together with more and
more powers of gV The first Born approximation truncates the series after the second
term, but it is clear now how one generates the higher-order corrections.

The Born series can be represented diagrammatically as shown in Figure 11.12.
In zeroth order ¥ is untouched by the potential; in first order it is “kicked” once, and
then “propagates” out in some new direction; in second order it is kicked, propagates
to a new location, is kicked again, and then propagates out; and so on. In this
context the Green’s function is sometimes called the propagator—it tells you how
the disturbance propagates between one interaction and the next. The Born series was
the inspiration for Feynman’s formulation of relativistic quantum mechanics, which
is expressed entirely in terms of vertex factors (V) and propagators (g), connected
together in Feynman diagrams.
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Problem 11.11 Calculate # (as a function of the impact parameter) for Rutherford
scattering, in the impulse approximation. Show that your result is consistent with the
exact expression (Problem 11.1a) in the appropriate limit.

xx+xProblem 11.12 Find the scattering amplitude for low-energy soft-sphere scattering
in the second Born approximation. Answer: —(2mVoa® /3h%)[1 — (4mVoa?/5h%)].

FURTHER PROBLEMS FOR CHAPTER 11

x++Problem 11.13 Find the Green’s function for the one-dimensional Schrodinger
equation, and use it to construct the integral form (analogous to Equation 11.57).
Answer:

im oo ik|x—xo)
e OV (x0) ¥ (x0) dxo. [11.92]

V(x) = Yolx) — renll B

»x+Problem 11.14 Use your result in Problem 11.13 to develop the Born approxi-
mation for one-dimensional scattering. That is, choose yo(x) = A¢e**, and assume
¥ (xg) = o(xg) to evaluate the integral. Show that the reflection coefficient takes

the form
R = ( m )2
th

Problem 11.15 Use the one-dimensional Born approximation (Problem 11.14) to
compute the transmission coefficient (7' = 1 — R) for scattering from a delta function
(Equation 2.96) and from a finite square well (Equation 2.127). Compare your results
with the exact answers (Equations 2.123 and 2.151).

2
[11.93]

0 .
/ PV (x)dx

—00
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Now that you have (I hope) a sound understanding of what quantum mechanics says,
I should like to return to the question of what it means—continuing the story begun
in Section 1.2. The source of the problem is the indeterminacy associated with the
statistical interpretation of the wave function. For W (or, more generally, the quantum
state—it could be a spinor, for example) does not uniquely determine the outcome
of a measurement; all it provides is the statistical distribution of all possible results.
This raises a profound question: Did the physical system “actually have” the attribute
in question prior to the measurement (the so-called realist viewpoint), or did the act
of measurement itself “create” the property, limited only by the statistical constraint
imposed by the wave function (the orthodox position)—or can we duck the question
entirely, on the grounds that it is “metaphysical” (the agnostic response)?
According to the realist, quantum mechanics is an incomplete theory, for even
if you know everything quantum mechanics has to tell you about the system (to wit,
its wave function), you still cannot determine all of its features. Evidently there is
some other information, external to quantum mechanics, which (together with W) is
required for a complete description of physical reality. V
The orthodox position raises even more disturbing problems, for if the act of
measurement forces the system to “take a stand,” helping to create an attribute that was
not there previously,' then there is something very peculiar about the measurement
process. Moreover, to account for the fact that an immediately repeated measurement
yields the same result, we are forced to assume that the act of measurement collapses

!This may be strange, but it is not mystical, as some popularizers would like to suggest. The
so-called wave-particle duality, which Niels Bohr elevated into a cosmic principle (complementarity),
makes electrons sound like unpredictable adolescents, who sometimes behave like adults, and sometimes,
for no particular reason, like children. I prefer to avoid such language. When I say that a particle does not
have a particular attribute until a measurement intervenes, I have in mind, for example, an electron in the
spin state y = (é ; a measurement of the x-component of its angular momentum could return the value
#/2, or (with equal probability) the value —% /2, but until the measurement is made it simply does not have
a well-defined value of Sy.
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the wave function, in a manner that is difficult, at best, to reconcile with the normal
evolution prescribed by the Schrédinger equation.

In light of this, it is no wonder that generations of physicists retreated to the
agnostic position, and advised their students not to waste time worrying about the
conceptual foundations of the theory.

A.1 The EPR Paradox

In 1935, Einstein, Podolsky, and Rosen? published the famous EPR paradox, which
was designed to prove (on purely theoretical grounds) that the realist position is the
only sustainable one. I’ll describe a simplified version of the EPR paradox, due to
David Bohm. Consider the decay of the neutral pi meson into an electron and a
positron:

7% = e + et
Assuming the pion was at rest, the electron and positron fly off in opposite directions
(Figure A.1). Now, the pion has spin zero, so conservation of angular momentum
requires that the electron and positron are in the singlet configuration:

L
V2

If the electron is found to have spin up, the positron must have spin down, and
vice versa. Quantum mechanics can’t tell you which combination you'll get, in
any particular pion decay, but it does say that the measurements will be correlated,
and you’ll get each combination half the time (on average). Now suppose we let
the electron and positron fly way off—10 meters, in a practical experiment, or, in
principle, 10 light years—and then you measure the spin of the electron. Say you get
spin up. Immediately you know that someone 20 meters (or 20 light years) away will
get spin down, if that person examines the positron.

To the realist, there’s nothing surprising in this—the electron really had spin
up (and the positron spin down) from the moment they were created—it’s just that
quantum mechanics didn’t know about it. But the “orthodox” view holds that neither
particle had either spin up or spin down until the act of measurement intervened:
Your measurement of the electron collapsed the wave function, and instantaneously
“produced” the spin of the positron 20 meters (or 20 light years) away. Einstein,
Podolsky, and Rosen considered any such “spooky action-at-a-distance” (Einstein’s
words) preposterous. They concluded that the orthodox position is untenable; the

(td+ = -1 (A.1]

Figure A.1: Bohm’s version of the EPR
_ 0 ,  experiment: 70 at rest decays into
(i ° i electron-positron pair.

2A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).
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electron and positron must have had well-defined spins all along, whether quantum
mechanics can calculate them or not.

The fundamental assumption on which the EPR argument rests is that no in-
fluence can propagate faster than the speed of light. We call this the principle of
locality. You might be tempted to propose that the collapse of the wave function is
not instantaneous, but somehow “travels” out at some finite velocity. However, this
would lead to violations of angular momentum conservation, for if we measured the
spin of the positron before the news of the collapse had reached it, there would be a
50-50 probability of finding both particles with spin up. Whatever one might think
of such a theory in the abstract, the experiments are unambiguous: No such violation
occurs—the correlation of the spins is perfect.

A.2 Bell's Theorem

Einstein, Podolsky, and Rosen did not doubt that quantum mechanics is correct, as far
as it goes; they only claimed that itis an incomplete discription of physical reality: The
wave function is not the whole story—some other quantity, A, is needed, in addition to
W, to characterize the state of a system fully. We call A the “hidden variable” because,
at this stage, we have no idea how to calculate or measure it.” Over the years, a number
of hidden variable theories have been proposed, to supplement quantum mechanics;
they tend to be cumbersome and implausible, but never mind—until 1964 the program
seemed eminently worth pursuing. But in that year J. S. Bell proved that any local
hidden variable theory is incompatible with quantum mechanics.*

Bell suggested a generalization of the EPR/Bohm experiment: Instead of ori-
enting the electron and positron detectors along the same direction, he allowed them
to be rotated independently. The first measures the component of the electron spin
in the direction of a unit vector a, and the second measures the spin of the positron
along the direction b (Figure A.2). For simplicity, let’s record the spins in units of
#/2; then each detector registers the value -+1 (for spin up) or —1 (spin down), along
the direction in question. A table of results, for many 7° decays, might look like this:

electron  positron  product
+1 -1 -1
+1 +1 +1
-1 +1 -1
+1 -1 -1
-1 -1 +1

3The hidden variable could be a single number, or it could be a whole collection of numbers;
perhaps A is to be calculated in some future theory, or maybe it is for some reason of principle incalculable.
It hardly matters. All T am asserting is that there must be something—if only a list of the outcomes of
every possible experiment—associated with the system prior to a measurement.

4Bell’s original paper [Physics 1, 195 (1964)] is a gem: brief, accessible, and beautifully written.
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< °

-

Figure A.2: Bell’s version of the EPR-Bohm experiment: detectors independently
oriented in directions a and b.

Bell proposed to calculate the average value of the product of the spins, for a given
set of detector orientations. Call this average P(a, b). If the detectors are parallel
(b = a), we recover the original EPRB configuration; in this case one is spin up and
the other spin down, so the product is always —1, and hence so too is the average:

P(a,a) = —1. [A.2]
By the same token, if they are anti-paralle] (b = —a), then every product is +1, so
P(a, —a) = +1. [A.3]

For arbitrary orientations, quantum mechanics predicts

P(a,b)y=-a-b [A4]

(see Problem 4.44). What Bell discovered is that this result is impossible in any local
hidden variable theory.

The argument is stunningly simple. Suppose that the “complete” state of the
electron/positron system is characterized by the hidden variable(s) A; A varies, in
some way that we neither understand nor control, from one pion decay to the next.
Suppose further that the outcome of the electron measurement is independent of
the orientation (b) of the positron detector—which may, after all, be chosen by the
experimenter at the positron end just before the electron measurement is made, and
hence far too late for any subluminal message to get back to the electron detector.
(This is the locality assumption.) Then there exists some function 4(a, A) which
gives the result of an electron measurement, and some other function B(b, 1) for the
positron measurement. These functions can only’ take on the values £1:

A(a,2) = +1; B(b, 1) = £1. [A.5]

SThis already concedes far more than a classical determinist would be prepared to allow, for it aban-
dons any notion that the particles could have well-defined angular momentum vectors with simultaneously
determinate components. But never mind—the point of Bell’s argument is to demonstrate that quantum
mechanics is incompatible with any local deterministic theory—even one that bends over backward to be
accommodating.
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When the detectors are aligned, the results are perfectly (anti)correlated:
4(a,2) = —B(a, %), [A.6]

for all A.
Now, the average of the product of the measurements is

P(@a,b) = / p(A)A(a, A)B(b, A)dA, [A.7]

where p (1) is the probability density for the hidden variable. [Like any probability
density, it is nonnegative, and satisfies the normalization condition f pMydr =1,
but beyond this we make no assumptions about p(1); different hidden variable the-
ories would presumably deliver quite different expressions for p.] In view of Equa-
tion A.6, we can eliminate B:

P(a,b) = — / p(M)A(a, \)A(b, 1) dA. [A.8]
If ¢ is any other unit vector,
P(a,b) — P(a,¢) = — / p(M)[ A, 1) A(b, 1) — A(a, ) A(c, W] dAr. [A9]
Or, since [A(b, M)]? = 1:
P(a,b) — P(a,c) = ~/p(,\)[1 — A(b, 1) A(c, 1)]4(a, M) A(b, A)dAr. [A.10]

But it follows from Equation A5 that —~1 < [A4(a,A)4(b,A)] < +1, and
p(M)[1 — A(b,1)A(c, A)] >0, s0

|P(a,b) — P(a, ¢)| < /p(x)[l — A(b, M) A(c, 1)) dA, [A.11]

or, more simply,

lP(a, b) — P(a, c)‘ <1+ P, o). [A.12]

This is the famous Bell inequality. It holds for any local hidden variable theory
(subject only to the minimal requirements of Equations A.5-and A.6), for we have
made no assumptions whatever as to the nature or number of the hidden variables or
their distribution (p).

But it is easy to show that the quantum mechanical prediction (Equation A.4)
is incompatible with Bell’s inequality. For example, suppose all three vectors lie in
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b

45’ Figure A.3: An orientation of the
45° . detectors that demonsirates quantum
violations of Bell’s inequality.

oY

a plane, and ¢ makes a 45° angle with a and b (Figure A.3); in this case quantum
mechanics says

P(a,by=0, P(a,c)=P(b,c)=-0.707,
which is patently inconsistent with Bell’s inequality:
0.707 £ 1 — 0.707 = 0.293.

With Bell’s modification, then, the EPR paradox proves something far more
radical than its authors imagined: If they are right, then not only is quantum mechanics
incomplete, it is downright wrong. On the other hand, if quantum mechanics is right,
then no hidden variable theory is going to rescue us from the nonlocality Einstein
considered so preposterous. Moreover, we are provided with a very simple experiment
to settle the issue once and for all.

Many experiments to test Bell’s inequality were performed in the 1960s and
1970’s, culminating in the work of Aspect, Grangier, and Roger.® The details do not
concern us here (they actually used two-photon atomic transitions, not pion decays).
To exclude the remote possibility that the positron detector might somehow “sense”
the orientation of the electron detector, both orientations were set quasi-randomly after
the photons were already in flight. The resuits were in excellent agreement with the
predictions of quantum mechanics and clearly incompatible with Bell’s inequality.’

Ironically, the experimental confirmation of quantum mechanics came as some-
thing of a shock to the scientific community. But not because it spelled the demise of
“realism”—most physicists had long since adjusted to this (and for those who could

6A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91 (1982).

7Bell’s theorem involves averages, and it is conceivable that an apparatus such as Aspect’s contains
some secret bias which selects out a nonrepresentative sample, thus distorting the average. Recently, an
improved version of Bell’s theorem has been proposed in which a single measurement suffices to distinguish
between the quantum prediction and that of any local hidden variable theory. See D. Greenberger, M. Horne,
A. Shimony, and A. Zeilinger, Am. J. Phys. 58, 1131, (1990) and N. David Mermin, Am. J. Phys. 58, 731,
(1990).
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Projector Bug

Screen

Figure A.4: The shadow of the bug moves across the screen at a velocity '
greater than ¢, provided that the screen is far enough away.

not, there remained the possibility of nonlocal hidden variable theories, to which
Bell’s theorem does not apply®). The real shock was the proof that nature itself is
Sfundamentally nonlocal. Nonlocality, in the form of the instantaneous collapse of the
wave function (and for that matter also in the symmetrization requirement for iden-
tical particles) had always been a feature of the orthodox interpretation, but before
Aspect’s experiment it was possibie to hope that quantum nonlocality was some-
how a nonphysical artifact of the formalism, with no detectable consequences. That
hope can no longer be sustained, and we are obliged to reexamine our objection to
instantaneous action at a distance.

Why are physicists so alarmed at the idea of superluminal influences? After all,
there are many things that travel faster than light. If a bug flies across the beam of a
movie projector, the speed of its shadow is proportional to the distance to the screen;
in principle, that distance can be as large as you like, and hence the shadow can move
at arbitrarily high velocity (Figure A.4). However, the shadow does not carry any
energy; nor can it transmit any message from one point to another on the screen. A
person at point X cannot cause anything to happen at point Y by manipulating the
passing shadow.

On the other hand, a causal influence that propagated faster than light would
carry unacceptable implications. For according to special relativity there exist inertial
frames in which such a signal propagates backward in time—the effect preceding the
cause—and this leads to inescapable logical anomalies. (You could, for example,
arrange to kill your infant grandfather.) The question is, are the superluminal influ-
ences predicted by quantum mechanics and detected by Aspect causal, in this sense,

81t is a curious twist of fate that the EPR paradox, which assumed locality to prove realism, led
finally to the repudiation of locality and left the issue of realism undecided—the outcome (as Mermin put
it) Einstein would have liked least. Most physicists today consider that if they can’t have local realism,
there’s not much point in realism at all, and for this reason nonlocal hidden variable theories occupy a rather
peripheral place. Still, some authors—notably Bell himself, in Speakable and Unspeakable in Quantum
Mechanics (Cambridge University Press, Cambridge, 1987)—argue that such theories offer the best hope
of bridging the gap between the measured system and the measuring apparatus, and for supplying an
intelligible mechanism for the collapse of the wave function.
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or are they somehow ethereal enough (like the motion of the shadow) to escape the
philosophical objection?

Well, let’s consider Bell’s experiment. Does the measurement of the electron
influence the outcome of the positron measurement? Assuredly it does—otherwise
we cannot account for the correlation of the data. But does the measurement of the
electron cause a particular outcome for the positron? Not in any ordinary sense of
the word. There is no way the person monitoring the electron detector could use his
measurement to send a signal to the person at the positron detector, since he does
not control the outcome of his own measurement (he cannot make a given electron
come out spin up, any more than the person at X can affect the passing shadow of
the bug). It is true that he can decide whether 1o make a measurement at all, but the
positron monitor, having immediate access only to data at his end of the line, cannot
tell whether the electron was measured or not. For the lists of data compiled at the
two ends, considered separately, are completely random. It is only when we compare
the two lists later that we discover the remarkable correlations. In another reference
frame, the positron measurements occur before the electron measurements, and yet
this leads to no logical paradox—the observed correlation is entirely symmetrical in
its treatment, and it is a matter of indifference whether we say the observation of
the electron influenced the measurement of the positron, or the other way around.
This is a wonderfully delicate kind of influence, whose only manifestation is a subtle
correlation between two lists of otherwise random data.

We are led, then, to distinguish two types of influence: the “causal” variety,
which produce actual changes in some physical property of the receiver, detectable by
measurements on that subsystem alone, and an “ethereal” kind, which do not transmit
energy or information, and for which the only evidence is a correlation in the data
taken on the two separate subsystems—a correlation which by its nature cannot be
detected by examining either list alone. Causal infiuences cannot propagate faster
than light, but there is no compeliing reason why ethereal ones should not. The
influences associated with the collapse of the wave function are of the latter type, and
the fact that they “travel” faster than light may be surprising, but it is not, after all,
catastrophic.®

A.3 What is a Measurement?

The measurement process plays a mischievous role in quantum mechanics: It is here
that indeterminacy, noniocality, the collapse of the wave function, and ali the atten-
dant conceptual difficulties arise. Absent measurement, the wave function evolves in
a leisurely and deterministic way, according to the Schrédinger equation, and quan-
tum mechanics looks like a rather ordinary field theory [much simpler than classical

% An enormous amount has been written about Bell’s theorem. My favorite is an inspired essay
by David Mermin in Physics Today (April 1985, page 38). An extensive bibliography will be found in
L. E. Ballentine, Am. J. Phys. 55, 785 (1987).
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electrodynamics, for example, since there is only one field (¥), instead of two (E
and B), and it’s a scalar]. It is the bizarre role of the measurement process that gives
quantum mechanics its extraordinary richness and subtlety. But what, exactly, is a
measurement? What makes it so different from other physical processes?'® And how
can we tell when a measurement has occurred?

Schrodinger posed the essential question most starkly, in his famous cat para-

dox:!!

A catis placed in a steel chamber, together with the following hellish contraption
.... In a Geiger counter there is a tiny amount of radioactive substance, so tiny
that maybe within an hour one of the atoms decays, but equally probably none
of them decays. If one decays then the counter triggers and via a relay activates
a little hammer which breaks a container of cyanide. If one has left this entire
system for an hour, then one would say the cat is living if no atom has decayed.
The first decay would have poisoned it. The wave function of the entire system
would express this by containing equal parts of the living and dead cat.

At the end of the hour, the wave function of the cat has the schematic form
1
V2
The cat is neither alive nor dead, but rather a linear combination of the two, until a
measurement occurs—until, say, you peek in the window to check. At that moment
your observation forces the cat to “take a stand”: dead or alive. And if you find it to

be dead, then it’s really you who killed it, by looking in the window.

Schrodinger regarded this as patent nonsense, and I think most physicists would
agree with him. There is something absurd about the very idea of a macroscopic object
being in a linear combination of two palpably different states. An electron can be
in a linear combination of spin up and spin down, but a cat simply cannot be in a
linear combination of alive and dead. How are we to reconcile this with the orthodox
interpretation of quantum mechanics?

The most widely accepted answer is that the triggering of the Geiger counter
constitutes the “measurement,” in the sense of the statistical interpretation, not the
intervention of a human observer. It is the essence of a measurement that some
macroscopic system is affected (the Geiger counter, in this instance). The measure-
ment occurs at the moment when the microscopic system (described by the laws of

1/, = (I//alive + 1//dead). [A13]

10There is a school of thought that rejects this distinction, holding that the system and the measur-
ing apparatus should be described by one great big wave function which itself evolves according to the
Schrodinger equation. In such theories there is no collapse of the wave function, but one must typically
abandon any hope of describing individual events—quantum mechanics (in this view) applies only to
ensembles of identically prepared systems. See, for example, Philip Pearle Am. J. Phys. 35, 742 (1967),
or, more recently, Leslie E. Ballentine, Quantum Mechanics, (Prentice Hall, Englewood Cliffs, NJ, 1990).

g, Schrodinger, Naturwiss. 48,52 (1935); translation by Josef M. Jauch, Foundations of Quantum
Mechanics, (Reading, MA: Addison-Wesley, 1968), p. 185.



The Quantum Zeno Paradox 383

quantum mechanics) interacts with the macroscopic system (described by the laws of
classical mechanics) in such a way as to leave a permanent record. The macroscopic
system itself is not permitted to occupy a linear combination of distinct states. "

I would not pretend that this is an entirely satisfactory resolution, but at least
it avoids the stultifying solipsism of Wigner and others, who persuaded themselves
that it is the intervention of human consciousness that constitutes a measurement in
quantum mechanics. Part of the problem is the word “measurement” itself, which
certainly carries an suggestion of human involvement. Heisenberg proposed the word
“event”, which might be preferable. But 'm afraid “measurement” is so ingrained
by now that we’re stuck with it. And, in the end, no manipulation of the terminology
can completely exorcise this mysterious ghost.

A.4 The Quantum Zeno Paradox

The collapse of the wave function is undoubtedly the most peculiar feature of this
whole story. It was introduced on purely theoretical grounds, to account for the fact
that an immediately repeated measurement reproduces the same value. But surely
such a radical postulate must carry directly observable consequences. In 1977 Misra
and Sudarshan'® proposed what they cailed the guantum Zeno effect as a dramatic
experimental demonstration of the collapse of the wave function. Their idea was to
take an unstable system (an atom in an excited state, say) and subject it to repeated
measurements. Each observation collapses the wave function, resetting the clock,
and it is possible by this means to delay indefinitely the expected transition to the
lower state.'

Specificaily, suppose a system starts out in the excited state yr,, which has a
natural lifetime t for transition to the ground state vr;. Ordinarily, for times sub-
stantially less than 7, the probability of a transition is proportional to ¢ (see Equa-
tion 9.42); in fact, since the transition rate is 1/,

t
Py= o [A.14]

If we make a measurement after a time ¢, then, the probability that the system is still
in the upper state is

P)=1- % [A.15]

20f course, in some ultimate sense the macroscopic system is itself described by the laws of
quantum mechanics. But wave functions, in the first instance, describe individual elementary particles; the
wave function of a macroscopic object would be a monstrously complicated composite, built out of all the
wave functions of its 10%* constituent particles. Presumably somewhere in the statistics of large numbers
macroscopic linear combinations become extremely improbable.

13B. Misra and E. C. G. Sudarshan, J. Math. Phys. 18, 756 (1977).

14This phenomenon doesn’t have much to do with Zeno, but it is reminiscent of the old adage “a
watched pot never boils,” so it is sometimes called the watched pot effect.
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Suppose we do find it to be in the upper state. In that case the wave function collapses
back to yr,, and the process starts all over again. If we make a second measurement,
at 2¢, the probability that the system is szill in the upper state is evidently

2
(1—1) ~1o 2 [A.16]

T T

which is the same as it would have been had we never made the measurement at z.
This is certainly what one would naively expect; if it were the whole story there would
be nothing gained by observing the system, and there would be no quantum Zeno
effect.

However, for extremely short times, the probability of a transition is not pro-
portional to ¢, but rather to #* (see Equation 9.39)"*:

Py = at’. [A.17]

In this case the probability that the system is still in the upper state after the two

measurements is )
(1-at?)" ~1-2at? [A.18]

whereas if we had never made the first measurement it would have been
1 —a2t)? ~1—4at?. [A.19]

Evidently our observation of the system after time ¢ decreased the net probability of
a transition to the lower state!

Indeed, if we examine the system at # regular intervals, from ¢t = Qouttor =T
(that is, we make measurements at T /n, 2T /n, 3T /n, ..., T), the probability that
the system is still in the upper state at the end is

(1-a(@/n?) ~1-=17, [A.20]

which goes to 1 in the limit n — 00: A continuously observed unstable system never
decays at all! Some authors regard this as an absurd conclusion, and a proof that
the collapse of the wave function is fallacious. However, their argument hinges on a
rather loose interpretation of what constitutes “observation.” If the track of a particle
in a bubble chamber amounts to “continuous observation,” then the case is closed, for
such particles certainly do decay (in fact, their lifetime is not measureably extended
by the presence of the detector). But such a particle is only intermittently interacting
with the atoms in the chamber, and for the quantum Zeno effect to occur the successive
measurements must be made extremely rapidly to catch the system in the ¢ regime.

15Tn the argument leading to linear time dependence, we assumed that the function sin® (¢ /2) /¢
in Equation 9.39 was a sharp spike. However, the width of the “spike” is of order Aw = 4/, and for
extremely short ¢ this approximation fails, and the integral becomes (¢ /4) f p(w)dw.
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As it turns out, the experiment is impractical for spontaneous transitions, but it
can be done using induced transitions, and the results are in excelient agreement with
the theoretical predictions.'® Unfortunately, this experiment is not as compelling a
confirmation of the collapse of the wave function as its designers hoped; the observed
effect can be accounted for in other ways."

sk kkokkk

In this book I have tried to present a consistent and coherent story: The wave
function (W) represents the state of a particle (or system); particles do not in general
possess specific dynamical properties (position, momentum, energy, angular mo-
mentum, etc.) until an act of measurement intervenes; the probability of getting a
particular value in any given experiment is determined by the statistical interpreta-
tion of W; upon measurement the wave function collapses, so that an immediately
repeated measurement is certain to yield the same result. There are other possible
interpretations—nonlocal hidden variable theories, the many worlds picture, en-
semble models, and others—but I believe this one is conceptually the simplest, and
certainly it is the one shared by most physicists today. It has stood the test of time,
and emerged unscathed from every experimental challenge. But I cannot believe this
is the end of the story; at the very least, we have much to learn about the nature of
measurement and the mechanism of collapse. And it is entirely possible that future
generations will look back, from the vantage point of a more sophisticated theory,
and wonder how we could have been so gullible.

16w, M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev. A 41, 2295 (1990).

171, E. Ballentine, Found. Phys. 20, 1329 (1990); T. Petrosky, S. Tasaki, and L. Prigogine, Phys.
Lett. A 151, 109 (1990).
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Projection operator, 119
Propagator, 372

Q

Quantum:
dynamics, 298
electrodynamics, 307
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Quantum (cont.)
jump, 143, 299
number, 130, 137
azimuthal, 148
magnetic, 125, 127, 191, 317
principal, 137
statics, 298
statistical mechanics, 20418
Zeno effect, 383-85
Quark, 169

R

Rabi flopping frequency, 306
Radial:

equation, 129-33

wave function, 123, 129, 133

hydrogen, 13341
infinite spherical well, 131

Radiation zone, 358
Raising operator, 33-34, 14749, 151
Rayleigh’s formula, 361
Realist position, 3—4, 374-75, 379-80
Rectangular barrier, 65, 280-81, 283
Recursion formula, 39, 138
Reduced mass, 178
Reflected wave, 57
Reflection coefficient, 57, 67, 73, 373
Reflectionless potential, 73
Relativistic correction, 235-39
Riemann zeta function, 108, 216
Rigid rotor, 153
Rodrigues formula, 43, 126
Rotating wave approximation, 305-6
Row matrix, 82
“Rubber band” helium, 272
Rutherford scattering, 355, 370, 373
Rydberg:

constant, 143

formula, 143

S

S matrix, 66-68, 73
Scalar, 75
Scattering:
amplitude, 356-57, 360
angle, 352, 371
center, 352, 371
cross-section, 354, 360
differential cross-section, 353-55, 357, 359-60
in one dimension, 51-52, 56, 62, 66, 280-81, 293
from delta function, 56-59, 373
from finite square well, 62-64, 67, 373
from rectangular barrier, 65, 280-81, 283
from step function, 65, 69
in three dimensions, 352-73
from delta-function shell, 362

from hard sphere, 353-55, 361-62
from soft sphere, 369, 373
low energy, 368
Rutherford, 370, 373
spherically symmetrical, 369-70
Yukawa, 370
matrix, 6668
state, 51-52, 56, 62
Schrodinger, Erwin, 1, 71, 382
Schrodinger equation, 1-5, 12, 22-23, 33, 121-22
integral form, 363-67, 373
time dependent, 1-5, 12, 22, 120-22, 177, 298
time independent, 20-74, 33, 122, 178, 289
two-—particle, 177-78
with vector potential, 174
Schrodinger’s cat, 382-83
Schwarz inequality, 79-80
Screening, 190, 264-65
Sech-squared potential, 72, 294
Second-order correction, 222, 226-27, 302-3
Selection rules, 31518
Semiconductor, 203
Separable solutions, 22-23, 123, 125
Separation of variables, 20, 123-25
Sharp (s), 190
Shell, 190
Shielding, 190, 264-65, 273
Similar matrices, 85
Simple harmonic oscillator, 25
Singlet state, 166, 171, 185, 251
Singular matrix, 84
Sinusoidal perturbation, 303-6
Skew-Hermitian matrix, 83
Slater determinant, 186
Soft-sphere scattering, 369, 373
Solids, 193-203
Sommerfeld, Arnold, 193
Spectral decomposition, 119
Spherical:
Bessel functions, 130-32
coordinates, 123
Hankel functions, 358-59
harmonics, 127-28, 152
Neumann functions, 130-32
wave, 356
well:
finite, 133
infinite, 