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PREFACE TO THE SECOND EDITION

TweNTY-FIVE years have passed since the writing of this volume in its first edition. Such a
long interval has inevitably made necessary a fairly thorough revision and expansion of the
book for its second edition.

The original choice of material was such that, with some very slight exceptions, it has not
become obsolete. In this part, only some relatively minor additions and improvements
have been made.

It has, however, been necessary to incorporate a considerable amount of new material.
This relates in particular to the theory of the magnetic properties of matter and the theory
of optical phenomena, with new chapters on spatial dispersion and non-linear optics.

The chapter on electromagnetic fluctuations has been deleted, since this topic is now
dealt with, in a different way, in Volume 9 of the Course.

As with the other volumes, invaluable help in the revision has been derived from the
comments of scientific colleagues, who are too numerous to be named here in theiren tirety,
but to whom we offer our sincere thanks. Particularly many comments came from V. L.
Ginzburg, B. Ya. Zel'dovich and V. P. Krainov. It was most useful to be able to hold regular
discussions of questions arising, with A. F. Andreev, I. E, Dzyaloshinskii and I. M. Lifshitz.
We are particularly grateful to S. I. Vainshtein and R. V. Polovin for much assistance in
revising the chapter on magnetohydrodynamics. Lastly, our thanks are due to A. S.
Borovik-Romanov, V. I. Grigor'ev and M. I. Kaganov for reading the manuscript and
for a number of useful remarks,

Moscow E. M. LirsHiTZ
July, 1981 L. P. Prraevskii






PREFACE TO THE FIRST ENGLISH EDITION

THe present volume in the Course of Theoretical Physics deals with the theory of
electromagnetic fields in matter and with the theory of the macroscopic electric and
magnetic properties of matter. These theories include a very wide range of topics, as may be
seen from the Contents.

In writing this book we have experienced considerable difficulties, partly because of the
need to make a selection from the extensive existing material, and partly because the
customary exposition of many topics to be included does not possess the necessary
physical clarity, and sometimes is actually wrong. We realize that our own treatment still
has many defects, which we hope to correct in future editions.

Weare grateful to Professor V. L. Ginzburg, who read the book in manuscript and made
some useful comments. I. E. Dzyaloshinskii and L. P. Pitaevskii gave great help in reading
the proofs of the Russian edition. Thanks are due also to Dr Sykes and Dr Bell, who not
only carried out excellently the arduous task of translating the book, but also made some
useful comments concerning its contents.

Moscow L. D. LanpAU
June, 1959 E. M. LirsHiTz



NOTATION

Electric field E

Electric induction D

Magnetic field H

Magnetic induction B

External electric field €, magnitude €

External magnetic field $, magnitude %

Dielectric polarization P

Magnetization M

Total electric moment of a body 22

Total magnetic moment of a body .#

Permittivity &

Dielectric susceptibility «

Magnetic permeability pu

Magnetic susceptibility

Current density

Conductivity o

Absolute temperature (in energy units) 7

Pressure P

Volume 'V

Thermodynamic quantities: per unit volume for a body
entropy S
internal energy

T 9

U
free energy F
()

thermodynamic potential
(Gibbs free energy)

Chemical potential {
A complex periodic time factor is always taken as e
Volume element dV' or d*x; surface element df.

The summation convention always applies to three-dimensional (Latin) and two-
dimensional (Greek) suffixes occurring twice in vector and tensor expressions.
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MNotation Xiil

References to other volumes in the Course of Theoretical Physics:

Mechanics = Vol. 1 (Mechanics, third English edition, 1976).

Fields = Vol. 2 (The Classical Theory of Fields, fourth English edition, 1975).
OM = Vol. 3 (Quantum M echanics—N on-relativistic theory, third English edition, 1977).
QED = Vol. 4 (Quantum Electrodynamics, second English edition, 1982).

SP 1 = Vol. 5 (Statistical Physics, Part 1, third English edition, 1980).

FM = Vol. 6 (Fluid Mechanics, English edition, 1959).

TE = Vol. 7 (Theory of Elasticity, second English edition, 1970).

SP 2 = Vol. 9 (Statistical Physics, Part 2, English edition, 1980).

PK = Vol. 10 (Physical Kinetics, English edition, 1981).

All are published by Pergamon Press.






CHAPTER 1

ELECTROSTATICS OF CONDUCTORS

§1. The electrostatic field of conductors

Macroscopic electrodynamics is concerned with the study of electromagnetic fields in
space that is occupied by matter. Like all macroscopic theories, electrodynamics deals with
physical quantities averaged over elements of volume which are “physically infinitesimal”.
ignoring the microscopic variations of the quantities which result from the molecular
structure of matter. For example, instead of the actual “microscopic” value of the electric
field e, we discuss its averaged value, denoted by E:

e=E. (1.1)

The fundamental equations of the electrodynamics of continuous media are obtained by
averaging the equations for the electromagnetic field in a vacuum. This method of
obtaining the macroscopic equations from the microscopic was first used by H. A. Lorentz
(1902).

The form of the equations of macroscopic electrodynamics and the significance of the
quantities appearing in them depend essentially on the physical nature of the medium, and
on the way in which the field varies with time. It is therefore reasonable to derive and
investigate these equations separately for each type of physical object.

It is well known that all bodies can be divided, as regards their electric properties, into
two classes, conductors and dielectrics, differing in that any electric field causes in a
conductor, but not in a dielectric, the motion of charges, ie. an electric current.¥

Let us begin by studying the static electric fields produced by charged conductors, that s,
the electrostatics of conductors. First of all, it follows from the fundamental property of
conductors that, in the electrostatic case, the electric field inside a conductor must be zero.
For a field E which was not zero would cause a current; the propagation of a current in a
conductor involves a dissipation of energy, and hence cannot occur in a stationary state
(with no external sources of energy).

Hence it follows, in turn, that any charges in a conductor must be located on its surface.
The presence of charges inside a conductor would necessarily cause an electric field in it.}
they can be distributed on its surface, however, in such a way that the fields which they
produce in its interior are mutually balanced.

Thus the problem of the electrostatics of conductors amounts to determining the electric
field in the vacuum outside the conductors and the distribution of charges on their surfaces.

At any point far from the surface of the body, the mean field E in the vacuum is almost

¥ The conductor is here assumed to be homogeneous (in composition. temperature, etc.). In an inhomoge-
neous cunducmr as we shall see later, there may be fields which cause no motion of charges.
1 This is clearly seen from equation (1.8) below.
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§1. The electrostatic field of conductors

Macroscoric electredynamics is concerned with the study of electromagnetic fields in
space that is occupied by matter. Like all macroscopic theories, electrodynamics deals with
physical quantities averaged over elements of volume which are “physically infinitesimal”,
ignoring the microscopic variations of the quantities which result from the molecular
structure of matter. For example, instead of the actual “microscopic” value of the electric
field e, we discuss its averaged value, denoted by E:
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It is well known that all bodies can be divided, as regards their electric properties, into
two classes, conductors and dielectrics, differing in that any electric field causes in a
conductor, but not in a dielectric, the motion of charges, i.e. an electric current.t

Let us begin by studying the static electric fields produced by charged conductors, that is,
the electrostatics of conductors. First of all, it follows from the fundamental property of
conductors that, in the electrostatic case, the electric field inside a conductor must be zero.
For a field E which was not zero would cause a current; the propagation of a current in a
conductor involves a dissipation of energy. and hence cannot occur in a stationary state
(with no external sources of energy).

Hence it follows, in turn, that any charges in a conductor must be located on its surface.
The presence of charges inside a conductor would necessarily cause an electric field in it;
they can be distributed on its surface, however, in such a way that the fields which they
produce in its interior are mutually balanced.

Thus the problem of the electrostatics of conductors amounts to determining the electric
field in the vacuum outside the conductors and the distribution of charges on their surfaces.

At any point far from the surface of the body, the mean field E in the vacuum is almost

1 The conductor is here assumed to be homogeneous (in composition, temperature, etc.). In an inhomoge-
neous conductor, as we shall see later, there may be fields which cause no motion of charges.
1 This is clearly seen from equation (1.8) below.



2 Electrostatics of Conductors

the same as the actual field e. The two fields differ only in the immediate neighbourhood of
the body, where the effect of the irregular molecular fields is noticeable, and this difference
does not affect the averaged field equations. The exact microscopic Maxwell's equations in
the vacuum are

dive = 0. (1.2)

curle = —(1/c)h/cr, (1.3}

where h is the microscopic magnetic field. Since the mean magnetic field is assumed to be
2ero. the derivative ¢h /&t also vanishes on averaging, and we find that the static electric field
in the vacuum satisfies the usual equations

divE =0, curlE =0, (1.4)
i.e. it is a potential field with a potential ¢ such that
E = —grad¢, (1.5)

and ¢ satisfies Laplace’s equation
NHe=0. (1.6)

The boundary conditions on the field E at the surface of a conductor follow from the
equation curl E = 0, which. like the original equation (1.3), is valid both outside and inside
the body. Let us take the z-axis in the direction of the normal n to the surface at some point
on the conductor. The component E, of the field takes very large values in the immediate
neighbourhood of the surface (because there is a finite potential difference over a very small
distance). This large field pertains to the surface itself and depends on the physical
properties of the surface, but is not involved in our electrostatic problem, because it falls off
over distances comparable with the distances between atoms. It is important to note,
however. that, if the surface is homogeneous, the derivatives ¢E,/éx, ¢E,/Cy along the
surface remain finite, even though E, itself becomes very large. Hence, since
(curl E), = 0E,/éy —¢E /¢z = 0, we find that ¢E,/Cz is finite. This means that E, is
continuous at the surface, since a discontinuity in E, would mean an infinity of the
derivative ¢E,/¢z. The same applies to E,, and since E = 0 inside the conductor, we reach
the conclusion that the tangential components of the external field at the surface must be
Zero:

E, = 0. (1.7)

Thus the electrostatic field must be normal to the surface of the conductor at every point.
Since E = — grad ¢, this means that the field potential must be constant on the surface of
any particular conductor. In other words, the surface of a homogeneous conductor is an
equipotential surface of the electrostatic field.

The component of the field normal to the surface is very simply related to the charge
density on the surface. The relation is obtained from the general electrostatic equation
dive = 4np, which on averaging gives

divE = 4np, (1.8)

p being the mean charge density. The meaning of the integrated form of this equation is
well known: the flux of the electric field through a closed surface is equal to the total charge
inside that surface, multiplied by 4z. Applying this theorem to a volume element lying
between two infinitesimally close unit areas, one on each side of the surface of the



§2 The energy of the electrostatic field of conductors 3

conductor, and using the fact that E = 0 on the inner area, we find that E, = 4no, where o is
the surface charge density, i.e. the charge per unit area of the su rface of the conductor. Thus
the distribution of charges over the surface of the conductor is given by the formula

4no = E, = —¢p/0n, (1.9)

the derivative of the potential being taken along the outward normal to the surface. The
total charge on the conductor is

1 fag
=~ BEEEdf’ "

the integral being taken over the whole surface.

The potential distribution in the electrostatic field has the following remarkable
property: the function ¢(x,y,z) can take maximum and minimum values only at
boundaries of regions where there is a field. This theorem can also be formulated thus: a
test charge e introduced into the field cannot be in stable equilibrium, since there is no point
at which its potential energy e¢ would have a minimum.

The proof of the theorem is very simple. Let us suppose, for example, that the potential
has a maximum at some point A not on the boundary of a region where there is a field.
Then the point A can be surrounded by a small closed surface on which the normal
derivative &¢/én <0 everywhere. Consequently, the integral over this surface
§(@¢/én) df <O0. But by Laplace’s equation §(@¢/cn)df = [ ¢dV =0, giving a
contradiction.

§2. The energy of the electrostatic field of conductors

Let us calculate the total energy % of the electrostatic field of charged conductors,

1

U =—-IE2dV. 2.1)
8

where the integral is taken over all space outside the conductors. We transform this integral

as follows:

1 1, S
U = —EJEgmdQSdP = —éi'[dlv(¢EJdP + I¢d1VEd[-

The second integral vanishes by (1.4), and the first can be transformed into integrals over
the surfaces of the conductors which bound the field and an integral over an infinitely
remote surface. The latter vanishes, because the field diminishes sufficiently rapidly at
infinity (the arbitrary constant in ¢ is assumed to be chosen so that ¢ = 0 at infinity).
Denoting by ¢, the constant value of the potential on the ath conductor, we have}

1 1 :
U = o g §¢E" df = & ; b, ff)E"d_l.

+ The square E? is not the same as the mean square €* of the actual field near the surface of a conductor or
inside it (where E = 0 but, of course, e* # 0). By calculating the integral (2.1) we ignore the internal energy of the
conductor as such, which is here of no interest, and the affinity of the charges for the surface.

t In transforming volume integrals into surface integrals, both here and later, it must be borne in mind that E,
is the component of the field along the outward normal to the conductor. This direction is opposite to that of the
outward normal to the region of the volume integration, namely the space outside the conductors. The sign of the
integral is therefore changed in the transformation.



4 Electrostatics of Conductors

Finally, since the total charges e, on the conductors are given by (1.10) we obtain
U=3Y e, (2.2)
a

which is analogous to the expression for the energy of a system of point charges.

The charges and potentials of the conductors cannot both be arbitrarily prescribed;
there are certain relations between them. Since the field equations in a vacuum are linear
and homogeneous, these relations must also be linear, i.e. they must be given by equations
of the form

ea = Z Cﬂb‘;bbv {23}
k

where the quantities C,,, C,, have the dimensions of length and depend on the shape and
relative position of the conductors. The quantities C,, are called coefficients of capacity.
and the quantities C,,(a # b) are called coefficients of electrostatic induction. In particular.
if there is only one conductor, we have e = C¢, where C is the capacitance, which in order
of magnitude is equal to the linear dimension of the body. The converse relations, giving
the potentials in terms of the charges, are

ba= 2. C ey, (24)
b

where the coefficients C™',, form a matrix which is the inverse of the matrix C,,.

Let us calculate the change in the energy of a system of conductors caused by an
infinitesimal change in their charges or potentials. Varying the original expression (2.1), we
have é U = (1,"41:]]E -OEdV. This can be further transformed by two equivalent
methods. Putting E = — grad ¢ and using the fact that the varied field, like the original
field, satisfies equations (1.4) (so that divSE = 0), we can write

1 1
5% = e —— . e — 1 F
e jgradd} SEdV i de (¢ OEYd )

- - T o. o, a1
that is
ou =Y ¢,0e,. (2.5)
which gives the change in energy due to a change in the charges. This result is obvious; it is
the work required to bring infinitesimal charges e, to the various conductors from

infinity, where the field potential is zero.
On the other hand, we can write

1 , 1 . .

1
= E ga‘l‘bn %En df:



§2 The energy of the electrostatic field of conductors
that is

s =Y e,b5¢., (2.6)

which expresses the change in energy in terms of the change in the potentials of the
conductors.

Formulae (2.5) and (2.6) show that. by differentiating the energy g/ with respect to the
charges, we obtain the potentials of the conductors. and the derivatives of % with respect
to the potentials are the charges:

QU[0e, = ,. CUIOH, = €, 2.7

But the potentials and charges are linear functions of each other. Using (2.3) we have
22U [o¢,d¢, = e,/d¢, = C,,, and by reversing the order of differentiation we get C,,.
Hence it follows that

Ca=Cha (2.8)

and similarly ™!, = C~!,,. Theenergy % can be written as a quadratic formin either the
potentials or the charges:

U = é Z Cab¢a¢’b - ]2 Z C_labeaeb‘ (29}
a, b a. b

This quadratic form must be positive definite, like the original expression (2.1). From
this condition we can derive various inequalities which the coefficients C,, must satisfy. In
particular, all the coefficients of capacity are positive:

C,,>0 (2.10)
(and also C™' , > 0).F
Al the coefficients of electrostatic induction, on the other hand. are negative:

C,<0 (a#b) @.11)

That this must be so is seen from the following simple arguments. Let us suppose that
every conductor except the ath is earthed, i.e. their potentials are zero. Then the charge
induced by the charged ath conductor on another (the bth, say)is ¢, = Cp.¢b,- It is obvious
that the sign of the induced charge must be opposite to that of the inducing potential, and
therefore C,, < 0. This can be more rigorously shown from the fact that the potential of the
electrostatic field cannot reach a maximum or minimum outside the conductors. For
example, let the potential ¢, of the only conductor not earthed be positive. Then the
potential is positive in all space, its least value (zero) being attained only on the earthed
conductors. Hence it follows that the normal derivative é¢p/cn of the potential on the
Sl_ll‘ffwes of these conductors is positive, and their charges are therefore negative, by (1.10).
Similar arguments show that C~!,, > 0.

The energy of the electrostatic field of conductors has a certain extremum property,
though this property is more formal than physical. To derive it, let us suppose that the

¥ We may also mention that another inequality which must be satisfied if the form (2.9) is positive is

I CaaCuip > C,2.
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charge distribution on the conductors undergoes an infinitesimal change (the total charge
on each conductor remaining unaltered), in which the charges may penetrate into the
conductors; we ignore the fact that such a charge distribution cannot in reality be stationary.
We consider the change in the integral % = (1/8n) [ E2dV, which must now be extended
over all space, including the volumes of the conductors themselves (since after the
displacement of the charges the field E may not be zero inside the conductors). We write

1
SaU = —afgmdqb-ﬁEdV

1 1
= ——— " V [ -
p J.dlv (pSE)dV + Iq‘) divéE dV.

The first integral vanishes, being equivalent to one over an infinitely remote surface. In the
second integral, we have by (1.8) divéE = 4ndp, so that 5% = [ ¢S5 dV. This integral
vanishes if ¢ is the potential of the true electrostatic field. since then ¢ is constant inside
each conductor, and the integral | 55d V over the volume of each conductor is zero, since
its total charge remains unaltered.

Thus the energy of the actual electrostatic field is a minimumt relative to the energies of
fields which could be produced by any other distribution of the charges on or in the
conductors (Thomson’s theorem).

From this theorem it follows, in particular, that the introduction of an uncharged
conductor into the field of given charges (charged conductors) reduces the total energy of
the field. To prove this, it is sufficient to compare the energy of the actual field resulting
from the introduction of the uncharged conductor with the energy of the fictitious field in
which there are no induced charges on that conductor. The former energy, since it has the
least possible value, is less than the latter energy, which is also the energy of the original
field (since, in the absence of induced charges, the field would penetrate into the conductor,
and remain unaltered). This result can also be formulated thus: an uncharged conductor
remote from a system of given charges is attracted towards the system,

Finally, it can be shown that a conductor (charged or not) brought into an electrostatic
field cannot be in stable equilibrium under electric forces alone. This assertion generalizes
the theorem for a point charge proved at the end of §1, and can be derived by combining the
latter theorem with Thomson’s theorem. We shall not pause to give the derivation in detail.

Formulae (2.9) are useful for calculating the energy of a system of conductors at finite
distances apart. The energy of an uncharged conductor in a uniform external field €, which
may be imagined as due to charges at infinity, requires special consideration. According to
(2.2), this energy is % = Le¢, where e is the remote charge which causes the field, and ¢ is
the potential at this charge due to the conductor. % does not include the energy of the
charge e in its own field, since we are interested only in the energy of the conductor. The
charge on the conductor is zero, but the external field causes it to acquire an electric dipole
moment, which we denote by 22. The potential of the electric dipole field at a large distance
rfromitis¢ = 22 -r/r>. Hence % = e - r/2v3. But —er,r? is just the field € due to the
charge e. Thus

— 1.6, (2.12)

¥ We shall not give here the simple arguments which demonstrate that the extremum is 2 minimum.



§2 The energy of the electrostatic field of conductors 7

Since all the field equations are linear, it is evident that the components of the dipole
moment @ are linear functions of the components of the field €. The coefficients of
proportionality between 2 and € have the dimensions of length cubed, and are therefore
proportional to the volume of the conductor:

2= Vo€, (2.13)

where the coefficients o, depend only on the shape of the body. The quantities Vo, form
a tensor, which may be called the polarizability tensor of the body. This tensor is
symmetrical: o, = 04, a statement which will be proved in §11. Accordingly, the energy
(2.12) is

U= —3Vo, CE,. (2.14)

PROBLEMS

ProBLEM L. Express the mutual capacitance C of two conductors (with charges +e) in terms of the
coefficients C;-

SoLuTION. The mutual capacitance of two conductors is defined as the coefficient C in the relation
e = Cl$,—¢,), and the energy of the system is given in terms of C by % = }¢’/C. Comparing with (2.9),
we obtain

UC =C_l|| -'zc_l|z+c_112

= (Cy; +2C3 +C3)(C,Cp2 —C 5%}

PROBLEM 2. A point charge e is situated at O, near a system of earthed conductors, and induces on them
charges e,. If the charge ¢ were absent, and the ath conductor were at potential ¢',, the remainder being earthed,
the field potential at O would be ¢'o. Express the charges e, in terms of ¢', and ¢'y.

SoLuTION. If charges e, on the conductors give them potentials ¢, and similarly for &, and ¢',, 1t follows
from (2.3) that
z ¢nera = E ¢'¢Ca#¢"b = E(braea'
[ o b a

We apply this relation to two states of the system formed by all the conductors and the charge e (regarding the
latter as a very small conductor). In one state the charge e is present, the charges on the conductors are €,,and their
potentials are zero. In the other state the charge e is zero, and one of the conductors has a potential ¢, # 0. Then
we have ed’, +¢,¢', =0, whence e, = —ed'y/¢’,.

For example, if a charge e is at a distance r from the centre of an earthed conducting sphere with radius a (< r),
then ¢', = ¢',a/r, and the charge induced on the sphere is e, = —ea/r.

As a second example, let us consider a charge e placed between two concentric conducting spheres with radii a
and b, at a distance r from the centre such that a < r < b. If the outer sphere is earthed and the inner one is
charged to potential ¢',, the potential at distance r is

. =1
¢0_¢‘l,’a—l,"b1

Hence the charge induced on the inner sphere by the charge e is e, = — ea(b—r)/r(b —a). Similarly the charge
induced on the outer sphere is e, = —eb(r — a)/r(b —a).

ProsLEM 3. Two conductors, with capacitances C, and C,, are placed at a distance r apart which is large
compared with their dimensions. Determine the coeflicients C.

SoLuTioN. If conductor 1 has a charge e,, and conductor 2 is uncharged, then in the first approximation
d’;_ B /C,, ¢, = e, [r; here we neglect the variation of the field over conductor 2 and its polarization. Thus
C™ ', =1/C,,C',, = l/r, and similarly C"*,, = 1/C,. Hence we findt

C,C C,C C,C
C11=C|(l+_:,z_2)1 C1z=— 1r1' C22=C2(1+_:j2‘)*

t The sn{bsequent terms in the expansion are in general of order (in 1/r) one higher than those given. If,
huwmer_, r is taken as the distance between the “centres of charge” of the two bodies (for spheres, between the
geometrical centres), then the order of the subsequent terms is two higher.
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ProBLEM 4. Determine the capacitance of a ring {radius b) of thin conducting wire of circular cross-section
(radius a < b).

SoLuTioN.  Since the wire 1s thin, the field at the surface of the ring is almost the same as that of charges
distributed along the axis of the wire (for a right cylinder. it would be exactly the same). Hence the potential of the

ring is
e [df
¢ﬂ_2ﬂ;§r’

where r is the distance from a point on the surface of the ring to an element d/ of the axis of the wire. the
integration being over all such elements. We divide the integral into two parts correspondingtor < Aand r > A,
A being a distance such that a < A < b. Then for r < A the segment of the ring concerned may be regarded as

straight, and therefore \

di dl |

r
A>r -A

In the range r > A the thickness of the wire may be neglected, i.e. r may be taken as the distance between two
points on its axis. Then

di
) =3 bdg
EF r I Zbunip | 2\EMnLde
¢o

r=A

where ¢ is the angle subtended at the centre of the ring by the chord r, and the lower limit of integration is such
that 2h sin 3, = A, whence ¢, = A/b. When the two parts of the integral are added, A cancels, and the
capacitance of the ring is '

e nb

~ ¢, log(8bja)’

§3. Methods of solving problems in electrostatics

The general methods of solving Laplace’s equation for given boundary conditions on
certin surfaces are studied in mathematical physics, and we shall not give a detailed
description of them here. We shall merely mention some of the more elementary
procedures and solve various problems of intrinsic interest.t

(1) The method of images. The simplest example of the use of this method is to determine
the field due to a point charge e outside a conducting medium which occupies a half-space.
The principle of the method is to find fictitious point charges which, together with the given
charge or charges, produce a field such that the surface of the conductor is an equipotential
surface. In the case just mentioned, this is achieved by placing a fictitious chargee’ = —eat
a point which is the image of ¢ in the plane which bounds the conducting medium. The
potential of the field due to the charge e and its image € is

¢ = e(%—%), (3.1)

1 The solutions of many more complex problems are given by W, R. Smythe, Static and Dynamic Electricity,
3rd ed., McGraw-Hill, New York, 1968; G. A. Grinberg, Selected Problems in the Mathematical Theory of Electric
and Magnetic Phenomena (Izbrannye voprosy matematicheskoi teorii élektricheskikh i magnitnykh yavlenir),
Moscow, 1948.
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where rand ¢’ are the distances of a point from the charges e and ¢'. On the bounding plane,
r = ¢ and the potential has the constant value zero, so that the necessary boundary
condition is satisfied and (3.1) gives the solution of the problem. It may be noted that the
charge e is attracted to the conductor by a force ¢?/(2a)” (the image force; a is the distance
of the charge from the conductor), and the energy of their interaction is —é?/4a.

The distribution of surface charge induced on the bounding plane by the point charge e
is given by

i (e (3.2)

It is easy to see that the total charge on the plane is {odf = —e, as it should be.

The total charge induced on an originally uncharged insulated conductor by other
charges is, of course, zero. Hence, if in the present case the conducting medium (in reality a
large conductor) is insulated, we must suppose that, besides the charge —e¢,a charge +eis
also induced. which, however, has a vanishingly small density, being distributed over the
large surface of the conductor.

Next, let us consider a more difficult problem., that of the field due to a point charge e
near a spherical conductor. To solve this problem, we use the following result, which can
easily be proved by direct calculation. The potential of the field due to two point charges e
and — ¢, namely ¢ = e/r — €' /r', vanishes on the surface of a sphere whose centre is on the
line joining the charges (but not between them). If the radius of the sphere is R and its
centre is distant { and ! from the two charges, then I/l = (e/€')?, R* = II.

Let us first suppose that the spherical conductor is maintained at a constant potential
¢ = 0, i.e. it is earthed. Then the field outside the sphere due to the point charge e at 4
(Fig. 1), at a distance [ from the centre of the sphere, is the same as the field due to two
charges, namely the given charge e and a fictitious charge — ¢’ at A’ inside the sphere, at a
distance I’ from its centre, where

I' = R%/I, ¢ = eR/l (3.3)
The potential of this field is
e ¢eR
= e 4
¢ r Ir’ (3:4)

rand r being as shown in Fig. 1. A non-zero total charge — ¢ is induced on the surface of
the sphere. The energy of the interaction between the charge and the sphere is

U= —Led/(1-1)= —3*R/(P - R?), (3.5)

and the charge is attracted to the sphere by a force F = —a %/l = —e*IR/(I* — R?)%.
If the total charge on the spherical conductor is kept equal to zero (an insulated
}lncharged sphere), a further fictitious charge must be introduced, such that the total charge
induced on the surface of the sphere is zero, and the potential on that surface is still
constant. This is done by placing a charge + ¢ at the centre of the sphere. The potential of
the required field is then given by the formula
e ¢

e
e e - (3.6)
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Fig, |

The energy of interaction in this case is

| e’R3
@Y =Lee| - = — = — 3.7
2‘?‘"(: r-r) 22(2=R?) G-1)
Finally, if the charge e is at A’ (Fig. 1) in a spherical cavity in a conducting medium, the
field inside the cavity must be the same as the field due to the charge eat A’ and its image at
A outside the sphere, regardless of whether the conductor is earthed or insulated:

(38)

e
¢=2-
r

Ir-

(2) The method of inversion. There is a simple method whereby in some cases a known
solution of one electrostatic problem gives the solution of another problem. This method is
based on the invariance of Laplace’s equation with respect to a certain transformation of
the variables.

In spherical polar coordinates Laplace’s equation has the form
1 ¢ [ ,0¢ 1
r— —— —_— - f_ =
rt &r(r 6r)+r2 aé =0,
where /., denotes the angular part of the Laplacian operator. It is easy to see that this
equation is unaltered in form if the variable r is replaced by a new variable r’ such that
r=R%¥ (39)

(the inversion transformation) and at the same time the unknown function ¢ is replaced by
@’ such that

é = r'd'/R. (3.10)

Here R is some constant having the dimensions of length (the radius of inversion). Thus. if
the function ¢(r) satisfies Laplace’s equation, then so does the function

(1) = RG(R* [r2)/r" (3.11)

Let us assume that we know the electrostatic field due to some system of conductors, all
at the same potential ¢,,, and point charges. The potential ¢(r) is usually defined so as to
vanish at infinity. Here, however, we shall define ¢(r) so that it tends to — ¢, at infinity.
Then ¢ = 0 on the conductors.
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We may now ascertain what problem of electrostatics will be solved by the transformed
function (3.11). First of all, the shapes and relative positions of all the conductors of finite
size will be changed. The boundary condition of constant potential on their surfaces will be
automatically satisfied, since ¢’ = 0 if ¢ = 0. Furthermore, the positions and magnitudes
of all the point charges will be changed. A charge e at a point r, moves to r'y = R%ry/r,”
and takes a value ¢ which can be determined as follows. As r — r,, the potential ¢(r) tends
to infinity as e/|ér|, where or = r—r,. Differentiating the relation r = R*r'/r'?, we
find that the magnitudes of the small differences dr and ér = r —r, are related by
(6r)> = R*(6r')*/r';*. Hence, as r —r,, the function ¢’ tends to infinity as
eR /¥ ,|or| = er'o/R|0r |, corresponding to a charge

¢ =ery/R=eR/r,. (3.12)

Finally, let us examine the behaviour of the function ¢'(r’) near the origin. For r = 0 we
have r— o0 and ¢(r) = —¢,. Hence, as ' — 0, the function ¢’ tends to infinity as
— R¢/r'. This means that there is a charge e, = — R¢, at the point r = 0.

We shall give, for reference, the way in which certain geometrical figures are trans-
formed by inversion. A spherical surface with radius ¢ and centre r, is given by the
equation (r —ry)? = a*. On inversion, this becomes ([R*r'/¥'?]—r)? = a®, which, on
multiplying by r2 and rearranging, can be written (r' —r'y)? = a'?, where

rJO =R Rzl'of(az _rol)’ a = asziﬂz—r.}z!. (3.13]

Thus we have another sphere, with radius ¢ and centre r'y. If the original sphere passes
through the origin (@ = r,), then @ = co. In this case the sphere is transformed into a plane
perpendicular to the vector r, and distant ¥, —a’ = R?/(a+r,) = R*/2a from the origin.

(3) The method of conformal mapping. A field which depends on only two Cartesian co-
ordinates (x and y, say) is said to be two-dimensional. The theory of functions of a complex
variable is a powerful means of solving two-dimensional problems of electrostatics. The
theoretical basis of the method is as follows.

An electrostatic field in a vacuum satisfies two equations: curl E = 0, div E = 0. The first
of these makes it possible to introduce the field potential, defined by E = —grad ¢. The
second equation shows that we can also define a vector potential A of the field, such that
E = curl A. In the two-dimensional case, the vector E lies in the xy-plane, and depends only
on x and y. Accordingly, the vector A can be chosen so that it is perpendicular to the xy-
plane. Then the field components are given in terms of the derivatives of ¢ and A by

E,= —d¢/0x = 0A/dy,  E,— —o¢/dy = —8A/éx. (3.14)

These relations between the derivatives of ¢ and A are. mathematically, just the well-
known Cauchy-Riemann conditions, which express the fact that the complex quantity

w=¢—iA (3.15)

is an analytic function of the complex argument z = x + iy. This means that the function
w(z) has,_ a definite derivative at every point, independent of the direction in which
the derivative is taken. For example. differentiating along the x-axis, we find

C dw/dz = d¢/Ox —i
/ ¢/0x — idA/Ex, or dw/dz = — E,+iE,. (3.16)

The function w is called the complex potential.
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The lines of force are defined by the equation dx/E, = dy/E,. Expressing E, and E, as
derivatives of A, we can write this as (64/0x)dx + (6A4/éy)dy = dA = 0, whence A(x, y)
= constant. Thus the lines on which the imaginary part of the function w(z) is constant are
the lines of force. The lines on which its real part is constant are the equipotential lines. The
orthogonality of these families of lines is ensured by the relations (3.14), according to which

Waoa dpoa_,
0x dx dy dy
Both the real and the imaginary part of an analytic function w(z) satisfy Laplace’s
equation. We could therefore equally well take im w as the field potential. The lines of force
would then be given by re w = constant. Instead of (3.15) we should have w = A + i¢.
The flux of the electric field through any section of an equipotential line is given by the
integral § E,dl = — §(6¢/n)dl, where dl is an element of length of the equipotential line
and n the direction of the normal to it. According to (3.14) we have é¢/én = — @A/él, the
choice of sign denoting that [ is measured to the left when one looks along n. Thus § E,dI
= §(0A/ahdl = A,— A,, where A, and A, are the values of A at the ends of the section. In
particular, since the flux of the electric field through a closed contour is 47me, where e is the
total charge enclosed by the contour (per unit length of conductors perpendicular to the
plane), it follows that
e = (1/4m)AA, (3.17)

where AA is the change in A on passing counterclockwise round the closed equipotential
line.

The simplest example of the complex potential is that of the field of a charged straight
wire passing through the origin and perpendicular to the plane. The field is given by
E, = 2e/r, Eg = 0, where r, § are polar coordinates in the xy-plane, and e is the charge per
unit length of the wire. The corresponding complex potential is

w= —2elogz= —2elogr—2iel. (3.18)

If the cﬁarged wire passes through the point (x,, y,) instead of the origin, the complex
potential is

w= —2elog(z— z), (3.19)

where z, = x, +iy,.

Mathematically, the functional relation w = w(z) constitutes a conformal mapping of the
plane of the complex variable z on the plane of the complex variable w. Let C be the cross-
sectional contour of a conductor in the xy-plane, and ¢, its potential. It is clear from the
above discussion that the problem of determining the field due to this conductor amounts
to finding a function w(z) which maps the contour C in the z-plane on the line w = ¢y,
parallel to the axis of ordinates, in the w-plane. Then re w gives the potential of the field. (If
the function w(z) maps the contour € on a line parallel to the axis of abscissae, then the
potential is im w.)

(4) The wedge problem. We shall give here, for reference, formulae for the field due to a
point charge e placed between two intersecting conducting half-planes. Let the z-axis of a
system of cylindrical polar coordinates (r, 6, z) be along the apex of the wedge, the angle #
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being measured from one of the planes, and let the position of the charge e be (a,y, 0)
(Fig. 2). The angle o between the planes may be either less or greater than =; in the latter
case we have a charge outside a conducting wedge.

The field potential is given by

o

e J { sinh[ﬂr: o) sin_h (nl /o)

3 o /(2ar) ) |cosh(nl/a)—cos[n(6—7)/a] cosh(n{/u)—cos[n(0+ v}/ai}

X de
/(cosh{ —coshgp)’
The potential ¢ = 0 on the surface of the conductors, i.e. for & = 0 or o. This formula was
first given by H. M. Macdonald (1895)%.

In particular, for « = 27 we have a conducting half-plane in the field of a point charge. In
this case the integral in (3.20) can be evaluated explicitly, giving

e f1 eSO 1 —cosi@+n)] ]
¢_TE{RCOS ( cosh iy R %\ coshiy ’

R? = a® 4 r? + 22 — 2ar cos(y —0),
R? = a? 4+ r?* + 22 — 2ar cos(y + 0).

coshy = (a® +r*+2%)/2ar, n > 0. (3.20)

L (3.21)

In the limit as the point (r, 6, z) tends to the position of the charge e, the potential (3.21)
becomes

e T—y
=q¢’ R, where¢p'= — | 1+— . 3.22
G </ ¢ Zna[ +sm3r} (3.22)
The second term is just the Coulomb potential, which becomes infinite as R — 0, while ¢’ is
the change caused by the conductor in the potential at the position of the charge. The
€nergy of the interaction between the charge and the conducting half-plane is

e

@f—lcp'——-i 14+ 323
2T T ana aiﬁ g

t Its derivation is given by lum in Electromagnetism, Bell, London, 1934, p. 79, and by V. V. Batygin and
I. N. Toptygin, Problems in Electrodynamics, 2nd ed., Academic Press, London, 1978. p. 47.
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PROBLEMS

PrOBLEM 1. Determine the field near an uncharged conducting sphere with radius R placed in a uniform
external electric ficld €.

SoLuTion. We write the potential in the form ¢ = ¢y + ¢, where ¢y = —€ -1 is the potential of the
external field and ¢, is the required change in potential due to the sphere. By symmetry, the function ¢, can
depend only on the constant vector €. The only such solution of Laplace’s equation which vanishes at infinity is

¢, = —constant x ¢ - grad(1/r) = constant x € - r/r’,

the origin being taken at the centre of the sphere. On the surface of the sphere ¢ must be constant, and so the
constant in ¢, is R, whence

3
&= —(?rcmﬁ(l-—g—),

where 0 is the angle between € and r. The distribution of charge on the surface of the sphere is given by
o= —(1/4n)[d¢/r], - g = (3C/4n) cosD.

The total charge e = 0. The dipole moment of the sphere is most easily found by comparing ¢, with the potential
@ - r/r? of an electric dipole field, whence 2 = R3¢,

ProsLEM 2. The same as Problem 1, but for an infinite cylinder in a uniform transverse field.

SoLuTioN. We use polar coordinates in a plane perpendicular to the axis of the cylinder. The solution of the
two-dimensional Laplace’s equation which depends only on a constant vector is

¢, = constant x € - grad(log r) = constant x € - ¢/r’.

Adding ¢, = — € - r and putting the constant equal to R?, we have

Rz
¢= —{s-rmse(l-- 2)

r

The surface charge density is & = (&/2m)cos 6. The dipole moment per unit length of the cylinder can be found by
comparing ¢ with the potential of a two-dimensional dipole field, namely 24° - grad(logr) = 242 - r/r?, so that
P =4iR2E.

PrOBLEM 3. Determine the field near a wedge-shaped projection on a conductor.

SoLuTion. We take polar coordinates r, 6 in a plane perpendicular to the apex of the wedge, the origin being
at the vertex of the angle 0 of the wedge (Fig. 3). The angle 0 is measured from one face of the wedge, the region
outside the conductor being 0 < 0 < 21— 0. Near the apex of the wedge the potential can be expanded in powers
of r, and we shall be interested in the first term of the expansion (after the constant term), which contains the
iowest power of r. The solutions of the two-dimensional Laplace’s equation which are proportional to r” are
r" cos nfland " sin nf. The solution having the smallest n which satisfies the condition ¢ = constant for ff = Oand
0 = 2n —0, (i.e. on the surface of the conductor) is

¢ = constant x r* sin nf, n=n/(2m—0g)

The field varies as "~ '. For 6 < x (n < 1), therefore, the field becomes infinite at the apex of the wedge. In
particular, for a very sharp wedge (0, < 1,n = 4) E increases as r~ Y as r — 0. Near a wedge-shaped concavity ina
conductor (f, > m, n > 1) the field tends to zero.

5o

Fic. 3
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The value of the constant can be determined only by solving the problem for the whole field. For example, fora
very sharp wedge in the field of a point charge e, the passage to the limit of small r in (3.21) confirms that

¢ = constant x /r sin}6),

the constant being [4e.f a/m(a®+z%)]sinly. In this case, “near the wedge” means that r < 4, under which
condition the #2¢/8z2 term in Laplace’s equation may be neglected.

PrOBLEM 4. Determine the field near the end of a sharp conical point on the surface of a conductor.

SoLuTion. We take spherical polar coordinates, with-the origin at the vertex of the cone and the polar axis
along the axis of the cone. Let the angle of the cone be 26, < 1, so that the region outside the conductor
corresponds to polar angles in the range 6, < 0 < n. As in Problem 3, we seek a solution for the variable part of
the potential, which is symmetrical about the axis, in the form

¢ =rf(0), (n

with the smallest possible value of n. Laplace’s equation
1a/f, d¢ 1 af _é¢
- . I —Cu) |
v a.-«(" 3r)+ 2 sinﬁ'ﬁﬂ(sme ae) 0.

1 d/f.  _df
—_— = 0— nf=0.
sinﬁdﬂ(sm db‘)+"("+ =0 2)
The condition of constant potential on the surface of the cone means that we must have f(6;) = 0.

For small 0, we seek a solution by assuming that n < 1 and f(0) is of the form constant x [1 +y/(6) J, where
¥ < 1. (For 0, — 0, i.c. an infinitely sharp point, we should expect-that ¢ tends to a constant almost everywhere
near the cone.) The equation for ¢ is

1
d (sinﬂd—w) =—n (3)

sinf dé do
The solution having no singularities outside the cone (in particular, at 0 = x) is Y(6) = 2nlog sin30.

For 6 ~ 6, < 1, i is no longer small. Nevertheless, this expression remains valid, since the second lerm in
equation (2) may be neglected because 6 is small. To determine the constant n in the first approximation we must
require that the function f = 1 + vanish for 6 = ;. Thust n = —1/2log ;. The field increases to infinity as
r~ " in the neighbourhood of the vertex, i.e. essentially as 1/r.

after substitution of (1), gives

PrOBLEM 5. The same as Problem 4, but for a sharp conical depression on the surface of a conductor.

SoLuTioN. The region outside the conductor now corresponds to the range 0 < 0 < flg. As in Problem 4, we
seek ¢ in the form (1), but now n > 1. Since 0 < | for all points in the field, equation (2) becomes

Ld [ df\, ,

This is Bessel's equation, and the solution having no singularities in the field is J o(nf). The value of n is determined
as the smallest root of the equation J4(nfg) = 0, whence n = 2.4/0,,.

ProBLEM 6. Determine the energy of the attraction between an electric dipole and a plane conducting
surface.

SoLuTionN. We take the x-axis perpendicular to the surface of the conductor, and passing through the dipole;
let the dipole moment vector #? lie in the xy-plane. The image of the dipole is at the point —x and has a moment
P, = P, #, = — P, Therequired energy of attraction is the energy of the interaction between the dipole and
its image, and is % = — (22,2 + 2,%)/8x".

ProsLEM 7. Determine the mutual capacitance per unit length of two parallel infinite conducting cylinders
with radii ¢ and b, their axes being at a distance ¢ apart.

t A more exact formula n = 1/2 log (2/0,), containing a coefficient in the (large) logarithm, cannot really be
obtained by the simple method given here. A more rigorous calculation, however, leads, as it happens, to this same
formula.

t The corresponding problem for two spheres cannot be solved in closed form. The difference arises because,
in the field of two parallel wires bearing equal and opposite charges, all the equipotential surfaces are circular
cylinders, whereas in the field of two equal and opposite point charges the equipotential surfaces are not spheres.
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Sorution. The field due to the two cylinders is the same as that which would be produced (in the region
outside the cylinders) by two charged wires passing through certain points 4 and A’ (Fig. 4). The wires have
charges + e per unit length, equal to the charges on the cylinders, and the points 4 and A’ lie on 00’ in such a way
that the surfaces of the cylinders are equipotential surfaces. For this to be so, the distances 04 and 0’4" must be
such that 04 < 0A' = ¢®, O'A' - O'A = b, ie. d,(c —d,) = &*, d,(c —d,) = b*. Then, for each cylinder, the ratio
r/r" of the distances from 4 and A’ is constant. On cylinder 1,r/r' = a/0A" = a/(c —d,) = d, /a,and on cylinder 2,
r'/r=d,/b. Accordingly, the potentials of the cylinders are ¢, = —2elog(r/r')= —2elog(d,/a), ¢,
= 2elog(d,/b), ¢,— ¢, = 2elog(d,d,/ab). Hence we find the required mutual capacitance C = ¢/(¢d, — ¢, ):

1/C = 2log(d,d,/ab) = 2 cosh™ ! [(c* — a* — b*)/2ab].

In particular, for a cylinder with radius a at a distance k(> a) from a conducting plane, we put ¢ = b+ h and
take the limit as b — oo, obtaining 1/C = 2 cosh ™' (h/a).

If two hollow cylinders are placed one inside the other (c < b —a), there is no field outside, while the field
between the cylinders is the same as that due to two wires with charges + ¢ passing through 4 and A’ (Fig. 5). The
same method gives

1/C = 2 cosh™ ! [(a* + b? — c?)/2ab .

F1G. 5

PrOBLEM 8. The boundary of a conductor isan infinite plane witha hemispherical projection. Determine the
charge distribution on the surface.

SoLuTion. In the field determined in Problem 1, whose potential is

R3
¢ = constant % z(l__,.s_)~
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the plane z = 0 with a projection r = R is an equipotential surface, on which ¢ = 0. Hence it can be the surface of
a conductor, and the above formula gives the field outside the conductor. The charge distribution on the plane

part of the surface is given by
Le] (%)
= ——]— =g —_——
¢ 4nl oz | _, 0 )

we have taken the constant in ¢ as — 4na,, so that o, is the charge density far from the projection. On the surface
of the projection we have
1 [5¢ :| . z
=——]=—= = 30y—.
’ An|dr | _p °R

PrOBLEM 9. Determine the dipole moment of a thin conducting cylindrical rod, with length 2! and radius
a < [, in an electric field € parallel to its axis.

SoLuTion. Let 7(z) be the charge per unit length induced on the surface of the rod, and z the coordinate along
the axis of the rod. measured from its midpoint. The condition of constant potential on the surface of the

conductor is
r I

Gz _!I .[r{z")dz d¢ —0
2n R
0 -
R? = (z' —z)* +4a’ sin?1 ¢,

where ¢ is the angle between planes passing through the axis of the cylinder and through two points on its surface
at a distance R apart. We divide the integral into two parts, putting 7(z') = 7(z)+ [z(z’) —t(z) ]. Since I > a, we
have for points not too near the ends of the rod

in
1(2) { {dz'd¢ _7(2) I - a2 -z
b j.j. R—'-' = g I lﬂg = ‘—d¢ = T(Z) |Og - 4
1]

a*sin? 3¢ a’

using the result that {_ logsin ¢ d¢ = —nlog 2. In the integral which contains the difference 7(z') — 7(z), we can
neglect the a® term in R. since it no longer causes the integral to diverge. Thus

I

Cz = 1(z)logd(l? —z%)/a® + Jlﬂ—ﬂz}

- dz'.
|z’ —z|

-1
The quantity 7 is almost proportional to z, and in this approximation the integral gives — 27(z), the result being
)= ———— .
@) log [4(FF — 22],1"{12 1-2

This expression is invalid near the ends of the rod. but in calculating the dipole moment that region is
ummportant. In the above approximation we have

I [

§ & z2 z?
P = | tz)zdz=— |{2——log{1-=
J 1(z)zdz 7 j{z 3L c-g( F)}dz
-1 o
_(EI3{I+t(4 log2
BET A AC I IR
where L = log(2l/a)— 1 is large. or (with the same accuracy)
3
- NN
3log(dlfay—7
ProBLEM 10. Determine the capacitance of a hollow conducting cap of a sphere.

SOLU'nOh_r. We take the origin O at a point on the rim of the cap (Fig. 6), and carry out the inversion
transformation r = I »', where [ is the diameter of the cap. The cap then becomes the half-plane shown by the
Kiashed line in Fig. 6, which is perpendicular to the radius A0 of the cap and passes through the point B on its rim.
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The angle y = n — 0, where 20 is the angle subtended by the diameter of the cap at the centre of the sphere.
If the charge on the cap is e and its potential is taken as zero, then as r — oo the potential o= —gt+er
Accordingly, in the transformed problem, as v’ — 0 the potential is ¢' — I¢/r' = — Iy /r' + e/l, where the first
term corresponds to a charge ¢ = — ¢, at the origin.
According to formula (3.22) we have
, € € #
¢ r 2::1(1 N sinﬂ)

(the potential near a charge ¢’ at a distance I from the edge of a conducting half-plane at zero potential)
Comparing the two expressions, we have for the required capacitance C = e/d,

C= : (t +i)=i[sinﬁ+ﬂl

2n sinf@
where R is the radius of the cap

PROBLEM 11. Determine the correction due to edge effects on the value C = S/4nd for the capacitance of a
plane capacitor (S being the area of the plates, and d < /S the distance between them).

SoLuTION. Since the plates have free edges. the distribution of charge over them is not uniform. To determine
the required correction in a first approximation, we consider points which are at distances x from the edge such
that d < x < ,/S. For example. taking the upper layer (at potential ¢ = 1¢,, Fig. 7a) and neglecting its distance
1d from the midplane (the equipotential surface ¢ = 0), we have the problem of the field near the boundary
between two parts of a plane having different potentials {Fig. 7b). The solution is elementaryt. and the excess
charge density (relative to the value of ¢ far from the edge) is Ac = E, /dn = b,/8n2x, so that the total excess
charge is L [Acdx = {%L,"Bﬁz}logl\/ S/d), where L is the perimeter of the plate. In calculating the
logarithmically divergent integral, we have taken the limits as those of the regiond € x < /' S. Hence we find the
capacitance

s L 'S
_ I il
And  Bn? o8 d
@aole
(o) —dI ——————————— &=
$p=dy 12
&
) p 7 |#0
Fic. 7

e

+ See §23. In formula (23.2) for the potential we must here put ¢, = 1o a=m
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A more exact calculation (determining the coefficient in the argument of the logarithm) demands considerably
more elaborate methods, and the result depends the shape of the plates. If these are circular, with radius R, we
obtain Kirchhoff"s formula

§4. A conducting ellipsoid

The problem of the field of a charged conducting ellipsoid and that of an ellipsoid in a
uniform external field are solved by the use of ellipsoidal coordinates. These are related to
Cartesian coordinates by the equation

xz yl 22

+ +
a2+u b*+u c*+u

=1 (a>b=>c) (4.1)

This equation, a cubic in u, has three different real roots &, , {, which lie in the following
ranges:
Ez-c% —-c2zp=-b, -P=(>-a" (4.2)

These three roots are the ellipsoidal coordinates of the point x, y, z. Their geometrical
significance is seen from the fact that the surfaces of constant ¢, y and { are respectively
ellipsoids and hyperboloids of one and two sheets, all confocal with the ellipsoid

x2/a® +y? b2+ 22 /2 = 1. (4.3)

One surface of each of the three families passes through each point in space, and the
three surfaces are orthogonal. The formulae for transformation from ellipsoidal to

Cartesian coordinates are given by solving three simultaneous equations of the type (4.1),

and are h

_ 4 [[€+a)m+a)C+a*)
i :t\/ (bz—ﬂzjtfz—-ﬂlj _‘

> (4.4)

yo g [P +BAC b
—_ (cz_bz)(az _bZ) —’

- +\/FE_+¢’)(nj—c’)(ﬁcz)]
(@*—cH)(b* - ?) )
The element of length in ellipsoidal coordinates is
dI2 = h,2dE2 + hy2dn? + hy2dL?,
hy = VIE-ME-DV2R,, hy = /101~D—O)1/2R,,

hy= /[C-OC-MY2R, R = (u+a)u+bu-t o), @)
u =S 6" H’ c' J
rdingly, Laplace’s equation in these coordinates is
4
A= E—nC—0u=0

é o 0 (3]
x [(r: —axga—é(ﬂggy ¢- cJR.,E(R%) =R (Rc%%)] —0. (46)
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If two of the semiaxes a, b, ¢ become equal, the system of ellipsoidal coordinates
degenerates. Let @ = b > ¢. Then the cubic equation (4.1) becomes a quadratic,

2 2

p z ,
+ =1 2=x2+y%, 4.7
at+u A+u S ¥ (4.7

with two roots whose values li¢ in the ranges & > —¢2, —¢? =5 > —a?. The coordinate
surfaces of constant ¢ and 5 become respectively confocal oblate spheroids and confocal
hyperboloids of revolution of one sheet (Fig. 8). As the third coordinate we can take the
polar angle ¢ in the xy-plane (x = pcos¢, y = psing). For a = b the ellipsoidal
coordinate { degenerates to a constant. — a”. Its relation to the angle ¢ is given by the way
in which it tends to —a? as b tends to a. namely

cosd =/ [(@®+{)/(@®—b?)] as b-a (4.8)

Fic. &

This is easily seen from (4.4) or directly from (4.1). The relation between the coordinates
z, p and &, n is given, according to (4.4), by

. \/ [(_5 +:E ;Fg?—)]’ . \/[(_fi T:)Eji}] 49)

The coordinates &, 1, ¢ are called oblate spheroidal coordinates.t
Similarly, for a > b = ¢ ellipsoidal coordinates become prolate spheroidal coordinates.
Two coordinates & and ( are roots of the equation

2

x? P 2 2.4 2 4.10)
al+u+b1+u=l’ P° =Y uhy s

where & > —b?, —b? = { > —a’. The surfaces of constant £ and { are prolate spheroids

1- v;e here define spheroidal coordinates to be the limit of ellipsoidal coordinates. Other definitions are used in
the literature, but are easily related to ours.
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and hyperboloids of revolution of two sheets (Fig. 9). The coordinate n degenerates to a
constant, — b2, for ¢ —» b, and we have

cos¢ = / [(b? +n)/(b* —c?)], 4.11)

where ¢ 1s the polar angle in the yz-plane. The relation between the coordinates x, p and
£, L is given by

E+a*) +a® E+b*)C+b?
X = i\/[ . a2 i{b_z'ﬂ J]s pP= \/[ bl___az__:l:’ (4.12)

In a system of oblate spheroidal coordinates the foci of the spheroids and hyperboloids
lie on a circle of radius / (a? — ¢?) in the xy-plane; in Fig. 8 A A’ is a diameter of this circle.
Let us draw a plane passing through the z-axis and some point P. It intersects the focal
circle at two points; let their distances from P be r,, r,. If the coordinates of P are p, z, then

r = [p_\/{az_cz}]z_l_zz, r? = [p+\/{az_c2}]2+zz_

The spheroidal coordinates ¢, n are given in terms of r , r, by
é = %(rl +r2)2_ﬂ21 ﬂ =i(r2_r1]2_ﬂ2. [4.13]

p Ina SYStt?m of prc-_late spheroidal coordinates the foci are the points x = + \/ (a? —b?)
% the x-axis (the points 4, 4’ in Fig. 9). I r, and r, are the distances of these foci from P,

then
r?=p’+[x—/(a®-b?)P, r=p7+ [x+\/{ﬂ2—bz)]2,
the spheroidal coordinates £,  are given in terms of r 1, 2 by the same formulae (4.13),
th £ in place of .
Us now turn to the problem of the field of a charged ellipsoid whose surface is given
the equation (4.3). In ellipsoidal coordinates this is the surface & = 0. It is therefore clear

L, if we seek t}'m field potential as a function of & only, all the ellipsoidal surfaces
Constant, and in particular the surface of the conductor, will be equipotential surfaces.
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Laplace’s equation (4.6) then becomes
d do\
[
b@=4| g

4

The upper limit of integration is taken so that the field is zero at infinity. The constant
A is most simply determined from the condition that at large distances r the field must
become a Coulomb field and ¢ = e/r, where € is the total charge on the conductor. When
r— o0, & — o0, and & = r?, as we see from equation (4.1) with u = £. For large ¢ we have
R,= ¢ and ¢ = 2A/,/E = 2A/r. Hence 24 = e, and therefore

whence

oo
-

qb{{):lej-g : (4.14)

3

x| e

4

The integral is an elliptic integral of the first kind. The surface of the conductor
corresponds to ¢ = 0, and so the capacitance of the conductor is given by

oo

1, [ de
= jﬁ; (4.15)

[S1E

The distribution of charge on the surface of the ellipsoid is determined by the normal
derivative of the potential:

1 e 1

o= 1|2 ___[Ld_ﬂ‘i] R
" 4n| én §=0_‘ 4| h, d¢ ¢,0_41T\,’('?O.

xz yz 2 UC
FTp e e
Hence ;
e (x_ y  ZaS 416
“fﬁﬁ{?+?+a) £

For a spheroid the integrals (4.14), (4.15) degenerate and can be express_.ed .in terms of
elementary functions. For a prolate sphereid (a > b = ¢) the field potential is

a? —b?

€ -1
b = _\7(_112—_15; tanh Fral’ 4.17)

and the capacitance is -
c = N (@b (4.18)

~ cosh '(a/b)’
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For an oblate spheroid (a = b > ¢) we have

2__ .2 2 B
¢ SN AT s} (4.19)

¢ = \/(az_cz} tan E+c?’ cos Y(c/a)

In particular, for a circular disc (@ = b, ¢ = 0)
C =2a/n. (4.20)

Let us now consider the problem of an uncharged conducting ellipsoid in a uniform
external electric field €. Without loss of generality we may take the field € to be along one
of the axes of the ellipsoid. In any other case this field may be resolved into components
along the three axes, and the resultant field is a superposition of those arising from each
component separately.

The potential of a uniform field € along the x-axis (the a-axis of the ellipsoid) is, in
ellipsoidal coordinates,

bo=—Cx = — C /[ +a)n+a®)(C +a*)/(b* —a*)(c* —a?)]. (4.21)

We write the field potential outside the ellipsoid as ¢ = ¢, + ¢’, where ¢’ gives the required
perturbation of the external field by the ellipsoid, and seek ¢’ in the form

¢' = ¢oF (%) (4.22)

In this function the factors depending on # and { are the same as in ¢,,; this enables us to

satisfy the boundary condition at ¢ = 0 for arbitrary »,{ (1.e. on the surface of the

ellipsoid). Substituting (4.22) in Laplace’s equation (4.6), we obtain for F (£) the equation
d*F dF d

d—gz"l'a& d—élog [Rg(?,‘+a"]] =0.

solution of this equation is F = constant, and the other is

d¢

FQ)=A| ———.
) (¢ +a”)R;
&

€ upper limit of integration is taken so that ¢’ — 0 for £ — oo. The integral is an elliptic

[ of the second kind.

W€ must have ¢ = constant on the surface of the ellipsoid. For this condition to be
sfied with ¢ = 0 and arbitrary 5, {, the constant value of ¢ must be zero. Determining

Coefficient A in F (£) so that F (0) = — 1, we obtain the following final expression for the
Potential near the ellipsoid:

(4.23)

o a

B A ds ds
- """{’ f (5+ﬂ2)Rs/ f (s+a2>Rs} | <
4 i}

us find the form of the potential ¢’ at large distances r from the ellipsoid. For
€ r, the coordinate € is large, and & = 2, as follows at once from equation (4.1). Hence

o

ds ~ [ ds 2
(s+a®)R,~ | §57  3¥
(5

r?
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and the potential ¢’ = Ex V' /4znr® where V' = 4nabc is the volume of the ellipsoid and
n® n» n'? are defined by

o [ s] ™
[ ds ds
® — Lghe | ——— o) — 1 7
" 24 Cﬁ (s+a*)R,’ . zabcj (s+bHR,’
1] [1]
. Sy (4.25)
[ ds
@ =Llabe | — .
" 240¢ (s+c*)R,
L] s

The expression for ¢’ is, as we should expect, the potential of an electric dipole:
¢’ = x2P,/r?, where the dipole moment of the ellipsoid is

P = € _V/dan™, (4.26)

Analogous expressions give the dipole moment when the field € is along the y or z axis.
The positive constants n®, n, n depend only on the shape of the ellipsoid, and not on
its volume; they are called the depolarizing factors. If the coordinate axes do not
necessarily coincide with those of the ellipsoid, formula (4.26) must be written in the tensor

form
(4 Vn, 2, = €, 4.27)

The quantities n™®, i, n® are the principal values of the symmetrical tensor n,, of rank
two. Comparison with the definition (2.13) shows that o = n™ ', /4n is the polarizability
tensor of the conducting ellipsoid.

In the general case of arbitrary a, b. ¢. it follows from the definitions of n*?, n®, n® that

n® <n®<n® if a>b>c (4.28)

Further, by adding the integrals for n®, n®, n® and using as the variable of integration
u=R>?, we find

[+ &

du

{abc)?

whence
N 4y 4@ = 1, (4.29)

The sum of the three depolarizing factors is thus unity; in tensor notation, n; = 1. Since
these coefficients are positive, none can exceed unity.
For a sphere (a = b = ¢) it is evident from symmetry that

n® = =n =1, (4.30)

For a cylinder with its axis in the x-direction (a — o), we havel

A =0, n»=n®=14 (4.31)
_-1_' The ;c coefficients oceur in problems concerning a dielectric ellipsoid in an exte:g‘nal electr!'c ﬁe_!d, ora
magnetic ellipsoid in a magnetic field (§8). Tables and graphs of the coefficients for spheroids and ellipsoids have
been given by E. C. Stoner {Philosophical Magazine [T] 36, 803. 1945)and J. A. Osborn (Physical Review 67,351,
1945). ‘
1 These values for a sphere and a cylinder agree, of course, with those found 1n §3. Problems 1 and 2.
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The limiting case a, b — oc (a flat plate) corresponds to the obvious values
n* = p® = Q, n? =1
The elliptic integrals (4.25) can be expressed in terms of elementary functions if the
ellipsoid is a spheroid. For a prolate spheroid (a > b = ¢) of eccentricity e = \/ (1—b?%/a?),

1—e?( 1
S QE:‘ (1031_: - 26), n = n® = }(1 —n®), 4.32)

If the spheroid is nearly spherical (e < 1) we have approximately
N =1 202 g0 1 12 (4.33)
For an oblate spheroid (a = b > ()

1+¢?
n® = ;:!_e_ (e—tan™'e), "™ =n" = (1 —n"), (4.34)

where e = /(a%/c2 — 1). If e < 1, then

n'® = 1 +-izsez, ¥ = = 1_te? (4.35)

PROBLEMS

PRI._)BLEM I. Find the field of a charged conducting circular disc with radius a, expressing it in cylindrical
coordinates. Find the distribution of charge on the disc.

SOLUTION. The charge distribution is obtained by taking the limit of formula (4.16) as ¢ — 0, z — 0, with
zjc = \/{l —r?/a®) (where r* = x* + y?), in accordance with (4.3). This gives

e AN
e l— —_
’ 4rraz( az)

The field Potential is given in all space by formula (4.19), where we put ¢ = 0 and express £ in terms of r and z by
means of equation 4.1y withc =0, u=¢ a = b:

P g _1[ 2a?
= —1lan = o= || o
a rz+22—a"‘+J[(r2+22—a2)"+4a122}

(FNE';I the edge of the disc, we replace r and z by coordinates p and @ such that z = psinfl, r = a—p cosf
18 10, p. 26; p < a), obtaining
_€ 2p .
¢'=&(]z'ﬂ.—\/_a Sln%ﬂ),

™ @grecment with the general result derived in §3, Problem 3.
OBLEM 2. Determine the electric quadrupole moment of a charged ellipsoid.

'-UT[:JUN- The quadrupole moment tensor of a charged conductor is defined as D, = e{33-c;;,‘ —r?5 )» where
tal charge, and the bar denotes an average such as

1
XXy = § x;x,0df.

ident that the axes of the ellipsoid are also the principal axes of the tensor D,,. Using formula (4.16) for o,
the element of surface of the ellipsoid the expression

dxd dxd x? oy 22
By ]

¥, zjc? e
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where v is a unit vector normal to the surface, we obtain

7 __ ¢ — 1.2
e Izdxdy i

4

the integration over x and y covers twice the area of the cross-section of the ellipsoid by the x)-plane. Thus
D, =1le(a’—b*—c?), D, =1e@b?—c*—a?), D, =3ie(2c’—a’—b?).

PrOBLEM 3. Determine the distribution of charge on the surface of an uncharged conducting ellipsoid placed
in a uniform external field.

SoLuTION. According to formula (1.9) we have

- AR
o= “anlon oo™ " Lanh, 2 o

by (4.5) the element of length along the normal to the surface of the ellipsoid is h, d¢. Substituting (4.24) and using

the fact that
[l ﬂx] [ = ]
V=] —— = — .
. hy @€ ds-0 2a*hy s

we have o = Ev_/4nn'™ when the external field is in the x-direction. When the direction of the external field is
arbitrary this becomes

1 ~ 1] v, v v,
= an'" €y = E[}Jﬁ] €, +},T:} €+ e E=]‘
PROBLEM 4. The same as Problem 3, but for a plane circular disc with radius a lying parallel to the field.t
Determine also the dipole moment of the disc.

SOLUTION. Let us regard the disc as the limit of a spheroid when the semiaxis ¢ tends to zero. The
depolarizing factor along this axis (the z-axis) tends to I, and those along the x and y axes tend to zero: 7t
= 1 nc/2a,n™ = n = nc/4a, by (4.34). The component v, of the unit vector along the normal to the surface of
the spheroid tends to zero:

Hence the charge density is

where p and ¢ are polar coordinates in the plane of the disc.

+ The problem for a disc lying perpendicular to the field is trivial: the field remains uniform in all space, and
charges @ = =+ € /4n are induced on the two sides of the disc.
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The dipole moment of the disc is obtained from formula (4.26), and is 2 = 44> /3. Thus it is proportional to
3 and not to the “volume” a’c of the disc.

propLEM 5. Determine the field potential outside an uncharged conducting spheroid with its axis of
parallel to a uniform external field.

LuTiON. For a prolate spheroid (a > b = ¢, with the field € in the x-direction) we find, on calculating the
pral in formula (4.24),

¢ = —{Ex{

| tanh ™ /(@ ~ B/ & +a) |- J[{a2~b’)ftf+a’)l}
tanh =1 /(1 —b¥a?)— /(1 —b?/a?) ‘

coordinate £ is related to x and p = .\/{yz+zz“.,).
o’ x
b*+¢ +a=+§ B

0 < & < o in the space outside the ellipsoid. , ,
an oblate spheroid (a = b > ¢) the field € is along the z-axis. We must therefore replace s + ¢® by s + ¢? and
= — &z in the integrals in (4.24). Then

¢= —EZ{I —‘/“"2_CZW:+Czll‘tﬂ“'1\/[laz—czmﬁ+c’)]}
J@E—1)—an J@E—1)
the coordinate ¢ is related to z and p = /(x> + )?) by

2

Z
:;4__._ = 1.
a?+ & A+E

2

2

6. The same as Problem 5, but with the axis of symmetry perpendicular to the external field.
ON. For a prolate spheroid (with the field along the z-axis)
_ V(€ +aE+bY)— (@ —b*)anh '/ [(@® ~bY)/(E +a)] }
afb? — (@*—b*)~ttanh ™! /(1 — b*/a?)
te spheroid (with the field along the x-axis)

_@ = Hant /@ - ) (E+A) - JE+A)E+d) }
(@ — )~ tan~ ' /(a*/c? — 1) — c/a? '

¢ = —Ez{l

¢ = —(Ex{l

7. A uniform field € in the z-direction (in the half-space z < 0) is bounded by an earthed
Plane at z = 0, containing a circular aperture. Determine the field and charge distribution on the

- The xy-plane with a circular aperture of radius a and centre at the origin may be regarded as the
hyperboloids of revolution of one sheet

pZ 22

—Z =1,
a*—|nl ||
hyperboloids are one of the families of coordinate surfaces in a system of oblate sphercidal

ith ¢ = 0. The Cartesian coordinate z, according to (4.9), is given in terms of ¢ and y by
and /¢ must be taken with the positive and negative sign in the upper and lower half-space

Pt =x1y2,

a solution in the form ¢ = — €z F(£). For the function F (£) we obtain

h dé i a —y @ |
F(£) = constant x Im = constant x [75 —tan ! 75].

i_ntegratitm is put equal to zero in accordance with the condition ¢=0for z— + o, je.
inverse tangent of a negative quantity must be taken as tan™ ' (a/~ /&) = n—tan ! (a//¢),
* {a,f\/ £) since the potential would then be discontinuous at the aperture (£ = 0). The constant
sothat, forz - — oo {i.e.fm\/!f-—» — ocandtan ! (n,r'.\/f)-—u:}.qb — — &z and so we finally
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¢ = -%z[tan 'i - :;‘:]= —E:‘\/lm[i: tan ™" j& - t].

On the conducting plane n = 0 and the potential is zero, as it should be.
At large distances r = J (z% + p*) from the aperture we have { = r2, and the potential (in the upper half-
space) is

have

Ca? /-
¢ = 3—21\’—6- T €a’z/3nr?,

i.e. we have a dipole field, the moment of the dipole being & = Ea’/3n.
The field decreases as 1,r°, and therefore the flux of the field through an infinitely remote surface (in the half-

space z > 0) is zero. This means that all the lines of force passing through the aperture reach the upper side of the
conducting plane.
The distribution of charge on the conducting plane is given by

< 1 5¢] e ¢ . G R a

o=+— — - ————— =t - s

dn| @z §,_0 anJeoS-n ~an’ an JE J<¢

where the upper and lower signs refer to the upper and lower sides of the plane respectively. According to the

formula

2 2

A

PR
which relates & to p, z, we have /& = + \/(p* — a®) on the plane z = 0. Thus the charge distribution on the lower
side of the conducting plane is given by the formula

o= ¢ ( in! “ 4 ad )
TR T -/
As p — oo we have ¢ = — €/4n, as we should expect. On the upper side
7T T\ Jp —ad o)
The total induced charge on the upper side of the plane is finite:
e = jmlﬂp-dp = —4a*€.

PROBLEM 8. The same as Problem 7, but for a plane with a slit of widtb 2b.
SOLUTION. The xy-plane with a slit along the x-axis may be regarded as the limit of the hyperbolic cylinders
y__7
Bl Il

as |5| — 0. These hyperbolic cylinders are one of the families of coordinate surfaces in a system of ellipsoidal
coordinates with a — ac, ¢ — 0. The Cartesian coordinate z = J(Elnlyb.

As in Problem 7, we seek a solution in the form ¢ = — @z F(£). obtaining for the function F
F tant x I LA
= ¢onsta &i\.f{‘:.'_b]].

Here the coefficient and the constant of integration are determined by the conditions that F =0 and 1 fof
7 — + oo and — oo Tespectively (i€ for .,/C - +oc and — oo}, and the final result is

€ -
¢ = 5, [VE+P)FVEW/ I,

where we now take € positive and the two signs F cmrmpondtomemgionszbﬂandzcﬂ. ]
At large distances from the slit we have in the upper halfspace £ = y?>4z* =r? and the potential 15



§5 The forces on a conductor 29

¢ = b€ /(Inl/¢) = 3 €b%z/r? ie. the field of a two-dimensional dipole of moment §€b” per unit length of the
glit (see the formula in §3, Problem 2).
The distribution of charge on the conducting plane is given by

o E( LI l)
B 8n A", (J"z o 2] .
The total induced charge on the upper side of the plane, per unit length of the slit, is

w@

€= ZJ ody = —Cb/dn.
b
Near the edge of the slit we can take £ — 0 in the expression for ¢(¢, %), obtaining

n = —2bp sin*46,
where p and @ are polar coordinates in the yz-plane, measured from the slit edge (y = b+ p cos 6, z = p sin 6).
Then
¢ = €, /(3bp)sin 10,
in agreement with the result in §3, Problem 3, for the case 6, < 1.

§5. The forces on a conductor

In an electric field certain forces act on the surface of a conductor. These forces are easily
calculated as follows.

 The momentum flux density inan electric field in a vacuum is given by the Maxwell stress
tensor:t

1
Oy = an (%Ezaik — E,E,).

The force on an element df of the surface of the body is just the flux of momentum through
it from outside, and is therefore o,,df, = o,,n,df (the sign is changed because the normal
VECor n is outwards and not inwards). The quantity o, is thus the force F, per unit area
of the surface. Since, at the surface of a conductor, the field E has no tangential component,
we obtain

F, = nE?/8nr, (5.1)
OF, introducing the surface charge density o.

F, = 2no’n = LoE.

€ therefore conclude that a “negative pressure” acts on the surface of a conductor; it is
_ d_al{mg the outward normal to the surface, and its magnitude is equal to the energy
OSItY 1n the field.

The total force F on the conductor is obtained by integrating the force (5.1) over the
le EUIfﬂceI;

F = § (E*/8nm)df. (5.2)

See F lelds, §33. The stress tensor o, is usually defined with the opposite sign to the momentum flux density

T. This definition has been used elsewhere in the Course of Theoretical Physics, but by an oversight the

ton of 6, in Fields, §33, had the other sign.

In ﬂle‘]}resentcase we are applying this formula to a surface which does not precisely coincide with that of the
but is some distance away, in order to exclude the effect of the field structure near the surface (see §1).



30 Electrostatics of Conductors

Usually, however, it is more convenient to calculate this quantity from the general laws of
mechanics, by differentiating the energy %. The force, in the direction of a coordinate g,
acting on a conductor is —d%/0q, where the derivative signifies the rate of change of
energy when the body is translated in the g-direction. The energy must be expressed in
terms of the charges on the conductors (which give rise to the field), and the differentiation
is performed with the charges constant. Denoting this by the suffix e, we write

Fq = — (6 @{/:’;‘q)e (53}
Similarly, the projection, on any axis, of the total moment of the forces on the conductor is
K= —@u/oy),., (5.4)

where V is the angle of rotation of the body about that axis.

If, however, the energy is expressed asa function of the potentials of the conductors, and
not of their charges. the calculation of the forces from the energy requires special
consideration. The reason is that, to maintain constant the potential of a moving
conductor, it is necessary to use other bodies. For example, the potential of a conductor can
be kept constant by connecting it to another conductor of very large capacitance, a2 “charge
reservoir”. On receiving a charge e,, the conductor takes it from the reservoir, whose
potential ¢, is unchanged on account of its large capacitance, although its energy 1
reduced by e,¢,. When the whole system of conductors receives charges e, the energy of
the reservoirs connected to them changes by a total of —Ye,p,. Only the energy of the
conductors, and not that of the reservoirs, appears in % . In this sense we can say that %
pertains to a system which is not energetically closed. Thus, for a system of conductors
whose potentials are kept constant, the part of the mechanical energy is played not by %,
but by

U=U-Y eda (5.5)

Substituting (2.2), we find that % and g differ only in sign:
U =—U. (5.6)
The force F, is obtained by differentiating % with respect to g for constant potentials, i.e.
F,= —(0%/0q)y = @U/09)y- (5.7

Thus the forces acting on a conductor can be obtained by differentiating % either for
constant charges or for constant potentials, the only difference being that the derivative
must be taken with the minus sign in the first case and with the plus sign in the second.
The same result could be obtained more formally by starting from the differential

identity
do =Y ¢,de,—Fdg, (5.8)

in which @ is regarded as a function of the charges on the conductors and the coordinate g-
This identity states that ¢ % /de, = ¢4 and @4 /dq = — F,. Using the variables ¢, instead of
e,, we have

ddl = =) e, d¢,— Fdq. (5.9

which gives (5.7).
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At the end of §2 we have discussed the energy of a conductor in a uniform external
electric field. The total force on an uncharged conductor in a uniform field is, of course,
zero. The expression for the energy (2.14) can, however, be used to determine the force
acting on a conductor in a quasi-uniform field &, i.e. a field which varies only slightly over
the dimensions of the conductor. In such a field the energy can still be calculated, to a first
approximation. from formula (2.14), and the force F is the gradient of this energy:

F = —grad % = }o, V grad (C,G,). (5.10)

The total torque K is in general non-zero even in a uniform external field. By the general
laws of mechanics K can be determined by considering an infinitesimal virtual rotation of
the body. The change in energy in such a rotation is related to K by 6 % = — K-8y, &Y
being the angle of the rotation. A rotation through an angle ¢ in a uniform field is
equivalent to a rotation of the field through an angle — 8\ relative to the body. The change
in the field is 6€¢ = — &y x €, and the change in energy is

SU = (QU|0E)-6E = — o - € XU /JOE.

But 0% /0€ = — 27, as we see from a comparison of formulae (2.13) and (2.14). Hence
8% = — P xE -5, whence K=®xE€ (5.11)

in accordance with the usual expression given by the theory of fields in a vacuum.

If the total force and torque on a conductor are zero, the conductor remains at rest in the
field, and effects involving the deformation of the body (called electrostriction) become
important. The forces (5.1) on the surface of the conductor result in changes in its shape
and volume. Because the force is an extending one, the volume of the body increases. A
complete determination of the deformation requires a solution of the equations of the
theory of elasticity, with the given distribution of forces (5.1) on the surface of the body. If,
however, we are interested only in the change in volume, the problem can be solved very
simply.

To de so, we must bear in mind that, if the deformation is slight (as in fact is true for
electrostriction), the effect of the change of shape on the change of volume is of the second
order of smallness. In the first approximation, therefore, the change in volume can be
Tegarded as the result of deformation without change in shape, i.e. as a volume expansion
under the action of some effective excess pressure AP which is uniformly distributed over
the surface of the body and replaces the exact distribution given by (5.1). The relative
¢hange in volume is obtained by multiplying AP by the coefficient of uniform expansion of
thﬂ_substance. The pressure AP is given, according to a well-known formula, by the

a‘gl;l;f 1~0f the electric energy % of the body with respect to its volume: AP =
o oy,
1I£e: the deforming field be due to the charged conductor itself. Then the energy %

2¢"/C, and the pressure is AP = —1¢23C~1/2V. For a given shape, the capacitance of

:.Polfl[y (having the dimensions of length) is proportional to the linear dimension, i.e. to
- ence

AP = &2/6CV = ed 6V, (5.12)

t The quantity thus determined is the pressure exerted on the surface by the body itself; the pressure acting on
surface from outside is obtained by changing the sign.
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If an uncharged conductor is situated in a uniform external field €. its energy is given by
formula (2.14) The extending pressure is therefore

AP = ]Z'aik(fi(gk' (5.13)

PROBLEMS

PrOBLEM 1. A small conductor with capacitance ¢ (equal in order of magnitude to its dimension) is at a
distance r from the centre of a spherical conductor with large radius a (> ¢). The distancer —a from the conductor
to the surface of the sphere is supposed large compared with ¢, but not large compared with a. The two conductors
are joined by a thin wire, so that they are at the same potential ¢. Determine the force of their mutual repulsion.

SOLUTION.  Since the conductor ¢ is small, we can suppose that its potential is the sum of the potential ¢a/r at
a distance r from the centre of the large sphere and the potential e/c due to the charge e on the conductor itself.
Hence ¢ = ¢ajr+efc, ore = c (1 —ajr). The required force of interaction F is the Coulomb repulsion between
the charge e on the conductor and the charge a¢ on the sphere:

-Z{=)
F=—-1-)

This expression is correct to within terms of higher order in c. The force is greatest when r = 3a/2, and its value
there is Fpa = 4c¢?/27a, decreasing on either side of this distance.

PROBLEM 2. A charged conducting sphere is cut in half. Determine the force of repulsion between the
hemispheres.t

SOLUTION. We imagine the hemispheres separated by an infinitely narrow slit, and determine the force F on
each of them by integrating over the surface the force (E2/87) cos 6, which is the component of (5.1) ina direction
perpendicular to the plane of separation of the hemispheres. In the slit E = 0, and on the outer surface E = e/d?,
where a is the radius of the sphere and e the total charge on it. The result is F = e*/8a’.

PROBLEM 3. The sameas Problem 2, but for an uncharged sphere in a uniform external field € perpendicular
to the plane of separation.

SoLUTION. Asin Problem 2, except that the field on the surface of the sphere is E = 3 € cos 6 (§3, Problem 1).
The required force is F = 9a*E?/16.

ProBLEM 4. Determine the change in volume and in shape of a conducting sphere in a uniform external
electric field.

SoLuTiON. The change in volume AV/V = AP/K, where K is the modulus of volume expansion of the
material, and AP is given by formula (5.13). For a sphere, o, = 0,0 = 38, /4n (§3, Problem 1), so that
AV/V = 3E BrK.

As a result of the deformation, the sphere is changed into a prolate spheroid. To determine the eccentricity, we
may regard the deformation as a uniform pure shear in the volume of the body, just as, to determine the change in
the total volume, we regarded it as a uniform volume expansion.

The condition of equilibrium for a deformed body may be formulated as requiring that the sum of the
electrostatic and elastic energies should be a minimum. The former is, by (2.12) and (4.26),

where R is the original radius of the sphere, a and b the semiaxes of the spheroid, and n = §—4(a—b)/1 5Risthe
depolarizing factor (see (4.33))

Since the deformation is axially symmetrical about the direction of the field (the x-axis), only the components
u,,and u_, = u,, of the strain tensor are non-zero. Since we are considering equilibrium with respect toa change
in shape, we can regard the volume as unchanged, i.e. u; = 0. Hence the elastic energy may be written

Uy = {-u,,‘a,-* V= %I‘ﬂ_.,, — O (Uex — “w}V'

t In Problems 2 and 3 we assume that the hemispheres are at the same potential.



§5 The forces on a conductor 33

where 6, 1s the elastic stress tensor (TE, §4). Wehave s, — o0, = 2(u,, —u, ). where p is the modulus of rigidity of
the material, and u, —u, = (a— b)/R. Hence

Wy = %ﬂ(ﬂ - b]zl'"'Rz
Making the sum %+ ¥, a minimum, we have (a —b)/R = 9€?/40nyu.

PrOBLEM 5. Find the relation between frequency and wavelength for waves propagated on a charged plane
surface of a liquid conductor (in a gravitational field). Obtain the condition for this surface to be stable (Ya. I.
Frenkel’, 1935).

SOLUTION. Let the wave be propagated along the x-axis, with the z-axis vertically upwards. The vertical
displacement of points on the surface of the liquid is{ = a¢'™ ~“" When the surface is at rest. the field above it is
E, = E = 4no,, and its potential ¢ = —4n0,z, where 0, is the surface charge density. The potential of the field
above the oscillating surface can be written as ¢ = —4noyz+¢,, with ¢, = constant x e™*~“e™** ¢ beinga
small correction which satisfies the equation /. ¢, = 0 and vanishes for z —+ oc. On the surface itself. the potential
must have a constant value, which we take to be zero, and so ¢, = 4no for z = 0.

According to (5.1), an additional negative pressure acts on the charged surface of the liquid; this pressure is, as
far as terms of the first order in ¢,, E*/8n = E_ 2 /8% = 210, + [kogo, |, o = 2n6,* + 4nay2kL. The constant
term 2n0,,” is of no importance, since it can be included in the constant external pressure.

The consideration of the hydrodynamical motion in the wave is entirely analogous to the theory of capillary
waves (FM, §61), differing only by the presence of the additional pressure mentioned above. At the surface of the
liquid we have the boundary condition pgl + p[d®/t],_, — xd?l/dx* — 4na,*k{ = 0, where « is the surface-
tension coefficient, p the density of the liquid, and @ its velocity potential. @ and { are also related by
al/ét = [0®/0z ], .. Substituting in these two relations { = ae'®* " and ® = Ae™* "% "% (O satisfies the
equation /\® = 0) and eliminating a and A, we find the required relation between k and -

? = kigp — dnag?k +ak?)/p. (1)

If the surface of the liquid is to be stable, the frequency @ must be real for all values of k (since otherwise there
would be complex @ with a positive imaginary part, and the factor e ** would increase indefinitely). The
condition for the right-hand side of (1) to be positive is (4no,?) —4gpa < 0, or 6,* < gpa/4n?. This is the
condition for stability.

PROBLEM 6. Find the condition of stability for a charged spherical drop (Rayleigh, 1882).

SOLUTION. The sum of the electrostatic and surface energies of the drop is ¥ = ¢*/2C +uS, where o is the
surface-tension coefficient of the liquid, C the capacitance of the drop and S its surface area. Instability occurs
{with increasing ¢) with respect to deformation of the sphere into a spheroid, and does so when # becomes a

ing function of the eccentricity (for a given volume). The spherical shape always corresponds to an
SXtremum of %; the stability condition is therefore [¢2 %/d(a — b)* |,_, > 0, where a and b are the semiaxes of the
spheroid, and the differentiation is carried out with ab* = constant. Using the formula for the surface of a
Spheroid and (4.18) for its capacitance, we find after a somewhat lengthy calculation e? < 16ma’s.

condition ensures stability of the drop with respect to small deformations. It is found to be weaker than the

condition for stability with respect to large deformations that divide the drop into two equal drops with charge e
and radius q/2!/3.

e < 16na’a (2'/? — 1)/(2 - 2'73) = 0.35 x 16nae.




CHAPTER 11

ELECTROSTATICS OF DIELECTRICS

§6. The electric field in dielectrics

W E SHALL NOW go on to consider a static electric field in another class of substances, namely
dielectrics. The fundamental property of dielectrics is that a steady current cannot flow in
them. Hence the static electric field need not be zero, as in conductors, and we have to
derive the equations which describe this field. One equation is obtained by averaging

equation (1.3), and is again
g ] o curl E = 0. (6.1)

A second equation is obtained by averaging the equation div e = 4mp:
div E = 4np. (6.2)

Let us suppose that no charges are brought into the dielectric from outside, which is the
most usual and important case. Then the total charge in the volume of the dielectric 18 zero:
even if it is placed in an electric field we have {pd¥ = 0. This integral equation, which must
be valid for a body of any shape, means that the average charge density can be written as
the divergence of a certain vector, which is usually denoted by —P:

p=—divP, (6.3)

while outside the body P = 0. For, on integrating over the yolume bounded by a surface
which encloses the body but nowhere enters it, we find {pdV = — [ divPdV' = — ¢P-df
— (. P is called the dielectric polarization, or simply the polarization, of the body. A
dielectric in which P differs from zero is said to be polarized. The vector P determines not
only the volume charge density (6.3), but also the density ¢ of the charges on the surface of
the polarized dielectric. If we integrate formula (6.3) over an element of volume lying
between two neighbouring unit areas, one on each side of the dielectric surface, we have,
since P = 0 on the outer area (cf. the derivation of formula (1.9)),

RN (6.4)

where P, is the component of the vector P along the outward normal to the surface.

To see the physical significance of the quantity P itself, let us consider the total dipole
moment of all the charges within the dielectric: unlike the total charge, the total dipole
moment need not be zero. By definition., it is the integral { rpd ). Substituting p from (6.3)
and again integrating over a volume which includes the whole body we have

frpdV = — frdiv PdV = — §r(df-P)+ f(P-gradrdl.
The integral over the surface 1s zero, and in the second term we have (P -grad)r = P, so

i frpdlV = [PdV. (6.5)
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Thus the polarization vector is the dipole moment (or electric moment) per unit volume of

the dielectric.t
Substituting (6.3) in (6.2), we obtain the second equation of the electrostatic field in the

form .
divD =0, (6.6)

where we have introduced a quantity D defined by
D = E+4nP, (6.7)

called the electric induction. The equation (6.6) has been derived by averaging the density of
charges in the dielectric. If, however, charges not belonging to the dielectric are brought in
from outside (we shall call these extraneous charges), then their density must be added to
the right-hand side of equation (6.6):

divD = 4np,,. (6.8)

On the surface of separation between two different dielectrics, certain boundary
conditions must be satisfied. One of these follows from the equation curl E = 0. If the
surface of separation is uniform as regards physical properties,} this condition requires the
continuity of the tangential component of the field:

E, =E;; (6.9)

of the derivation of the condition (1.7). The second condition follows from the equation
divD = 0, and requires the continuity of the normal component of the induction:

Dh‘l = Dnl' ‘610)

For a discontinuity in the normal component D, = D, would involve an infinity of the
derivative @D_/¢z, and therefore of div D.

At a boundary between a dielectric and a conductor, E, = 0, and the condition on the
normal component is obtained from (6.8).

E, =0, D,=4no,, (6.11)

where o, is the charge density on the surface of the conductor; cf. (1.8), (1.9).

§7. The permittivity

In order that equations (6.1) and (6.6) should form a complete set of equations
determining the clectrostatic field, they must be supplemented by a relation between the
induction D and the field E. In the great majority of cases this relation may be supposed
linear. It corresponds to the first terms in an expansion of D in powers of E, and its
correctness is due to the smallness of the external electric fields in comparison with the
internal molecular fields.

The linear relation between D and E is especially simple in the most important case, that

$ It should be noticed that the relation (6.3) inside the dielectric and the condition P = 0 outside do not in
themselves determine P uniquely; inside the dielectric we could add to P any vector of the form curl f. The exact
form of P can be completely determined only by establishing its connection with the dipole moment.

1 That is. as regards composition of the adjoining media. temperature, etc. If the dielectric is a crystal, the
surface must be a crystallographic plane.
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of an isotropic dielectric. It is evident that, in an isotropic dielectric, the vectors D and E
must be in the same direction. The linear relation between them is therefore a simple
proportionality:f

D =¢E. (7.1)

The coefficient & is the permittivity or dielectric permeability or dielectric constant of the
substance and is a function of its thermodynamic state.
As well as the induction, the polarization also is proportional to the field:

P = kE = (¢e— 1)E/4n. (7.2)

The quantity « is called the polarization coefficient of the substance, or its dielectric
susceptibility. Later (§14) we shall show that the permittivity always exceeds unity; the
polarizability, accordingly, is always positive. The polarizability of a rarefied medium (a
gas) may be regarded as proportional to its density.
The boundary conditions (6.9) and (6.10) on the surface separating two isotropic
dielectrics become
E,=E, &E,;=¢&E, (7.3)

Thus the normal component of the field is discontinuous, changing in inverse proportion
to the permittivity of the medium.

In a homogeneous dielectric, &€ = constant, and then it follows from div D = 0 that
div P = 0. By the definition (6.3) this means that the volume charge density in such a body
is zero (but the surface density (6.4) is in general not zero). On the other hand, in an.
inhomogeneous dielectric we have a non-zero volume charge density

e—1 1 e—1 1

p=—divP = —div——D = ——D-grad— = —
4 £

E-grade.
TiE 4r orgrade

47

If we introduce the electric field potential by E = — grad ¢, then equation (6.1) is
automatically satisfied, and the equation div D = div ¢E = 0 gives

div (e grad ¢) = 0. (7.4)

This equation becomes the ordinary Laplace’s equation only in a homogeneous dielectric
medium. The boundary conditions (7.3) can be rewritten as the following conditions on the

potential:
¢l = ¢'2=
£10p,/En = £,0p, /0

the continuity of the tangential derivatives of the potential is equivalent to the continuity of
¢ itself.

In a dielectric medium which is piecewise homogeneous, equation (7.4) reduces in each
homogeneous region to Laplace’s equation 7. ¢ = 0,50 that the permittivity appears in the
solution of the problem only through the conditions (7.5). These conditions, however,

(7.5)

+ This relation, which assumes that D and E vanish simultaneously, is, strictly speaking, valid only in
dielectrics which are homogeneous as regards physical properties {(composition, temperature, etc). In
inhomogeneous bodies D may be non-zero even when E =0, and is determined by the gradients of
thermodynamic quantities which vary through the body. The corresponding terms, however, are very small. and

we shall use the relation (7.1) in what follows, even for inhomogeneous bodies.
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involve only the ratio of the permittivities of two adjoining media. In particular, the
solution of an electrostatic problem for a dielectric body with permittivity &,, surrounded
by a medium with pernittivity &,, is the same as for a body with permittivity &,/¢,,
surrounded by a vacuum.

Let us consider how the results obtained in Chapter 1 for the electrostatic field of
conductors will be modified if these conductors are not in a vacuum but in a homogeneous
and isotropic dielectric medium. In both cases the potential distribution satisfies the
equation /" ¢ = 0, with the boundary condition that ¢ is constant on the surface of the
conductor, and the only difference is that, instead of E, = — ¢ 'én = 4ne. we have

D, = —gd¢p/0n = 4na, (7.6)

giving the relation between the potential and the surface charge. Hence it is clear that the
solution of the problem of the field of a charged conductor in a vacuum gives the solution
of the same problem with a dielectric in place of the vacuum if we make the formal
substitution ¢ — £¢, ¢ — e or ¢ — ¢, e — ¢/e. For given charges on the conductors, the
potential and the field are reduced by a factor ¢ in comparison with their values in a
vacuum. This reduction in the field can be explained as the result of a partial “screening” of
the charge on the conductor by the surface charges on the adjoining polarized dielectric. If,
on the other hand, the potentials of the conductors are maintained, then the field is
unchanged but the charges are increased by a factor .7

Finally. it may be noted that in electrostatics we may formally regard a conductor
(uncharged) as a body of infinite permittivity, in the sense that its effect on an external
electric field is the same as that of a dielectric (of the same form) as & — oc. For. since the
boundary condition on the induction D is finite, D must remain finite in the body even for
&— oc. This means that E — 0, in accordance with the properties of conductors.

PROBLEMS

_ PRUBLEE_J 1. Determine the field due to a point charge e at a distance h from a plane boundary separating two
different dielectric media.

. SOLU'l_mN. Let O be the position of the charge e in medium 1, and O’ its image in the plane of separation.
Situated in medium 2 (Fig. 11, p. 38). We shall seek the field in medium 1 in the form of the field of two point
= »eand a fictitious charge ¢’ at O (cf. the method of images, §3): ¢, = €/g,r + & /e, r', where rand r’ are the

Elam't_s from O and O’ respectively. In medium 2 we seek the field as that of a fictitious charge ¢” at O:
$2=¢ /€3r. On the boundary plane (r = r’) the conditions (7.5) must hold, leading to the equations e — ¢’ = €,
(e+e)e, = " [&,, whence

e = elg, — & )18 +&3), €' = 2eqe (g, + &) (1)
00:3::{;;1 'E* ;ﬂhnw: have ¢ = —e. ¢, =0, i.e. the result obtained in §3 for the field of a point charge near a
force acting on the charge e (the image force) is

ee’ ( e )2 £, —E;
F = et — —;
(2h%, \2h/ &,(e,+6,)
F'> 0 corresponds to repulsion.

PROBLEM 2. The same as Problem 1, but for an infinite charged straight wire parallel to a plane boundary
surface at a distance h.

T

?mme this it follows, in particular, that when a capacitor is filled with a dielectic 1ts capacitance increases by a
I &
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F=
r, re
. \e .
< €2

Fic. 11

SOLUTION. As in Problem 1, except that the field potentials in the two media are ¢, = —(2¢/z,) log r
—(2€ [e,)logr', ¢, = —(2¢"[e;) log r, where €, ¢, ¢” are the charges per unit length of the wire and of its images,
and r, r' are the distances in a plane perpendicular to the wire. The same expressions (1) are obtained for ¢, ¢”,and
the force on unit length of the wire is F = 2e€'/2he, = e*(g; — &,)/he, (&, +€,).

ProeLem 3. Determine the field due to an infinite charged straight wire in a medium with permittivity €,
lying parallel to a cylinder with radius a and permittivity g,, at a distance b (> a) from its axis.t

SorLumion.  We seek the field in medium 1 as that produced in a homogeneous dielectric (with &,) by the
actual wire (passing through O in Fig. 12), with charge e per unit length, and two fictitious wires with charges ¢’
and — ¢ per unit length, passing through A and O’ respectively. The point 4 is at a distance o? /b from the axis of
the cylinder. Then, for all points on the circumference, the distances r and ¥ from O and A are in a constant ratio
r'fr = a/b, and so 1t is possible to satisfy the boundary conditions on this circumference. In medium 2 we seek the
field as that produced in a homogeneous medium (with £,) by a fictitious charge ¢” on the wire passing through O.

The boundary conditions on the surface of separation are conveniently formulated in terms of the potential ¢
(E = —grad¢) and the vector potential A (cf. §3), defined by D = curl A (in accordance with the equation
div D = 0). In a two-dimensional problem, A is in the z-direction (perpendicular to the plane of the figure). The
conditions of continuity for the tangential components of E and the normal component of D are equivalent to
¢ =¢1, Ay = A,

For the field of a charged wire we have in polar coordinates r, € the equation ¢ = —(2e/e)log r + constant,
A = 2el + constant; cf, (3.18). Hence the boundary conditions are

{(—elogr—eé'logr +¢'loga) = —— logr + constant,
£y £;

2[eb+ e —e'(B+ 8] =2e"0,

Fig. 12

+ The corresponding problem of a point charge near a dielectric sphere cannot be solved in closed form. ‘
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where the angles are as shown in Fig. 12, and we have used the fact that 00'B and BO' A are similar triangles.
Hence €;(e+¢€’) = €,¢”, e — €' = €, and the expressions for ¢’ and e” are again formulae (1) of Problem 1.
The force acting on unit length of the charged wire is parallel to Q0O', and is

11 2e2(e, —&,)a?

FeeE=—7y| — - ) __— 1728
¢ EI (OA OO!) -Gj {8. +52}b(b2 _ai}
F > 0 corresponds to repulsion. In the limit a. b — oo, b—a ~ h, this gives the result in Problem 1.

PROBLEM 4. The same as Problem 3, but for the case where the wire is inside a cylinder with permittivity
& (b < a)

SOLUTION. We seck the field in medium 2 as that due to the actual wire, with charge e per unit length (O in
Fig. 13), and a fictitious wire with charge ¢’ per unit length passing through A, which is now outside the cylinder.
Inmedium 1 we seek the field as that of wires with charges ¢” and e — ¢” passing through O and 0" respectively. By
the same method as in the preceding problem we find ¢ = — efe, —&3)/(8; + &), €' = 2¢,¢/(e; +£,). Fore, > g,
the wire is repelled from the surface of the cylinder by a force

2ee’ 1 2¢*(e, — £, )b

& OA  tyfe, +e,)a* —bY)

Fic. 13

PROBLEM 5. Show that the field potential ¢ 4(rg) at a point ry in an arbitrary inhomogeneous dielectric
medium, due to a point charge e at ry, is equal to the potential ¢p(r,) at r4 due to the same charge at rp,

SOLUTION.  The potentials ¢ 4(r) and ¢(r) satisfy the equations
div (c grad ¢ 4) = — dned(r — Tah  divegrad ¢p) = — dmed(r—rp).
Multiplying the first by ¢ and the second by ¢4 and subtracting, we have
div (¢ gegradd ,) — div (¢ 4 2 grad Gp) = —4med(r —r 4)dplr) + 4med(r — rg)p 4(r).
Integration of this equation over all space gives the required relation:

P alrg) = ¢plry).

%B- A dielectric ellipsoid

The polarization of a dielectric ellipsoid in a uniform external electric field has some
Nusual properties which render this example particularly interesting.
Let us consider first a simple special case, that of a dielectric sphere in an external field .
€ denote its permittivity by £, and that of the medium surrounding it by £'©. We take the
igin of spherical polar coordinates at the centre of the sphere, and the direction of € as
€ axis from which the polar angle 6 is measured, and seek the field potential outside the
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sphere in the form ¢> = € -r + A€ - r/r*; the first term is the potential of the external field
imposed, and the second, which vanishes at infinity, gives the required change in potential
due to the sphere (cf. §3, Problem 1, solution). Inside the sphere, we seek the field potential
in the form ¢ = — BE -r, the only function which satisfies Laplace’s equation, remains
finite at the centre of the sphere, and depends only on the constant vector € (which is the
only parameter of the problem).

The constants 4 and B are determined by the boundary conditions on the surface of the
sphere. It may be seen at once, however, that the field in the sphere E® = BE€ is uniform
and differs only in magnitude from the applied field €.

The boundary condition of continuity of the potential gives E¥» = €(1 — A/ R*), where R
is the radius of the sphere, and the condition of continuity of the normal component of the
induction gives

DY = g)E(1 + 24/R3),

Eliminating A from these two equations, we obtain

LDW 4 2OED) = O (8.1)
or, substituting D = ¢"E®,

ED = 36 /(26 4 ), (8.2)

The problem of an infinite dielectric cylinder in an external field perpendicular to its axis
is solved in an entirely similar manner (cf. §3, Problem 2). The field inside the cylinder, like
that inside the sphere in the above example, is uniform. It satisfies the relation

LD + ¢OED) = (O€, (8.3)
or
Eu’} — 2858}.&”8[8)_'_80']]. (84]

The relations (8.1) and (8.3), in which the permittivity ¢ of the sphere or cylinder does
not appear explicitly, are particularly important because their validity does not depend on
a linear relation between E and D within the body; they hold whatever the form of this
relation (e.g. for anisotropic bodies). The analogous relations

ED — @ (8.5)
for a cylinder in a longitudinal field and
D — gl (8.6}

for a flat plate in a field perpendicular to it are similarly valid; these relations are evident at
once from the boundary conditions.

The property of causing a uniform field within itself on being placed in a uniform
external field is found to pertain to any ellipsoid, whatever the ratio of the semiaxes a, b, c.
The problem of the polarization of a dielectric ellipsoid is solved by the use of ellipsoidal
coordinates, in the same way as the corresponding problem for a conducting ellipsoid
in §4.

Let the external field be again in the x-direction. The field potential outside the ellipsoid
may again be sought in the form (4.22): ¢', = ¢ F (&), with the function F (&) given by (4.23).
Such a function cannot, however, appear in the field potential ¢; inside the ellipsoid, since
it does not satisfy the condition that the field must be finite everywhere mside the ellipsoid.
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For let us consider the surface & = —¢?, which is an ellipse in the xy-plane, with semiaxes
J(@® —¢?) and J(b? = c?), lying within the ellipsoid. For & — —¢?, the integral (4.23)
behaves as /(£ + ¢?). The field, i.e. the potential gradient, therefore behavesas 1/,/(¢ + ¢2)
and becomes infinite at £ = — ¢2. Thus the only solution suitable for the field inside the
ellipsoid is F(&) = constant, so that ¢; must be sought in the form ¢; = B¢,. We see that
the potential ¢, differs only by a constant factor from the potential ¢, of the uniform field.
In other words, the field inside the ellipsoid is also uniform.

We shall not pause to write out the formulae for the field outside the ellipsoid. The
uniform field inside the ellipsoid can be found without actually writing out the boundary
conditions, by using some results already known.

Let us first suppose that the ellipsoid is in a vacuum (£) = 1). Then there must be a linear
relation between the vectors E?, D and € (which are all in the x-direction), of the form
aB®_+bDY, = €, where the coefficients a, b depend only on the shape of the ellipsoid,
and not on its permittivity &%, The existence of such a relation follows from
the form of the boundary conditions, as we saw above in the examples of the sphere and the
cylinder.

To determine a and b we notice that, in the trivial particular case ¢ = 1, we have simply
E=D = ¢ and so a+ b = 1. Another particular case for which the solution is known is
that of a conducting ellipsoid. In a conductor E®? = 0, and the induction D, though it has
nodirect physical significance, may be regarded formally as being related to the total dipole
moment of the ellipsoid by D® = 4nP = 4z #/V. According to (4.26) we then have
D = € /n™, ie. b=n", and so a = 1 —n™. Thus we conclude that

(1=n"NED 02 DD =€, (8.7)
or
ED = €, —4mn™P,. (8.8)

The quantity 47n'™'P, is called the depolarizing field.t Similar relations, but with
coefficients.n™, n*), hold for the fields in the y and z directions. Like the particular formulae
{8.1) and (8.3), they are valid whatever the relation between E and D inside the ellipsoid.

The field inside the ellipsoid is found from (8.7) by putting D, = ¢PE"
EO, = €, /{1 + (" — )], (89)

and the total dipole moment of the ellipsoid is

P, = VP, = (- NWE® jan = labc(e?— 1)E_/[1 + (P — 1)n™]. (8.10)

Ifthe ficld € has components along all three axes, then the field inside the ellipsoid is still

Horm, but in general not parallel to €. For an arbitrary choice of coordinate axes we can
fite the relation (8.7) in the general form

ED 4 n DV, — ED) = €, (8.11)

The transjtion to the case where the permittivity of the medium differs from umity is
€cted by simply replacing £ by & &“). Then formula (8.7) becomes

(1 —n®)e©EN 4 nf¥DY = OE (8.12)

T Similar formulae hold for a magnetized ellipsoid in a uniform external magnetic field (see §29). In this case
» nY 119 are called demagnetizing factors.
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This formula can be applied, in particular, to the field inside an ellipsoidal cavity in an
infinite dielectric medium. In this case ¥ = 1.

PROBLEMS+

ProsLEM 1. Determine the torque on a spheroid in a uniform electric field.

SoLuTion.  According to the general formula (16.13), the torque on an ellipsoid is K = 22 X € where 215 the
dipole moment of the ellipsoid. In a spheroid, the vector £ isin a plane passing through the axis of symmetry and
the direction of €. The torque is perpendicular to this plane, and a calculation of its magnitude from formulae
(B.10) gives

{s— 1?1 — 3n|{le"sm 20

81:[m;+ 1 —n][(l n}e+ l+n]

where o is the angle between the direction of € and the axis of symmetry of the sphercid, and n is the
depolarizing factor along the axis (so that the depolarizing factors in the directions perpendicular to the axis are
4(1 —n)). The torque is directed so that it tends to turn the axis of symmetry of a prolate (n < 1) or oblate (n > 4)

ellipsoid parallel or perpendicular to the field respectively.
For a conducting ellipsoid (£ — oo) we have

|1 =3n|
K=— VE2 sin 201,
Ban(l —n)

ProBLEM 2. A hollow dielectric sphere (with permittivity ¢ and internal and external radii b and a) is in a
uniform external field €, Determine the field in the cawvity.

SOLUTION. As above in the problem of a solid sphere, we seek the field potentials in the vacuum
outside the sphere (region 1) and in the cavity (region 3) in the forms ¢, = —Ecos@(r— A7),
¢y = — BErcos 0, and that in the dielectric (region 2) as ¢, = —CE cos 8 (r — D/r?), where A, B, C, D are
constants determined from the conditions of continuity of ¢ and £ d¢/@r at the boundaries 1 —2and 2 — 3. Thus
the field E, = B in the cavity is uniform, but the field E, in the sphere is not. A calculation of the constants gives
the result

E; = 9@/ [ (e + 2)(2e + 1) — 2(e — 1)*(b/a)* ].
ProsrLeM 3. The same as Problem 2, but for a hollow cylinder in a uniform transverse field.}
SoLuTioN. As in Problem 2, with the result
E, = 4c€/[(c + 1)’ — (e — 1)*(b/a)*].

§9. The permittivity of a mixture

If a subtance is a finely dispersed mixture (an emulsion, powder mixture, etc.), we can
consider the electric field averaged over volumes which are large compared with the scale of
the inhomogeneities. The mixture is a homogeneous and 1sotropic medium with respect t0
such an average field, and so may be characterized by an effective permittivity, which we
denote by .. If E and D are the ficld and induction averaged in this way, then, by the
definition of ¢,

D= Elﬂixﬁ' (9.!]

If all the particles in the mixture are isotropic, and the differences in their pennitti‘:ritie:s
are small in comparison with g itself, it is possible to calculate &, in a general form which is
correct as far as terms of the second order in these differences.

+ In these three Problems the body is assumed to be in a vacuum.
1t In a longitudinal field the solution is clearly E; = €.
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We write the local field as E = E + éE, and the local permittivity as &+ e, where
E=(L/V)fedl (9.2)

is obtained by averaging over the volume. Then the mean induction is

D = (i + 0¢)(E + OE) = ¢E + 320, 9.3)
since the mean values of é¢ and JE are zero by definition. In the zero-order approximation

.. = & thefirst non-zero correction term will, of course, be of the second order in ¢, as we

see from (9.3).
From the non-averaged equation div D = O we have. as far as small terms of the first

order, B _
div [(£ + de)(E + 6E)] = édivoE + E -grad de = 0. (9.4)

The averaging of the product 8eSE in (9.3)is done in two stages. We first average over the
yolume of particles of a given kind, i.e. for a given de. The value of SE thus averaged is easily
obtained from equation (9.4): on account of the isotropy of the mixture as a whole.

@ )
0 PE, =~ 3E, = j—zaﬁ, — 1divJE.

ax T dy
If E is in the x-direction, say, we have from (9.4)
-— doe

3,
Je—0E, = —E,—,
Cox O * ox

whence Y .
O0E = —(E,/3€)de.
Since the direction of the x-axis is chosen arbitrarily, this equation may be written in the

vector form 0F = — (1 /3£)Ede. Multiplying by d¢ and effecting the final averaging over all

components of the mixture, we obtain 5eSE = — (1/38)E(d¢)?. Finally, substituting this
€Xpression in (9.3) and comparing with (9.1), we have the required result:

Emix = £— (1/38)(8e)?. (9.5)
This formula can be written in another manner if we put

;;=<£+.5a];=g»( _@}

9&*

this is accurate 10 terms of the second order. Then
By = €5, (9.6)

Thus we can say that, in this approximation, the cube root of ¢ is additive.
of‘Anmher l_lmltmg case for which an exact treatment is possible concerns the permittivity
4n emulsion having an arbitrary difference between the permittivities ¢, of the medium

d ¢, of the disperse phase but only a small concentration of the latter, whose particles are
Sumed spherical.

In the integral

1 = -
= (D—¢g,E)dl =D —¢,E
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the integrand is zero except within particles of the emulsion. It is therefore proportional to
the volume concentration ¢ of the emulsion, and in calculating it we can assume that the
particles are in an external field which equals the mean field E. Assuming the particles
spherical and using formula (8.2), we obtain for the proportionality coefficient between

D and E
Emix = &1+ 3c€, (€, — 8, )/ (e + 28, ). (9.7)

This formula is correct to terms of the first order in c. When ¢, and &, are nearly equal it is
the same (to the first order in ¢ and the second in &, — ¢, ) as the result given by formula (5.5)
for smalli c.

§10. Thermodynamic relations for dielectrics in an electric field

The question of the change in thermodynamic properties owing to the presence of an
electric field does not arise for conductors. Since there is no electric field inside a
conductor, any change in its thermodynamic properties amounts simply to an increase in
its total energy by the energy of the field which it produces in the surrounding space.t This
guantity is quite independent of the thermodynamic state (and, in particular, of the
temperature) of the body, and so does not affect the entropy, for example.

On the other hand, an electric field penetrates into a dielectric and so has a great effect
on its thermodynamic properties. To investigate this effect, let us first determine the work
done on a thermally insulated dielectric when the field in it undergoes an infinitesimal
change.

The electric field in which the dielectric is placed must be imagined as due to various
external charged conductors, and the change in the field can then be regarded as resulting
from changes in the charges on these conductors.} Let us suppose for simplicity that there
is only one conductor, with charge e and potential ¢. The work which must be done to
increase its charge by an infinitesimal amount de is

SR = ¢de; (10.1)

this is the mechanical work done by the given field on a charge de brought from infinity
(where the ficld potential is zero) to the surface of the conductor, i.e. through a potential
difference of ¢b. We shall put R in a form which is expressed in terms of the field in the
space filled with dielectric which surrounds the conductor.

If D, is the component of the electric induction vector in the direction of the normal to
the surface of the conductor (out of the dielectric and into the conductor), then the surface
charge density on the conductor is — D, /4x, so that

1 1
e=— EED,,df: r:f;D df.

+ We here neglect the energy of the attachment of the charge to the substance of the conductor; this will be
discussed in §23. . ) ‘

t The final results which we shall obtain involve only the values of the field insidc the dielectric. and therefore
are independent of the origin of the field. For this reason there is no need for special discussion of the case where
the field is produced, not by charged conductors, but (for instance) by extraneous charges placed in the dielectric
itself or by pyroelectric polarization of it {§13).
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Since the potential ¢ is constant on the surface of the conductor, we can write
1 1
(5 = = - . — | 1 |
R = ¢de n Ei; ¢oD -df i div(¢poD)d

The last integral is taken over the whole volume outside the conductor. Since the varied
field, like the original field, must satisfy the field equations, we have divéD = 0, and so
div(¢dD) = ¢ divéD + 6D -grad ¢ = — E - SD. Thus the following important formula is

obtained: OR = [(E-6D/4m)dV. (10.2)

Jt should be emphasized that the integration in (10.2) is over the whole field, including the
vacuum if the dielectric does not occupy all space outside the conductor.

The work done on a thermally insulated body is just the change in its energy at constant
entropy. Hence the expression (10.2) must be included in the thermodynamic relation
which gives the infinitesimal change in the total energy of the body; the latter contains also
the energy of the electric field. Denoting the total energy by #. we therefore have

5%=Tﬁy+$j&60dl', (10.3)

where 1 1s the temperature of the body and .% its entropy.t
Accordingly we have for the total free energyf # = # T ¥

I

OF = — S oT 4 El .[E‘éDdV. (104)

Similar thermodynamic relations can be obtained for the quantitics pertaining to unit
volume of the body. Let U, S and p be the internal energy, entropy and mass of unit volume.
Itis well known that the ordinary thermodynamic relation (in the absence of a field) for the
internal energy of unit volume is dU = 7dS + ¢ dp. where { is the chemical potential of the
substance.§ In the presence of a field in a dielectric. there must be added the integrand in

(10.3).
dU=T7TdS+{dp+ E-dD 4n. (10.5)
For the free energy per unit volume of the dielectric, F = U — TS, we therefore have
dF = —SdT"'+{dp+E-dD 4x. (10.6)

These relations are the basis of the thermodynamics of dielectrics.

re:;":msf:edthat U and_F are the thermod),_vnamic potentials with respect to S, p, Dand 7. p. D

l'BSpectw ¥. In particular, we can obtain the field by differentiating these potentials with
1o the components of the vector D:

o= 4?I{ﬂUfﬂD}&p = A4n(CF/cD), . (10.7)
au* £ (10.3)and (10.4) the volume of the body is assumed constant, but in gencral it becomcs inhomogencous in
o —etric field, and so the volume no longer characterizes the state of the body.

5 Tsl"'eis Quantity is meaningful only when the temperature is constant throughout the body.

S_P 1, §24. Instead of the_ mass density we there use the number of particles N per unit volume; p = Nm,
H':’: 1s the mass of one particle. The chemical potentials { per unit mass and g per particle are related by
use of the letter p for the mass density as well as the charge density cannot lead to any misunderstanding,
use the two quantities never appear together.
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The free energy is more convenient in this respect, since it is to be differentiated at constant
temperature, whereas the internal energy must be expressed in terms of the entropy, which
is less easy.

Together with U and F, it is convenient to introduce thermodynamic potentials in which
the components of the vector E, instead of D, are the independent variables. Such are

U=U—E'D/4n, F=F—E-D/4n (10.8)
On differentiating these we have
dii: 7dS +{dp—D-dE/4x, } (109)
dF = —SdT+{dp—D-dE/4x.

Hence, in particular,

D = —4n(00/@E);, = —4n(0F |CE), . (10.10)

It should be noticed that the relation between the thermodynamic quantities with and
without the tilde is exactly that which occurs in §5 for the energy of the electrostatic field of
conductors in a vacuum. For the integral {E-DdV can be transformed in an exactly
similar manner to the one at the beginning of §2, with the equation divD =0 inside the
dielectric and the boundary condition D, = 4n¢ on the surfaces of conductors:

{ .
— |E-DdV = . grad ¢ -DdV
4n 4n |
1 i*
= 41;2 ¢aDndf= §¢ﬂeﬂ' {10]“
Hence we have for the internal energy, for example,
- E-D
U = q"‘j‘&; dV=u—-) ¢.e,. (10.12)

in agreement with the definition (5.5).

It is useful to derive also the formulae for infinitesimal changes in these quantities,
expressed in terms of the charges and potentials of the conductors (the sources of the field)
For example, the variation in the free energy (for a given temperature) is

(0F ), = 6R =) ¢,de,. (10.13)
For the variation of % we have

BF ) =0F ) —06Y e, = — Y e, 00, (10.14)

We can say that the quantities without the tilde are the thermodynamic potentials with
respect to the charges on the conductors, while those with it are thermodynamic potentials
with respect to their potentials.

It is known from thermodynamics that the various thermodynamic potentials have the
property of being mimima in a state of thermodynamic equilibrium, relative to various
changes in the state of the body. In formulating these conditions of equilibrium in an
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electric field, it is necessary to say whether changes of state with constant charges on the
conductors (the field sources) or those with constant potentials are being considered. For
example. in equilibrium # and & are minima with respect to changes in state occurring at
constant temperature and (respectively) constant charges and potentials of the conductors
(the same is true for % and % at constant entropy).

[fany processes (such as chemical reactions) which are not directly related to the electric
field can occur in the body, the condition of equilibrium with respect to these processes is
that F be 2 minimum for given density, temperature and induction D, or that F be a
minimum for constant density, temperature and field E.

Hitherto we have made no assumptions concerning the dependence of D on E, so that
all the thermodynamic relations derived above are valid whatever the nature of this
dependence. Let us now apply them to an isotropic dielectric, where a linear relation
D = ¢E holds. In this case integration of (10.5) and (10.6) gives

U = Uy(S, p)+ D?* /8,
} (10.15)

F = F, (T, p)+ D*/8ne.

where U, and F,, pertain to the dielectric in the absence of the field. Thus in this case the
quantity
D?/8ne = ¢E?/8n = ED/8n (10.16)

18 the change in the internal energy (for given entropy and density)or in the free energy (for
given temperature and density), per unit volume of the dielectric medium, resulting from
the presence of the field.

The expressions for the potentials U and F are similarly

U = Uy(S, p)—eE? /8,
} (10.17)
F = Fy(T, p)—¢E?*/8n.

Wesee that the differences U — U, and U — U, in this case differ only in sign. as they did for
an electric field in a vacuum (§5). In a dielectric medium, however, this simple result holds
200d only when there is a linear relation between D and E.

WE_ shall write out also, for future reference, formulae for the entropy density S and the
chemical potential ¢, which follow from (10.15):

oF D? (g
$==(5 ), =50 ()

E? (¢
_SO(T-p}.‘—g(éf); (1018}
eF E? ( 0¢
= (5 o000~ (35) i

S€ quantities, of course, differ from zero only inside the dielectric.
€ total free energy is obtained by integrating (10.15) over all space. By (10.11) we have

F—Fo= IE DdV/8n =LY e,o,. (10.20)
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This last expression is formally identical with the energy of the electrostatic field of
conductors in a vacuum. The same result can be obtained directly by starting from the
variation 8% (10.13) for an infinitesimal change in the charges on the conductors. In the
present case, when D and E are lincarly related, all the field equations and their boundary
conditions are also linear. Hence the potentials of the conductors must (as for the field ina
vacuum) be linear functions of their charges, and integration of equation (10.13) gives
(10.20).

It should be emphasized that these arguments do not presuppose the dielectric to fill all
space outside the conductors. If, however, this is so, we can go further and use the results at
the end of §7 to draw the following conclusion. For given charges on the conductors, the
presence of the dielectric medium reduces by a factor £ both the potentials of the
conductors and the field energy, as compared with the values for 2 field in a vacuum. If, on
the other hand, the potentials of the conductors are maintained constant, then their
charges and the field energy are increased by a factor .

PROBLEM

Determine the height # to which a liquid rises in a vertical plane capacitor.

Sorurion. For given potentials on the capacitor plates, % must be a minimum. % includes the energy } pgh’
of the liquid under gravity. From this condition we easily obtain h = (¢~ 1)E?/8npg.

§11. The total free energy of a dielectric

The total free energy # (or the total internal energy %), as defined in §10, includes the
energy of the external electric field which polarizes the dielectric; this field may be imagined
as being produced by a particular assembly of conductors with specified total charges. It is
also meaningful to consider the total free energy less the energy of the field which would be
present in all space if the body were absent. We denote this field by €. Then the total free
energy in this sense 1is

[(F—€?/8n)dV, (11.1)

where F is the frec energy density. Here we shall denote this quantity by the letter #, which
in §10 signified [FdJ. Tt should be emphasized that the difference between the two
definitions of .# is a quantity independent of the thermodynamic state and properties of
the dielectric, and hence it has no effect on the fundamental differential relations of
thermodynamics pertaining to this quantity. ¥

Let us calculate the change in % resulting from an infinitesimal change in the field which
occurs at constant temperature and does not destroy the thermodynamic equilibrium of
the medium. Since §F = E - 8D /4n, we have 6# = [(E-éD— € -6€)d}’/ 4z This expres”
sion is identically equal to

0F = [(D—€)-6€dV/dn+ [E- (6D —6€)dV/dn— ((D—E)-0€d¥/4n. (11.2)

It may be noted that there would be no sense in subtracting E*/8n from F. because E is the field as mndiﬁ_cd
by the presence of the dielectric. and so the difference F — E?/8n could not be regarded as the free energy densit¥
of the dielectric as such.
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In the first integral we write o€ = — grad d¢p, (where ¢, is the potential of the field €) and
integrate by parts:
gradog, - (D — € )dV = o(D—E)-df - v (D— V.
dég,-(D— €E)d o (D —E)-df — | d¢p, div (D — €)d

1 is easy to see that both the integrals on the right-hand side are zero. For the volume
integral this follows at once from the equations divD =0 and div@ = 0 which the
induction in the dielectric and the field in the vacuum must respectively satisfy. The surface
integral is taken over the surfaces of the conductors which produce the field and over an
infinitely distant surface. The latter of these is, as usual, zero, and for each of the conductors
8¢, = constant, so that §6¢o (D —€)-df = 6o §(D — €)-df. The field €, by definition,
is produced by the same sources as the field E and induction D (i.e. by the same conductors
with given total charges €). Hence the two integrals § D,df and ¢ €, df are both equal to 4re,
and their difference is zero.

Similarly, we can see that the second term in (11.2) is also zero, by putting E = — grad ¢
and using the same transformation. Finally, we have
6F = — [(D—E)-6€dV/4n = — [P-5€dV. (11.3)

It should be noticed that the integral in this expression need be taken only over the volume
of the dielectric medium, since outside it P = (.

However. we must emphasize that the integrand P -8 cannot be interpreted as the
variation of the free energy density in the same way as was done with formulae (10.3), (10.4).
First of all, this density must exist outside the body, which modifies the field in the
surrounding space also. It is clear, moreover, that the energy density at any point in the
body can depend only on the field actually present there, and not on the field which would
be present if the body were removed.

If the external field € is uniform, then

8F = —6€¢-[PdlV = —P-5€, (11.4)

'_"’h‘?f':? & is the total electric dipole moment of the body. Hence the thermodynamic
identity for the free energy can be written in this case as

dF = — ¥dT— 22 -dE. (11.5)

The total electric moment of the body can therefore be obtained by differentiating the total
frec encrgy:

P = — (0F 10€),. (11.6)

The latter formula can also be obtained directly from the general statistical formula
OH 104 = (OF |2k),,

here # is the Hamiltonian of the body as the system of its component particles, and / is

¥ Parameter characterizing the external conditions in which the body is placed: see SP 1.

4), (15.11). For a body in a uniform external field €, the Hamiltonian contains a term

7 5‘._where # is the dipole moment operator. Taking € as the parameter /. we obtain
€ required formula.

If'[_) and E are connected by the linear relation D = ¢E, we can similarly calculate
Plicitly not only the variation 6.# but # itself. We have

F—F,={E-D—-C?)d} 8
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This can be identically transformed into

F—Fo=[(E+€)-(D-€E)dV/8n— [E-(D—-E)V/8n.
The first term on the right is zero, as we see by putting

E+ ¢ = —grad (¢ +¢y)
and again using the same transformation. Hence we have
F—F V., T)y=—3[€-PdV. (11.7)
In particular, in a uniform external field

F_F, V. T)= —1€-2. (11.8)

This last equation can also be obtained by direct integration of the relation (11.3) if we
notice that, since all the field equations are linear when D = ¢E, the electric moment &
must be a linear function of €.

The linear relation between the components of 42 and € can be written

P, = Vi €, (11.9)

as for conductors (§2). For a dielectric, however, the polarizability depends not only on the
shape but also on the permittivity. The symmetry of the tensor o, mentioned in §2, follows
at once from the relation (11.6); it is sufficient to notice that the second derivative
3F [6C €, = —02,/8€, = — Vo, is independent of the order of differentiation.
Formula (11.7) becomes still simpler in the important case where ¢ is close to 1, ie.
the dielectric susceptibility xk = (¢ — 1)/4n is small. In this case, in calculating the energy,
we can neglect the modification of the field due to the presence of the body, putting
P = kE = k€. Then
F—F,=-ifEdy, (11.10)

the integral being taken over the volume of the body. In 2 uniform field. the dipole moment
@ = V€, and the free energy is

F—Fo=—Lxver (11.11)

In the general case of an arbitrary relation between D and E, the simple formulae (11.7) and
(11.8) do not hold. Here the formula

2 .
F = F—(—E— dV = F—E—D —1p-€ |dV (11.12)
&n 8m

may be useful in calculating & ; its derivation is obvious after the above discussion. The
two integrands differ by
E-D ¢

1

after substitution of E = —grad ¢, € = —grad ¢, and integration over all space, the

result is zero. In (11.12), as in (11.7), the second integrand is zero outside the body, where

P = 0 and F = E*/8m, so that the integration is taken only over the volume of the body.
F
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PROBLEM

Derive the formula which replaces (11.7) when the body is not in a vacuum but in a medium of permittivity &,

SoLUTION. Using the same transformations as before, we find

F—Fy= —— j.(f-[Dus“'E]dV_

§12. Electrostriction of isotropic dielectrics

For a solid dielectric in an electric field the concept of pressure cannot be defined as for
an isotropic body in the absence of a field, because the forces acting on a dielectric (which
we shall determine in §§15, 16) vary over the body, and are anisotropic even if the body
itself is isotropic. An exact determination of the deformation (electrostriction) of such a
body involves the solution of a complex problem in the theory of elasticity.

However, matters are much simpler if we are interested only in the change in the total
volume of the body. As we saw in §5, the shape of the body may then be regarded as
unchanged, i.e. the deformation may be regarded as a uniform volume compression or
expansion. .

We shall neglect the dielectric properties of the external medium (the atmosphere, for
instance) in which the body is situated, i.e. we suppose that ¢ = 1. This medium thus serves
merely to exert a uniform pressure on the surface of the body, which we shall denote by P.
IF % s the total free energy of the body, then we have the thermodynamic relation
P= — (0% /@V'),, and accordingly the expression for the differential d.# contains a term
= PdV. For example, in a uniform external field, (11.5) becomes

dF = —Fdr— Pdv — 2 -d6.

introduce the total thermodynamic potential (Gibbs function) of the body in
ce with the usual thermodynamic relation

w=F+PV. (12.1)
The differential of this quantity in a uniform external field is
dgo = — PAT+ VdP— 2 -dE. (12.2)

ange in the thermodynamic quantities in an external electric field is usually a
ly small quantity. It is known from the theorem of small increments, SP 1 (15.12),
Stall change in the free energy (for given 7 and }')is equal to the small change in the
odynamic potential (for given 7" and P). Hence, besides (11.8), we can write
gously

o =goo—3€- 2 (12.3)

thcnn'od ynamic potential of a body in a uniform external field. Here gp 1s the value
body in the absence of the field and for given values of P and 7, while F o in (11.8)is
T€C energy in the absence of the field and for given values of V and 7.

king explicit the dependence of the dipole moment on ¥ and € according to (11.9),
n rewrite (12.3) as
9‘3:900”91 T]_%Vam&:&m (124]

€ the correction term must be expressed as a function of temperature and pressure by



52 Electrostatics of Dielectrics

means of the equation of state for the body in the absence of the field. In particular, for a
substance with small dielectric susceptibility this formula becomes simply

oo = goo(P.T)— 1k V E?; (12.5)

cf. (11.11).

The required change in volume }'—} in the external field can now be obtained
immediately by differentiating go with respect to pressure for constant T and €. For
example, from (12.5) we have

V—v,=—1C2[a(xV)/eP ;. (12.6)

This quantity may be either positive or negative (whereas, in electrostriction of conductors,
the volume is always greater in the presence of the field).

Similarly, we can calculate the amount of heat Q absorbed in a dielectric when an
external electric field is isothermally applied (the external pressure being constant)f
Differentiation of go — go, with respect to temperature gives the change in the entropy of
the body, and by multiplying this by 7 we obtain the required quantity of heat. For
example, from (12.5) we obtain

Q =1CT[e(xV)/eT 1. (12.9)

Positive values of Q correspond to absorption of heat.

PROBLEMS

ProBLEM 1. Determine the change in volume and the electrocaloric effect for a dielectric ellipsoid in a
uniform electric field paralle! to one of its axes.

SoLuTion. From formulae (12.3) and (8.10) we have
Vo oe—1
=go,— — ———— G
& =% Snne+1—n

The relative change in volume is found to bet

V-V, G e-1 1 1 (ﬁ)]
¥  8n|me+1—-nK (ne+1—n?\dP/; ’

TVE] &e—1 1 (aa) ]
Q= |—at—\= |
Bn |ne+1l—n (ne+1—ny*\T /p
where 1K = — (1 F')(2V//@P); is the compressibility of the body,and & = (1,/¥')@V/0T)p the thermal expansio?

coefficient.
In particular, for a plane disc in a field perpendicular to it, n = 1, so that

V-V, E*e-11 l(é‘t):l
Ir'—;Br:[_s“K'_? ep ).l
0=T e =L (B
&n £ e2\o7/pl

+ If the body is thermally insulated, the application of the field results in a change of temperatuf®
AT = — Q/%€p. where € p is the heat capacity at constant pressure.

% In the limit & — co, we find as the change in volume of a conducting ellipsoid (¥ — Vg)/V = E2/8nKn. For?
sphere, n = 4, and we recover the result in §5, Problem 4,

and the electrocaloric effect
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For a similar disc (or any cylinder) in a longitudinal field, n = 0, and

lr'—lr]:!_Ez[a—l (ae)] _n'tf_i[{__m_l_(as)]
v sl k \ep) ) 27 e |© T /p

ProBLEM 2. Determine the difference between the heat capacity €, of a plane disc in a field perpendicular to
it. with a constant potential difference between its faces, and the heat capacity %), at constant induction, the
external pressure being maintained constant in each case. ¥

SOLUTION. According to the results of Problem 1, the entropy of the disc is

dgo VEe—1 l(@s)]
g=—) —spn+-— .
(('J‘T)P‘&- olP. 1)+ 8m [ £ a+£2 T/ p

The induction inside the disc is the same as the external field: D = €. Hence, to calculate the heat capacity € p, we
must differentiate % for constant €. The potential difference between the faces of the disc is ¢ = El = Glje,
where 1 is its thickness. For a uniform compression or expansion of a body, [ is proportional to 4. Hence, to
calculate the heat capacity €, we must differentiate & for constant € ¥'4/¢. The required difference is found to be

) T E? 1/ 1{ e .
o= T e (&), Lo (5), )

ProBLEM 3. Determine the electrocaloric effect in a homogeneous dielectric whose total volume is kept
constant.

SoLuTion.  Strictly speaking, when an external field is applied the density of the body changes (and ceases to
iform), even if the total volume is kept constant. In calculating the change in the total entropy, however. we

ignore this and assume the density p constant at every point.}

ing to (10.18) the total entropy of the body is

1 {de
F = Loy, —— E2dV,
olp T]+3H(3T)p_[ d

€ the integration is over the volume of the body. The amount of heat absorbed is

T (ce
=—|— E*dV.
¢ &n (BT)FJ d

4. Determine the difference €, — %, (see Problem 2) when the total volume of the disc is kept
t.

TION. When the volume, and therefore the thickness, of the disc are constant, differentiation for
potential difference is equivalent to differentiation for constant field E. Using the formula of Problem 3

entropy we have
¢ TVEP(3e\? TVE (2>
ECPT ame \oT), T ame \oT),

LEM 5, A capacitor consists of two conducting surfaces at a distance h apart which is small compared
fil{nprlmnqs; the space between them s filled with a substance of permittivity £, A sphere of radius a < h
tuvity ¢, is placed in the capacitor. Determine the change in capacitance.

N.  Let the sphere be placed in the capacitor in such a way that the potential difference ¢ between the
dains unchanged. The free energy for constant potentials of the conductors is #. In the absence of the
» = —3Co¢”. where C, is the original capacitance. Since the sphere is small, we may imagine it to be
nto a uniform field € = ¢ /h, and the change in # is small. The small change in .# at constant potentials

to the small change in # at constant charges on the sources of the field. Using the formula derived in §11.
and (8.2), we have

F = —1C,p? —1ae, (e, — ) (2e, +5,) 02,

is the heat capacity of a disc between the plates of a plane capacitor in circuit with a constant e.m.f_ In an
ted capacitor with constant charges on the plates, the heat capacity of the disc is € D-

€change in density dp is of the second order with respect to the field (o E*),and the consequent change in
entropy is of the fourth order: the term in the change of total entropy which is linear in dp is

)fdp d¥. and the integral is zero because the total mass of the body is unaltered.
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whence the required capacitance is

C = Co+a*e,(e;—5,)/(2¢, +&;)h*.

§13. Dielectric properties of crystals

In an anisotropic dielectric medium (a single crystal) the linear relation between the
electric induction and the electric field is less simple, and does not reduce to a simple
proportionality.

The most general form of such a relation is

D; = Dy + e, E,. (13.1)

where D, is a constant vector, and the quantities ¢, form a tensor of rank two, called the
permittivity tensor (or the dielectric tensor). The inhomogeneous term Dy in (13.1) does not,
however, appear for all crystals. The majority of the types of crystal symmetry do not admit
this constant vector (see below), and we then have simply

D, = &, E,. (132)
The tensor g is symmetrical:

Eik = E]U" ‘133’

In order to prove this, it is sufficient to use the thermodynamic relation (10.10) and to
observe that the second derivative — 4nd?F/0E, 0E; = éD,/0E, = ¢, is independent of the
order of differentiation.

For F itself we have (when (13.2) holds) the expression

F=F,—¢,EE,/8%. (13.4)
The free energy F is
F = F+E,D,/4n = Fo+ ¢~ 3D, D, /8. (135)

Like every symmetrical tensor of rank two, the tensor &, can be brought to diagomfl]
form by a suitable choice of the coordinate axes. In general, therefore, the tensor &, ¥
determined by three independent quantities, namely the three principal values £, e, .
All these are necessarily greater than unity, just as & > 1 for an isotropic body (see §14).

The number of different principal values of the tensor &, may be less than three for
certain symmetries of the crystal.

Incrystals of the triclinic, monoclinic and orthorhombic systems, all three principal values
are different; such crystals are said to be biaxial.t In crystals of the triclinic system, tlj"-'
directions of the principal axes of the tensor &;, are not uniquely related to any directions if
the crystal. In those of the monoclinic system, one of the principal axes must coincide wit!
the twofold axis of symmetry or be perpendicular to the plane of symmetry of the crystal
In crystals of the orthorhombic system, all three principal axes of the tensor &; arc
crystallographically fixed.

Next, in crystals of the tetragonal, rhombohedral and hexagonal systems, two of the

 This name refers to the optical properties of the crystals; see §§98, 99. J
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three principal values are equal, so that there are only two independent quantities; such

tals are said to be uniaxial. One of the principal axes coincides with the fourfold,
threefold or sixfold axis of crystal symmetry, but the directions of the other two principal
axes can be chosen arbitrarily.

Finally, in crystals of the cubic system all three principal values of the tensor &, are the
same, and the directions of the principal axes are entirely arbitrary. This means that the
tensor & is of the form &5, ie. it is determined by a single scalar £. In other words, as
regards their dielectric properties, crystals of the cubic system are no different from
isotropic bodies.

All these fairly obvious symmetry properties of the tensor ¢, become particularly clear if
we use a concepl from tensor algebra, the tensor ellipsoid, the lengths of whose semiaxes are
proportional to the principal values of a symmetrical tensor of rank two. The symmetry of
the ellipsoid corresponds to that of the crystal. For instance, in a uniaxial crystal the tensor
ellipsoid degenerates into a spheroid completely symmetrical about the longitudinal axis; it
should be emphasized that, as regards the physical properties of the crystal which are
determined by a symmetrical tensor of rank two, the presence of a threefold or higher axis
of symmetry is equivalent to complete isotropy in the plane perpendicular to this axis. In
cubic crystals, the tensor ellipsoid degenerates into a sphere.

Let us now examine the dielectric properties of crystals for which the constant term Dy,
appears in (13.1). The presence of this term signifies that the dielectric is spontaneously
polanized even in the absence of an external electric field. Such bodies are said to be
pyroelectric. The magnitude of this spontaneous polarization is, however, in practice
always very small (in comparison with the molecular fields). This is because large values of
D, would lead to strong fields within the body, which is energetically very unfavourable
and therefore could not correspond to thermodynamic equilibrium. The smallness of D,
also ensures the legitimacy of an expansion of D in powers of E, of which (13.1) represents
the first two terms.

The thermodynamic quantities for a pyroelectric body are found by integrating the
relation — 4ndF /0F, = D, = Dy, + ¢4 E,, whence

F: FO_EIIEPE’-'ISTI_EI'DOIJ;4“' (13.6]
The free energy is
F=F+ED,/4n = Fy+¢,E.E,/8n
=Fot+e lik(Di — Do )(Dy — Dy, )/ 8. (13.7)

1:]Duld be noted that the term in F linear in E, does not appear in F.+
€ total frec energy of a pyroelectric can be calculated from formula (11.12) by
lituting (13.7) and (13.1). If there is no external field, € = 0, and we have simply

F = J.[FO— (E-D,/8n)]d}". (13.8)

fﬁlnat:kable that the free energy of a pyroelectric in the absence of an external field
8. like the field E, not only on the volume of the body but also on its shape.

should also be noted that in these formulae we neglect the piezoelectric effect, i.c. the effect of internal
l:lcm the electric properties of a body; see §17. The formulae given here are therefore, strictly speaking,
le only when the fields are uniform throughout the body, and internal stresses do not arise.
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As has already been pointed out, the phenomenon of pyroelectricity is not possible
for every crystal symmetry. Since, in any symmetry transformation, all the properties
of the crystal must remain unchanged, it is clear that the only crystals which can be pyro-
electric are those in which there is a direction which is unchanged (and, in particular, not
reversed) in all symmetry transformations. and that this will be the direction of the con-
stant vector Dy,.

This condition is satisfied only by those symmetry groups which consist of a single axis
together with planes of symmetry which pass through the axis. In particular, crystals
having a centre of symmetry certainly cannot be pyroelectric. We may enumerate those out
of the 32 crystal classes in which pyroelectricity occurs:

triclinic system: C,

monoclinic system: C,, C,

orthorhombic system: C,,

tetragonal system: C,, C,,

rhombohedral system: Cy, C,

hexagonal system: Cg, Cg,.
There are, of course, no pyroelectric cubic crystals. In a crystal of class C, the direction of
the pyroelectric vector Dy, is not related to any direction fixed in the crystal; in one of class
C,, it must lie in the plane of symmetry. In all the remaining classes listed above the
direction of Dy, is that of the axis of symmetry.t

It should be mentioned that, under ordinary conditions. pyroelectric crystals have zero
total electric dipole moment, although their polarization is not zero. The reason is that
there is a non-zero field E inside a spontaneously polarized dielectric. Since a body usually
has a small but non-zero conductivity, the presence of a field gives rise to a current, which
flows until the free charges formed on the surface of the body annihilate the field inside it.
The same effect is produced by ions deposited on the surface from the air. Experimentally,
pyroelectric properties are observed when a body is heated and a change in its spontaneous
polarization is detected.

PROBLEMS

PrOBLEM 1. Determine the field of a pyroelectric sphere in & vacuum.

SoLuTion. The field inside the sphere is uniform, and the field and induction are related by 2E = — D (as
follows from (8.1) when € = 0, i.e. when there is no applied external field). Substituting in (13.1), we obtain the
equation 2E; + ¢, E, = — D,;. We take the coordinate axes to be the principal axes of the tensor &, Then this
equation gives E; = — Dy,/(2+ &). The polarization of the sphere is P, = (D; — E)/4n = 3Dy;/4n(2 +&®). The
field outside the sphere is that of an electric dipole with moment & = PV.

ProsLEM 2. Determine the field of a point charge in a homogeneous anisotropic medium.

Sorumion. The field of a point charge is given by the equation div D = 41re<§{r] (the charge being at the
origin). In an anisotropic medium D, = e, E, = — £, d¢/&x,; taking the coordinate axes x, y,z along the
principal axes of the tensor &, we obtain for the potential the equation

£R32¢ 1ax? + N2 /Dy? + £ P /02 = —dmed(r).

t In referring to symmetry conditions, we are regarding the crystal as an infinite medium. For a ﬁnnc_crystaL
the exact value of the total dipole moment may depend (in an ionic crystal) on which crystal planes form its faces
and whether these planes contain ions of only one sign or are electrically neutral. However, in mac'_rosooplc
electrodynamics, which implies averaging over physically infinitesimal volumes, it is reasonable to mnnt:ler that
the position of the faces relative to the crystal lattice is averaged also. In consequence of this averaging, Dy
vanishes in any non-pyroelectric finite crystal, and in a pyroelectric one is independent of the face configuration-

+ In Problems 2-6 the anisotropic dielectric is assumed to be non-pyroelectric.



§13 Dielectric properties of crystals 57
By the introduction of new variables

X =xlfe®, Y=yl =z /e (n
this becomes

N F

_ dme X
S J (W) o)

formally differs from the equation for the field in a vacuum only in that e is replaced by ¢
J{g""s""&:‘“). Hence

e e xt oyt 22
=== — |
r {E'I}EU}E"“] g g T led
notation. independent of the system of coordinates chosen. we have
¢ =e/\/(ele™" %),
|e] is the determinant of the tensor &;.
3. Determine the capacitance of a conducting sphere, with radius 4, in an anisotropic dielectric

By the transformation shown in Problem 2. the determination of the field of a sphere with charge
ropic medium reduces to the determination of the field in a vacuum due to a charge ¢ distributed
surface of the ellipsoid £, x', ', = £*x'2 + £"y/? + #7122 = ¢, Using formula (4.14) for the potential due
ipsoid, we find the required capacitance to be given by

o0

1 1 a? a? a?\ 1}
c- 2s/{8""£"’£"]'-)j[(':-'-Erxi)(é"‘ﬁi_'i)(l:—i_ﬁm)] dé.

1]
M 4. Determine the field in a flat anisotropic plate in a uniform external field €.

ON.

ON. From the condition of continuity of the tangential component of the field it follows that
An, where E is the uniform field inside the plate, n a unit vector normal to its surface, and A a constant.
t is determined from the condition of continuity of the normal component of the induction,
€, or ne, E, = ne, € + Aeymn, = En,. Hence A = — (g, — 8,00, €, /e, mn,.

icular, if the external field is along the normal to the plate (the z-direction), we have

A= E{l _E:z}l‘lizz'
allel to the plate and in the x-direction, then
A= _{Eﬁn.l" Ezs

5. Determine the torque on an anisotropic dielectric sphere, with radius &, in a uniform external
a vacuum.

ON.  Accordingto (8.2) we have for the field inside the sphere E_ = 3E_ /(s + 2), and similarly for E,,
he axes of x, y, zare taken to be the principal axes of the tensor £~ Hence the components of the dipole
of the sphere are

a’E_ etc.

4 g1
P =-na’P, =
3 Elr}+z

nents of the torque on the sphere are
K,=(#x€), =3aC € (e —2)/(™ 4 2)(e™ +2),
rly for K, K,.

M6 An infinite anisotropic medium contains a spherical cavity with radius a. Express the field in the
ms of the uniform field E* far from the cavity.

ON. _The tmnsforma_tiun (1)of Problem 2 reduces the equation for the field potential in the medium to
uation f'o_r the ﬁelf.l in a vacuum. The equation for the field potential in the cavity is transformed into
Potential in a medium with permittivities 1/&, 16", 1/£'®. Moreover, the sphere is transformed into
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an ellipsoid with semiaxes a/ JE, af e, af Je?. Let a™, ™, n'? be the depolarizing factors of such an
ellipsoid (given by formulae (4.25)). Applying formula (8.7) to the field of this ellipsoid, we obtain the relation
3435[” el (q_(bi.i] a¢iﬂ

+ = - E)
ax ™ ox' ax'

(1 —n')

and similarly for the )’ and 2’ directions. Returning to the original coordinates, we have d¢p/dx" = ~J/ £X e/ fx
— — Je™E,, so that the field in the cavity is
_ Elxi
o [ J—
E x = sbl} _n{.tl'(shl - 1} E“}x‘

§14. The sign of the dielectric susceptibility

To elucidate the way in which the thermodynamic quantities for a dielectric in a field
depend on its permittivity, let us consider the formal problem of the change in the electric
component of the total free energy of the body when & undergoes an infinitesimal change.

For an isotropic (not necessarily homogeneous) body we have by (10.20) # — %,
= {(D?/8ne)d}. When & changes, so does the induction, and the variation in the free

energy is therefore
D -4D D?
0F = | ——dV = | = )
I 8ne g jﬂmﬁ;z pedl

The first term on the right is the same as (10.2), which gives the work done in an
infinitesimal change in the field sources (ie. charges on conductors). In the present case,
however, we are considering a change in the field but no change in the sources. This term
therefore vanishes, leaving

SF = — [ (3e/e?)(D*/8m)AV = — [ Se(E*/8m)dV. (14.)

From this formula it follows that any increase in the permittivity of the medium, even if
in only a part of it (the sources of the field remaining unchanged), reduces the total free
energy. In particular, we can say that the free energy is always reduced when uncharged
conductors are brought into a dielectric medium, since these conductors may (in
electrostatics) be regarded as bodies whose permittivity is infinite. This conclusion
generalizes the theorem (§2) that the energy of the electrostatic field in a vacuum i$
diminished when an uncharged conductor is placed in it.

The total free energy is diminished also when any charge is brought up to a dielectri¢
body from infinity (a process which may be regarded as an increase of ¢ in a certain volume
of the field round the charge). In order to conclude from this that any charge is attracted t0
a dielectric, we should, strictly speaking, prove also that # cannot attain a minimum for
any finite distance between the charge and the body. We shall not pause here to prove thfs
statement, especially as the presence of an attractive force betweena charge and a dielectri®
may be regarded as a fairly evident consequence of the interaction between the charge and
the dipole moment of the dielectric, which it polarizes. |

We can deduce immediately from formula (14.1) the direction of motion of a dielectri¢
body in an almost uniform electric field, i.e. one which may be regarded as uniform ovel
the dimensions of the body. In this case E? is taken outside the integral, and the differenc®
# — #, is a negative quantity, proportional to E2.1n order to take a position in which it*
free energy is a minimum, the body will therefore move in the direction of E increasing

It can be shown independently of (14.1) that the total change in the free energy ofaJ
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dielectric when it is placed in an electric field is negative.t This can be done by the use of
thermodynamic perturbation theory, the change in the free energy of the body being
regarded as the result of a perturbation of its quantum energy levels by the external electric

field. According to this theory we have

— 1 NV P (W —w,) 1 — 2.
F-Fo= V"‘_zgg Em,,*ﬂi_“némwrn ~ g e V) 142

see SP 1, (32.6). Here E, are the unperturbed levels, V,,, the matrix elements of the
perturbing energy, and the bar denotes a statistical averaging with respect to the Gibbs
istribution w, = exp{(#, —E,”)/T}.

The term ¥, in formula (14.2), which is linear in the field, is zero except in pyroelectric
ies. The quadratic change in the free energy, which is of interest here, is given by the
ining terms. It is evident that they are negative.

the other hand, it is clear from the derivation of (14.2) that the total free energy &
t be taken in this formula as described in §11, omitting the energy of the field which
exist in the absence of the body. The difference # — #, is therefore given by the
odynamic formuila (11.7). Let us consider a long narrow cylinder placed parallel to a
rm external field €. The field within the cylinder is then € also, and its polarization
(e—1)€/4n, so that

F—Fo=—(e— 1)V E?/8n

F — F, is negative only ife > 1. This leads to the conclusion mentioned in §7 and
y made use of, namely that the permittivity of all bodies exceeds unity, and the
Tic susceptibility k = (¢ — 1)/4= is therefore positive.

the same way we can prove the inequalities £” > 1 for the principal values of the
£ 1n an anisotropic dielectric medium. To do so, it is sufficient to consider the
of a field parallel to each of the three principal axes in turn.

Electric forces in a fluid dielectric

prqblem of calculating the forces (called ponderomotive forces) which act on a
€ in an arbitrary non-uniform electric field is fairly complicated and requires
1€ consideration for fluids (liquids or gases) and for solids. We shall take first the
case, that of fluid dielectrics. We denote by fd I the force on a volume element d I,
Il the vector f the force density.
Well_known that the forces acting on any finite volume in a body can be reduced to
dpplied to the surface of that volume (see 7'E, §2). Thisis a consequence of the law of
vation of momentum. The force acting on the matter in a volume d I is the change in
tum per unit time. This change must be equal to the amount of momentum
g the volume through its surface per unit time. If we denote the momentum flux

th&_mge proportional 1o the square of the field is meant. It may be recalled that, in pyroelectric bodies,
in the free energy contains also a term linear in the field, which is of no interest here.
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tensor by — o, thent
[£dV = § o dfs (15.1)

where the integration on the right is over the surface of the volume V. The tensor gy, is
called the stress tensor. It is evident that o, df; = 6;,n,df is the ith component of the force
on a surface element df (n being a unit vector along the normal to the surface outwards
from the volume under consideration),

Similarly, the total torque acting on a given volume also reduces to a surface integral, by
virtue of the law of conservation of angular momentum. This reduction is possible because
of the symmetry of the stress tensor (6, = 0y;), which thus expresses the conservation law
mentioned. :

On transforming the surface integral in (15.1) into a volume integral, we obtain
{ fdV = [ (é0,/0x,)dV, whence, since the volume of integration is arbitrary,

) = 00,/ 0%. (15.2)

This is a well-known formula giving the body forces in terms of the stress tensor.

Let us now calculate the stress tensor. Any small region of the surface may be regarded
as plane, and the properties of the body and the electric field near it as uniform. Hence, to
simplify the derivation, we can with no loss of generality consider a plane-parallel layer of
material (with thickness h and uniform composition, density and temperature) in an
clectric field which is uniform.} This field may be imagined to be due to conducting planes,
such as the plates of a capacitor, applied to the surfaces of the layer.

Following the general method for determining forces, we subject one of the plates (the
upper one, say) to a virtual translation over an infinitesimal distance €, whose direction is
arbitrary and need not be that of the normal n. We shall suppose that the potential of the
conductor remains unchanged at every point, and that the homogeneous deformation of
the dielectric layer, resulting from the transiation, is isothermal.

A force —o,n, is exerted by the layer on unit area of the surface. In the virtual
displacement this force does work — oy, m, &;. The work done in an isothermal deformation
at constant potential is equal to the decrease in | FdV,ie.inhF per unit surface area. Thus

o4 &n, = 6(hF) = hoF + Féh. (15.3)

The thermodynamic quantities for the fluid depend (for given temperature and field)
only on its density; deformations which do not change the density (i.e. pure shears) do nol
affect the thermodynamic state. We can therefore write for an isothermal variation 8 F in2

fluid
oF (@F)
_(F) sE+(E) o
2 (5E)r.p d o Jer .

. 2 5!:‘.1 + (a__F_) 3p. (15-‘“
4n ap ET

+ The force component f; is not to be confused with the surface area component df,.
1 We thus ignore any terms in the stress tensor depending on the gradients of temperature, field, etc. Thes®

terms. however, are vanishingly small in comparison with terms which do not contain derivatives, in the same way
as any terms containing derivatives which might appear in the relation between D and E.

4
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The change in the density of the layer is related to the change in its thickness by ép
— pdh/h. The variation of the field is calculated as follows. At a given point in space
ith position vector r) there appears matter which was originally at r —u, where u is the
icle displacement vector in the layer. Since, under the conditions stated (homogeneous
formation, and constant potential on the plates), each particle carries its potential with it,
change in the potential at a given point in space is 8¢ = ¢(r —u) — P(r) = —u - grad ¢
u - E, where E is the uniform field in the undeformed layer. Since the deformation is
ogeneous, however, we have

u= Zéﬂl, “.5.5)
z is the distance from the lower surface. Hence the variation of the field is
OE = —n(E - §)/h. (15.6)

bstituting the above expressions in (15.4) and using also the fact that 6h = &, = &-n,
btain

1 .
Cutin = 4 (1 D)EE)-&-np? +E-nF

—{ an _p_a;éik+F‘§ik}fink*

we have finally the following expression for the stress tensor:
Oy = [F“Pfaﬁf‘ap}s.r 164+ E;D, /4. (15.7)

ropic media, which are those here considered. E and D are parallel. Hence
E, D;, and the tensor (15.7) is symmetrical, as it should be.t
linear relation D = ¢E holds, then

F=Fy(p.T)—eE?/87; (15.8)

7). F, is the free energy per unit volume in the absence of the field. According to a
wn thermodynamic relation, the derivative of the free energy per unit mass with
O the specific yolume is the pressure:

9 (Fo\| _p (%o _ _»5.
[ﬁlllp)(ﬂ)]r_F° p(ﬂp )r_ Fos

(p,T) s the pressure which would be found in the medium in the absence of a field
given values of p and T. Hence, substituting (15.8) in (15.7), we have

- E? de eE\E,
Oy = Po(PsT)‘Sm—ﬁ[s_P(g)T]am+?- (15.9)

um. this expression becomes the familiar Maxwell stress tensor of the electric

t important that in this derivation E is parallel to n, since o, can obviousl depend only on the
E, not on that of n. - ol ’
first footnote to §5.
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The forces exerted on the surface of separation by two adjoining media must be equal
and opposite: o,n, = — 0’ 'y, where the quantities with and without the prime refer to
the two media. The normal vectors n and n' are in opposite directions, so that

O = O 1. (15.10)

At the boundary of two isotropic media the condition of equality of the tangential forces is
satisfied identically. For, substituting (15.7) in (15.10) and taking the tangential component,
we obtain E,D, = E',D’,. This equation is satisfied by virtue of the boundary conditions of
continuity on E, and D,,. The condition of equality of the normal forces is, however. a non-
trivial condition on the pressure difference between the two media.

For example, let us consider a boundary between a liquid and the atmosphere (for which
we can put £ = 1). Denoting by a prime quantities pertaining to the atmosphere, and using
formula (15.9) for o,,, we have

E* [de € 1
_P ,T o . __Ez_EZ____ __EI'Z_E:Z‘
l}{p )+3ﬂ.‘p(ﬁp);+3ﬂ( n 1 } Patm"'s_n[ n t ]
Using the boundary conditions E, = E, D,=¢E,=D,=FE, we can rewritc this
equation as
pE* (e e—1 ., .3
P(p. TV =Py ="\ ]| ———EE,"+E) 15.11
0{»0 } atm 87 (aﬂ)r 87T (E n Et ) ( )
This relation is to be taken as determining the density p of the liquid near its surface from
the electric field in it.
Let us now determine the body forces acting in a dielectric medium. Differentiating
(15.9) in accordance with (15.2) gives

0 E* [de E* e 1 & P
B === _P — N I . IV EZ d E ‘ .
4 axi[ o gﬂp(aﬂ)r] 8m Ox; +4:r|: zaﬁx,- N ox, ( ‘D"’]

On using the equation div D = 8D, /éx, = 0, the expression in the brackets in the last term
can be reduced to

JE, JE, JE, JOE,
—ob e PP, T ((-..— )
which is zero, since curl E = 0. Thus we have
1 , (e E?
= o Y == 15.12)
f grad Py(p, T)+ . grad[E p( é"p)r] . grade (

(H. Helmholtz, 1881). _
If the dielectric contains extraneous charges with density pey, the force f contains 2
further term E div D/4x, or. since div D = 4mpe,,

PexE: (15.13 l

however, it should not be supposed that this result is obvious (cf. §16, Problem 3).

In a gas, as already mentioned in §7, we can assume the difference £—1 to P¢
proportional to the density. Then pde/ép =¢e— 1, and formula (15.12) takes the simplef |
form —_ .
f= —grad P, + e grad E*. (]5.1"1:'J
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ormula (15.12)is valid for media of both uniform and non-uniform composition. In the

case & is a function not only of p and 7 but also of the concentration of the mixture,
- oh varies through the medium. In a body of uniform composition, on the other hand, &
function only of p and T, and grad & can be written as

grade = (de/cT), grad T + (¢e/0p), grad p.
n (15.12) becomes

= __ 1 - 3_8 __E_z Ef; 15.15
= —grad P':'(p’ﬂ-'-Sﬂ grad[E (5p)r] Bar(é‘T pgradT, (15.15)

temperature also is constant throughout the body, the third term on the right is zero,

in the first term grad P, can be replaced by p grad {,, in accordance with the
odynamic identity for the chemical potential in the absence of a field, pdl, =

S,dT. Thus
E?( oe
= ~rwmilt- g (01) |

i (15.16)

{ is the chemical potential in an electric field (see (10.19)).
particular, the condition of mechanical equilibrium f=0 is, for constant

ture,
{ = {,— (E*/8m)(de/dp), = constant, (15.17)

rdance with the thermodynamic condition of equilibrium. This condition can
be written still more simply. The change in density of the medium due to the field 1s
ional to EZ. Hence, if the medium is of uniform density in the absence of the field,
put p = constant in the last two terms in (15.15) when the field is present; an
ce for the change in p is beyond the accuracy of formulae which assume the linear
D = ¢E. Then, equating to zero f from (15.15), we obtain the equilibrium
On at constant temperature in the form

Py(p,T)— (pE?*/8m)(d¢/p), = constant, (15.18)

iffers from (15.17) in that {, is replaced by P,/p.
lose this section, we shall show how the expression (15.12) for the force may be
directly from (14.1) if the calculation of the stress tensor is not required.
consider an infinite inhomogeneous dielectric medium subjected to a small
deformation that is zero at infinity. The variation d¢ is made up of two parts:
change

g(r—u)—e(r)= —u-grad ¢
the fact that a particie is brought by the deformation from r—u to r. and (2) the
—(C&/2p); p div u, due to the change in the density of the substance at the point

Wi (see TE, §1) that div u is the relative change in the volume element, so that the
in the density is dp = — p div u. The variation in the free energy is therefore

F =0Fy— |de(E?/8m)dV
= — [Py divudV + [(E*/87) [u-grade + (7c/&p), p divu]dV: (15.19)
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the first term is the variation in the free energy when the field is absent. Integrating by parts
the div u terms in (15.19) and comparing the result with the expression 8.F = — fu-fd¥
for the free energy variation in terms of the work done by the forces f, we arrive at (15.12),

§16. Electric forces in solids

The dielectric properties of a solid body change not only when its density changes (as
with liquids) but also under deformations (pure shears) which do not affect the density. Let
us first consider bodies which are isotropic in the absence of the field. In general, the
deformed body is no longer isotropic; in consequence, its dielectric properties also become
anisotropic, and the scalar permittivity ¢ is replaced by the dielectric tensor &;,.

The state of a slightly deformed body is described by the strain tensor

y __l au'-l-faﬂ
ik 2 axt ﬁxi 3

where u(x, y, z) is the displacement vector for points in the body. Since these quantities are
small, only the first-order terms in u;, need be retained in the variation of the components
£, Accordingly, we represent the dielectric tensor of the deformed body as

B = 506&+ﬂluik+azu"6m. {161}

Here g, is the permittivity of the undeformed body, and the other two terms, which contain
the scalar constants a,. a,, form the most general tensor of rank two which can be
constructed linearly from the components uy,.

Let us now see where the derivation given in §15 must be modified. Since, in a solid
body, F depends on all the components of the strain tensor, we must replace (15.4) by
5F = — D -0E/4n + (8F /du,)du;. For the virtual displacement considered, the vector uis
given by formula (15.5), so that the strain tensor is 1, = (&, + &,n;)/2h. Substituting this
in F and using the symmetry of the tensor u;, and therefore of the derivatives F /du;,, W
obtain

oF = —D -8E/an + (&n,/h)eF [ouy. (16.2)

It is now evident that we find, instead of (15.7), the following expression for the stress

tensor: 0y = Foy = (8F/0uy), ¢+ E:Dy/4m. (16.3)

Formula (16.3) is valid whatever the relation between D and E. For a body which 1§
neither pyroelectric nor piezoelectric, so that D; = &, E,, F is given by formula (13.4) and
the required derivatives are &F /duy = OFo/0uy — (ay E.Ey + a, E*0;)/8m. We then put
£y = £00y everywhere in (16.3) and obtain the following formula for the stress tensor:

Oy — J“}‘ik + {280 — 4 )EI'EM 8 — {Eo + ﬂz)EztSiM"fgﬂ. {16-4]

+ The quantity F in this formula, and in all preceding formulae, is the free energy per unit !:ﬁolume. In the
theory of elasticity, however,a somewhat different definition is usual: the thermodynamic quantities are refe
to the amount of matter contained in unit volume of the undeformed body, which may after deformation occup}
some other volume. It is easy to go from one definition to the other by expressing the relative volume change 1P
the deformation in terms of the tensor u;,; on account of the presence of the derivative with respect to ug, in (163
this must be done with allowance for second-order terms. As a result, the first two terms on the right of (163
combine into one of the form @F «&u,,. in accordance with the usual formula of elasticity theory.

i
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o9, is the stress tensor in the absence of an electric field, determined by the moduli of
rigidity and compression according to the ordinary formulae of the theory of elasticity.
Let us now make similar calculations for anisotropic solids. The necessary modifi-
-ation of the above argument is as follows. When the layer undergoes a virtual
ormation, its crystallographic axes are rotated, and their orientation relative to the
Jectric field is therefore changed. On account of the anisotropy of the dielectric properties
e crystal, this leads to an additional change in F not shown in (16.2). To calculate this
ange we can equally well suppose that the crystal axes rotate through some angle 6¢
ative to the field E, or that the field rotates through an angle — ¢ relative to the axes,
the latter approach is the more convenient.
us the variation of the field (15.6) considered above must be augmented by the change
E on rotation through an angle —dé:

SE = —n(E-&)/h— 5S¢ XE.

angle ¢ is related to the displacement vector u in the deformation by é¢ = 3 curl u;
equation is easily obtained by noticing that, when the body rotates through an angle
, its points are displaced by u= ¢ Xr. Substituting u from (15.5), we find é¢

12E/2h = nxE/2h, and SE= —n(E-§)/h+Ex(nx&)2h= —[n(E-&)+&(n-E)]/2h.
irst term in (16.2) becomes

1

an

1 1
D-SE = [(n-D)E E)+ (& -D)n-E)] = — &n 3(ED, + ED)).
8mh 47h
e we see that the product E,D, in (16.3) must be replaced by the second factor in the
Xpression:
Fo1
Chet (E;Dy+ E,D,). (16.5)
du, 8=n
expression is symmetrical in the suffixes i and k, as it should be.
€ expression (16.1) for the dielectric tensor, involving two scalar constants, must be
6d in the case of a deformed crystal by

0= Fo, +

Eix = "-:w]ik + Digcin Yims (16.6)

@iy 1S @ constant tensor of rank four, symmetrical with respect to the pairs of
€8 i. k and I, m (but not with respect to an interchange of these pairs). The number of
endent non-zero components of this tensor depends on the crystal class.

 shall not pause to write out here the formula for the stress tensor (analogous to
) which is obtained by using (16.6).

 formulae which we have obtained give the stresses inside a solid dielectric. They are
Ceded, however, if we wish to determine the total force F or the total torque K exerted
e body by the external field. Let us consider a body immersed in a fluid medium and
at rest there. The total force on it is equal to the integral $ oun,df, taken over the
Ce. Since the force o,.n, is continuous, it does not matter whether this integral is
ated from the values of ¢,, given by (16.4) or from formula (15.9). which relates to the
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medium surrounding the body. Let us suppose that this medium is in mechanical and
thermal equilibrium. Then the calculation is further simplified if we use the condition of
equilibrium (15.18). From this condition, part of the stress tensor (15.9) is constant
through the body, being a uniform compressing or expanding pressure and making no
contribution to the total force F and torque K acting on the body. These can therefore be
calculated by writing o, as

oy = (€/4TNE;E, — YE?S,) (16.7)

simply, where E is the field in the fluid and ¢ its permittivity; this expression differs only by
a factor ¢ from the Maxwell stress tensor of the electric field in a vacuum. Thus

F = (¢/4m) § [E(n-E)—3En]df, , (16.8) |
K = (¢/4m) § [rXE(n-E)—3E*rxn]df (16.9)

It may also be noted that, since the fluid is in equilibrium, we can take these integrals
over any closed surface which surrounds the body in question (but, of course, does not
enclose any of the charged bodies which are sources of the field).

The calculation of the total force on a dielectric in an electric field in a vacuum can also
be approached in another way by expressing this force, not in terms of the actual field, but
in terms of the field € which would be produced by the given sources in the absence of the
dielectric: this is the “external field” in which the body is placed. Here it is assumed that the
distribution of charges producing the field is unchanged when the body is brought in. This
condition may not be fulfilled in practice _for example, if the charges are distributed over
the surface of an extended conductor and the dielectric is brought to a finite distance
from it.

In a virtual translation of the body over an infinitesimal distance u, the total free energy
of the body varies, according to (11.3), by 5F = — [P-0€dV, where 6€ = E(r +u)
— €(r) = (u-grad)€ is the change in the field at any given point in the body. Since
u — constant and curl € = 0, we have P+ (u* grad)€ = P -grad (v -€) = u-(P-grad)€
so that

8F = —u- | (P-grad)€dV.

But 6% = —u-F, and we therefore have for the required forcef
F = [(P-grad)€d}. (16.10)

Similarly, the total torque on the body can be determined. We shall not go through the
calculation, but merely give the result:

K=[PxE€dl+ frx(P-grad)€d} (16.11)

In an almost uniform field, which may be regarded as constant over the dimensions of |
the body, formula (16.10) gives to a first approximation

F=({PdV -grad)€ = (2 -grad) €, (16.12)

+ It should be emphasized, however, that the integrand in (16.10) cannot be interpreted as the force density’
The reason is that the local forces in the dielectric arise not only from the field € but also from the internal fi€!
which, by Newton’s third law, contribute nothing to the total force, though they modify the distribution of force®
over the volume of the body.
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here 22 is the total dipole moment of the polarized dielectric; this result, of course, could
ve been obtained by direct differentiation of % from (11.8). In formula (16.11) we

neglect the second term in the first approximation and reach the natural conclusion that
* K=2x6€. (16.13)
PROBLEMS

ProeLEM 1. A dielectric sphere with radius a in a uniform external field € is cut in half by a plane
dicular to the field. Determine the force of attraction between the hemispheres.

oLUTION. We imagine the hemispheres separated by an infinitely narrow slit and determine the force
formula (16.8) with & = 1, integrating over the surface of a hemisphere; E is the field in the vacuum near the
ace. According to (8.2) the field E® inside the sphere is uniform and equal to 3€/(2 +¢), where & is the
ittivity of the sphere. The field in the slit is perpendicular to the surface and is E = D% = 3¢/(2+£). On
outer surface of the sphere we have

3e 3
—p0 — " =FE® = — " _Esinf,
E =D" e cosf, E;=E", T

0 is the angle berween the position vector and the direction of €. A calculation of the integral gives an
ive forcet
F = 9(e — 1 a* € /16(e + 2)%.

OBLEM 2. Determine the change in shape of a dielectric sphere in a uniform external electric field.

OLUTION. Asin §5, Problem 4. In determining the change in shape, we assume the volume of the sphere to
hanged. { The elastic part of the free energy is given by the same expression as in §5, Problem 4. The electric
i$ given by (8.9)
—lg. = — L ﬁ_ F2
. T Bml4mEe™—1)
the permittivity in the x-direction is, by (16.1), ™ = ¢, +a,u,, = g+ 3a, (1, —u,)) = o+ 3a,(a—b)/R.
the condition that the total free energy be a minimum we find (since the quantity concerned is small)

€g — oC this tends to the value for a conducting sphere.

OBLEM 3. Determine the body forces in an isotropic solid dielectric, assumed homogeneous, when
eous charges are present in it,

LUTION. Assuming g, @,, @, constant and using the equations curl E = 0, divD = g, divE = 4np,,, we

from (16.4)
P doy 809, 1 7 )652 (1 a ) E
= (e — + |1 — ;-
é&x, dx, 8m S ax; 2¢, i

Piezoelectrics

e internal stresses which occur in an isotropic dielectric in an electric field are
ortional to the square of the field. The effect is similar in crystals belonging to some of

It is by chance {hat. in the limit £ — oo, this expression tends to the result obtained in &5, Problem 3, for a
ducting sphere (indeed. the forces are in opposite directions). The two cases are evidently not physically
ivalent, because there is no field in the slit between two conducting hemispheres at the same potential, whereas
his problem there is a field in the slit. '

The change in volume is determined in §12, Problem 1.
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the crystal classes. For certain types of symmetry, however, the electrostriction properties
of the crystals are quite different. The internal stresses in these piezoelectric bodies
resulting from an electric field are proportional to the field itself. The converse effect also
ocecurs: the deformation of a piezoelectric is accompanied by the appearance in it of a field
proportional to the deformation.

Since in a piezoelectric only the principal (linear) effect is of interest, we can neglect the
terms quadratic in the field in the general formula (16.5). Thenoy = Fou+ (OF Quy)yg-Tn
this section we shall use the thermodynamic quantities referred to the matter in unit
volume of the undeformed body (see the first footnote to §16). Taking F in this sense. we
have simply

Oy = {6?;‘311&)”:_ F (17.1)
Accordingly. the thermodynamic relation for the differential dF is
dF = —SdT 40, du,— D -dE/4x. (172)

The following remark should be made concerning the last term. In the form given here. this
term (taken from (10.9)) pertains, strictly speaking. to unit volume of the deformed body.
By ignoring this fact, we commit an error which, in the case of a piezoelectric, is of a higher
order of smallness than the remaining terms in (17.2).

The independent variables in (17.2) include the components of the tensor u;. Itis
sometimes convenient to use instead the components g;,. To do so, we must introduce the
thermodynamic potential, defined as

&’ = F —Hmﬂ'ik. (173]
For the differential of this quantity we have
dd = — Sd7T —u,do,,— D -dE/4m. (17.4)

It must be emphasized that the use of the thermodynamic potential & in electrodynamics in
accordance with formulae (17.3) and (17.4) rests on the validity of (17.1}and so 1s possible
only for piezoelectric bodies.

Having thus defined the necessary thermodynamic quantities, let us now ascertain the
piezoelectric properties of crystals. If o, and E, are taken as independent variables, the
induction D must be regarded as a function of them, and an expansion of this function
must retain the terms linear in them. The linear terms in the expansion of the components
of a vector in powers of the components of a tensor of rank two can be written, in the most
general case, as 47y, , 0, wWhere the constants y; y form a tensor of rank three, and the
factor 47 is introduced for convenience. Since the tensor ay; s symmetrical, it is clear that
the tensor y; ,; may also be supposed to have the symmetry property

Yiaa = Viake “7’5]
For clarity we separate the symmetrical suffixes from the remaining one by a comma. we
call 7, , the piezoelectric tensor. If it is known, the piezoelectric properties of the crystal ar€
entirely determined.
Adding the piezoelectric terms to the expression (13.1) for the electric induction in the
crystal, we have
D, = Dy, + gy Ey + 47Y; uOa- (17.6)

Corresponding additional terms appear in the thermodynamic quantities. The thermo-
4
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namic potential of a non-piezoelectric crystal in the absence of a field is ==
— L piumOixO1ms Where @ pertains to the undeformed body, and the second term is the
inary elastic energy, determined by the elastic constant tensor p,,,,. T For a piezoelectric

have

® = Oy — 1144 041 — e EiEy /87 — E.Dy /4 — 3, y Eioy. (17.7)

form of the last three terms is given by the fact that the derivatives of ® with respect to
or given temperature and internal stresses), found from the relation D; = — Anéd/CE,,
accord with (17.6).

owing ®. we can obtain from (17.4) a formula giving the strain tensor in terms of the
o, and the field E:

Uy = — {a(ﬁfaﬁ.’k)r_z = MigamOim + V1, ik E,. (17.8)

hould be mentioned that to regard the quantities p,,,, and ¢, for a piezoelectric as
constants and permittivity is to some extent conventional. With the definitions used
hey give respectively the strains as functions of the elastic stresses for a given field,
e induction as a function of the field for given stresses. If, however, the deformation
with a given value of the induction, or we consider the induction as a function of the
r given strains, the elastic constants and the permittivity will be represented by other
1es, which can be expressed as somewhat complex functions of the components of
sors u., € and 7.

field in a piezoelectric body must be determined together with its deformation.
to a problem in both electrostatics and elasticity theory. We must seek a
eous solution of the electrostatic equations

divD =0, curl E = 0. (17.9)
given by (17.6), and the equations of elastic equilibrium
06,/0x, =0, (17.10)

appropriate boundary conditions at the surface of the body and use of the relation
een g, and the strains. In general this problem is very complex.

roblem is much simplified for a body of ellipsoidal form with a free surface (i.e. one
10 no external mechanical forces). In this case (§8), the field inside the body is
;» the deformation is therefore homogeneous, and the elastic stresses o, = 0.

¥, let us comsider which types of crystal symmetry allow the existence of
icity; in other words, what are the restrictions imposed on the components of
I'}; 1 by the symmetry conditions. In general, this tensor (which is symmetrical in

NSOT jiy,,, determines the relation between stress and strain:
u‘* = —?‘q’,ﬁ'aa& = #imﬂh.

the converse relation a,, = 2, is used. It is evi i
et Ui 18 -Itisevident that the symmetry properties of the tensor
the same as those of 4, i 0

energy F contains the elastic energy with the plus sign:
Fey = 3 Aipim Ui -
ynamic potential is obtained from F by subtracting o,,u,,. and sco

Pey = Fot — Outla = — 3 iumbatin = ~ gm0 nOim-
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the suffixes k and /) has 18 independent non-zero components. but in reality the number of
independent components is usually much smaller.

In all symmetry transformations of a given crystal, the components of the tensor y;
must remain unaltered in value. Hence it follows at once that no piezoelectric body can
have a centre of symmetry or, in particular, be isotropic. For, on reflection in the centre (i.e.
change of sign of all three coordinates). the components of a tensor of rank three change
sign.

Of the 32 crystal classes, only 20 allow piezoelectricity. These comprise the ten
enumerated in §13 as allowing pyroelectricity (all pyroelectrics are also piezoelectrics) and
the ten following classes: '

orthorhombic system: D,
tetragonal system: Dy, D,,, S,
rhombohedral system: Dy
hexagonal system: D¢, Cy, D3,
cubic system: T. T,.

The non-zero components of the piezoelectric tensor for each class are given in the
Problems below.

Mention may also be made here of a phenomenon akin to piezoelectricity, which results
from the “deformation” of a liquid crystal. We shall consider what are called nematic
crystals (SP1, §140), liquids in which there is a distinctive direction of preferred
orientation of the molecules. At each point in the medium, this direction is specified by a
unit vector d, the director of the crystal. In an undeformed liquid crystal, d has the same
direction everywhere, but in a deformed one this direction is a function of the coordinates.
The expansion (17.6) corresponds to an expression for the induction ina liquid crystal 10
the form

D, = &, E; + 4ne d; div d + 4me, (curl d x d);, (17.11)

where e, and ¢, are scalar coefficients (R. B. Meyer, 1969).t The last two terms, which |
describe the effect in question, constitute the most general polar vector that can be formed
from d and its first derivatives with respect to the coordinates. The expression (17.11) i
automatically invariant under a change in the sign of d.

The permittivity tensor of a nematic crystal has the same symmetry as for uniaxial
crystals, the axis of symmetry being represented by the local (at each point)direction of the
director. The tensor ¢, may be expressed as

£ = EoOi +&,d;dy, _ (17.121

with two independent constants &, and &,.

PROBLEMS
ProsLEM 1. Determine the non-zero components of the tensory; for non-pyroelectric crystal classes which
allow piezoelectricity.

SoLUTION. The class D, has three mutually perpendicular twofold axes of symmetry. which we take as the
axes of x, y and z. Rotations through 180" about these axes change the sign of two out of the three coordinates

+ Pyroelectricity in nematic crystals is in practice unknown, and we therefore put D, =0.
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_ce the components 7, ,, are transformed as the products x;x,x;, the only non-zero components are those with
- different suffixes: 7, ., 7. ... 7, .. (The other non-zero components are equal to these, since ; y = 7;.u-)
~ordingly, the piezoelectric part of the thermodynamic potential ist

‘I’pic = hthxry:'Exapz +?y.:z£yﬂ'xz+'}'z,:pEzaxy)- (1)

e class D, is obtained by adding to the axes of class D, two planes of symmetry passing through one axis

- z-axis, say) and bisecting the angles between the other two. Reflection in one of these planes gives the
sformation x — y, y — X, z — z. Hence the components y; ,, which differ by interchange of x and y must be

4] 5o that only two out of the three coefficients in (1) are now independent: 3, 4y Ve = = ¥y sz

= class T is obtained from the class D, by adding four diagonal threefold axes of symmetry, rotations
1 which effect a cyclic permutation of x, y, z, e.g. x — z, y - x, z — y. Hence all three coefficients in (1) are
e e = Vyox = Ve The same result is obtained for the cubic class T,.
e class D, has one?ourfold axis of symmetry (the z-axis, say} and four twofold axes lying in the xy-plane.
the symmetry elements of the class D, are supplemented by a rotation through 90° about the z-axis, i. the
ormation x — y, y — — x, z — z. Consequently. one of the coefficients in (1) must be zero (y, ,, = —7V.,a =
= (), and the other two are equal, but opposite in sign: ¥, ,. = — ¥,,,.- 1 he same result is obtained for the
D.
* S, includes the transformations x — y, y = —x,z =+ —zand x -+ — x, ¥ - — y. z — z. The non-zero
DDENLS T ¥, o Y yz = Fyoxes Tzxx = — Yooy Yozx = —Ty.zy ONE Of these can be made to vanish by a
e choice of the x and y axes.
class D, has one threefold axis of symmetry (the z-axis. say), and three twofold axes lying in the xy-plane:
of these be the x-axis. To find the restrictions imposed by the presence of a threefold axis, we make a formal
srmation by introducing the complex “coordinates™ & = x +iy, 5 = x —iy; the coordinate z remains
ged, We must also transform the tensor y, ,, to these new coordinates, in which the suffixes take the values
In & rotation through 120° about the z-axis these coordinates undergo the transformation £ — £e*™/°,
=283 7 5 z. The only components of the tensor y; ,; which remain unchanged and so may be different
20 ATC V, 0y T eos Vo zne Veier Vg @04 Vo ... A rotation through 180" about the x-axis gives the

ation x — X,y = —y,z— —z,0ré —» 1,0 > &,z —z;%, . andy, ., change sign and so must be zero,
he remaining components listed above are mutually transformed in pairs, giVIng ¥, .s = — Ve s Yoz
In order to write an expression of &)mc' we must form the sum —y; ,,E;ay,, in which the suffixes take the

- 1, Z0

Gpie = = 29, o (E0.y — Eyo5)— v 1o (Eeo g + E,0,)

components E; and ¢, in the coordinates &, , z must also be expressed in terms of those in the original
ates x, y, z. This is easily done by using the fact that the components of a tensor are transformed as the
S of the corresponding coordinates. Hence, for example, from & = xx — yy + 2ixy, we have o, = 0,,
2ia,,. The result is

&, = 2a(E,0,,—E,0,)+b[2E,6, —E (6,,—0c,)], 2

2iy, s and b = 2y, .. are real constants. The relations between the components y; , in the coordinates
e, a8 we see from (5],3:

TT-’X . _TIJJ‘ = -4 ?P.ﬂ' = _'}J.'l.'.-"-'! = ]"JrJ'J’ =i b‘

4ss Dy, is obtained from the class D, by adding a plane of symmetry (the xy-plane) perpendicular to the
4 axis. Reflection in this plane changes the sign of z, and so Tm.ze = 0, s0 that only the term with the
it b remains in (2). '

488 €y, has a threefold axis and a plane of symmetry perpendicular to it. Reflection in this plane changes
Of z.and so all components y; ,, whose suffixes contain z an odd number of times must be zero. Taking into
also the restrictions derived above which are imposed by the threefold axis of symmetry, we find that
two components y,, ,, and v, ., are not zero, These quantities must be complex conjugates in order that &

Avoid misunderstanding it should be recalled that, if we calculate the components of the strain tensor uy,

differentiation of the actual expression for & with respect to g, the derivatives with respect (0
ents g, withi 5 k give twice the corresponding components u,, because the expressions u, = —o®/do,,
tially meaningful only as representing the fact that d® = — v, do,,, and the terms containing the
4ls of non-diagonal components of the symmetrical tensor ¢, appear twice in the sum upday,.
on-orthogonal coordinates such as £, 1, z the covariant and contravariant components of tensors must be

€d. This should have been done in returning to the original coordinates x, y, z: if the components E ;and
Orm contravariantly, then those of the tensor y, ,, transform covariantly. We avoid this necessity,
Oy obtaining the required relations between the components y, , in the coordinates x, y, z directly from
f' the scalar combination (2).
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should be real. Putting 2y, ., = a—ib, 2y, ;; = a +ib, we find
Bpic = A12E,0,,— Exl0,— 0,,) | +b[2E 0y + Ey (0= 0) | (3)
Either a or b can be made to vanish by a suitable choice of the x and y axes.
PrOBLEM 2. The same as Problem 1, but for the crystal classes which allow pyroelectricity.

SoLUTION.  Let the z-axis be the twofold, threefold, fourfold or sixfold axis of symmetry, or in the class C, be
perpendicular to the plane of symmetry. In the classes C,, the xz-plane is a plane of symmetry.
We give below for each class all the components ¥ which are not zero.
Class Cy:  all 3.
C,.: all those in which the suffix z appears twice or not at all.

Czu: Vzoxxe Yoo Tzzzs Voxee Fy.yar

C,: the same, together with y, ... ¥y xzs ¥z.2y-

C-l-p: Tz,xx = Tz.ﬂ:! }I:.:z- }h.l'.;zz = Ty,}!'

C,: the same, together with 7, ;. = — V.0

C}r: Tz,z2 Frxe = "lly._rx: ?:,Jlr.x i Tx.yr = "?J'.-'I.P’ Vamx = }IZJJ"

ga: the same, together with 7, .. = — ¥y Frx = ~ Vo = Vroxy
6!'.‘

Ye,zz~ Va2 = }'y,iz' P

C,: the same, together with ¥, ;. = =¥, x-

By a suitable choice of directions of the x. y, z axes three more components can bemade zero in the class C;,and
by a choice of the x and y axes one more component can be made zero in the classes C,, C,, Cy;in Cyand C. the
expression 7;  E;oy is invariant under rotation through any angle about the z axis, and therefore no further
reduction in the number of non-zero components ¥, is possible.

ProBLEM 3. Determine Young's modulus (the coefficient of proportionality between the extending stress
and the relative extension) for a flat slab of a non-pyroelectric piezoelectric in the following cases: (a) where the
slab is stretched by the plates of & short-circuited capacitor. (b) where it is stretched by those of an uncharged
capacitor, (c) where it is stretched parallel to its plane with no external field.

SOLUTION. (a) In this case the field E inside the slab is zero, The only non-zero component of the tensor o, 18
the extending stress o, (the z-axis being perpendicular to the slab).¥ From (17.8) we have t,; = J;es0:2 whence
Young's modulus is E = 1, ...

(b) In this case we havein the slab E, = E,=0,D, = 0.From (17.6)and (17.8)we have D, = £, E. 44Ty, ;.0
=0, 1, = Hyy0,02z + Vs 5 E- Eliminating E,, we obtain 1/E = jt,.— 477, . [Ece

(c) In this case also, E, = E, = 0, D, = 0, but the extension 18 along the x-axis, say. Here we have D, =¢,E;
A7, 10 rx = O, Uyy = HrxaOax + Ve, xxEs Eliminating E,, we obtain 1 E = pluex = M¥znx /Exz:

PROBLEM 4. Obtain an equation for the velocity of sound in a piezoelectric medium.

SoLUTION. In this problem it is more convenient 10 USE u;, as the independent variables, instead of o, We
write F in the form

- 1 1 |
F=F, +JI_J‘Ikimthulm - - ey BB, — 4; EDg; + BiwEittas
whence
O = EFEFE""& = At lim + ﬁl,mEI-
The equations of motion from the theory of elasticity are

Gy Pin o oy @A

o Ym g Y
£ him A% ﬁ"”f‘x,

where p is the density of the medium. and u is the displacement vector, related to u;, by
o (Eu,- L )
Y= g \ex,  ax /)

dE,
Eix x

The equation div D = 0 gives

du
“4?‘;31,&1&—; =0, (3)
¢

+ It is not assumed to coincide with any particular crystallographic direction.
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d the field can be expressed in terms of the field potential: E;, = — a¢/ax;, which takes into account the equation
fE=0.
Ina plane sound wave, uand ¢ are proportional toexp [i(k -r — wt)],and we find from the above equations that
pw’ u; = Ayggmkikin, — .Bf,ﬂ:kl;kl b,
eakikyd +4Anpf; ykkay = 0.

inating ¢, we can write the condition of compatibility of the resulting equations for v; as
det |pw25,-k _Aikhulkfkm - 4H{ﬁl.mlkfkm )(ﬁp,qlkpkq]famkrksl = (.

any given direction of the wave vector k, this equation determines three phase velocities of sound w/k, which
in general different. A characteristic property of a piezoelectric medium is the involved relation between the
ity and direction of the wave.

OBLEM 5. A piezoelectric crystal of the class €, hasa plane boundary (the xz-plane) which passes through
is of symmetry (the z-axis). Find the speed of surface waves propagated at right angles to the symmetry axis
x-direction), in which there are oscillations of the displacement u, and the electric field potential ¢ (J. L.
tein, 1968; Yu. V. Gulyaev, 1969).

LuTION. Under the conditions considered, two equations involving only u_ and ¢ separate out from (4)and
ese quantities depend on the coordinates x and y, and on the time t, but not on z. The non-zere components
e stress tensor and the induction vector are

6:.1' = ﬁEA + uuﬂ' ﬂz‘p = lﬂEr + z‘luﬂ'*
D, = —8nfu,+cE,, D,= —8nfu+eE,

Uy, = iﬂu,,’ﬁx, uzy = %ﬂu,,"ﬂ}-‘.
E,= —é¢/éx, E, = —dep/dy,

iting for brevity f, .. = f, . = B. Ayee = Ayuye = A, £, = £, = E; the constant pyroelectric induction
o does not appear in the equations or the boundary conditions.
ion (5) and the z-component of equation (4) give, in the region occupied by the piezoelectric medium (the
y>0),
dnfiiu +eldW =0, pi,=—-BL¢"+iNu,
& o= 22 /dx* + % /éy?; these may be rewritten as

pii, = Alu, Ay=0, (6)

A= A+4anpile, ¢ = (dnple)u, + .
vacuum (the half-space y < 0), the potential ¢® satisfies the equation

A =0. (N
€quations are to be solved with the following boundary conditions: at the surface of the medium.
¢ =9, a,,=0 DV = —2¢®/dy for y=0. (8)
ar from the surface
u, —0 as y-—s oo ¢—0 as y— + o0,

the solution in the form

u, = Ae TRrgihx—on ) o Bekrgitkx—wn Gl = Cehveithz—wn

pw? = A (k?— x?). (9)

ons (6) and (7) and the conditions at infinity are then satisfied, and the conditi 8) gi i
neous equations for A, B and C; the condition for these to have a solution i:ms P

K = 4nP2k/le(1 +6) = Ak
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Finally, substitution in (9) gives the phase velocity of the waves:
w/k = [(G/p)1 - AL

The surface propagation of these waves is restricted to piezoelectric media. As f— 0. the penetration depth
1/x — oc, and a bulk wave is formed.

§18. Thermodynamic inequalities
According to the formulae of §10, the total free energy can be written as the integral
F = [F(T,p,D)dV, (18.1)

taken over all space. We shall suppose that the function D(r) which appears in the
integrand satisfies only the equation

divD =0 (18.2)
inside a dielectric and the condition

§ D-df = 4me (183)

on the surface of a conductor which carries a given charge. These equations establish the
relation between the field and its sources. Otherwise we regard the function D(r)
as arbitrary, and in particular we do not require it to satisfy the second field equation
curl E = 0 (where E = 4n¢F /0D) or the boundary condition ¢ = constant on the surface
of a conductor. We shall show that these equations can then be obtained from the
condition that the integral (18.1) be a minimum with respect to changes in the function D(r)
which satisfy equations (18.2) and (18.3). It should be em phasized that the possibility of this
derivation is not a priori evident, since the field distributions which come Into
consideration in determining the minimum of the integral (18.1) do not necessarily
correspond to physically possible states (because they do not satisfy all the field equations),
whereas, in the thermodynamic condition that the free energy be a minimum, only the
various physically possible states are considered.

The problem of finding the minimum of the integral (18.1) with the subsidiary
conditions (18.2) and (18.3) is solved by Lagrange’s method of multipliers. We multiply the
variation of the condition (18.2) by some as yet undetermined function — ¢/4m of the
coordinates, and that of the condition (18.3) by some undetermined constant ¢ho/4m, and
then equate to zero the sum of variations

.l : do
FdV—— V+-2 @éD-df = 0.
Jﬁ dV i Icpdwﬁ])d +4n§

In the first term we writet
OF = {61-‘,’6D)T'p-6D = E-oD/4r,

and the second can be integrated by parts: {¢ divoD oV = §poD -df— oD -grad¢dV-
The result is
[(E+grad¢)-0DdV + §(do— $)D -df = 0.

+ The free energy is the minimum for a given temperature. The variation is with respect to iwo im:lf:r_w:l‘ldt’ali't
quantities D and p. Here we are interested only in the result of varying with respect to D. The variation of th
integral (18.1) with respect to density (with the subsidiary condition of constant total mass of the body) gives 0n¢
of the usual conditions of thermal equilibrium, namely the constancy of the chemical potential L.
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ence we conclude that, throughout the volume, we must have E = —grad¢ (and so
fl E = 0), and on the surface of a conductor ¢ = ¢, = constant. These are the correct
pations for the field, and the Lagrange multiplier ¢ is its potential.

Similarly it can be shown that the equations for the electric induction are obtained from
e condition that the integral # = [ F(T, p, E)d}V be a maximum, in which the function
r) is varied with the subsidiary conditions E = —grad¢ and ¢ = constant on the
face of a conductor For

6F = [(PF/CE)-SEdV = [ D -gradd¢ dV/4n
= § 6¢D-df/4n— [ 6¢ divDdV /4n = 0.

e first integral is zero because ¢ = 0 on the surface, and from the second we find the

uired equation div D = 0, since d¢ is arbitrary in the volume.

f the body is not in an external electric field (in particular, if there are no charged

ductors), it may be possible to formulate the condition of themodynamic equilibrium

the condition that the total free energy (18.1) have an absolute (unconditional)

imum. This amounts to the condition that the free energy density F be a minimum asa

tion of the independent variable D: 8F/¢D = E/4n = 0, i.e. the field must be zero inall

If it is possible to find a distribution of the induction such that div D = 0, this state
correspond to thermodynamic equilibrium.

uating to zero the first variation of the free energy, we find necessary but not sufficient

itions for this energy to be a minimum. The determination of the sufficient conditions
res a discussion of the second variation. These conditions take the form of certain
alities (called thermodynamic inequalities) and are the conditions which ensure the
ity of the state of the body (see SP 1, §21).

en D = ¢E. the situation is much simplified, and the thermodynamic inequality of
st here (relating to the dielectric properties of the body) becomes evident. The total
ergy is %, + [ (D?/8me)d V. 1t is clear that this can have a minimum only if & > 0,
therwise the integral could be made to take any large negative value by making D?
enough. Thus in this case nothing new is learnt, since we know already that the
ttivity must in fact be not only positive but greater than unity (see §14).

e general case of an arbitrary relation between D and E, however, it is necessary to
the second variation of the integral (18.1), and to vary simultaneously both D and
ving only the temperature constant). In an isotropic body, F (T, p, D) depends only on
agnitude of the vector D. but its three components vary independently. We take the
tion of the vector D before variation as the z-axis. Then the change in the magnitude
IS given in terms of the changes in its components, as far as the second-order terms, by
oD, +(5D)%/2D + (6D,)?/2D. The first and second variations of the integral (18.1)

he point that the thermodynamic potential # has a maximum, not a minimum like &, with respect to the
eEor D is a general one, and is accounted for as follows. Let the equilibrium value of a variable x, say x
determmad by the condition of thermodynamic equilibrium. Then the free energy % has, for a given T and
zlnlgnum at x = 0. We thus have, at x =0, X = ﬂf}ﬁx}m =0, and pear that point X = ux, # = #,
‘With o > 0. With the thermodynamic potential # = # — x X this gives # = F,—Lox? = F,— X2/2a
In equilibrium # has a maximum with respect 1o x or X. But both % and # have minima with respect tc:
r variables y that are independent of x.
re we are considering bodies in which D need not be zero even if E = 0 (see §19). Otherwise we have
e trivial result E = D = 0 in all space.
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are both contained in the expression

¢F ¢F 18*F 2F 1 é*F
i} Wl SDP 4o i
J{ + (6D) +aDapéﬂép +3 a3

et 25dv.
0P+ 3, % T 2ap? “5’*’]}

Substituting 8D and collecting the second-order terms, we find the second variation

1 &F 1 °F O*F 12%F
6 2 = I’F — i — 2 .
jZDﬂﬂ[[ D,)* +(éD,) 1d +H2302 (6D,)? +6D€!péD25p+26pz (ép]}dl

(18.4)

These two terms are independent. The first is positive if (1/D)@F/¢D > 0. But
dF/éD = E/4r,sothat the derivative ¢ F /@D is positive or negative according as the vectors
D and E are in the same or opposite directions. Thus these vectors must be in the same
direction.

The conditions for the second term in (18.4) to be positive are

& Fjep* > 0, (18.5)
PFPF ([ @F Y
— Ty — 0. 18.
2p? aD? (E!pé‘D) - (159
Since 0F /ép = {, @F/aD = E/4m, the first of these gives
(@¢/ep)pr > 0s (18.7)

and the second can be rewritten as a Jacobian:
0@F/eD,2Fjop) _ 1 AED)
¢(D,p) 4m o(D,p) =
Changing from the variables D, p to D, {, we have
AED _AEDADD (T (T) g
aD.py (D, 0)a(D,p) éD j \ép ), ’
by (18.7), this gives

(2E/2D) ;> O. (188)

Thus we have derived the required thermodynamic inequalities. In the absence of  field,
the inequality (18.7) becomes the usual condition that the isothermal compressibility 15
positive: (8P/dp); > 0.1 The inequality (18.8) gives ¢ > 0, since when E — 0 the inductiol
D — ¢E.

Of the two inequalities (18.5). (18.6) the latter is the stronger; it may be violated while the

# Tt should be recalled that, in the absence of a field, £ is the thermodynamic potential of unit mass and, by th®
ordinary thermodynamic relations, it$ differential

dl = dP/p—(S/p)dT,
so that (80/@p) = (1/p)@P/@p)y. In the above derivation the second of the ordinary thermodynamic inequalitic®

(that the specific heat is positive) is ignored.
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st is not, whereas the reverse is impossible. The equation

8*F 0°F ?F \* 1 9(E)]) _0

8p* oD* \épéD) ~4na(D,p)

esponds to what is called the critical state (see SP 1, §83). This condition is more
veniently written in a different form by multiplying it by the non-zero factor
,p)/O(E, p):

O(E, [)/O(E, p) = (8L /2p)g.r = 0. (18.9)

e critical states occupy a curve in the E7-plane, which is a singularity of the
odynamic functions of the body, just as the critical point is a singularity in the
ce of the field.

Ferroelectrics

various crystalline modifications of a given substance may include some which are
ectric and some which are not. If the change from one to the other takes place by
of a second-order phase transition, then near the transition point the substance has
ber of unusual properties which distinguish it from ordinary pyroelectrics; these are
ferroelectric substances.

an ordinary pyroclectric crystal, a change in the direction of the spontancous
1zation involves a considerable reconstruction of the crystal lattice. Even if the final
of this reconstruction is energetically favourable, its realization may still be
ible because it would require the surmounting of very high energy barriers.
ferroclectric body, however, the situation is quite different because, near a second-
phase transition point, the arrangement of the atoms in the crystal lattice of the
ectric phase is only slightly different from the arrangement in the non-pyroelectric
{and so the spontaneous polarization also is small). For this reason the change in
on of the spontaneous polarization here requires only a slight reconstruction of the
and can occur quite easily.

actual nature of the ferroelectric properties of a body depends on its crystal
€try. The direction of the spontaneous polarization of the pyroelectric phase (which
Il call the ferroelectric axis) is determined by the structure of the non-pyroelectric
beyond the transition point. In some cases it is uniquely determined, in the sense that
froclectric axis can lie in only one, crystallographically determinate, direction; the
on of the spontaneous polarization is then determined apart from sign, since in the
Yroelectric phase the two opposite directions parallel to the ferroelectric axis must be
ent (otherwise this form of the crystal would also be pyroelectric). In other cases, the
Ctry of the non-pyroelectric phase may be such as to allow spontancous polarization
of several crystallographically equivalent directions.t

Instance of the first type is sodium potassium tartrate, whose non-pyroelectric phase has orthorhombic

Iy. The ferroelectric axis appears in it in a completely definite crystatlographic direction {one of the
axes), and the lattice becomes monoclinic.

Stance of the second type is barium titanate. Its non-pyroelectric modification has a cubic lartice, and any

ree cubic axes may become the ferroelectric axis. After the spontaneous polarization has appeared at the
point. these three directions, of course, are no longer equivalent. The ferroelectric axis becomes the only

axis. and the lattice becomes tetragonal.
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The occurrence of polarization is always associated with a reduction in the symmetry of
the crystal. We can therefore refer to pyroclectric and non-pyroelectric phases as the
unsymmetrical and symmetrical phases respectively, using the terminology of SP 1, §142,

We shall show how the theory of ferroclectricity can be developed in terms of
the general theory of Landau second-order phase transitions. as was first done by
V. L. Ginzburg (1945).f

We take the dielectric polarization vector P of the substance as the order paramecter,
whose magnitude determines the difference between the unsymmetrical and symmetrical
phase lattice structurcs. This means that P will be regarded as an independent
thermodynamic variable whose actual value (as a function of the temperaturc, the field,
etc.) is then determined from the condition of thermal equilibrium, namely that the
thermodynamic potential be a minimum.

Let us consider first the case where the position of the ferroelectric axis, which we take as
the z-axis, is uniquely determined. The dielectric propertics of the crystal in the x and y
directions then exhibit no anomalies, and to investigate the properties in the z-direction we
need consider only those terms in the thermodynamic potential which contain P,. Near the
transition point, thc order parameter P, is small and the thermodynamic potential @ can be
expanded in powers of P_. Since the two directions of the z-axis are equivalent, the
expansion cannot depend on the sign of P,,and therefore contains only even poWers. Asfar
as the fourth-order terms, we have

® = ®,+ AP +BPS. (19.1)

In the symmetrical phasc, 4 >0, and P, = 0 corresponds to a minimum of the

thermodynamic potential. For spontancous polarization to occur, A must be negative: itis

therefore zero at the phase transition point. The Landau theory assumes that A(7) can be
expanded in ntegral powers of T —17,, where 7, is the phase transition temperaturc; near
this point, we write A = a(l —1). a being a constant (independent of the temperature). We
shall take the specific case where a > 0, s0 that the unsymmetrical phase corresponds (@
temperatures 7 < 7. The condition for the state to be stable at the point 7 =7, itself is that
the coefficient B be positive at that point and therefore throughout a neighbourhood of it.
In what follows, B will denote B(T). i

If the electric field in the body is not zero, further terms appear in the thermodynami€
potential. To find these, we start from the relation

4no®/fE = —D = —E—4nP. (19-2)

Integration with a fixed value of the independent variable P, using the fact that ® and dare
the same when E = 0, gives

(P, E) = ®(P,0)—E - P— E?/8n.
With the electric field in the z-direction. and ®(P, 0) from (19.1), we have
& = ¥+ a(f —T)P,2+BP,* —E,P.—E.*/8T. (193

+ The Landau theory certainly becomes invalid in a neighbourhood of the transition point. The questioﬂ;'f{
when this happens in ferroelectrics needs a specific analysis of experi tal results, and lies outside the scop® |
the present book. Actually, many ferroelectric transitions are not second-order, but first-order ones close to bﬂﬂj

cocond-order. This seems to be due to the fluctuation effect mentioned in SP 1, end of §146.

—
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The presence of the term — E_P, has the result that in any field E,, however weak, the
er parameter P, becomes different from zero at every temperature; the ficld polarizes
non-pyroelectric phase and thus reduces its symmetry. The qualitative difference

the two phases thereby disappears. and accordingly so does the discrete transition

t: the transition is “smoothed out”.¥

e thermodynamic potential @ in equilibrium must be a minimum, for any given field

ifferentiation of (19.3) at constant E_ gives

2P,a(T —T)+4BP,* = E,. (19.4)

is the basic relation between the field and the polarization in a ferroelectric.
en T > T, in the non-pyroelectric phase, P, vanishes with E_. As E, increases, the
zation at first increases linearly, P, = kE_, with susceptibility

k= 1/2a(T~T), T>T, (19.5)

increases without limit as T —7_. The induction D, = (1 +4nk)E, also increases
ly with P,. Near the transition point, k is large, and we have to the same accuracy

¢ = 4nk = 2nfa(l —T). (19.6)

ciently strong fields, the polarization increases according to P, = (E_/4B)i.
T < T, in the pyroelectric phase, P, = 0 cannot correspond to a stable state. For
we find from (19.4) the spontaneous polarization of this phase,

P, = +./[a(f,—T)/2B). (19.7)
ectric susceptibility of the phase can be found as the derivative d P, /dE_ as E, — 0.
19.4),
[—2(7,—T)a+12BP?)dP,/dE, = 1, (19.8)
bstitution of (19.7) gives
k = [dP,/dE ) _o= 1/4a(l.—T), T <T.. (19.9)

h_alf the susceptibility of the non-pyroelectric phase for the same value of |7, —T.
ciently weak fields, the polarization is P, = P, +kE,, the induction is D, = D_,
where D, = 4P,,, and the permittivity is

e=4nk =nfa(l,—T). (19.10)

1€ 14 (p. 80) shows the function P,(E,) given by (19.4) for T < 7,. First of all, it
be noted that the dashed part c¢’ does not correspond to stable states: from (19.8)

in the form -
{d1"’,,.’(:]E,){é’:"tl),l’é‘1-":2]_l:z =1

thaf dP,/dE, <0 implies that *®/2P,? < 0, i.e., the thermodynamic potential &
um, not a minimum. The ordinates of ¢ and ¢’ are given by the equation
= = 0, and we conclude that the possible values of | P, | in the pyroelectric phase are

P11, §144. The discussion below is largely a repetition of the one given there.

ssing P(E) by means of (19.4) and substituting in (19 3), we find the potential @(F) as a function of E
the condition é®( P, E)/8P = 0, the equation D = — 4né®/7E is valid both for ®(E) and for fb{l; E)
erentiated at constant P).
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restricted by the condition
P,2 > (T,—T)a/6B. (19.11)

If we consider states of a ferroelectric with given values of E,, there is still an ambiguity
in the value of P, in the range of abscissae between ¢ and ¢, and the question arises of the
physical significance of the two values. We shall assume the ferroclectric to be a
homogeneous flat slab, with the ferroelectric axis normal to it, lying between the plates of a
capacitor, which are maintained at given potentials, i.c. which set up a given uniform
field E = E..

For given potentials on the conductors, the condition of stability requires that the
thermodynamic potential ® be a minimum. In particular, for E = 0 there are two states in
which P, has opposite signs (the points a and @ in Fig. 14) but @ (= ®@) is the same. These
two states. therefore, are equally stable, ie. they arc two phases which can coexist in
contact.

Hence it is clear that the portions ac and a’c’ of the curve correspond to states which are
metastable but not absolutely stable. It 1s easy to sec directly that the values of @ onac and
on @ ¢ are in fact greater than its values on a'b’ and ab for the same value of E,. The
ordinates of a and @ are given by formula (19.7). Thus the range of metastability is

(f.—1)a/6B < P,* < (I,—T)a/2B. (19.12)
The existence of these two phases with E = 0 is very important, since it means that 2
ferroelectric body can be divided into a number of separate regions or domains in which the
polarization is in opposite directions. On the surfaces separating these domains, the
normal component of D and the tangential component of E must be continuous. The latter
condition is satisfied identically, because E = 0. From the former condition it follows that
the domain boundaries must be parallel to the z-axis.
The actual shapes and sizes of the domains are determined by the condition that the total
thermodynamic potential of the body should be a minimum.}

F b

F 4

Fic. 14

+ It should be emphasized that complete thermodynamic equilibrium is under consideration here. This cal
oceur in ferroelectrics, but practically never does so in ordinary pyroelectrics because of the already mentioP
difficulty of recrienting the polarization (and so of forming domains) in these materials. The shape and size of t
domains will be discussed in §44 for the case of ferromagnets, which isin many respects analogous. We shatl n¢!
pause to consider the specific features of the domain structure in ferroelectrics. They are due mainly to the riﬂd
coupling of the direction of polarization to particular crystal axes, to the high dielectric susceptibility in
comparison with the magnetic susceptibility of a ferromagnet, and to the greater role of striction effects.
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If we are not interested in the details of the structure, and consider portions of the body
hich arc large compared with the domains, we can use the polarization P averaged over
uch portions. Its component P, can evidently take values in the range between the
rdinates of a and a’ in Fig. 14, ie.

~ [(T,=T)a/2B]1 <P, < \/[(T.—T)a/2B). (19.13)

other words, if P, in Fig. 14 is taken as the polarization averaged in this way, the vertical
ent aa’ corresponds to the region of domain structure, and the thick curve baa'b’ gives
stable states of the body.

Let us consider ferroelectrics which belong (in the non-pyroelectric phase) to the cubic
tem.f The cubic symmetry admits two independent fourth-order invariants formed
the components of the vector P, which may be taken as (P,2+ P2+ P,%)* and
P>+ P.?P,?+ P,>P,*. Hence the expansion of the thermodynamic potential near the
ition point (when E = 0) is of the form

© =0y+a(T-T)P?+P>+P2+B(P*+P>+P??
+C(P2P?+P2P>+P2P?, (19.14)

a. B, C are constants, and the x, y, z axes are along the three fourfold axes of

etry.

e sum of the fourth-order terms in (19.14) must be essentially positive. Hence we must

B=>0, 3IB+C > 0. (19.15)

spontancous polarization of a ferroelectric when E = 0 is determined by the
tion that @ should be a minimum as a function of P. In particular, since the second-
term and the first of the fourth-order terms are independent of the direction of P, the
ion of the spontaneous polarization is determined by the condition that the next term
inimum for a given absolute value P. Two cases are possible. If C > 0, the minimum
term corresponds to P being along any one of the axes x, y, z, i.e. along any of the
ges of the cube. If, however. C < 0, the minimum value occurs when P is along any
the spatial diagonals of the cube, i.c. when P2 = P2 = P,2 = §P2 In the former
pyroclectric phase of the ferroelectric has tetragonal symmetry, and in the latter
has rhombohedral symmetry.
Us consider in more detail, for example, the first case (C > 0), and take as the z-axis
eC_tion of the spontancous polarization below the transition point. The magnitude
this polarization is determined (when E = 0) by the minimum of the expression
—T)P? 4+ BP* whence
Py? = a(T.—T)/2B. (19.16)

the polarization as a function of the field E, we must add to ( 19.14)aterm —P-E
hanging to the potential ®) and equate to zero the derivative d®/0P.
the ficld E is weak, P,, P,,and P, — P, are small, Omitting from the equations the

crystal classes T, and O, are envisaged here. The cubic classes Tand T,allow also a third-order invariant
under such conditions, the state with P =0 certainly could not satisfy the stability condition
M @), and a second-order phase transition is therefore impossible. The symmetry of the class O (and that

Wws an invariant P -curl P that is linear in the derivatives, and this £ives rise to

o an Incommensurate
(cf. §52).
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terms of the second and higher orders of smallness, and substituting P, = P from (19.16),
we find the longitudinal polarization

P,— P, = E_/4a(T,—T) (19.17)
and the transverse polarization
P, = BE, /aC(T,—T) (19.18)

(and similarly for P,). Above the transition point, in the non-pyroelectric phase, the
dielectric susceptibility of a cubic ferroclectric is the same in all directions:

P = E/2a(1 —T). (19.19)

Finally, let us bricfly consider the elastic properties of ferroelectrics. According to its
crystal class, the non-pyroelectric phase of a ferroelectric may or may not be piezoelectric.t
Let us begin with the former casc, and suppose that the symmetry admits a piczoelectric
(linear) relation between the deformation and the polarization in the direction of the
ferroclectric (z) axis. These include the classes D,,D,,and S,;in cachcase the polarization
P, appears in the piezoelectric part of the thermodynamic potential through a term
- Tz.xszny'

In the elastic energy of these crystals, the component o, appears in a term — flyyyOsy -
Thus the thermodynamic potential near the transition point 18

& = Oy +a(l —T,)P,> + BP,* —yP,0,,— 1o, 2_E_P,—E}/8mn, (19.20)
c z ¥ ¥ z

where for brevity we have put ¥, ., =¥ Hxyxy = p.t The terms involving the other
components of P and ¢, are of no interest, since they lead to no anomaly of the
piezoelectric properties near the transition point.

Equating to zero the derivative o®/eP, with E, constant, we obtain

E, =2a(T—T)P.+4BP.>—y0,,. (19.21)

The components of the strain tensor are found by differentiating the thermodynamic
potential (19.20) with respect to the corresponding components oy, (sce 17.4)):3

u,, =3P, +puo,, (19.22)
In the non-pyroelectric phase when E is small we can neglect the term in P, in (19.21)
E, = 2a(T—T)P,— 70,
Substituting P, in (19.22), we find

2
¥ ¥

- F N )
xy 4a(T—T) =+[”+4afT—1:1]ﬂ’“’

The coefficient of o, in this formula represents the modulus of elasticity for deformation®
in which the ficld E, is kept constant. while p in formula (19.22) is the modulus for constant

§ The non-pyroelectric phase of a ferroelectric is piezoelectric if it belongs to on¢ of eight out of the ten classes
listed at the end of §17: D,, Dy, D34, Ss, D, D, Cy;. Dy

t Because the expansion is of a different type, the definitions of the 1ensors Vo.u and Jig,, are not the same a5
those denoted by the same letters in §17. but their symmetry properties are, of course, ged.

§ Sce the first footnote to §17, Problem 1. concerning differentiation with respect to the components of 2
[ensor.
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larization P,. Hence we can write
wB =y 492 /4a(T—T), (19.23)

ere the superscripts indicate the nature of the deformation. We see that the two
efficients behave entirely differently: whereas p'P is a finite constant, u'® increases
thout limit as the transition point is approached.t

n the pyroclectric phase, formula (19.22) shows that the spontaneous polarization
ults in a certain deformation of the body. If there are no internal stresses and the field E
o, the strain u,, is proportional to P,q, i.e. varies with temperature as / (T, — 7).
f the symmetry (cubic, for example) of the non-pyroelectric phase of a ferroelectric does
admit a lincar piczoelectric effect, then the first non-vanishing terms in an expansion of
thermodynamic potential in powers of ,, and P are quadratic in the components of P,

they are of the form
— Visam Fi PiOpns (19.24)

Vi 18 @ tensor of rank four, symmetrical with respect to the pairs of suffixes i, k and
In such cascs, the strain in the pyroelectric phase due to the spontancous polarization
atic in Py, and accordingly varies with temperature as T, —T.

oubt might be cast on the legitimacy of using the expression (19.24) in the
ynamic potential, on the grounds that, as stated in §17, this potential can be used
when quadratic effects are neglected. However, the ferroelectrics form an exception
usc, near the transition point, the field E is small compared with the polarization P or
1on D, because of the unlimited increase in the dielectric susceptibility. The use of the
odynamic potential involves the neglect of the quantities of the order of EDu,, (or.
is the same thing, EDo ), whereas the expression (19.24) is of the order of D%,

Improper ferroelectrics

theory of ferroelectrics given in §19 is based on identifying the polarization vector of
stal with the order parameter which determines the change in the crystal symmetry
€ phase transition. This is not always permissible, however. It may happen that the
ence of spontaneous polarization does not in itself entirely determine the nature of
nge in the crystal structure.
is known (see SP 1, §145) that the order parameter in a second-order phase transition
quantity, or a set of quantitics, transformed by some irreducible (not the unit)
€sentation of the symmetry group of the original (“symmetrical”) phase. The
sformation properties of the order parameter determine the nature of the change (the
-ase) in the symmetry at the phase transition. The specific physical nature of the change
important; the order parameter may be taken as any of various physical quantities.
ded that they are related to one another by linear expressions and therefore have the
transformation properties.

choice of the vector P as the order parameter is equivalent to assuming that this is
formed by the same representation as the components of a (polar) vector. If the phase
ition occurs with no change in the unit cell of the lattice (or with only a strain), the
ucible representations concerned are those of the point symmetry groups (the crystal

The modulus u'® = p + 3% /8n, which determines the sirain for a constant induction D_, is also a constant.
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classes). In the biaxial classes (§13), each component of a vector is transformed by one of the
one-dimensional representations. The same applies to a component of a vector along the
principal axis of symmetry (threefold, fourfold or sixfold) in uniaxial crystals. For all these
representations, the order parameter can be the corresponding component of the vector P,
and the theory based on the thermodynamic potential ( 19.1) is applicable to them. The
components of P in a plane perpendicular to the principal axis of symmetry in a uniaxial
crystal are transformed by a two-dimensional irreducible representation and can Serve as
the order parameter for that representation. Lastly, in crystals with cubic symmetry, all
three components of the vector are transformed by a single three-dimensional representa-
tion. This case corresponds to the theory of ferroelectricity based on the thermodynamic
potential (19.14).

There are also, however, ferroclectric transitions in which the order parameter 18
transformed by an irreducible representation of the symmetrical phase which does not
correspond to the components of a vector. In such cases, the order parameter is not the
polarization but a physically different quantity; the spontaneous polarization ariscs asa
secondary effect (it is assumed, of course, that the symmetry of the unsymmetrical phase
allows pyroelectricity). These substances are called improper ferroelectrics; they differ
considerably from ordinary ferroclectrics as regards the nature of the diclectric anom-
alies.t Here belong all ferroclectric transitions in which the unit cell changes, i.e. in which
the translational symmetry of the lattice changes (the corresponding irreducible represen-
tations are certainly not realized by vector quantities invariant under translations)]. but
they may also be transitions without change of translational symmetry (the order
parameter is transformed by an irreducible representation of the point group, not
corresponding to the components of a vector).

In an ordinary ferroelectric transition, when the change in symmetry is entirely
determined by the polarization vector. the transition is to a higher sub-group (that allows
pyroelectricity) of the space group of the original { non-pyroelectric) phase. In an impropé
ferroelectric transition, the pyroelectric phase belongs to a sub-group of lower symmelry.

The specific thermodynamic properties of improper ferroelectrics may vary conr
siderably, like the transformational ‘properties of quantities that arc transformed by
different irreducible representations of the spacc groups. Let us now consider (again If
terms of the Landau theory of phase transitions) one formal example to illustrate som*
important fundamental points. _

We shall take a transition (without change in the unit cell) from a non-pyroelectr
crystal of the class Cs, to the class Cy, which allows spontancous polarization, the ordef
parameter having two components 1, 7, and being transformed by the irreducibl
representation E, of the group Cs,,; the components P,, P, of the polarization vector in the
plane perpendicular to the Cy axis being transformed by the representation E,. {

The thermodynamic potential & near the transition point is to be expanded In powers®
the order parameter #,. 1], and the polarization P,, P,. For ferroelectricity to Occur, ther®
must be mixed invariants formed from the same quantities, and linear in the vector
There are two such invariants in this case: the real and imaginary parts of the produ

+ The possible existence of such ferroelectrics was noted by V. L. Indenbom (1960).
1 All known improper ferroelectrics are in fact of this type.



0 Improper ferroelectrics 85
y +i1,)* (P, +iP,). We thus obtain an expansion in the form
® = Do+ a(l—T)n* + By* + kP> + C n* [Py, > —727) = 2P,7472) ]
+C,n? [Py(y,2—7,")+2P,7,7,]—E-P—E?/8x, (20.1)

ere n° = n,> +n,2% y; = n;/n; the vectors E and P are in the xy-plane.
The order parameter and the polarization are determined by the condition that ® be a
um (for constant E). Here we shall give only some characteristic results that are
dent without actually making the calculation. The order parameter in the unsym-
trical phase is found to be proportional to (T, — T)'/?, as for any second-order transition
¢ Landau theory. The polarization arises as an effect of the second order in #, and is
efore proportional to T, —T. The dielectric susceptibility does not tend to infinity as T
as in ordinary ferroelectrics, because it is not here determined by a coefficient of n?
tends to zero. It does, however, have a finite discontinuity at the transition point. This
use, in the symmetrical phase, the order parameter # = 0 and is not affected by the
E; in the unsymmetrical phase it does change, and this gives a further contribution to
usceptibility.
improper ferroelectric transition is possible only when the order parameter has more
one component. With a one-component parameter #, the only possible mixed
1ant linear in P is nP,, where P, is one component of the vector P (since 52 is an
t for a one-dimensional representation). This would mean, however, that  and P,
€ same transformational propertics, and therefore that P, itself could be chosen as
rder parameter.




CHAPTER 1II

STEADY CURRENT

§21. The current density and the conductivity

LET us now consider the steady motion of charges in conductors, ie. steady electric
currents. We shall denote by j the mean charge flux density or electric current density.§ Ina
steady current, the spatial distribution of j is independent of time, and satisfies the equation

divj =0, (21.1)

which states that the mean total charge in any volume of the conductor remains constant.
The electric field in the conductor in which a steady current flows is constant, and

therefore satisfies the equation
curl E =0, (21.2)

i.e. it is a potential field.

Equations (21.1) and (21.2) must be supplemented by an equation relating j and E. This
equation depends on the properties of the conductor, but in the great majority of cases it
may be supposed lincar (Ohm’s law). If the conductor is homogeneous and isotropic, the
linear relation is a simple proportionality:

j = GE, (21.3]

The coefficient ¢ depends on the nature and state of the conductor; it is called the electrical
conductivity.
In a homogeneous conductor, ¢ = constant and, substituting (21.3) in (21.1), we have
div E = 0. In this case the electric field potential satisfies Laplace’s equation: /A ¢ = 0.
At a boundary between two conducting media, the normal component of the current
density must, of course, be continuous. Moreover, by the general condition that the |
tangential field component be continuous (which rollows from curl E = 0; cf. (1.7) and
(6.9)), the ratio j,/o must be continuous. Thus the boundary conditions on the curren!
density are
jnl =jn2'! jn a'Jal = jtzf"ﬂz, (214]

or. as conditions on the field,
0,E, =033  Ey=Eo (215)

+ In this chapter we ignore the magnetic field due to the current, and therefore the reaction of that field o
the curﬁr;a&t. If this effect is to be taken into account, the definition of the current density must be refined, which W€
do in
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At a boundary between a conductor and a non-conductor we have simply j, = 0, or
=01

"

An electric field in the presence of a current does mechanical work on the current-

arrying particles moving in the conductor; the work done per unit time and volume is
idently equal to the scalar product j-E. This work is dissipated into heat in the

onductor. Thus the quantity of heat evolved per unit time and volume in a homogeneous

onductor is
i*E=0E?=j%/o. (21.6)

his is Joule’s law.}

The evolution of heat results in an increase in the entropy of the body. When an amount
heat dQ = j - EdV is evolved, the entropy of the volume element dV increases by dQ/T.
e rate of change of the total entropy of the body is therefore

4% /dt = ((j-E/T)dV. (21.7)

e the entropy must increase, this derivative must be positive. Putting j = ¢ E, we see
at the conductivity ¢ must therefore be positive.

n an anisotropic body (a single crystal), the directions of the vectors j and E are in
eral different, and the linear relation between them 1s

e the quantities o, form a tensor of rank two, the conductivity tensor. which is
nmetrical (see below).

e following remark should be made here. The symmetry of the crystal would admit
D an inhomogeneous term in the linear relation between jand E. givingj; = 0, E, +j%,
h j'* a constant vector. The presence of this term would mean that the conductor was
pelectric”, there being a non-zero field in it when j = 0. In reality, however, this is
possible, because the entropy must increase: the term j@ - E in the integrand in (21.7)
lld take either sign, and so d.%/dt could not be invariably positive.

Just as, for an isotropic medium, d.%/dt > 0 leads to ¢ > 0, so for an anisotropic
dium this condition means that the principal values of the tensor oy must be positive.
e dependence of the number of independent components of the tensor o on the
metry of the crystal is the same as for any symmetrical tensor of rank two (see §13): for
Xial crystals, all three principal values are different, for uniaxial crystals two are equal,
d for cubic crystals all three are equal. i.e. a cubic crystal behaves as an isotropic body as
ards its conductivity.

he symmetry of the conductivity tensor

Oy = 0y (21.9)

Consequence of the symmetry of the kinetic coefficients. This general principle, due to L.
~ 3 ;‘, may be conveniently formulated, for use here and in §§26-28, as follows (see
» §120).

¥ It should be noticed that the equations curl E = 0, div (6E) = 0 and the bounda conditions (21.5) thereon
formally 1den!u:al with the equations for the electrostatic field in a dielectric, the oﬁy dit’l‘erenoe{bein; that ¢ is

> by o. Thisenables us to solve problems of the current distribution in an infinite conductor if the solutions

he corresponding electrostatic problems are known. When the conductor is bounded by a non-conductor this

Alogy does not serve. because in electrostatics there is no medium for which ¢ = 0

In Russian “Joule and Lenz's law™. )
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Letx,,X;, - - -besome quantities which characterize the state of the body at every point.
We define also the quantities
X,= —0§/ox,, (21.10)

where S is the entropy of unit volume of the body, and the derivative is taken at constant
energy of the volume. In a state close to equilibrium, the quantities x, are close to their
equilibrium values, and the X, are small. Processes will occur in the body which tend to
bring it into equilibrium. The rates of change of the quantities x, at each point are usually
functions only of the values of the x, (or X,) at that point. Expanding these functions in
powers of X, and taking only the linear terms, we have

x|t = =) Y Xp. (21.11)
b

Then we can assert that the coefficients 7y, (the kinetic coefficients) are symmetrical with
respect to the suffixes a and bt
Tab = Vba- (21.12)

In order to make practical use of this principle, it is necessary to choose the quantities x,
(or their derivatives X,) in some manner, and then to determine the X ,. This can usually be
done very simply by means of the formula for the rate of change of the total entropy of the
body

d¥ ax, .
5 ij v, (21.13)
where the integration is extended over the whole volume of the body.

When a current flows in a conductor, d&'/dt is given by (21.7). Comparing this with
(21.13), we see that, if the components of the current density vector j are taken as the
quantities X,, then the quantities X, will be the components of the vector —E/T. A
comparison of formulae (21.8) and (21.11) shows that the kinetic coefficients in this case are
the components of the conductivity tensor, multiplied by 7. Thus the symmetry of this
tensor follows immediately from the general relation (21.12).

PROBLEMS

ProBLEM 1. A system of electrodes maintained at constant potentials ¢, is immersed in a conducting
medium. A current J, flows from each electrode. Determine the total amount of Joule heat evolved in the medium
per unit time.

SoLuTiON. The required amount of heat Q is given by the integral
0={jEdV=—{j-gradddV = — [ div (D dF,

taken over the volume of the medium. We transform this into a surface integral, using the fact thatj, = O at the
outer boundary of the medium, while on the surfaces of the electrodes ¢ = constant = @,. The result 1

0=%x¢, ).

PROBLEM 2. Determine the potential distributionina conducting sphere with a current J entering at a point
0O and leaving at the point O diametrically opposite to 0.

Sorumion. Near O and O’ (Fig. 15) the potential must be of the forms ¢ =J,2n0R, and ¢ = —J/2ncRa
respectively, R, and R, being the distances from O and O'. These functions satisfy Laplace’s equation, and the

$ It is assumed that x, and x, behave in the same way under time reversal-
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)

Fic. 15

—o | grad ¢ - df over infinitesimal caps about O and O are equal to + J. We seck the potential at an
point P in the sphere in the form

Y is a solution of Laplace’s equation having no poles in or on the sphere. [tis evident from symmetry that s,
is a function of the spherical polar coordinates r and 6 only,
he surface of the sphere (r = &) we must have ¢¢/ér = 0. Differentiating, we find the boundary condition

Eﬂ_i(L ')f -
& ~2a\R, R, orr=a.

) is any solution of Laplace’s equation, then the function

r

J' 0.9,
r

0

a solution.t Comparing this with the above boundary condition. we see that the condition is met by the

tuting R, , = \/ {@® +r* ¥ 2ar cos ) and effecting the integration, we have finally
J J1 11 0 — 2

- ——-{~— _—— —~(sinh‘ 1 GHTCOST 1 G 08T ) :

2ne\R, R, 2a r sinf! rsinf

0 when r = 0.

:;::'M 3. Show that the current distribution in a conductor is such that the energy dissipated is a

s is easily seen either by direct calculation or from the fact that any solution f (r, 0) of Laplace’s equation

ing ;Jﬂl}f on r and 0 can be writ P, (cos 6), where the c, are constants and the P, are Legendre
1als.
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SoLumion. The minimum concerned is that of the integral {j-EdV = {(j*/e)dV, with the subsidiary
conditiondivj =0 (conservation of charge). Varying with respect to jthe integral f[( ji1o)—2¢ divj]dl, where
2¢ is an undetermined Lagrange multiplier, and equating the result to zero, we obtain the equation
j= —ograd ¢ or curl (j/e) =0, which is the same as (21.2) and (21.3).

§22. The Hall effect

If a conductor is in an external magnetic field H. the relation between the current density
and the electric field is again given by j; = oy E,, but the components of the conductivity
tensor o, are functions of H and, what is particularly important, they are no longer
symmetrical with respect to the suffixes i and k. The symmetry of this tensor was proved in
§21 from the symmetry of the kinetic coefficients. In a magnetic field, however, this
principle must be form ulated somewhat differently: when the suffixes are interchanged, the
direction of the magnetic field must be reversed (see SP 1, §120). Hence we now have for
the components o, (H) the relations

o, (H) = o,;(—H). (22.1)

The guantities o, (H) and g, (H) are not equal.
Like any tensor of rank two, o, can be divided into symmetrical and antisymmetrical
parts, which we denote by s and a:

O = Sy - (222)
By definition
sy (H) = s (H), gy (H) = —a,(H), (22.3)
and from (22.1) it follows that
sy (H) = su(—H), = su{—H), } (224)
a;(H) = au(—H) = — a, (—H).

Thus the components of the tensor s;, are even functions of the magnetic field, and those of
a,, are odd functions.

Any antisymmetrical tensor gy of rank two corresponds to some axial vector, whose
components are

=dq.., a., = _a.tz! a.=4a...- l225}

a z X¥

x ¥z ¥
In terms of this vector, the components of the product a, E, can be written as those of the
vector product E x a:

= 0uEy, = sy Ex + (E Xa);, (22.61

The Joule heat generated by the passage of the current is given by the product j - E. Sinc®
the vectors E X a and E are perpendicular, their scalar product is zero identically, and §°

iE=s,EE, [22.7’

i e. the Joule heat is determined (for a given field E) only by the symmetrical part of the
conductivity tensor.

If the external magnetic field is sufficiently weak, the components of the conductivity
tensor may be expanded in powers of that field. Since the function a(H) is odd, th¢




§22 The Hall effect 91

pansion of this vector will involve only odd powers. The first terms are linear in the field.
1. they are of the form

ﬂ,- = aika. (22»8}
e vectors aand H are both axial, and the constants o, therefore form an ordinary (polar)
r. The expansion of the even functions s, (H) will involve only even powers. The first

is the conductivity o', in theabsence of the field, and the next terms are quadratic in
e field: o
sa = 0P+ Busn H H,,. (22.9)

e tensor B, is symmetrical with respect to i, k and I, m.
Thus the principal effect of the magnetic field is linear in the field and is given by the term
Xa; it is called the Hall effect. As we see, it gives rise to a current perpendicular to the
ic field, whose magpitude is proportional to the magnetic field. It should be borne in
d, however, that, for an arbitrary anisotropic medium, the Hall current is not the only
t perpendicular to E; the current s, E, also has a component in such a direction,
e Hall effect may be differently regarded if we use the inverse formulae which express
n terms of the current density: E; = 6~ ', j,. The inverse tensor o ' ;, like o, itself, can
resolved into a symmetrical part p; and an antisymmetrical part which may be
esented by an axial vector b:

E; = padi+ (i%b);. (22.10)

tensor p;, and the vector b have the same properties as s;, and a. In particular, in weak
tic fields the vector b is linear in the field. In formula (22.10) the Hall effect is
nted by the term jxb, i.e. by an electric field perpendicular to the current and
rtional to the magnetic field and to the current j.

above relations are much simplified if the conductor is isotropic. The vectors a and b
t then be parallel to the magnetic field, by symmetry. The only non-zero components
€ tensor p;, are p,, = p,, and p,,, the field being in the z-direction. Denoting these two
tities by p, and p, and taking the current to lie in the xz-plane, we have

E,=pij.. E,=~bj.. E,=pi, (22.11)

we see that, in an isotropic conductor, the Hall field is the only electric field which is
endicular to both the current and the magnetic field.

weak magnetic fields, the vectors b and H are related (in an 1isotropic body) simply by
b= —RH. (22.12)

constant R (called the Hall constant) may be either positive or negative. The form of
€rms quadratic in H in the relation between E and j, which enter through the tensor p;;,
sily seen from the fact that the only vectors linear in j and quadratic in H which can be
tructed from j and H are (j-H)H and H?j. Hence the general form of the relation
een E and j in an isotropic body, as far as the terms quadratic in H, is

E=p%+RHxXj+ B, H2j+B,(j-H)H. (22.13)

PROBLEM

press the components of the inverse tensor !, in terms of those of Sy and a.

UTION. The calculations are most simply effected

by taking a system of coordinates in whi
rincipal axes of the tensor s,,.: the form of the results \ , Rl the axe: are

in an arbitrary coordinate system can easily be deduced
eSS
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from their form in this particular case. The determinant |o| is

Syx a, —ay
|ﬂ| - -0, SH' ay
a:ﬁ‘ . a’x s:r
z 2 2
= 8, Sy S+ S, 8, + 5,0, +s5_.a.;”.

In the general case we evidently have
le} = |s]+ spa;a,.
From the minors of this determinant we find the components of the inverse tensor.
071 o = Py = (85 H0.7)/ 1),
67, = Pyt b, = (6,0, a5}/l -
The general expressions which give these results for the particular system of coordinates chosen are

Pu = {s_'mlsl+a,-ﬂ,‘}f1d1. b, = —sya /ol

This completes the solution.

§23. The contact potential

In order to remove a charged particle through the surface of a conductor, work must be
done. The work required for a thermodynamically reversible removal of the particle is
called the work function. This quantity is always positive: this follows immediately from the
fact that a point charge is attracted to any neutral body, and therefore to any conductor
(see §14). The work in question will be denoted by e, where e1s the charge on the particle;
the sign of the work potential W thus defined is the same as that of the charge on the particle
removed.

The work function depends both on the nature of the conductor (and its thermodynamic
state, i.e. its temperature and density) and on that of the charged particle. For example, the
work function for a given metal is different for the removal of a conduction electron and
for the removal of an ion from the surface. It must also be emphasized that the work
function is characteristic of the surface of the conductor. It therefore depends, for instance,
on the treatment of the surface and the wcontamination” of it. If the conductor is a singlé
crystal, then the work function is different for different faces.

To ascertain the physical nature of the dependence of the work function on the
properties of the surface, let us establish its relation to the electric structure of the surface
layer. If p(x) is the charge den sity not averaged over physically infinitesimal segments of the
x-axis (perpendicular to the layer), we can write Poisson’s equation in the layer as d*¢ jax?
= —4np. Let the conductor occupy the region x < 0. Then a first integration gives

d x
—&{E = —4n _jwpdx.

and a second integration (by parts) gives

x

¢—P(—0)= —4nx i pdx+4n [ xpdx.

— o0

For x — o0, the integral

[ pdx

—
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tends very rapidly to zero (since the surface of an uncharged conductor is electrically
neutral). Hence

[e sl

$d(+0)—p(—o)=4n | xpdx.

- ag

e integral on the right is the dipole moment of the charges near the surface of the body.
ese charges form a “double layer”, in which charges of opposite sign are separated and
dipole moment is non-zero. The structure of the double layer. of course, depends on the
rties of the surface (its crystallographic direction, contamination, etc.). The difference
the work potential for different surfaces of a given conductor is determined by the
erence in the dipole moments.
If two different conductors are placed in contact, an exchange of charged particles may
between them. Charges pass from the body with the smaller work function to that
th the greater until a potential difference between them is set up which prevents further
vement of charge. This is called a contact potential.
Fig. 16 shows a cross-section of two conductors in contact (@ and b) near their surfaces
and OB. Let the potentials of these surfaces be ¢, and ¢, respectively. Then the contact
tential is ¢, = ¢, — ¢,. The quantitative relation between this potential and the work
ions is given by the condition of thermodynamic equilibrium. Let us consider the
k which must be done on a particle with charge e to remove it from the conductor a
ough the surface A0, transfer it to the surface OB, and finally carry it into the conductor
a state of thermodynamic equilibrium, this work must be zero.t The work done on the
icle in the three stages mentioned is eW,, e(¢, — ¢,), and — eW, respectively. Putting
sum of these equal to zero, we find the required relation:

b= W,— W, (23.1)

K

the contact potential of the neighbouring free surfaces of two conductors in contact is
to the difference in their work functions.

e existence of the contact potential results in the appearance of an electric field in the

outside the conductors. It is easy to determine this field near the line of contact of the

aces. In a small region near this line (the point O in Fig. 16), the surfaces may be

[ et
4

FiG. 16

Of course, in reality a particle can pass from one conductor 10 another only through their surface of contact
not through the space adjoining them, but the work dore is independent of tl'%:palh. e
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regarded as plane. The field potential outside the conductors satisfies the equation

10 ( d¢ | 0%¢p
:L = —— — . —
¢ rf}r(rﬂr)+r2 06* ¢

where r and 0 are polar coordinates with origin at O; on A0 and OB the potential takes

given constant values. We are interested in the solution which contains the lowest power of

r- this is the leading term in an expansion of the potential in powers of the small distance r.
The solution concerned is ¢ = constant x 6. Measuring the angle 6 from AO and
arbitrarily taking the potential on AQ as zero, we have

¢ = dubl/, 2)

where o is the angle AOB. Thus the equipotential lines in the plane of the diagram are
straight lines diverging from O. The lines of force are arcs of circles centred at 0. The field is

_1o _ _dul.
réd o r’

it decreases inversely as the distance from O.

As has been said above, “contact” potentials also exist between the various faces of a
single crystal of metal. Hence an electric field of the kind just described must exist near the
edges of the crystal.

If several metallic conductors (at equal temperatures) are connected together, the
potential between the extreme conductors is, as we easily deduce from formula (23.1),
simply the difference of their work potentials, as it is for two conductors in direct contact.
In particular, if the metal at each end is the same, the contact potential between the ends is
zero. This is evident, however, because if there were a potential difference between two like
conductors, a current would flow when they were connected, in contradiction to the second
law of thermodynamics.

(23.3)

§24. The galvanic cell

The statement at the end of §23 ceases to be valid if the circuit includes conductors in
which the current is carried by different means (e.g. metals and solutions of electrolytes)
Because the work function of a conductor is different for different charged particles
(electrons and ions), the total contact potential in the circuit is not zero even when the
conductors at each end are similar. This total potential difference is called the electromotive

force or emf. in the circuit; it is just the potential difference between the two like
conductors before the circuit is closed. When the circuit is closed, a current flowsinit; this1s
the basis of the operation of what are called galvanic cells. The energy which maintains the
current in the circuit is supplied by chemical transformations occurring in the cell.

When we go completely round any closed circuit the field potential must, of coursé
return to its original value, ie. the total change in the potential must be zero. Let us
consider, for example, a contour on the surface of the conductors. When we pass from one
conductor to another, the potential has a discontinuity ¢ - The potential drop across any

t Inreality, all such fields are usually compensated by the field of ions from the atmosphere which “adhere™ 10
the surface of the crystal.

e

e



§4 The galvanic cell 95

nductor is RJ, where J is the total current flowing through it and R is its resistance.
ence the total change in the potential round the circuit is Z¢_, — £ JR. Putting this equal
o zero and using the facts that J is the same at every point in the circuit and Z¢,, is the
lectromotive force &, we find

JIR =§, (24.1)

that the current in a circuit containing a galvanic cell is equal to the e.m.f. divided by the
tal resistance of all the conductors in the circuit (including, of course, the internal
sistance of the cell itself).

Although the e.m.f. of a galvanic cell can be expressed as a sum of contact potentials, it is
ry important to note that it is in reality a thermodynamic quantity, determined entirely
the states of the conductors and independent of the properties of the surfaces separating
em. This is clear. because & is just the work per unit charge which must be done on a
arged particle when it is carried reversibly along the closed circuit.

To illustrate this, let us consider a galvanic cell consisting of two electrodes of metals A
d Bimmersed in solutions of electrolytes AX and BX, X ~ being any anion. Let { ,and {
the chemical potentials of the metals A and B, and { ;5 and {5 those of the electrolytes in
lution.t If an elementary charge e is carried along the closed circuit, an ion A * passesinto
ution from the electrode 4 and an ion B* passes out of solution to the electrode B, the
nge in the charges on the electrodes being compensated by the passage of an electron
m A to B through the external circuit. The result is that the electrode A4 loses one neutral
m, the electrode B gains one, and in the electrolyte solution one molecule of BX is
laced by one of AX. Since the work done in a reversible process (at constant
perature and pressure) is equal to the change in the thermodynamic potential of the
term, we have

ed g = (g —Cpx)— (Ca—Lax) (24.2)

ich expresses the em.f. of the cell in terms of the properties of the material of the
rodes and of the electrolyte solution.

rom (24.2) we can also draw the following conclusion. If the solution contains three
rolytes AX, BX, CX and three metallic electrodes A, B, C, then the e.m.f's between
pair of them are related by

gﬂﬂ-}‘_gﬂ’C:gAC' {24.3}

Using the general formulae of thermodynamics, we can relate the e.m.f. of a galvanic cell
the heat evolved when a current flows, which of course is actually an irreversible
omenon. Let Q be the amount of heat generated (both in the cell itself and in the
€rnal circuit) when the unit charge passes along the circuit; Q is just the heat of the
on which occurs in the cell when a current flows. By a well-known formula of
odynamics (see SP 1, §91), it is related to the work & by

,0 (&
BT ﬁ(-f). (24.4)

e definition of the partial derivative with respect to temperature depends on the
nditions under which the process occurs. For example, if the current flows at constant
essure (as usually happens), then the differentiation is effected at constant pressure.
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§25. Electrocapillarity

The presence of charges on the boundary between two conducting media affects the
surface tension there. This phenomenon is called electrocapillarity. In practice. the media
concerned are both liquids; usually one is a liquid metal (mercury) and the other 1s a
solution of an electrolyte.

Let ¢, ¢, be the potentials of the two conductors,and e, , €, the charges at the surface of
separation. These charges are equal in magnitude and opposite in sign, and thus form a
double layer on the surface.

The differential of the potential go of a system of two conductors at given temperature
and pressure 1s, taking into account the surface of separation,

dgo = odS— e, dd, —e,d,, (25.1)

where the term odS is the work done in a reversible change dSin thearea S of the surface of
separation: « is the surface-tension coefficient (see SP 1, §154).

The thermodynamic potential go in (25.1) may be replaced by its “surface part™ go,, sInce
the volume part is constant for given temperature and pressure, and is therefore of no

interest here. Puttinge, = — ¢, = eand the potential difference ¢.— ¢, = ¢, wecan write
(25.1) as
dgo, = adS —edd¢. (25.2)
Hence
(Ogp,/0S )p = % (25.3)

o being expressed as a function of ¢. Integrating, we find that go, = «S. Substitution in
(25.2) gives d(aS) = adS — ed, or Sdo = — ed¢p, whence
o= —(0a/CP)pr, (254)

where ¢ = ¢/ is the charge per unit area of the surface. The relation (25.4), derived by G.
Lippmann and J. W. Gibbs, is the fundamental formula in the theory of electrocapillarity.

In a state of equilibrium, the thermodynamic potential &o must be a minimum for given
values of the electric potentials on the conductors. Regarding it as a function of the surfact
charges e, we can write the necessary conditions for a minimum as

dgp,jde =0, &’gp,/0e* >0, (25.5)

where the derivatives are taken at constant area S. To calculate these, we express o in
terms of the thermodynamic potential go, = goJe): |

o, = go,(e) —e ¢y — e, = go,(€)— ed. {25‘6}
The vanishing of the first derivative gives |

de  de
and then the condition for the second derivative to be positive becomes

2= 2
é s_ﬁys_%=lﬂ¢}0’
de?

a_lgjs_agbs d):o‘

22  oOe Sdo

or

do/é¢p > 0. 257
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- This result was to be expected, since the double layer on the surface may be regarded as a
,;apacitor with capacitance de/d¢.
Differentiating equation (25.4) with respect to ¢ and using (25.7), we find that

&*0/d¢p? < 0. (25.8)

is means that the point where do/d¢ = —o = 0 is a maximum of « as a function of ¢.

26. Thermoelectric phenomena

The condition that there should be no current in a metal is that there is thermodynamic
uilibrium with respect to the conduction electrons. This means not only that the
perature must be constant throughout the body, but also that the sum e¢ + {,, should
constant, where ( is the chemical potential of the conduction electrons in the metal (for
= 0).1 If the metal is not homogeneous, {,, is not constant throughout the body even if
€ temperature is constant. Hence the constancy of the electric potential ¢ in this case does
t mean the absence of a current in the metal, although the field E = — grad ¢ is zero.
is makes the ordinary definition of ¢ (as the average of the true potential) inconvenient,
we wish to take inhomogeneous conductors into consideration.

tis natural to redefine the potential as ¢ + {/e, and we shall write this henceforward as
imply.} In a homogeneous metal, the change amounts to the adding of an unimportant
stant to the potential. Accordingly, the “field” E = —grad¢ (which we shall use
orward) is the same as the true mean field only in 2 homogeneous metal, and in
the two differ by the gradient of some function of the state.§

ith this definition, the current and field are both zero in a state of thermodynamic
ilibrium with respect to the conduction electrons, and the relation between them is
oE (or j; = 0, E,) even if the metal is not homogeneous.

us now consider a non-uniformly heated metal, which cannot be in thermodynamic
ilibrium (with respect to the electrons). Then the field E is not zero even if the current is
- In general, when both the current density j and the temperature gradient grad T are
zero, the relation between these quantities and the field can be written

E=j/o+agradT. (26.1)

6 is the ordinary conductivity, and o is another quantity which is an electrical
acteristic of the metal. Here we suppose for simplicity that the substance is isotropic
of cubic symmetry), and therefore write the proportionality coefficients as scalars. The
relation between E and grad7 is, of course, merely the first term of an expansion, but

Sufficient in view of the smallness of the temperature gradients occurring in practice.
€ same formula (26.1), in the form

i=o(E—agradT), (26.2)

ScefP 1, §25. Here we take { to be the chemical potential defined in the usual manner, viz. per unit particle
This definition can also be formulated as follows: the new eg is the change in the free energy when one
onis isothermally brought into the metal. In other words, ¢ = &F/dp, where F is the free energy of the meta)
p the charge on the conduction electrons per unit volume.

It must be emphasized that ¢E is then not the force on the charge e. Consequently, this definition of E. which
itable in a phenomenological theory, may be inconvenient in the microscopic theory when calculating the
ic coefficients (cf. PK, §44).
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shows that a current can flow in a non-uniformly heated metal even if the field E is zero.

As well as the electric current density j, wecan consider the energy flux density q. First of
all. this quantity contains an amount $j resulting simply from the fact that each charged
particle (electron) carries with it an energy e¢. The difference q — ¢}, however, does not
depend on the potential, and can be generally written as a linear function of the gradients
grad = — E and gradT, similarly to formula (26.2) for the current density. We shall for
the present write this as

q—¢j= PE—ygradT.
The symmetry of the kinetic coefficients gives a relation between the coefficient f and the
coefficient & in (26.2). To derive this, we calculate the rate of change of the total entropy of

the conductor. The amount of heat evolved per unit time and volume is —div q. Hence we
can put

d _ _jd“’qdp:
dr
Using the equation divj = 0, we have
divg 1 . . . | . E-j
— —f{dwiq—t;b.lHdch’J} -wa(q ¢ ——

The first term is integrated by parts, giving

d¥ _[E-j (q—¢j)-gradT
Y gy - 1=———=——dV. 6.3
= j?‘ dv j e (26.3)

This formula shows that, if we take as the quantities dx, /0t (see §21) the components of
the vectors j and q— ¢j. then the corresponding quantities X, are the components of the
vectors — E/T and gradT/T>2. Accordingly in the relations

gradT
j=ol 7~ oal2= =
- E ,grad’
q—¢i=FT ="

the coefficients oo ? and 7" must be equal. Thus B = ooT, so that q—¢j= ool E
—ygrad 7. Finally, expressing E in terms of j and gradT by (26.1), we have the result

q = (¢ +ol)j—xgradT, (264

where k = y— Ta?c is simply the ordinary thermal conductivity, which gives the heat flux
in the absence of an electric current.

It should be pointed out that the condition that d.%/dt should be positive places no new
restriction on the thermoelectric coefficients. Substituting (26.1) and (26.4) in (26.3). W€

obtain

22 2

¥ _ J__+E_(g_'.‘1@_ dy >0, (265
dt ol T

whence we find only that the coefficients of thermal and electrical conductivity must be
positive. ) )
In the above formulae it was tacitly assumed that an inhomogeneity of pressure (Of

e
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density) at constant temperature cannot cause a field (or current) to appear in the
conductor, and consequently no term in grad p was included in (26.2) or (26.4). The
existence of such terms would, in fact, contradict the law of the increase of entropy: the
integrand in (26.5) would then contain terms in the products j- grad pand grad T - grad p,
which could be of either sign, and so the integral could not be necessarily positive.

The relations (26.1) and (26.4)indicate various thermoelectric effects. Let us consider the
amount of heat — div q evolved per unit time and volume in the conductor. Taking the
divergence of (26.4), we have

Q0 = —divg
=div(k grad7)+E-j+j-grad (of),

, substituting (26.1),

:2
0 = div (x gradT) +‘5 —Tj-grada. (26.6)

e first term on the right pertains to ordinary thermal conduction, and the second term,
portional to the square of the current, is the Joule heat. The term of interest here is the
, which gives the thermoelectric effects.
Let us assume the conductor to be homogeneous. Then the change in a is due only to the
perature gradient, and grad « = (do/dT) grad 7; if, as usually happens, the pressure is
nstant through the body, do/d7 must be taken as (do/87),. Thus the amount of heat
olved (called the Thomson effect) is

pj-eradT, where p = — T do/dT. (26.7)

he coefficient p is called the Thomson coefficient. It should be noticed that this effect is
foportional to the first power of the current, and not to the second power like the Joule
t. It therefore changes sign when the current is reversed. The coefficient p may be either
sitive or negative. If p > 0, the Thomson heat is positive (i.e. heat is emitted) when the
rent flows in the direction of increasing temperature, and heat is absorbed when it flows
the opposite direction; if p < 0 the reverse is true.

Another thermal effect, called the Peltier effect, occurs when a current passes through a
nction of two different metals. At the surface of contact, the temperature, the potential
the normal components of the current density and energy flux density are all
ntinuous. Denoting by the suffixes 1 and 2 the values of quantities for the two metals and

uating the normal components of q (26.4) on the two sides, we have, since ¢, T and j, are
ntinuous,

[—xdT/0x )} = —jd (0 — oy,

x-axis being taken along the normal to the surface. If the positive direction of this axis
from metal 1 to metal 2, then the expression on the left-hand side of this equation is the
Mmount of heat taken from the surface per unit time and area by thermal conduction.
his heat loss is balanced by the evolution at the Jjunction of an amount of heat given

the right-hand side of the equation. Thus the amount of heat generated per unit time
nd area is

jnlz, where nlz = _T(IIJ_ — Oy ). (26.8)

he quantity IT, , is called the Peltier coefficient. Like the Thomson effect, the Peltier effect
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is proportional to the first power of the current, and changes sign when the direction of the
current is reversed. The Peltier coefficient is additive: [T, 5 = I,z + I1,,, where the suffixes
1, 2, 3 refer to three different metals.
A comparison of formulae (26.7) and (26.8) shows that the Thomson and Peltier
coefficients are related by
o 74 (L 2) (26.9)
Pr—=Pr = a\ T /) -
Next, let us consider an open circuit containing two junctions, the two end conductors
being of the same metal (1 in Fig. 17). We suppose that the junctions band c are at different
temperatures 7, and 7, while the temperature at each end (aand d) is the same. Then there

is a potential difference called a thermoelectromotive force, which we denote by &, between
the ends.

oy

Fic. 17

To calculate this force, we put j = 0in (26.1) and integrate the field E = o grad [ along the
circuit (taken to be the x-axis)
d
&= Ja

The integrations from a to band from ¢ to d are over temperatures from T, to Ty inmetal 1,
and that from b to ¢ is over temperatures from 7, to T, in metal 2. Thus

d

dx = ]adT.

[

D-|O..
® |~

¥
&, = [ (ot — 0ty ) AT (26.10)
Ty

Comparing this with (26.8), we see that the thermo-e.m.f, is related to the Peltier coefficient
by

'z

I
&= — I ~;5dT (26.11)

L

Formulae (26.9) and (26.11) are called Thomson’s relations (W. Thomson, 1854).

To conclude this section, we shall give the formulae for the current and heat flux in a°
anisotropic conductor. These are derived from the symmetry of the kinetic coefficients 11
the same way as formulae (26.1) and (26.4), and the results are

E; = 0~ Yuii+ 20T /8%, } (26.12)
g;— &ji = Toygjy — K T/ OXg-

Here o~ 1, is the tensor inverse to the conductivity tensor % and the tensors o;, and Ki
are symmetrical. The thermoelectric tensor o, however, is in general not symmetrical-

P TS
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§27. Thermogalvanomagnetic phenomena

There is a still greater variety of phenomena which occur when a current flows in the
simultaneous presence of an electric field, a magnetic field, and a temperature gradient.

The discussion is entirely similar to that given in §26 for thermoelectric effects. 1t will be
given here in tensor form, so as to be applicable to both isotropic and amsotropic
onductors. We write the electric current density j and the heat flux q as

3
. E d [1
Ji=ﬂlk_k+b ( ):

T *ox, \T
E a (1 | @)
—hi. = ¢ —k Yy —
q:— di; mT+d'k@xl(T)’ )

here all the coefficients are functions of the magnetic field. The symmetry of the kinetic
fficients gives

a, (H) = a,.(— H), d, (H) = d,,(—H),
w(H) = a,,( «(H) = dy( } 272
by (H) = ¢ (— H).
pressing E and q— ¢j in terms of j and grad7 from (27.1), we have
E, =07, j,+0,0T/0x,,
.I .qu u0T/0x, } 273)
qi — Pii = Budx — K 01/ 0%,

re the tensors ¢ 1, @, f8, k are certain functions of the tensors a, b, ¢, d, and have the
llowing symmetry properties resulting from (27.2):

ﬂ'_lik(H)=5_lki{_H]- }

(27.4)
Ky (H) = Kk, (— H), Bu(H) =To,, (— H).

ese are the required relations in their most general form. They generalize those found in
6 for the case where there is no magnetic field and in §22 for the case where there 1s no
perature gradient. It must be emphasized that in an anisotropic conductor the tensors
and f§, are in general not symmetrical even when there is no magnetic field.

The tensors 67, k, and f + 7o can be resolved into symmetrical and antisymmetrical
(cf. §22). In a weak magnetic field, the symmetrical parts may be regarded as
nstants independent of H, while the antisymmetric parts are linear in H. For an isotropic
nductor we have, to this accuracy,

E=j/o +ogradT+ RHxj+ NH xgradT, (27.5)
q—¢j=ofj—rxgradT + NTHxj+ LH xgrad7. (27.6)

€re ¢ and x are the ordinary coefficients of electrical and thermal conductivity, « is the
ermoelectric coefficient which appears in (26.1), R is the Hall coefficient, and N and L are
w coefficients. The term NH X grad 7" may be regarded as representing the effect of the
agnetic field on the thermo-e.m.f. (called the Nernsr effect), and the term LH xgrad 7T as
presenting the effect of this field on the thermal conduction (called the Leduc—Righi
ect).

At a boundary between media, the normal components of the vectors j and q are
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continuous, and therefore so is that of the vector —k gradT +ofj+ NTH X
+ LH % grad 7. The term NTH Xj gives the influence of the magnetic field on the Peltier
effect (called the Ettingshausen effect).

The amount of heat evolved in the conductor per unit time and volume is Q = —divg,
Here we must substitute q from (27.6) and replace — grad ¢ = E in accordance with (27.5).
If the conductor is homogeneous, then the quantities a, N, L, etc. are functions of
temperature alone, and so their gradients are proportional to grad 7. In the calculation we
neglect all quantities of the second order in H, and to the same approximation we can take
curl (j/o) = curl E = 0. We also note that the external field H (arising from sources
outside the conductor under consideration) is such that curl H = 0.1 Finally, divj = 0. as
for any steady current. The result is

jzd‘*dT‘-d lsz'H~ dT.
Q= . +div(x grad7T)—T)-gra a+E’f::lT (oNT*)(j*xH) - gradT.
The third term here gives the Thomson effect (26.7), and the last term gives the change in
the Thomson effect resulting from the presence of the magnetic field.

§28. Diffusion phenomena

The presence of diffusion causes certain phenomena in electrolyte solutions which do
not occur in solid conductors. We shall assume, for simplicity, that the temperature is the
same everywhere in the solution, and so consider only pure diffusion phenomena,
uncomplicated by thermoelectric effects.

Instead of the pressure P and the concentration c, it is more convenient to take as
independent variables the pressure and the chemical potential {. We here define ( as the
derivative of the thermodynamic potential of unit mass of the solution with respect to 1t
concentration ¢ (at constant P and 7'); by the concentration we mean the ratio of the mass
of electrolyte in a volume element to the total mass of fluid in the same volume.} It may be '
recalled that the constancy of the chemical potential is (like that of the pressure and the
temperature) one of the conditions of thermodynamic equilibrium.

The definition of the electric field potential given in §26 has to be somewhat modified in
this case, since the current is now carried by the ions of the dissolved electrolyte, and not by
the conduction electrons. A suitable definition is (cf. the third footnote to §26)
¢ = (0®/dp),, where @ is the thermodynamic potential and p the sum of the ion charges 1
unit volume of the solution (after differentiating we put p = 0, of course, because the

t This neglects the weak effect on the evolution of heat resulting from the magnetic fields of the currents
themselves. 3

1 The chemical potentials are usually defined as {, = é0/in,, L, = é®/én,, where @ is the thermodynami®
potential of any mass of the solution, and n,, n, the numbers of particles of solute and solvent in that mass ¢
solution. If @ is the thermodynamic potential per unit mass, then the numbers n, and n, are related by
n,m, + nym, = 1 (where m,, m; are the masses of the two kinds of particle), and the concentration ¢ = ny/Mi-
Hence we have

o0 a0m, m L L

{=5—= =

Fl EEFC__"_&R; de my M
where £ is the chemical potential as here defined.
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solution is electrically neutral). The derivative is taken at constant mass concentration. 1.€.
at a given sum of the masses of ions of both signs in unit volume.’

When a gradient of the chemical potential is present, a term proportional to it is added
to the expression for the current density:

j=oc(E—fgrad{), (28.1)

inanalogy with the added term in (26.2). We shall see below that, for a given gradient of the
chemical potential (and of the temperature), j must be independent of the pressure
gradient, and so no term in grad P appears in (28.1).1

As well as the electric current, we have to consider the transport of the mass of the
electrolyte which takes place at the same time. It must be borne in mind that the passage of
acurrent through the solution may be accompanied by a macroscopic motion of the fluid.
The mass flux density of the electrolyte resulting from this motion is pcv, where v is the
velocity and p the density of the solution. The electrolyte is also transported by molecular
diffusion. We denote the diffusion flux density by i, so that the total flux density is pcv +i.
The irreversible processes of diffusion cause a further increase in entropy, the rate of
change of the total entropy is§

d¥  (E‘j i-grad{
d—r—'[T-dV j—r dv. (28.2)

Like the electric current density, the diffusion flux may be written as a linear
combination of E and grad{, or of j and grad{. Using the symmetry of the kinetic
coefficients, we can relate one of the coefficients in this combination to the coefficient fin
(28.1), in exactly the same way as we did for j and q— ¢j in §26. The result is

__m
(@C/0c)p;

The coefficient of grad{ is here expressed in terms of the ordinary diffusion coefficient,
p being the density of matter. For j =0 and constant pressure and temperature we have
i= —pD grad c.

The inadmissibility in (28.1) and (28.3) of terms proportional to the pressure gradient
follows, as in §26, from the law of the increase of entropy: such terms would make the
derivative of the total entropy (28.2) a quantity of variable sign.

Formulae (28.1) and (28.3) give all the diffusion phenomena in electrolytes, but we shall
not pause here to examine them more closely.

i= grad{ + fij. (28.3)

PROBLEM

Two parallel plates of a metal 4 are immersed in a solution of an electrolyte AX. Find the current density as a
function of the potential difference applied between the plates.

+ Inastrong electrolyte, the solute is completely dissociated, and so the mass concentration may be written as
c=m,n, +m_n_,wherem, and m_ are the cation and anion masses, n, and n_ their number densities. With
the above definition of the potential, ¢ = 0 corresponds to L, /m., = ¢_ /m_ for the cation and anion chermcal
potentials, which are also related by {, +{_ = (-

% 1t should be emphasized, however, that, for a given concentration gradient j does depend on the pressure
gradient:

grad{ = (3L /éc)p rgrade + (éC/éP) ygrad P.

§ The derivation of the second term is given in FM, §57.
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SoLUTION. When the current passes, metal is dissolved from one plate and deposited on the other. The
solvent (water) remains at rest. and a mass flux of metal of densityt pv = jm/eoccursin the solution, where jis the
electric current density, and m and eare the mass and charge of anion A *. This flux is also given by i + pve, where
i is as shown in (28.3); assuming the pressure constant throughout the liquid,f we have

pDQ—‘}[ﬁ—%{l—c}]j, (h

where x is the coordinate in the direction of a line joining the electrodes. Since j = constant in the solution, this
gives c
Dd
jl = J‘_- _p_c_‘
B—m(l—c)/e (2)
€
where ¢, , ¢, are the concentrations at the surfaces of the plates, and [ is the distance between them.

The potential difference & between the plates is most simply found from the total amount of energy 0
dissipated per unit time and unit area of the plates, which must equal j&. By (28.1), (28.2) we have

d& Ia ac(dc)z}
= ] — — D-— B = T
0 rdr {0+p ac \dx dx=Jé.
€, '

_ pDde o mo |
- | et e

€y €y
Formulae (2) and (3) implicitly solve the problem.
If the current j is small, the concentration difference ¢, — ¢, is also small. Replacing the integrals by ¢, — ¢,
times the mtegrands, we find the effective specific resistance of the solution:

& 1 1 & m
v =l g——(-¢) |-
lj o+pD 6c[ﬁ € ( CJT
The firstterm in (3) gives the potential drop ( § (j/o) dx) due to the passage of the current. The second term is the
e.m.f. due to the concentration gradient in the solution (in a certain sense analogous to the thermo-e.m.f.). This
latter expression is independent of the conditions of the particular one-dimensional problem considered, and 1s
the general expression for the em.f. of a “concentration cell”.

and therefore, using (1),

4 1t may be recalled that the hydrodynamic velocity v in a solution is defined so that pv is the mqmentum_of
unit volume of the liquid; see FM, §57. Hence the fact that in this case only the dissolved metal is moving (relative
to the electrodes) does not affect the calculation of pv. ;

1 The change in pressure due to the motion of the liquid gives only terms of a higher order of smallness-
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STATIC MAGNETIC FIELD

Static magnetic field

sTaTiC magnetic field in matter satisfies two of Maxwell’s equations, obtained by
ging the microscopic equations

10e 4
divh=0, cuili—_2+%mn (29.1)
cdt ¢

mean magnetic field is usually called the magnetic induction and denoted by B:

h=B. (29.2)
ce the result of averaging the first equation (29.1) is
divB = 0. (29.3)

second equation, the time derivative gives zero on averaging, since the mean field is
d constant, and so we have

curl B = (4n/c)pv. (29.4)

mean value of the microscopic current density is in general not zero in either
uctors or dielectrics. The only difference between these two classes is that in

rics we always have
[pv-df =0, (29.5)

e the integral is taken over the area of any cross-section of the body; in conductors,
integral need not be zero. Let us suppose to begin with that there is no net current in
body if it is a conductor, i.e. that (29.5) holds.

e vanishing of the integral in (29.5) for every cross-section of the body means that the
r pv can be written as the curl of another vector, usually denoted by cM:

pv = ceurl M, (29.6)

M is zero outside the body; compare the similar discussion in §6. For, integrating
I a surface bounded by a curve which encloses the body and nowhere enters it, we have
*df = ¢ {eurlM -df = c§M -d1 = 0. The vector M is called the magnetization of the
y. Substituting it in (29.4), we find

curlH = 0, (29.7)

the vector H and the magnetic induction B are related by

J = H +4nM, (29.8)
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which is analogous to the relation between the electric field E and induction D. Although
H is, by analogy with E, usually called the magnetic field, it must be remembered that the
true mean field is really B and not H.

To see the physical significance of the quantity M, let us consider the total magnetic
moment due to all the charged particles moving in the body. By the definition of the |
magnetic moment (see Fields, §44), this ist

[rxpvdlV/2c = 3{rxcarl MdV.

Since pv = 0 outside the body, the integral can be taken over any volume which includes
the body. We transform the integral as follows:

[rxcurl MdV = —§rx (M xdf)— | (M x grad) xrdV.

The integral over the surface outside the body is zero. In the second term we have
(Mxgrad)Xr = —Mdivr+M = —2M. Thus we obtain

éjrwﬁdV=jMdu (29.9)

We see that the magnetization vector is the magnetic moment per unit volume.}

The equations (29.3) and (29.7) must be supplemented by a relation between H and Bin
order to complete the system of equations. For example, in non-ferromagnetic bodies in
fairly weak magnetic fields, B and H are linearly related. In isotropic bodies, this linear
relation becomes a simple proportionality:

B = nH. (29.10)

The coefficient y is called the magnetic permeability. We also have M = xH, where the
coefficient

- x = (u—1)/dn (29.11)

is called the magnetic susceptibility.

Unlike the permittivity &, which always exceeds unity, the magnetic permeability may be
either greater or less than unity. (It is, however, always positive, as we shall prove in §31.
The reason for the differing behaviour of p and ¢ is discussed in §32.) The magnetic
susceptibility ¥ may correspondingly be either positive or negative.

Another, quantitative, difference is that the magnetic susce ptibility of the great majority
of bodies is very small in comparison with the dielectric susceptibility. This difference
arises because the magnetization of a (non-ferromagnetic) body is a relativistic effect, of
order v?/c?, where v is the velocity of the electrons in the atoms.§

In anisotropic bodies (crystals), the simple proportionality (29.10) is replaced by the
linear relations

B; = py Hy. (2912

+ For dlarity, it should be emphasized that r here is a variable coordinate of integration, not the position vecto’
of a microscopic particle; it therefore does not come under the averaging Sign. ) ;

t The quantity M is completely determined only when this relation is established. The relation (29.6) inside the
body.and M = 0 outside it, do not uniquely define M: the gradient of any scalar could be added to M inside the
body without affecting (29.6) (cf. the similar remark in the first footnote to §6)- ’

§ The ratio v/c appears with H in the Hamiltoman of the interaction of the body with the magnetic field, and
again in the magnetic moments of the atoms or molecules.
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The magnetic permeability tensor p;, is symmetrical; this follows from the thermodynamic
relations to be derived in §31, in exactly the same way as for &, (§13).

From the equations div B = 0, curl H = 0 it follows (cf. §6) that at a boundary between
two different media we must have

Blﬂ = an’ Hl, = Hz,. (29.13)

This system of equations and boundary conditions is formally identical with those for the
electrostatic field in a dielectric in the absence of free charges, differing only in that E and
D are replaced by H and B respectively. Since curl H = 0, we can put H = — grady; the
equations for the potential  are the same as those for the electrostatic potential. Thus the
solutions of the various problems of electrostatics discussed in Chapter Il can be
immediately applied to problems with a static magnetic field. In particular, the formulae
derived in §8 for a dielectric ellipsoid in a uniform electric field hold also, with appropriate
substitutions, for a magnetic ellipsoid in a uniform magnetic field. For example, the
magnetic field H® and induction B" inside the ellipsoid are related to the external
field $ by

H® +n, (B - HY = §, (29.14)

where n;, is the demagnetizing factor tensor. This relation is valid, whatever the relation
between B and H.

The tangential component of the magnetic induction, unlike its normal component, 1s
discontinuous at a surface separating two media. The magnitude of the discontinuity can
be related to the current density on the surface. To do this, we integrate both sides of
equation (29.4) over a small interval Al crossing the surface along the normal. We then let
Al tend to zero; the integral {gvdl may tend to some finite limit. The quantity

g={pvd _ (29.15)

may be called the surface current density; it gives the charge passing per unit time across
unit length of a line in the surface. We take the direction of g at a given point on the surface
as the y-axis, and the direction of the normal from medium 1 to medium 2 as the x-axis.
Then the integration of equation (29.4) gives

¢B, @B.\, _4m _4n
az ox *cg"_cg'

Since B, is continuous, the derivative 0B, /0z is finite, and so its integral tends to zero with
Al The integral of 0B, /dx gives the difference in the values of B, on the two sides of the
surface. Thus B,, — B,, = —4ng/c. This can be written in vector form:

4dngjc = nX (B, —B,) = 4nn X (M, — M,), (29:16)

where n is a unit vector along the normal into region 2; the last member of (29.16) 1s
obtained by using the continuity of the tangential component of H.

§30. The magnetic field of a steady current

If a conductor carries a non-zero total current, the mean current density in it can be
written as pv = ccurlM +j. The first term, resulting from the magnetization of the
medium, makes no contribution to the total current, so that the net charge transfer through
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a cross-section of the body is given by the integral {j - df of the second term. The guantity j
is called the conduction current density.} The statements made in §21 apply to this current;
in particular, the energy dissipated per umit time and volume is E -j.

The distribution of the current j over the volume of the conductor is given by the
equations of §21, which do not involve the magnetic field due to j itself, if we neglect the
effect of this field on the conductivity of the body. Hence the magnetic field of the currents
must be determined for a given current distribution. The equations satisfied by this field
differ from those in §29 by the presence of a term 4nj/c on the right-hand side of (29.7).

divB =0, (30.1)
curl H = 4nj/c. (30.2)

The conduction current density j, which is proportional to the electric field, does not
become infinite, and in particular is finite on a surface separating two media. Hence the
term on the right of (30.2) does™not affect the boundary condition that the tangential
component of H be continuous,

To solve equations (30.1), (30.2), it is convenient to use the vector potential A, defined by

B = curlA, (30.3)

so that equation (30.1) is satisfied identically. Equation (30.3) does not uniquely define the
vector potential, to which the gradient of any scalar may be added without affecting (30.3).
For this reason we can impose on A a further condition, which we take to be

divA =0 (30.4)

The equation for A is obtained by substituting (30.3) in (30.2). If the linear relation
B = uH holds we have .

curl(icurl A) = 4xj/c. (30.5)

In this form the equation is valid for any medium, homogeneous or not.
In a homogeneous medium, u = constant, and since

curlcurl A = graddivA—AA = — /A
we find from (30.5)

MNA = —4muj/c. (30.6! I|

If we have two or more adjoining media with different magnetic permeability p, the
general equation (30.5) has the form (30.6) in each homogeneous medium, while at the
interfaces the tangential component of the vector (1/u) curl A must be continuous:
Moreover, the tangential component of A itself must be continuous, since a discontinuity
would mean that the induction B was infinite at the boundary. |

The field equations are simpler in the two-dimensional problem of finding the magneti€
field in a medium infinite and homogeneous in one direction (which we take as the &
direction), the currents which produce the field being everywhere in that direction, with the

 The quantity ¢ curl M is sometimes called the molecular current density. This name, however, is not if
complete accordance with theactual physical picture of motion of charges n @ conductor. FOFEK?Inplc, in a me
the conduction electrons, as well as those moving in the atoms, contribute to the magnetization,
mm——— T
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current density j, = j depending only on x and y. We make the plausible assumption (to be
confirmed by the result) that the vector potential of such a field is also in the z-direction:
A.= A(x,)). The condition (30.4) is then satisfied identically; the magnetic field is
e\;gr}rwhere parallel to the xy-plane. We denote by k a unit vector in the z-direction; then

curl A = curl Ak = grad A xk,
1 dA
curl (— curl A) = curl (gra Xk) = —kdiv gradA'
K u u
Hence equation (30.5) becomes

. grad A 47
divE= = == ), (30.)

ie. we in fact obtain one equation for the one scalar quantity A(x, y). For a piecewise
homogeneous medium, (30.7) becomes

NA = —Arpj(x, y)/e, (30.8)

with the boundary condition that A and (1/u)dA/én be continuous at an interface.
The magnetic field is easily found if the current distribution is symmetrical about the z-
is: j, = j(r) (where r is the distance from that axis). In this case the lines of magnetic force
evidently the circles r = constant. The magnitude of the field is found at once from the

formula
4; H-dI = 4: jj df, (30.9)
which is the integral form of (30.2). Thus
| H(r) = 2J (r)/er, (30.10)

ere J (r) 1s the total current within the radius r.

e reduction of the vector equation (30.5) to a single scalar equation is possible also if
current distribution is axially symmetrical and has in cylindrical polar coordinatesr, ¢,
eformj, = j, =0, Jg = j(r, z). We seek the vector potentialin theform 4, = A, = 0,4,
A(r, 7). The components of the magnetic induction B = curl A are B, = —dA/dz, B,
(1/r)d(rAy/or, B, =0, and the ¢-component of equation (30.2) gives

d[f1dA dfl1é 4n
il et P Nl ] ' 30.11
ﬁz(,u 6z)+6r{wﬁr(m}} cJ(r’z} ( ,

€ equations for the magnetic field of the currents can be solved in a general form in the
ant case where the magnetic properties of the medium may be neglected,
Where we can put p = 1. The vector potential then satisfies in all space the equation

It_ should be noticed that the two-dimensional problem with a static magnetic field is equivalent to the

“dimensional electrostatic problem of determining the electric field due to extraneous charges with density

(x, y)ina dielectric medium. The equation to be solved in the latter problemis div (¢ grad ¢) = — 4np,, , where

the field potential; this differs from (30.7) only in that A, j/c and y are replaced by ¢, Pex and 1/e respectively.

boundary conditions on A and ¢ are the same. A difference occurs, however, on passing to E and B from ¢

A respectively. The vectors E = —grad¢ and B = curl A are the same in magnitude but in perpendicular
ns at any given point.
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/\A = — 4mj/c with no conditions at the interfaces between different media (including the
surface of the conductor on which the current flows). The solution of this equation which
vanishes at infinity 1s

A =1I1cw, (30.12)

¢ |R
where R is the distance from the volume element d}” to the point at which A is to be
calculated (see Fields, §43). In taking the curl of this equation, we must remember that the
integrand j, R is to be differentiated with respect to the coordinates of this point, of which j
is independent, so that
curl (j/R) = grad (1/R)xj = —RXj/R>,

where the radius vector R is from d} to the point under consideration. Thus

1 [ixXR
B—H—CJ‘RS dv. (30.13)

If the conductor on which the current flows is sufficiently thin (a thin wire), and if we are
interested only in the field in the surrounding space, the thickness of the wire may be
neglected. In what follows we shall often discuss such linear currents. The integration over
the volume of the conductor is then replaced by an integration along its length: the
formulae for linear currents are obtained from those for volume currents by making the
substitution jd ¥ — J d1, where J is the total current in the conductor. For example, from
formulae (30.12) and (30.13) we have

Azt f8 gt SF‘"EB_ (30.14)
c R ¢

The latter formula is Biot and Savart’s law.

This simple formula for the magnetic field of a linear current does not depend on the
assumption that u = 1. Since we neglect the thickness of the conductor, no boundary
conditions at its surface need be applied, and the magnetic properties of the conducting

material are of no importance (it may even be ferromagnetic). The solution of equation
(30.6) for the field in the medium surrounding the conductor is therefore

AP B=‘fJIle’ZB, (30.15)

c | R’ c

whatever the magnetic susceptibility of that medium. Thus the presence of the medium
simply changes the magnetic induction by a factor p. The field H = B/p is unchanged.

The problem of determining the magnetic field of linear currents can also be solved asa
problem of potential theory. Since we neglect the volume of conductors, we are in fact
determining the field in a region containing no currents except along certain line
singularities. In the absence of currents, a static magnetic field has a scalar potential, which
in a homogeneous medium satisfies Laplace’s equation. There is, however, an important
difference between the magnetic field potential and the electrostatic potential: the latter is
always a one-valued function, because curl E = 0 in all space (including charged regions)
and so the change in the potential in going round any closed contour (i.e. the circulation of
E round that contour) is zero. The circulation of the magnetic field round a contour
enclosing a linear current is not zero, but 4nJ/c. Hence the potential changes by this
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amount on each passage round a contour enclosing a linear current, i.e. it 1s a many-valued
function.

If the currents lie in a finite region of space (and p = 1 everywhere), the vector potential
of the magnetic field at a great distance from the conductors is

A = #(xXR/R?, (30.16)

where .
M = [rxjdV /2 (30.17)
is the total magnetic moment of the system.}
For a linear current, this becomes

M =T §rxdl/2e,

and can be transformed into an integral over a surface bounded by the line of the current.
The product df = rxd1 is equal in magnitude to the area of the triangular surface
element formed by the vectors r and d1. The vector [df is independent of the particular
surface (bounded by the current) over which it is taken. Thus the magnetic moment of a
closed linear current is

A =J §df/c. (30.18)

In particular, for a plane closed linear current the magnetic moment is simply J§/c, where S
is the area of the plane enclosed by the current.

To conclude this section, we may briefly discuss the energy flux in a conductor. The
energy dissipated as Joule heat in the conductor is derived from the energy of the
electromagnetic field. In a steady state, the equation of continuity which expresses the law
of conservation of energy is

—divS =j-E, (30.19)

where S is the energy flux density, given in a conductor by
S = cExH/4xn, (30.20)
which is formally the same as the expression for the Poynting vector for the field in a
vacuum. This is easily verified directly by calculating div S from the equations curl E =0
and (30.2), when we obtain (30.19).
Formula (30.20) also follows independently from the obvious condition that the normal

component of S must be continuous at the surface of a conductor, if we use the continuity
of E, and H, and the validity of (30.20) in the vacuum outside the body.

PROBLEMS}

PrOBLEM 1. Determine the scalar potential of the magnetic field of a closed linear current.
SOLUTION. We transform the curvilinear integral into one over a surface bounded by the curve, obtaining

A—J dl—JIde rad]
TeJR ¢ iR

J 1
B=curl A= — . J]df'gﬂd] grndE

t+ See Fields, §44. In the derivation there given, we use explicitly the idea of a current as the result of the motion
of individual charged particles. Such a derivation is, of course, quite general, but formula (30.16) can also be
obtained by macroscopic arguments (see Problem 4).

1 In Problems 1-4, p = 1.



112 Static Magnetic Field

(where we have used the fact that /. (1/R) = 0). Since B = — grad y, we have for the scalar potential
J 1 J (df-R

=— |df-grad — = —— |—5

4 c j ' R CJ R?

The integral is, geometrically, the solid angle Q subtended by the closed contour at the point considered. The
above-mentioned many-valuedness of the potential is seen from the fact that, as this point describes a closed path
embracing the wire, the angle Q changes suddenly from 2z to —2m.

PrOBLEM 2. Find the magnetic field of a linear current flowing in a circle with radius a.

SoLUTION. We take the origin of cylindrical polar coordinatesr, ¢, z at the centre of the circle, with the angle
¢ measured from the plane which passes through the z-axis and the point at which the field is calculated. The
vector potential has only one component, A, = A(r, z), and by formula (30.14) we have

J [cosgdi
A‘*=?ff“ R

_2_J - acos¢dg
¢ : \/(a2+r2+zz—~20rcos¢)-

Putting & = } (¢ — =), we find
4J [
Ay = — 1-HK—E],
o= kT [(1—3k%) ]
where k? = dar/[(a+r)? +2°], and K and E are complete elliptic integrals of the first and second kinds:

in

j do
K=| — o
) /(1 =k sin? 0)

i
E= j /(1=K sin® 6) d6.
(4]

The components of the induction are

B, =0,
a4, J 2z d4+rr+2?
B=——f=" | K+ s a2k
&z ¢ r\/[[a+r}z+zz] la—n*+z
B 1é . J 2 [K+az—r“—zzE]
= - r = = e —— ——_— .
foor 6]" 2 C ,/[(a+r)1 +72] (a—r)2+zz

Here we have used the easily verified formulae

K__E K _EK

ok k(1=K k& ok k-
On the axis (r = 0) we have B, =0, B, = 2ma®J/c(a* +z*)*/, as can also be found by a straightforward
calculation.

PrOBLEM 3. Determine the magnetic field in a cylindrical hole in a cylindrical conductor of infinite length
cartying a current uniformly distributed over its cross-section (Fig. 18).

SOLUTION. If there were no hole, the field in the cylinder would be given by H', = —2zjy/c, H', = 2njx/e.
The dimensions and axes are as shown in Fig. 18. If a current with density —j were to flow in the inner cylinder, il
would produce a field H”, = 2njy' /¢, H", = —2njx'[c. The required field in the hole is obtained by superposing
these two fields. Since x —x = 00’ = h, and y = J/, we have H, =0, H, = 2njh/c = 2hJ/(b? —a%)e, ie. @
uniform field in the y-direction,

PROBLEM 4. Derive from (30.12) the formula (30.16) for the vector potential of the field far from the
currents.

SoLUTION. We write R = R, — r, where R, and r are the radius vectors from the origin (situated somewhere
among the currents) to the point considered and to the volume element d V/ respectively. Expanding the integrand
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¥ ¥

Fic. 18

ers of r and using the fact that | jdV = 0, we have A; = (R,/cR*) [ x,j; dV. The suffix 0 to R is omitted.
ting by parts the identity | x,x, div j dV’ = 0 gives { (j,x, +j,x;)d¥ = 0. Hence we can write

A; = (R /2¢R®) [ (%, — x,jy) AV,
agrees with (30.16).

BLEM 5. Determine the magnetic field produced by a linear current in a magnetically anisotropic
ium (A. S. Viglin, 1954).

UTION. In the anisotropic medium surrounding the conductor we have
d_i‘r B = pitaHd&x,‘ = 0? [l}

Hy 1s the magnetic permeability tensor of the medium. Instead of introducing the vector potential by
curl A, we use another vector C defined by

H; = €34 €C,/ Ox,,, (2)

€15 the antisymmetrical unit tensor. Then equation (1) is again satisfied identically, We can also Imposeon
r C thus defined the condition

div C = éC,/éx, = 0. ()]

ituting (2) in curl H = 4nj/c, we obtain ey, 2H,/éx, = — 14,0 C,/ @x,0x, = 4z /c (using the condition (3)
the fact that e,¢,,,, = §,,,8,, — 8;,8,,,). The equation thus obtained for C is the same in form as that for the
fic field potential resulting from charges in an anisotropic medium (§13, Problem 2). The solution is
1 jdV
C=- L
¢ \/ﬂ.u |l "y R Ry)

|4]is the determinant of the tensor ,,, and R the radius vector from the point considered tod V. For a linear
we have

J

C- § d1
e/Inl J S WRRY

. Thermodynamic relations in a magnetic field

e thmnodylllamic relations for a magnetic substance in a magnetic field are, as we
Il see, very similar to the corresponding relations for a dielectric in an electric field. Their
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derivation, however, is quite different from that given in §10. This difference is ultimately
due to the fact that a magnetic field, unlike an electric field, does no work on charges
moving in it (since the force acting on a charge is perpendicular to its velocity). Hence, to
calculate the change in the energy of the medium when a magnetic field is applied, we must
examine the electric fields induced by the change in the magnetic field and determine the
work done by these fields on the currents which produce the magnetic field.
Thus the equation which relates electric and variable magnetic fields must be used. This
equation is
1JB

car’ (LD

curlE = —
it follows immediately on averaging the microscopic equation (1.3).

During a time 8t, the field E does work &t { j - E d¥ on the currents j. This quantity with
the opposite sign is the work R “done on the field” by the external e.m.f. which.maintains
the currents. Substituting

j=ccurl H/4n.

we have
SR= —5t.C IE-cuanV
4n

— 55 tai s 50 € .
—514njdlv(ExH)dl 6r4ﬂJH curl EA}.

The first integral, on being transformed to an integral over an infinitely distant surface, 1s
seen to be zero. In the second integral we substitute curl E from (31.1) and put 6B =
&t dB/dt for the change in the magnetic induction, obtaining finally

SR = [H-6BdV/4x. (31.2)

This formula appears entirely analogous to the expression (10.2) for the work done in an
infinitesimal change in the electric field. It must be pointed out, however, that the physical
analogy between the two formulae is actually not complete, since H, unlike E, is not the
mean value of the microscopic field.

Having derived formula (31.2), we can write down all the thermodynamic relations fora
magnetic substance in a magnetic field by analogy with those givenin §10 for a dielectricin
an electric field, simply replacing E and D by H and B respectively. We shall give some of
these formulae here for purposes of reference. The differentials of the total free energy and
the total internal energy are

0F = — 6T+ [H-6BdV /4r,
} (31.3)
SU =T5% + (H-5BdV /ar,
and those of the corresponding quantities per unit volume are
dF = —SdT+ dp+H-dB/4rn.
} (31.4)

dU =7dS+{dp+H-dB/4n.
We need also the thermodynamic potentials
U=U-H-B/4n, F=F—H-B/4nr, (31.5)
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for which

dF = —SdT+{dp—B-dH/4n,
} (31.6)

dU =TdS+{dp—B-dH/4n.

If the linear relation B = yH holds, we can write the expressions for all these quantities in
the form

U = Ug(S.p)+ B*/8ru.  F = Fo(T.p)+ B*/8np, } (317)
U = Uy(S.p)— pH?/8nm, F = F,(T.p)— uH?*/8n. '

The work &R (or, what is the same thing, the change 6 at constant temperature) can be
written in a different form, in terms of the current density and the vector potential of the
magnetic field. For this purpose we put 4B = curl 5A and

(6§}=Ljﬂ°curl5A dv
4n

1
. _1 ‘[div(HxéA)dV‘i‘ - J.6A°curlHdV.
4n 4n

The first integral is again zero, and the second gives

(6F) = [j-6AdV/c. (318)
A similar transformation gives

(6F), = —{A-8jdV/e. (31.9)

It is useful to note that in macroscopic electrodynamics the currents (sources of the
magnetic field) are mathematically analogues of the potentials, not of the charges
(the sources of the electric field). This is seen by comparing formulae (31.8) and (31.9) with
the corresponding results for an electric field:

GF )y = [ddpdV, (3F )= —[pédpdV (31.10)

(see (10.13), (10.14)). We observe that the charges and potentials appear in these formulae
in the opposite order to the currents and potentials in formulae (31.8), (31.9).

On account of the complete formal correspondence between the thermodynamic
relations (expressed in terms of field and induction) for electric and magnetic fields, the
thermodynamic inequalities derived in §18 can also be applied to magnetic fields. In
particular. we have seen that it follows from these inequalities that ¢ > 0. In the electric case
this result was of no interest. because it was weaker than the inequality £ > 1 which follows
on other grounds. In the magnetic case, however, the corresponding inequality
> 0 is very important, as it is the only restriction on the values which can be taken by the
magnetic permeability.

+ The significance of this difference is further discussed in the last footnote to §33.
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§32. The total free energy of a magnetic substance

In §11 expressions have been derived for the total free energy % of a dielectric in an
electric field. One of the thermodynamic properties of this quantity is that the change in it
gives the work done by the electric field on the body when the charges producing the field
remain constant. In a magnetic field a similar part is played by the free energy &, since for
given currents producing the field the change in Z is the work done on the body.

The following derivation is entirely analogous to that given in §11. The “total” quantity

F is defined as
2
= I(?+-5 )dV, (32.1),
8n

where $ is the magnetic field which would be produced by the given currents in the absence !
of the magnetizable medium. The plus sign appearsin the parenthesis (instead of the minus !
signas in (11.1)) because the value of F for a magnetic field in a vacuum is — [(9?/8m)dV |
(see (31.7)). The integration in (32.1)is taken over all space, including the volume occupied |
by the conductors in which flow the currents producing the field.{ !

Let us calculate the change in # (for a given temperature and no departure from|
thermodynamic equilibrium in the medium) corresponding to an infinitesimal change in|

the field. Since 6 F = — B-5H/4n, we have
5F = —[(B-SH—9H-69H)dV/4n
= - [(H-9)-69dV/4n—[B-(6H—69H)dV/dn — [(B—H)-6HdV/4n.
(322
Introducing the vector potential 2 of the field $, we can write in the first term
(H—9)-69 = (H— H)-curl 6A
= div [6Ax(H—$)]+8U-curl (H—$H). |

By definition, the fields H and $ are produced by the same currents j, the distribution of
which over the volume of the conductors is (see §30) independent of the field which they
produce, ie. is independent of the presence or absence of magnetic substances in
surrounding medium. Hence curl H and curl § are both equal to 4mj/c, and
curl(H — ) = 0. The integral of div [§Ax(H — $) ] is transformed into an integral ov
an infinitely distant surface, and so vanishes.

Similarly, we see that the second term on the right of (32.2) is zero; thus

0F = — [(B—H)-69HdV/4n
= — M- s9aV. 32

The expression which we have obtained for 5 is exactly similar to (11.3) for t
electrostatic problem. In particular. in a uniform magnetic field $ we have for dF

+ In §11 we took the integration in (11.1) over all space except the volume occupied by the charged cond
producing the field. This was possible because there is no electric field in a conductor, charged or not. There
magnetic field, however, inside the conductors which carry the currents, and it cannot be excluded in calculat
the total free energy.
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expression analogous to (11.5).
dF = —FAT— A4 9, (32.4)

where .# is the total magnetic moment of the body.
Without repeating the subsequent calculations, we shall write down the following
formulae by analogy with those in §11. If the linear relation B = yH holds, we have

F—F,(V.T)=—[1H-MdV. (32.5)
In particular, if the external field is homogeneous, then
F-F,VT)=—-19H 4. (32.6)

In the general case of an arbitrary relation between B and H, % can be calculated from the
formula

F = (F+ﬂ—%m-5)dv
J 8n
i H-B |

— ———1Mm- V :
b(F o M s})d y (32.7)

which is analogous to (11.12) for dielectrics.

In §11 we gave also the simpler formulae obtained when the dielectric susceptibility is
small. The analogous case for the magnetic problem is especially important because, as
mentioned above, the magnetic susceptibility of the majority of bodies is indeed small. In
this case

F—-F,=—-1x[92dV. (32.8)

We can also derive results for the magnetic field analogous to those obtained in §14.
These concern the change in the thermodynamic quantities resulting from an infinitesimal
change in the magnetic permeability , the field sources being assumed unchanged. It is

from the foregoing that we must consider the change in %, and not that in # asin
l;IW-:: shall not repeat the derivation, which is similar to that of (14.1), but merely give the

t:
8% = — {éuH?*dV/8n. (329)

In §14 we used the formula (11.7), an analogue of (32.5), to deduce that the dielectric
Susceptibility of any substance is positive. In the magnetic case we cannot draw this
“nclusion, and the magnetic susceptibility may be of either sign. The reason for this
k:;:d difference is that the Hamiltonian of a system of charges moving in a magnetic field
lains not only terms linear in the field (as in the electric case) but also quadratic terms.
in determining the change in the free energy of the body in the magnetic field by
s of perturbation theory as in (14.2), we have a contribution in the first approximation
Well as the second. In such a case no general conclusion can be drawn concerning the sign
the variation. It is positive for paramagnetic bodies and negative for diamagnetic ones.
In §14 we also drew conclusions concerning the direction of motion of bodies in an
ric field. Similar conclusions follow from (32.9), but, since ¢ may be either greater or
than 1, there is no umiversal result. For example, in an almost uniform field
amagnetic bodies (1 > 1) move in the direction of H increasing, and diamagnetic bodies
< 1) in the opposite direction.

JE——— e
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§33. The energy of a system of currents

Let us consider a system of conductors with currents flowing in them and assume that
neither the conductors nor the medium surrounding them are ferromagnetic, so that
B = puH everywhere. According to §31, the total free energy of the system is given in terms
of the magnetic field of the currents by

F = [H-BdV/8. (33.1)

Here we omit the quantity &, which is a constant (at 2 given temperature) and is not
related to the currents. The integration in (33.1) is taken over all space, both inside and
outside the conductors.

The same energy can also be expressed in terms of the currents by means of the integral

F = [A-jdV/2c (33.2)

of the derivation of (31.8) from (31.2). Here the integration extends only. over the
conductors, because j = 0 outside them.

Since the field equations are linear, the magnetic field can be written as the sum of the
fields resulting from each current alone with no current in the other conductors: H = *H,
Then the total free energy (33.1) is

F =Y Tt ¥ Fu (33.3)
a a=b
where
#,, = (H,-B,dV/8n, Z,=[H, B,dV/4n. (334

We have put #,, = F,, since H,-B, = uH,-H, = H,-B,, where p is the magnetic
permeability at any point. The quantity F ., may be called the free self-energy of the current
in the ath conductor, and &, the interaction energy of the ath and bth conductors. It
should be borne in mind, however, that these names are strictly correct only if the magnetic
properties of both the conductors and the medium are neglected. Otherwise the field, and
therefore the energy, of each current depend on the position and magnetic permeability of
the other conductors.

The quantities (33.4) can also be expressed in terms of the currents j, in each conductor,
in accordance with formula (33.2):

Fo= (A, dV2e, Fop=[iu* ApdVi/c = [ip-AsdV/c. (33.9)

The integral in %, is here taken only over the volume of the ath conductor; # ,, can be
written as either of the two expressions, in which the integration is over the volume of the
ath and bth conductor respectively.

When the distribution of the current density over the volume of the conductor is given.
%, depends only on the total current J, passing through a cross-section. Both the current
density jand the field which it produces will be proportional to J,. Hence the integral &, is|
proportional to J,2. and we write it

F,, = Lod 223 (33.61

where L, is called the self-inductance of the conductor. Similarly, the interaction energy of
two currents is proportional to the product J,J,:

F o= LopJ Ju/c? (33.7)
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The quantity L, is called the mutual inductance of the conductors. Thus the total free
energy of a system of currents is

1 1 1
| F = 262% L, J.2 + agb L, didy = 2?%% Ly Jar.. (33.8)

The condition that this quadratic form should be positive definite places
certain restrictions on the values of the coefficients. In particular L,, > 0 for all a, and
e, > L,

The calculation of the energy of currents in the general case of arbitrary three-
dimensional conductors requires a complete solution of the field equations, and is a
difficult problem. It becomes simpler if the magnetic permeability of both the conductors
a‘h the surrounding medium can be taken as unity. It should be noted that the energy of

currents is then no longer dependent on the thermodynamic state (in particular, on the
perature) of the bodies, and hence the free energy in the above formulae may be
referred to simply as the energy.
or u = | the vector field potential due to the currents j is given by formula (30.12).
the self-energy of the ath conductor is

L [(i-§
= | {==dvdV, 5
F o 262.':[ R d (33.9)
where both integrations are taken over the volume of the conductor considered, and R is
the distance between d ' and d V. Similarly, the mutual energy of two conductors is

F, = Elijjjf%dvadr . (33.10)

dFV, and dF, are volume elements in the two conductors,

e mutual energy of two linear currents is particularly easy to calculate. In formula
(33.10) we change from volume currents to linear ones by replacing j,d ¥, and j,d¥, by
Jod1,and J,d1, respectively, and we find that the mutual inductance is L,, = §§d1,-d1,/R.
In this approximation, therefore. L, depends only on the shape. size and relative position

he two currents. and not on the distribution of current over the cross-section of each

It must be emphasized that this simple formula can be obtained for linear currents

ut imposing the condition that p = 1. In the approximation where the thickness of the

815 neglected, their magnetic properties have no effect on the field which they produce,
therefore no effect on their mutual energy. If the magnetic permeability u of the
lum surrounding the wires is different from unity, the vector potential is, by (30.15),

ly multiplied by p, and therefore so is the magnetic induction. The mutual inductance
erefore multiplied by the same factor, so that

Lyp=p$édr,-d1,/R. (33.11)

self-inductance of linear conductors is much more difficult to calculate; we shall
S it in §34.

€ total energy of a system of linear currents can be written in still another form. To do
we return to the integral (33.2), which for linear currents becomes

1
F =2 LAt A-dl, (33.12)
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where A is the vector potential of the total field at the element d1,, of the ath conductor. The
main error in going from (33.2) to (33.12) arises from neglecting the change in the field
(including the field of the current considered) over the cross-section of the wire. Each of the
contour integrals in (33.12) can be transformed into a surface integral:

$A-d1, = [ curl A-df, = [ B-df,,

i.e. it is the flux of the magnetic induction or magnetic flux through the circuit of the ath
current. We denote this flux by @,_. Then

1
e 33.13
F chj,,ma. (33.13)

Similarly, the free energy & of a linear current J in an external magnetic field, i.e. the energy
without the self-energy of the field sources, can be expressed in terms of the magnetic flux,
Evidently

F =JD/c, (33.44)

where @ is the flux of the external field through the circuit of the current J. If the external
field is uniform, and u = 1 in the external medium, then ® = $ - [df. Introducing the
magnetic moment of the current in accordance with (30.18), we have % = #/ - 9.
Knowing the energy of a system of currents as a function of their shape, size and relative
position, we can determine the forces on the conductors by simply differentiating with
respect to the appropriate coordinates. Here, however, the question arises which
characteristics of the currents should be kept constant in the differentiation. It is most
convenient to differentiate at constant current. In this case the free energy is represented by
#, and so the generalized force F, in the direction of a generalized coordinate ¢ 18
F,= —(&% /2q),+. The suffixes show that the differentiation is effected at constant current
and constant temperature, Since we omit the term independent of the currents in the free
energy. % and F differ only in sign, and so |

0% °oF 1 oL
T () = ~ —ab. 33.15)
1 (6q )4, (é‘q )J 2-‘:3%"“% éoq ’ {

here and henceforward the suffix T to the derivatives is omitted, for brevity.

In particular, the forces exerted on a conductor by its own magnetic field are given by the :
formula p

- g2t= 1
F,= 52 J 0 (33

where L is the self-inductance of the conductor. The nature of these forces can be seen &
follows. For given current (and temperature) % tends to a minimum. Sinc
F = — LJ?/2¢?, this means that the forces on the conductor will tend to increase its self-
inductance. The latter, having the dimensions of length, must be proportional to the
dimension of the conductor. Thus the effect of the magnetic field is to increase the size 0
the conductor.

For a current in an external magnetic field we havef

F e —F = — M D (33.17

- i . . = etic moment of the the
+ The factor 4 which appears in (32.6) is absent in (33.17) because the magn T current 1n
latter equation is independent of the field, whereas the magnetic moment in (32.6) is itself due to the field.
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In all the above formulae for the energy it is assumed that there 1s a linear relation
petween the magnetic field and induction. In the general case where this relation is
arbitrary, analogous differential relations can be set up. The change in the free cnergy
resulting from an infinitesimal change in the field (at constant temperature) is, by (31.8),
3# = |j-0A dV/c or, for a system of linear currents,

OF = %Z J, fi;éA -d1,.
proceeding as in the derivation of (33.13) from (33.12), we havet
1
8F =-Y J,60,. (33.18)
c a

Similarly, we find from (31.9)
8% = -lz%wﬂ. (33.19)
c a

Thus we can say that, for a system of linear currents, & is the thermodynamic potential
with respect to the magnetic fluxes. and % with respect to the currents, the two potentials
being related by

1
F =;9~*—Ez.lama. (33.20)

Whatever the magnetic properties of the substance, therefore, the thermodynamic
relations
J.je=oF |6, @, [/c=—0F /i), (33.21)

held. If these formulae are applied to the case where the field and induction are linearly
related, so that % is given by (33.8), we obtain

.

O, = Y 1,1, (33.22)
C a

Thus the inductances are the coefficients of proportionality between the magnetic fluxes
and the currents which produce the magnetic field. The product L, J, /c 1s the magnetic
flux through the circuit of the current J, due to the current J, (b # a), and L,, J, ¢ is that
due to the current J, itself.

The self-inductance of linear conductors

In calculating the self-inductance of a linear conductor its thickness cannot be entirely
as it was in calculating the mutual inductance of two conductors. If it were, we

T]}etr: is an obvious analogy between formulae (33.18) and (10.13) in the magnetic and electric cases
vely. In the magnetic case, the induction fluxes play the role of charges. The analogy has a clear physical
Pretation, Just as the electric field can be maintained without any external energy supply. by charges on
ted conductors. the magnetic field can be maintained, without any external energy supply, by
reonducting solenoids across which the magnetic fuxes remain constant. It is therefore not surprising that

change in the free energy # in the electric and magnetic cases is poverned by the changes in the charges and in
induction fluxes respectively.
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should obtain from (33.9) the self-inductance L = §§d1 -d1'/R, where both integrals are
taken along the same circuit, and this integral is logarithmically divergent as R — 0.

The exact value of the self-inductance of a conductor depends on the distribution of
current in it, which may vary with the manner of excitation of the current, ie. with the
manner of application of the electromotive force. For a linear conductor, however, the self-
inductance does not, to a fairly high accuracy, depend on the distribution of current over
the cross-section.t

Let us write the self-inductance as I = L_+ L;, where L, and L, result from the
magnetic field energy outside and inside the conductor respectively. For a linear conductor,
the “external” part L, makes the main contribution to the self-inductance. This 1s because
most of the magnetic energy of a closed linear circuit resides in the field at distances from
the wire large compared with its thickness. For the energy per unit length of an infinite
straight wire is |

(1, /8n) [H?-2nr dr = (p,/87) {2 [er)? - 2nrdr = (u,J */c?) [dr/r,

where r is the distance from the axis of the wire and y, the magnetic permeability of the
external medium. This integral diverges logarithmically for large r. For a closed linear
circuit, of course, this divergence disappears, because the integral is “cut off ” at distances of
the order of the dimension of the circuit. We obtain an approximate value for the energy on
multiplying this integral by the total length I of the wire, and taking ! as the upper limit and
the radius a of the wire as the lower limit. The result is (u,J 21/c?)log (I/a), and hence the
self-inductance is |

L =2u,llog(l/a). (34.1)!

This expression is said to be of logarithmic accuracy: its relative error is of the order of
1/1og (I/a), and the ratio I/a is assumed to be so large that its logarithm is large.} ‘

A particular case of a linear conductor is a solenoid, which consists of 2 wire wound ina
helix, with the turns very close together. Neglecting the thickness of the wire and the
distance between the turns, we have simply a conducting cylindrical surface with a “surface”
conduction current on it. The equation curl H = 4nj/c within the conductor is her¢
replaced by the boundary condition.

nx(H,—H,)=4ng/c, (342
where gis the surface current density, H, and H, the fields on each side of the surface, and |
the unit normal vector into medium 2; cf. the derivation of (29.16). !

If the solenoid is an infinitely long cylinder, the magnetic field which it produces can be
found very simply. The surface currents flow in circles, and their density g = nJ, where J i
the current in the wire and » the number of turns per unit length of the solenoid. The field
outside the cylinder is zero; the field inside is uniform and along the axis of the cylinder, and

+ More precisely. it is independent of the distribution of current provided that the cun't‘am_densny_varlﬁ
appreciably only over distances comparable with the thickness a of the wire. If, however, the distribution is sll‘f'I
that the current density varies appreciably over distances small compared with a (as happens, for pflrtu:_ulﬂ
reasons, in the skin effect and in superconductors), then the self-inductance does depend on the distributio™

+ The assertion made above that the self-inductance is independent of the current distribution actually appli¢®
not only to the approximation (34.1) but also to the next approximation, in which terms not containing the lar £
logarithm are included (or, what is the same thing, the coefficient of l/a is included in the argument of the
logarithm); see the Problems at the end of this section.

I ———
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is H = 4nnJ /c. For this field evidently satisfies the equations divH = 0, curl H = 0 in all
space outside the conducting surface, and also the boundary condition (34.2) at that
surface.

Accordingly, the field energy per unit length of the cylinder is

u H?ab? 87 = 2n2n*b?p,J %/ c?,

here b is the radius of the cylinder and p, pertains to the material within the solenoid.
Ileglecting the end effects, we can apply this formula also to a solenoid whose length h is
finite, but large compared with b. Then the self-inductance is

| L = 4n*n*b*hp, = 2np, nbl, (34.3)

where | = 27bnh is the total length of the wire. The greater self-inductance of a solenoid as
compared with that of a straight wire of equal length (cf. (34.1)) is, of course, due to the
mutual induction between adjoining turns.

PROBLEMS¥

ProBLEM 1. Determine the self-inductance of a closed circuit of thin wire of circular cross-section.

SoLUTION. The magnetic field in the wire can be taken to be the same as that inside an infinite straight
eylinder: H = 2Jr/ca®, where r is the distance from the axis of the wire and a its radius. Hence we find the internal
part of the self-inductance:

Li="5 IH’dV = U, (1)

where [ is the length of the wire.

To calculate I, we notice that the field outside a thin wire is independent of the distribution of current over its
cross-section. In particular, the energy %, of the external magnetic field is unchanged if we assume that the current
flows only on the surface of the wire. The field inside the wire is then zero, and #, may be calculated as the total
energy from formula (33.2). On account of the assumed surface distribution of the current, the integral in this
formula becomes a line integral along the axis of the wire, and sothe external part of the self-inductance is

2t J
L= G (A).,-dl,
® J22r§[ bea®d

Where the value of A in the integrand is taken at the surface of the wire, In obtaining this formula we also use the
fact that, in the approximation used here, the field is constant along the perimeter of a cross-section.

Having reduced the problem to that of calculating A for r = a, we now make a different assumption concerning
the current distribution, namely that the whole current J flows along the axis of the wire. The field on the surface
of the wire is, in the approximation considered, unchanged by this assumption (nor would it be changed for a
straight wire of circular cross-scction). Then. by formula (30.14), we have

w2 2],

Where R_is the distance from the element d1 of the axis to a given point on the surface of the wire. We divide the
Into two parts, one for which R > Aand the other for which R < A, where A is a distance small compared

th the dimension of the circuit but large compared with the radius a of the wire.f In the integral where R > A,

Y be neglected and R taken simply as the distance between two points on the circuit. The vector integral where

< A may be assumed to be along the tangent at the point considered. Denoting by t the unit vector in that
ection, we have

A
[ JR]= [ 7 :
Rl = 5 = 2tsinh™ ! (A/a)
R=<A “ —A (@ +F}
= 2tlog(2A/a).

T In Problems 1-6 we assume y, = 1.
¥ A similar procedure was used to calculate the capacitance of a thin ring in §2, Problem 4.
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This expression can be written as the integral
f dl/R

A>R>1a

where R is again the distance between points on the circuit. Adding the two integrals for R > Aand R < A, we

obtain
J dl
Al,_, = -
(A c J R’
R=>4a
from which the arbitrary parameter A has disappeared, as it should.

The final result is therefore
e [[ 2 .
€ R
E>1a

The integration here extends over all pairs of points on the circuit whose distance apart exceeds 1a.

PROBLEM 2. Determine the self-inductance of a thin wire ring (with radius b) of circular cross-section (with
radius a).

SoLuTioN. The integrand in (2), Problem 1, depends only on the central angle ¢ subtended by the chord R
and R = 2bsin}¢, while d1-d1’ = dldl' cos ¢. Hence

_ Eciqb'Zﬂb'bdd?_ B -
L,_2[ Yosinly =d4nb[—logtanid, —2 cosidg]

¢

The lower limit of integration is determined from 2bsin i, = 1a, whence ¢, = a/2b. Substituting this value and
adding I, = nhy,, we have to the required accuracy

L = 4nb [log (8b/a)—2 +5u, ).
In particular, for i, = 1 we obtain
L = 4nbflog (8b/a)— (7/4) ]

PROBLEM 3. Determine the extension of a ring of wire (with g = 1) under the action of the magnetic field of ¢
current flowing in it.

SOLUTION. The internal stresses parallel and perpendicular to the axis are, by (33.16), given by

J? L J?aL

ZRI STy e
S aamh)’ T 3 da

nata

Substituting I from Problem 2, we have

T [ B3 O |
M| Ta T T e

Hence the required relative extension of the ring is

Ab 1 J2 8 3 )
= —  — = - ___+2
b E(‘TL 2o0,) i (lOE a 4 no I

a*c*E

where E is Young's modulus and ¢ Poisson'’s ratio for the wire; see TE, §5.
. . ith
PROBLEM 4. Determine the self-inductance per unit length of a system of two parallel straight wires (Wit

: - !
u, = 1) having circular cross-sections of radii a and b. with their axes a distance h apart, and carrying eq¥
currents J in opposite directions (Fig. 19).

: : i to the axes of the wires, and
SoLuUTION. The vector potential of the magnetic field of each current 15 pﬂﬂﬂlBl g ! WITes, @
the two vector potentials can be added algebraically. For the magnetic field of wire 1, with a uniformly d:stnbuwd

PSS |
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Fic. 19

current + J, we have in cylindrical polar coordinates

J ¥ ]
A,=;(C—:;z)forr<a,

A,=i(c-1 -zlog’) for r > a.
C a

where C is an arbitrary constant; A, is continuous at the surface of the wire. The formulae for wire 2 are obtained
by substituting b for @ and changing the sign of J. Integration over the cross-section of wire ! in formula (33.2)

gives
i r,2 rs
St {(C—?)—(C—l—mog-b)}df,

a In
J? ry2 R +r,2—2hr cos¢ Jif1 h)
- —— . e = 2log— |.
e na? JJ {1 2 + log B }r, dep dr, 5o 2+ ogb
00

The integration over the cross-section of wire 2 gives the same thing with a in place of b. The required self-
Inductance per unit length of the double wire is therefore

L = 1+2log(h?/ab).
PROBLEM 5. Determine the self-induciance of a toroidal solenoid.

SOLUTION. We regard the solenoid as a toroidal conducting surface carrying surface currents with density
9= NJ/2nr, where N is the total number of turns and .J the current; the coordinates and dimensions are as shown
Fig. 20 (p. 126). The magnetic field outside the solenoid is zero, and inside the solenoid H, = H;, =0,
=2NJ/cr, where r, z, ¢ are cylindrical polar coordinates; for this solution satisfies the equations

H = 0, curl H = 0 and the boundary condition (34.2).1 The energy of the magnetic field in the solencid is

[(H2/8m)dV = (N2J?/c*)§zdr/r,

the integration is taken along the perimeter of the cross-section, and is easily effected by putting z = asin®,
b+ acos 6. The self-inductance is found to be

L=4nN*[b—/(b*~a*)]

PROBLEM 6. Determine the end-effect correction of order I/h t i i
: J o the expression (34.3) (with g, = 1) for the
“inductance of a cylindrical solenoid. presaton (45:3) =1

SOLUTION. The self-inductance is calculated as a double integral over the surface of the solenoid:
1 {88
L= — J.J._LR_z df, df,.

t It is valid also for an annular solenoid with any cross-secti

PR —
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F

Fic. 20

where g is the surface current density (g =nJ). In cylindrical polar coordinates

h h 2Irm
"

gm¢dedndi,

L = 2nbn? I — —
J I Sz =z +absin 3¢ ]

=]

= 8nb?n?

J (h—Dycosddddt.
) @+ ab?sin? 1)

where ¢ is the angle between the diametral planes through df, and df;, and { = z;—2;.
Effecting the integration with respect to {, we have for h b

[~

2

h
L= Sﬂb’nij [h]ogﬁnl-a —h+2bsini¢ lcosdde,
O

and finall
i I = 4n*b*n? [h—8b/3n ).

PROBLEM 7. Determine the factor by which the self-inductance of a plane circuit changes when it is placed on
the surface of a half-space of magnetic permeability .. The internal part of the self-inductance is neglected.

SoLuTiON.  Itis evident from symmetry that, in the absence of the half-space, the magnetic field of the current
is symmetrical about the plane of the circuit, and the lines of magnetic force cross that plane normally. Let this
field be H,,. We can satisfy the field equations and the boundary conditions on the surface of the half-space by
putting H = 21, Ho/ (4, + 1) in the vacuum and B = H = 2u.Ho /(4 + 1) in the medium: B, and H, are then
continuousat the boundary, and the circulation of Halong any line of force is equal to that of H,,. Hence we 085'!3‘
see that, when the medium is present, the total energy of the field. and therefore the self-inductance of the circuik
are multiplied by 2, /(g + 1)

§35. Forces in a magnetic field

To determine the forces on matter in a magnetic field hardly any further calculations 3
necessary, on account of the complete analogy with electrostatics. The analogy is 4%
mainly to the fact that the expressions for the thermodynamic quantities in a ma gnetic fiel
differ from those for an electric field only in that E and D are replaced by H and
respectively. In calculating the stress tensor in §15 we used the fact that the electric fiel
satisfies the equation curlE = 0, and is therefore a potential field. The magnetic fiel
satisfies the equation

curl H = 4zj/c, (35.1)

|
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which reduces to curl H = 0 only in the absence of conduction currents. In calculating the
siress tensor, however, we must always put j = 0. Since j involves the derivatives of the
magnetic field, an allowance for the currents in calculating the stresses would amount to
adding to the stress tensor o;, the very small corrections due to the non-uniformity of the
field; cf. the second footnote to §i5.

Thus all the formulae obtained in §§15 and 16 for the stress tensor can be applied
irnmediately for a magnetic field. For example, in a fluid medium with B = uH we have

H? au pH.H,
O = —FPolp.T)dy— &7 [#‘p(aﬁ)r]ém + “ar (35.2)

From this the body forces are calculated by the formula f; = da;,/0x,. If the medium 1s a
ductor carrying a current, the calculation differs from that in §15 in that the equation
curl H = 0 is replaced by (35.1).
Differentiating (35.2) and using also the equation divB = div(uH) = 0, we find

1 , [ou H? i , . H
- FgradPu—kﬁgrad[H p(ép)r:l——sﬁ grad,u—é;gradﬂ +;4H(H grad)H.

By a well-known formula of vector analysis,

(H-grad)H = {grad H> — H xcurl H

=tgrad H? +4nj xH/c.
Thus
1 du H? U
= —grad P, + — grad| H?p[— ——grad —JxH. 353
gra °+8n gra [ p(ap)r:l - gra ,u+c (35.3)

The last term does not appear in the corresponding formula (15.12). It would, however,
INcorrect to suppose that the presence of this term means that a force can be isolated in f
ich is due to the conduction current. The reason is that, by (35.1), the current j is
parable from non-uniformity of the field, and another term in (35.3) also involves the
ce derivatives of the field. When the magnetic permeability of the medium is appreciably
erent from unity, all the terms in (35.3) are in general of the same order of magnitude.
» however, as usually happens, p is close to 1, the last term in (35.3) gives the main
tribution to the force when a conduction current is present, and the remaining terms
only a small correction. In calculating the forces we can then put u = 1, obtaining

ply
f=jxH/c (35.4)

term — grad P, is of no interest henceforward, and we omit it. For = 1 the properties
he substance have no effect on the magnetic phenomena, and the expression (35.4) for
force is equally valid for fluid and for solid conductors. The total force exerted by a
etic field on a conductor carrying a current is given by the integral

F=|jxHdV/c. (35.5)

ula (35.4) can, of course, be very easily obtained from the familiar expression for the
ntz force. The macroscopic force on a body at rest in a magnetic field is just the
aged Lorentz force exerted on the charged particles in the body by the e mm—
h: f = pvxh/c. For p = 1 the field his equal to the mean field H, and the mean value
v is the conduction current density.
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When a conductor moves, the forces (35.4) do mechanical work on it. At first sight it
might appear that this contradicts the result that the Lorentz forces do no work on moving
charges. In reality, of course, there is no contradiction, since the work done by the Lorentz
forces in a moving conductor includes not only the mechanical work but also the work
done by the electromotive forces induced in the conductor during its motion. These two
guantities of work are equal and opposite; see the second footnote to §63.

In the expression (35.4) H is the true value of the magnetic field due both to external
sources and to the currents themselves on which the force (35.4) acts. In calculating the
total force from (35.5), however, we can take H to be simply the external field £ in which
the conductor carrying a current is placed. The field of the conductor itself cannot, by the
law of conservation of momentum, contribute to the total force acting on the conductor.

The calculation of the forces is particularly simple for a linear conductor. Its magnetic
properties are of no significance, and, if # = 1 in the surrounding medium, the total force
on the conductor is given by the line integral

F=1J§dl xH/c. (35.6)

This expression can be written as an integral over a surface bounded by the current
circuit. Using Stokes’ theorem, we replace d1 by the operator df x grad, obtaining
§d1 x $ = [(df x grad) x §. Now
(dfxgrad)x $ = —dfdiv H+ grad (df- H)
= —dfdiv 9+ df xcurl H+ (df -grad) H.

But div $ = 0, and in the space outside the currents curl $ = 0 also. Thus
F =J ((df-grad)$/c. (35.7)

In particular, in an almost uniform external field $ can be taken outside the integral,
together with the operator grad. With the magnetic moment of the current given by |
(30.18), we then have the obvious result

F = (A7 -grad)$. (35.8)
Since .# in this formula is constant, we can also write
F = grad(#/ - 9), (359

in agreement with the expression (33.17) for the energy of the current. The torque acting o
a current in an almost uniform field is easily seen to be given by the usual expression

K=.4#x$. (35.10)

PROBLEM

Determine the force on a straight wire carrying a current J and parallel 1o an infinite circular cylinder with
magnetic permeability u, radius @ and axis at a distance b from the wire.

SOLUTION. On account of the relation, mentioned in the second footnote O §30, between WO-dimmmnﬂl
problems of electrostatics and magnetostatics, the field of the current is obtained from t;: fﬁU{t in §7, Problem >
by changing the notation. The field in the space round the cylinder is the same s that p]r1 uce'd ina vacuum by the
current J and currents +.J’ and —J ' through 4 and O’ (Fig. 12, §7) respectively, where J' = (u—1) 5 /¢ + 1)
The field within the cylinder is the same as that due 10 a current J ” = 2J /( + 1) through O. The force per unit
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ength of the conductor is

25 (1 1
F=JBlc="—"{_ —
=" (0,4 oo*)
D
T bbb —a?)u+ 1)

Similarly we find (see §7, Problem 4) that a linear conductor passing through a cylindrical hole in a magnetic
edium is attracted to the nearest surface of the hole by a force

F =20 2b(u— 1)/(a® —b* N+ 1)
Gyromagnetic phenomena

Uniform rotation of a body (having no magnetic structure) causes a magnetization
ich is linearly dependent on the angular velocity £ (the Barnett effect).
henomenologically, a linear relation between the vectors .# and £ is possible because
th change sign under time reversal. Since both are axial vectors, the relation can hold
en 1n an isotropic body, where it reduces to a simple proportionality between.# and €.
ere must also be an inverse effect: a freely suspended body. on being magnetized,
pins to rotate (the Einstein-de Haas effect). There is a simple thermodynamic relation
een the two effects; it can be derived as follows.

As we know (see SP 1, §26), the thermodynamic potential with respect to the angular
ocity (for given temperature and volume of the body) is the free energy # ' of the body
a system of coordinates rotating with it. The angular momentum L of the body is

L= —3%"/oQ. (36.1)

The gyromagnetic phenomena are described by adding to the free energy a further term,
ich is the first term containing both £ and M in an expansion in powers of £ and of the
agnetization M at each point in the body. This term is linear in both, i.e. it is

F' oo = — (MM AV = —2,Q.4,, (36.2)

ere /,, is a constant tensor, in general unsymmetrical.

According to (36.1) and (36.2) the angular momentum acquired by the body as a result of
dgnetization is related to its total magnetic moment by Lgyroi = A;.# . It is usual to
place /,, by the inverse tensor, defined as g;, = (2mc/e)A™';, where e and m are the
eclron charge and mass. The dimensionless quantities g, are called gyromagnetic
efficients. Then

M, = (e/2mAgy Lgyeos (36.3)
The expression (36.2) also shows that, as regards its magnetic effect, the rotation of the
dy is equivalent to an external field §, = 4,0, or

9 = (2mcfe)g ', Q. (36.4)

e t?lus have the possi!:iiity, in principle, of calculating the magnetization caused by the
tation. For example, if the magnetic susceptibility y,, of the body is small, the magnetic
oment which it acquires is independent of its shape and is

M= Ya Dy = 2me/e)y, g™ 1 Q.

ulae (36.3)and (36.4) represent respectively the Einstein-de Haas and Barnett effects.
e see that both effects are determined by the same tensor g,,.




CHAPTER V

FERROMAGNETISM AND
ANTIFERROMAGNETISM

§37. Magnetic symmetry of crystals

THerE is a profound difference between the electric properties of crystals and their
magnetic properties, which results from a difference in the behaviour of charges and
currents with respect to time reversal.

The invariance of the equations of motion with respect to this change means that the
formal substitution t -+ —t, on being applied to any state of thermodynamic equilibrium
of a body, must give some possible equilibrium state. There are then two possibilities:
either the state obtained by changing the sign of ¢ is the same as the original state, or it is
not.

In this section we denote by p(x, y, z) and j(x, y, z) the true (microscopic) charge and
current densities at any given point in the crystal, averaged only over time, and not over
“physically infinitesimal” volumes as in the macroscopic theory. These are the functions
which determine the electric and magnetic structure of the crystal respectively.

When 1 is replaced by — 1, j changes sign. If the state of the body remains unchanged, it
follows that j = —j, i.e. j = 0. Thus there is a reason why bodies can exist in which the
function j(x, y, z) is identically zero. In such bodies, not only the current density but also
the (time) average magnetic field and magnetic moment vanish at every point (we are
speaking, of course, of states in the absence of an external magnetic field). Such bodies may
be said to have no “magnetic structure”, and indeed the great majority of bodies fall into
this category.

The charge density p, on the other hand, is unchanged when t — — t. There is therefor€
no reason why this function should be identically zero. In other words, there are no®
crystals without “electric structure”, and herein lies the essential difference, mentioned at
the beginning of this section, between the electric and the magnetic properties of crystals:

Let us now consider crystals for which the change from ¢ to —t results in a change of
state, so that j # 0.We shall say that such bodies have a magnetic structure. First of all, weé
note that, although j is not zero, there can be no total current in an equilibrium state of the
body, i.e. the integral {jd} taken over a unit cell must always be zero.t Otherwise the
current would produce a macroscopic magnetic field, and the crystal would have 2
magnetic energy per unit volume increasing rapidly with its dimensions. Since such a staté
is energetically unfavourable, it could not correspond to thermodynamic equilibriun:l-

The currents j may, however, produce a non-zero macroscopic magnetic moment, 1.6

+ It should be emphasized that the cell spoken of here is the true unit cell, whose definition involvg:s the
magnetic structure of the crystal, and this “magnetic cell” may be diﬂ‘crent_frnm the purely crystallographic
which relates only to the symmetry of the charge distribution in the lattice (cf. §38 below).
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eintegral | rxjdV,again taken over a unit cell, need not be zero. Accordingly, the bodies
r which j # 0 may be divided into two types: those in which the macroscopic magnetic
oment is not zero, called ferromagnets, and those in which it is zero, called
tiferromagnets.

What are the possible symmetry groups of the current distribution j(x, y, z)? This
mmetry contains, first of all, the usual rotations, reflections and translations, and so the
ible symmetry groups of j always include the usual 230 crystallographic space
metry groups. These, however, are by no means all. As has already been mentioned, the
titution t - —t changes the sign of the vector j. For this reason a new symmetry
ent comes in, namely that resulting from the reversal of all currents; we shall denote
transformation by R. If the current distribution itself has the symmetry R, it follows that
—J,1.e. j = 0, and the body has no magnetic structure. A non-zero function j(x, y, z)
y, however, be symmetrical with respect to various combinations of R with the other
metry elements (rotations, reflections and translations). Thus the problem of
ining the possible types of symmetry of the current distribution (the magnetic space
ups) amounts to the enumeration of all possible groups containing both the
formations of the ordinary space groups and the combinations of these with R.
the symmetry of the current distribution is given, the crystallographic symmetry of
particle distribution, which is also the symmetry of the function p(x,y, z), is
mined. It is the symmetry of the space group which is obtained from the symmetry
up of j by formally regarding the transformation R as the identity (as it is with respect
he function p).

only the macroscopic properties of the body are of interest, however, it 1s not necessary
ow the complete symmetry group of the function j(x, y, z). These properties depend
on the direction in the crystal, and the translational symmetry of the lattice does not
them. As regards crystallographic structure, the “symmetry of directions™ is specified
he 32 crystal classes. These are the symmetry groups consisting of rotations and
ions only, and are obtained from the space groups by regarding every translation as
dentity, and the screw axes and glide planes as simple axes and planes of symmetry. As
ds the magnetic properties, the macroscopic symmetry can be classified by groups
isting of rotations, reflections and combinations of these with R) which may be called
magnetic crystal classes. They are related to the magnetic space groups in the same way
e the ordinary crystal classes to the ordinary space groups. They include, firstly, the
32 classes, and those classes augmented by the element R. These augmented classes
In particular, the macroscopic symmetry groups for all bodies having no magnetic
ure, but they occur also in bodies with magnetic structure. This happens if the
etic space symmetry group of such bodies includes R only in combination with
slations. and not alone.

here are also 58 classes in which R enters only in combination with rotations or
_ ions. Each of these becomes one of the ordinary crystal classes if R is replaced by the
tity.

t should be noted that the occurrence of magnetic structure (ferromagnetic or
iferromagnetic) always involves comparatively weak interactions.+ Hence the crystal

The exchange interaction between the magnetic moments of atoms usually results in the saturation of the
bonds and the formation of non-magnetic structures. A magnetic structure results only from the relativel
i ot tions between deep-lying d and / electrons of atoms of elements in the intermediate groupi
periodic system.
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structure of a magnetic body is only a slight modification of that in the non-magnetic
phase, which usually changes into the magnetic phase when the temperature is reduced. In
this respect ferromagnets, in particular, differ from ordinary pyroelectrics, but are
analogous to ferroelectrics.

If the magnetic crystal class of a body is specified, its macroscopic magnetic properties
are qualitatively determined. The most important of these is the presence or absence of 4
macroscopic magnetic moment, i.e. of spontaneous magnetization in the absence of an
external field. The magnetic moment M is a vector, behaving as an axial vector (the vector
product of two polar vectors) under rotation and reflection, and changing sign under the
operation R. The crystal will possess spontaneous magnetization if it has one or more
directions such that a vector M in that direction and having the above-mentioned
properties is invariant under all transformations belonging to the magnetic crystal class
concerned.

We must again emphasize the difference between these (macroscopic) properties and the
corresponding ones in electrostatics. The latter are qualitatively determined by the
ordinary crystal class. In particular, a body is pyroelectric if its crystal class admits the
existence of a polar vector P (the polarization). It would, however, be entirely wrong to|
base conclusions about the existence or otherwise of a macroscopic magnetic moment on
the behaviour of the axial vector M with respect to the transformations of the purely
structural crystal class of the body concerned, which corresponds to the symmetry of the |
function p(x, y, z); we shall return to this problem in §38, after actually constructing the
magnetic classes. |

Instead of the symmetry of the function j(x, y, z), we can use that of the microscopic
magnetic moment density distribution M(x, y, z) = r Xj(x, y, z). This in turn may be
regarded as the symmetry of the configuration and orientation of the (time) averaged
values of the magnetic moments u of the atoms or ions in the lattice. In a body without
magnetic symmetry these averaged values are zero. In a ferromagnet the sum of the atomi
moments in each unit cell is non-zero, but in an antiferromagnet it is zero.

A set of atoms in the lattice having equal values of p is called a magnetic sub-lattice. An
antiferromagnet will evidently contain at least two sub-lattices with equal and opposit¢
values of p. I the directions of the moments p are parallel or antiparallel for all sub-lattices,
such a body is said to be collinear; in the contrary case, it is a non-collinear antiferromagnet

A ferromagnet also may contain more than one sub-lattice. In the narrow sense, the ter
“ferromagnetic” applies to bodies in which all the mean atomic magnetic moments aré
parallel. A crystal is said to be ferrimagnetic if it contains two or more sub-lattices Wit_h
atomic moments that differ in direction or magnitude. In contrast to the antiferromagnet
case, in these substances the vector sum M of the magnetic moments of the sub-lattices ®
not zero. A ferromagnet may be collinear, or not, according as the magnetic moments of al
its sub-lattices are parallel or antiparallel, or not.

§38. Magnetic classes and space groups

We shall now show how the magnetic symmetry groups are constructed, beginning with
the magnetic classes.

As already mentioned in §37, the magnetic classes fall into three types. Type 1 include€’
the 32 ordinary crystal classes, which do not involve the element R. Type I includes th¢
same 32 classes augmented by R. Each such class contains all the elements of the ordinary

.
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ass (of the point group G) and also all these elements multiplied by R; if the magnetic class
s denoted by M, then we can write

M =G +RG. (38.1)

he transformation R commutes, of course, with all spatial rotations and reflections; hence
= GR, where G 1s any element of G.

These two types of class are, in a sense, trivial. The non-trivial type III includes the 58
agnetic classes, in which R enters only in combination with rotations or reflections. Each
these becomes one of the ordinary crystal classes of G if R is replaced by the identity. The
truction of all magnetic classes of this type is carried out as follows.

et H denote the set of elements of the group G which are not multiplied by R when the
gnetic class M is formed. Such a set includes, by definition, the unit element E, since
erwise M would contain the element R itself, i.e., would belong to type IL. The products
any two of the elements in this set are also members of the set. Thus H is a sub-group of
All other elements of G appear in M multiplied by R; since R? = E, all products of pairs
hese elements belong to H. It follows that H is a sub-group of G (and therefore of M)
h index 2.1 The structure of a type IIl magnetic class M may therefore be written as

M = H +RG,H, (38.2)

ere G, isany element of G that is not an element of H. [tisevident that the groups M and
H + G, H are isomorphous.

e problem of constructing all the magnetic classes thus amounts to finding the sub-
ups with index 2 in all the crystal classes. This is easily done by means of the character
les for the irreducible representations of the point groups. Every one-dimensional
her than the unit) representation of the group contains an equal number of characters
and — 1; the elements with characters + 1 form a sub-group with index 2. On changing
e magnetic class, these elements remain the same, while all others are multiplied by R.
e procedure may be illustrated with reference to the point group Cg,. The character
le for its irreducible representations is (see QM, §95)

E C, 2C, 20, 2,
A1 1 1 1 1
A, 1 1 1 =1 =1
B, 1 1 -1 1 -1
B, 1 1 -1 -1 1
E 2 -2 0 0 0

* one-dimensional (other than the unit) representations are 4,, B,, B,. In the
Tesentation A,, the elements with characters +1 form the sub-group C,. The
esponding magnetic class, denoted by C,, (C,), consists of the elements E, C,, 2C,,
G,. 2R¢’,. In the representations B, and B,, the elements with characters + 1 form the
b-groups C,,, which differ only in the position of the planes o, relative to fixed
OIdinates. These sub-groups are crystallographically indistinguishable, and correspond
the same magnetic class C,,(C,,). whose elements are E, C,, 2RC,, 20,, 2R0’,.

b This means that H contains half as many elements as G.
ich is fairly obvious: a sub-group H of G has index 2 if
belong to H is an element of H.

The statement is a consequence of a general theorem
and only if the product of any two elements of G that do
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TaBLE 1| Magnetic classes

Gi(Cy) Cy.(Cy)

C.(Cy) D,(C,)

C,(Cy) Dy,(D;, 8. Ci)

Czk':c.-- c}r Cs) C.‘-h (CJ:'

CZ:.-{CS!' Cz' Cﬁ{cl}

D, (C;) Dy, (Cyp, Gy, D3)

Dzh (DZ? CZ!I! Czl-‘} Cﬂﬁ (C{Jl Sﬁi C&ﬁ}

C.(C) C,.(Ce, Cay)

S.(C,) D (Cq» Dy)

D,,(Ss, D,, Cy,) D), (D, Cey, Cops Daas D)

D4(C4, Dy) T,(T)

Cd.r ‘Cd., CZL'} 0{ n

th{cd-i CZlu Sd} Td(n

Dd.h{'nih Cﬂpnllv C«.-,Dld) oh{OD Tlu T.ﬂ'j

Ss(C5)

On going through all the 32 crystal classes in this way, we obtain the 58 magnetic classes
of type III, as listed in Table 1. Each class G(H) is defined by an original point group G and
a sub-group H thereof which is one of those listed in parentheses after the symbol for the
particular group G. The crystal classes C,, Cy and T have no sub-groups with index 2, and so
they give rise to no magnetic classes. The rotation C;, moreover, never appears multiplied
by R in a (non-trivial) magnetic class: the rotation C3 R thrice repeated would give R, which
is not a member of such classes.t

It has been mentioned in §37 that the crystal class concerned does not determine whether
or not ferromagnetism can exist. To illustrate this, let us consider a tetragonal lattice of
identical atoms, with magnetic moments parallel to the tetragonal axis.f Tts magnetic
crystal class is D, (D, ), containing the transformations§ E, C;, 2C,, 2U R, 2U',R, I, 0y
2S,. 20 R, 20’ R. All these transformations leave invariant the axial vector M, which is
parallel to the fourfold axis. The crystal class D, itself, however, would not allow the
existence of an axial vector: all the components M,, M,, M, would change sign in @
rotation about some twofold axis, for example.

Let us now turn to the magnetic space groups. These are in the same relation to the
ordinary crystal space groups as the magnetic classes are to the crystal classes, reducing t0
these if R is replaced by the identity. The total number of magnetic space groups is 165L
like the magnetic classes, they fall into three types.

Type I contains 230 groups which coincide with the crystal
type Il has the same 230 groups augmented by R. J

The non-trivial type 1T contains 1191 groups in which R enters only in combination will
rotations, reflections or translations. It has the structure (38.2), where H is any sub-grouf

groups and do not involve R

t In abstract symmetry theory, magnetic symmetry is called antisymmetry. This concept was indcpe“d'?"g':
proposed by H. Heesch (1929) and A. V. Shubnikov (1945). The antisymmetry classes were found by Shubnik
(1951) as the symmetry groups of geometric figures (polyhedra) with faces of two colours; the element R t
corresponds to changing the colour of each face. These classes were derived as magnetic symmetry groups by
Tavger and V. M. Zaitsev (1956). The method of derivation given here is due to V. L. Indenbom {19_591 |

t Such, for instance, is the lattice of iron in its ferromagnetic phase. Crystallographically, it is a cqblc latt
slightly distorted along one of the fourfold symmetry axes. The distortion is the result of magnetostriction arist
simply from the presence of the magnetic structure. . ] .

§ The notation for the symmetry elements is everywhere as in OM, §§93 and 94. In particular, U, and U2 o
rotations through 180° about horizontal axes perpendicular to the fourfold axis, 6,183 rfﬂﬁ:tion in the horizoD R
plane, o, and o, are reflections in vertical planes passing through theaxes Cgand Uz, U';. The symbols U, R, ¢
etc. denote symmetry planes and axes which appear in this class in combination with R. ‘
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ith index 2 of the crystal space group G, and G, isan element of G that is not an element of
. The sub-group H must evidently coincide with the original space group G as regards
ther translational symmetry or class, having respectively either half as many “rotational”
ements (rotations and reflections) as G, or half as many translations. Accordingly, type I11
ay be subdivided into two sub-types.

Sub-type I1la contains the magnetic space groups for which G, in (38.2) is a “rotational”
ansformation of the crystal group G = H+ G, H which does not belong to H. The
slational symmetry (Bravais lattice) of a space group M of this type is the same as that
G; that is, the unit cell of the magnetic structure is the same as the purely crystallographic
e. These magnetic space groups, 674 in number, belong to magnetic classes of type II1.
Sub-type ITIb contains the magnetic space groups for which G, in (38.2) may be taken to
a pure translation through one of the basic periods of G. The unit cell of the magnetic
ture has a volume twice that of the crystallographic unit cell. The set of pure
aslations and translations multiplied by R forms the magnetic Bravais lattice: there are
different lattices of this kind. The magnetic space groups of sub-type IIIb, 517 in
ber, belong to magnetic classes of type IL¥

PROBLEM

st the magnetic classes that allow ferromagnetism.

LUTION. The classes of type II do not allow ferromagnetism. It must be emphasized that the same is
fore true of every space group of type II or IIIb that contains translations multiplied by R; these
ormations certainly change the sign of M. In other words, for ferromagnetism to occur, it is always
sary that the magnetic unit cell should coincide with the crystallographic one.

he classes of type I (which are the same as the ordinary crystal classes), the following allow the existence of
1al vector M: C, and C; with M in any direction; C, with M in the plane of symmetry: C L L T
6> 56, Cyy, Cg;, with M parallel to the axis of symmetry.
f ferromagnetism to exist in classes of type I1I, they must never contain the element IR, which changes the
DI the vector M whatever the direction of the latter. Of such classes, the following allow ferromagnetism:
1), G, (C;) with M perpendicular to the C, R axis; C,(C, ) with M in the oR plane; C,, {C,) with M in the
Plane and perpendicular to the C, R axis; D, (C,), C,,.(C,), D,,(C,,) with M parallel to the C,, axis; D, (C, ),
ah D24(Sa), D4 (Cap), D3(Cs), €3, (C3), Dyy(Se), D3y (Cin), D (Ci), Ce, (Co), Dy (Cp) with M parallel to
4 'C3 or Cﬁ axis.

Ferromagnets near the Curie point

ere is a close analogy between the magnetic properties of ferromagnets and the electric
erties of ferroelectrics. Both exhibit spontaneous polarization, magnetic or electric, in
Toscopic volumes. In each case, this polarization vanishes at a temperature correspond-
0 a second-order phase transition (the transition point between the ferromagnetic and
Amagnetic phases is called the Curie point).

ere are also, however, important differences between ferromagnetic and ferroelectric
flomena, arising from the difference in the microscopic interaction forces which bring

magnetic space groups were constructed (as antisymmetry groups) by A. M. Zamorzaev (1953)and by N,
ov, N. N. Neronova, and T. S. Smirnova (1955); the latter authors’ tables are given by A, V. Shubnikov and

Belov, Colored Symmetry. Pergamon Press, Oxford, 1964. The most complete tables of the magnetic space

Ps and their properties are those given by V. A, Koptsik, Shubnikou Groups (Shubnikouskie gruppy), Moscow
Umversity Press, 1966,

is refers (see the last footnote but two) Lo the symmetry of a lattjce already distorted by the very existence

i€ magnetic structure.




136 Ferromagnetism and Antiferromagnetism

about the spontaneous polarization. In ferroelectrics, the interaction between the
molecules in the crystal lattice is essentially anisotropic, and consequently the spontaneoyg
polarization vector is fairly closely related to certain directions in the crystal. The
formation of a magnetic (including ferromagnetic) structure, on the other hand, is dye
mainly to the exchange interaction of the atoms. which is quite independent of the
direction of the total magnetic moment relative to the lattice.t It is true that, together witp
the exchange interaction, there is also a direct magnetic interaction between the magneti
moments of the atoms. This interaction, however, is an effect of order v*/c? (v being the
atomic velocities), since the magnetic moments themselves contain a factor v/c. The effect
of this order include also the interaction of the magnetic moments of the atoms with the
electric field of the crystal lattice. All these interactions, which may be called relativistic by
virtue of the factor 1/c? in them. are weak in comparison with the exchange interaction, sg
that they can result only in a comparatively slight dependence of the energy of the cryst|
on the direction of magnetization. This relationship between the exchange and relativistic
interactions will be assumed throughout the rest of the chapter.}

Consequently, the magnetization of a ferromagnet is a quantity which, in the firy
approximation (i.e. on the basis of the exchange interaction), is conserved. This fact endows
with greater physical significance the thermodynamic theory, in which the magnetization
M is regarded as an independent variable, the actual value of which (as a function of
temperature, field, etc.) is afterwards determined by the appropriate conditions of thermal
equilibrium. §

We denote by ®(M, H) the thermodynamic potential per unit volume of the substanct
regarded as a function of the independent variable M (and of the other thermodynamic
variables). We shall, for the present, neglect the relativistic interactions, i.e. we shall take
into account only the exchange interaction. Then ®(M, 0) may be a function of the
magnitude of M, but not of its direction.

In order to find the thermodynamic quantities when the field H is not zero, we proceet
exactly asin the derivation of (19.3), starting from the relation o®/(H = — B/4x. This gives

d(M. H) = ®(M,0)—M-H — H?/8x. (39.)

Hence the potential @ is N
O(M,B) = @+ H-B/4n

= ®(M, 0)+ H?/8x
= d(M, 0)+ (B —47M)?/8. (392

t The exchange interaction is a quantum effect resulting from the symmetry of the wave functions of ¢
system with respect to interchanges of the particles. The interchange symmetry of the wave functions.
therefore the exchange interaction, depend only on the total spin of the system, and not on the direction of 1 I
spin; see @M, §60. The importance of the exchange interaction in ferromagnets was first pointed out by Y4
Frenkel’, Ya. G. Dorfman and W. Heisenberg (1928). ) (0

t The order of magnitude of the ratio of the relativistic and exchange interactions is given by the 1@ ol
Uaniso/ NT.., where Uy, is the magnetic anisotropy energy (see §40), N the number of atoms per unit 'ﬂlum&
T. the temperature of the Curie point. For ferromagnets this ratio is usually between 10" 2 and 107°. In 5'05
ferromagnets (rare-earth metals and their compounds), however, it may be much greater and even reach vall-lfti o
the order of unity, both because of the “anomalously” large anisotropy energy and because of the rel o
weakness of the exchange interactions. There are, of course, only limited possibilities of applying the macrqsﬂ-‘
theory to such substances. A detailed discussion of the microscopic mechanisms of the various interaction®
specific magnetic materials is outside the scope of this book. ) :

§ The collinear ferrimagnets are indistinguishable from ferromagnets in thr.' narrow sense (see the end of &
as regards macroscopic magnetic symmetry and as regards their behaviour in fairly weak magnetic fields.
theory given below relates to both these types of material.




