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We dance round in a ring and suppose.
But the secret sits in the middle and knows.
Robert Frost
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Preface to the First Edition

Courses in the mechanical behavior of materials are standard in both
mechanical engineering and materials science/engineering curricula.
These courses are taught, usually, at the junior or senior level. This
book provides an introductory treatment of the mechanical behavior
of materials with a balanced mechanics-materials approach, which
makes it suitable for both mechanical and materials engineering stu-
dents. The book covers metals, polymers, ceramics, and composites
and contains more than sufficient information for a one-semester
course. It therefore enables the instructor to choose the path most
appropriate to the class level (junior- or senior-level undergraduate)
and background (mechanical or materials engineering). The book is
organized into 15 chapters, each corresponding, approximately, to
one week of lectures. It is often the case that several theories have
been developed to explain specific effects; this book presents only
the principal ideas. At the undergraduate level the simple aspects
should be emphasized, whereas graduate courses should introduce
the different viewpoints to the students. Thus, we have often ignored
active and important areas of research. Chapter 1 contains introduc-
tory information on materials that students with a previous course
in the properties of materials should be familiar with. In addition,
it enables those students unfamiliar with materials to “get up to
speed.” The section on the theoretical strength of a crystal should
be covered by all students. Chapter 2, on elasticity and viscoelas-
ticity, contains an elementary treatment, tailored to the needs of
undergraduate students. Most metals and ceramics are linearly elas-
tic, whereas polymers often exhibit nonlinear elasticity with a strong
viscous component. In Chapter 3, a broad treatment of plastic deform-
ation and flow and fracture criteria is presented. Whereas mechanical
engineering students should be fairly familiar with these concepts,
(Section 3.2 can therefore be skipped), materials engineering students
should be exposed to them. Two very common tests applied to mater-
ials, the uniaxial tension and compression tests, are also described.
Chapters 4 through 9, on imperfections, fracture, and fracture tough-
ness, are essential to the understanding of the mechanical behavior
of materials and therefore constitute the core of the course. Point,
line (Chapter 4), interfacial, and volumetric (Chapter 5) defects are
discussed. The treatment is introductory and primarily descriptive.
The mathematical treatment of defects is very complex and is not
really essential to the understanding of the mechanical behavior of
materials at an engineering level. In Chapter 6, we use the concept
of dislocations to explain work-hardening; our understanding of this
phenomenon, which dates from the 1930s, followed by contemporary
developments, is presented. Chapters 7 and 8 deal with fracture from
a macroscopic (primarily mechanical) and a microstructural view-
point, respectively. In brittle materials, the fracture strength under
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tension and compression can differ by a factor of 10, and this differ-
ence is discussed. The variation in strength from specimen to speci-
men is also significant and is analyzed in terms of Weibull statis-
tics. In Chapter 9, the different ways in which the fracture resistance
of materials can be tested is described. In Chapter 10, solid solu-
tion, precipitation, and dispersion strengthening, three very import-
ant mechanisms for strengthening metals, are presented. Martens-
itic transformation and toughening (Chapter 11) are very effective
in metals and ceramics, respectively. Although this effect has been
exploited for over 4,000 years, it is only in the second half of the
20th century that a true scientific understanding has been gained;
as a result, numerous new applications have appeared, ranging from
shape-memory alloys to maraging steels, that exhibit strengths higher
than 2 GPa. Among novel materials with unique properties that have
been developed for advanced applications are intermetallics, which
often contain ordered structures. These are presented in Chapter 12.
In Chapters 13 and 14, a detailed treatment of the fundamental mech-
anisms responsible for creep and fatigue, respectively, is presented.
This is supplemented by a description of the principal testing and
data analysis methods for these two phenomena. The last chapter of
the book deals with composite materials. This important topic is, in
some schools, the subject of a separate course. If this is the case, the
chapter can be omitted.

This book is a spinoff of a volume titled Mechanical Metallurgy writ-
ten by these authors and published in 1984 by Prentice-Hall. That
book had considerable success in the United States and overseas, and
was translated into Chinese. For the current volume, major changes
and additions were made, in line with the rapid development of the
field of materials in the 1980s and 1990s. Ceramics, polymers, compos-
ites, and intermetallics are nowadays important structural materials
for advanced applications and are comprehensively covered in this
book. Each chapter contains, at the end, a list of suggested reading;
readers should consult these sources if they need to expand a spe-
cific point or if they want to broaden their knowledge in an area.
Full acknowledgment is given in the text to all sources of tables and
illustrations. We might have inadvertently forgotten to cite some of
the sources in the final text; we sincerely apologize if we have failed
to do so. All chapters contain solved examples and extensive lists of
homework problems. These should be valuable tools in helping the
student to grasp the concepts presented.

By their intelligent questions and valuable criticisms, our students
provided the most important input to the book; we are very grateful
for their contributions. We would like to thank our colleagues and
fellow scientists who have, through painstaking effort and unselfish
devotion, proposed the concepts, performed the critical experiments,
and developed the theories that form the framework of an emerging
quantitative understanding of the mechanical behavior of materials.
In order to make the book easier to read, we have opted to mini-
mize the use of references. In a few places, we have placed them
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Xix

in the text. The patient and competent typing of the manuscript
by Jennifer Natelli, drafting by Jessica McKinnis, and editorial help
with text and problems by H. C. (Bryan) Chen and Elizabeth Kristofetz
are gratefully acknowledged. Krishan Chawla would like to acknow-
ledge research support, over the years, from the US Office of Naval
Research, Oak Ridge National Laboratory, Los Alamos National Lab-
oratory, and Sandia National Laboratories. He is also very thankful
to his wife, Nivedita; son, Nikhilesh; and daughter, Kanika, for mak-
ing it all worthwhile! Kanika’s help in word processing is gratefully
acknowledged. Marc Meyers acknowledges the continued support of
the National Science Foundation (especially R. J. Reynik and B. Mac-
Donald), the US Army Research Office (especially G. Mayer, A. Crowson,
K. Iyer, and E. Chen), and the Office of Naval Research. The inspir-
ation provided by his grandfather, Jean-Pierre Meyers, and father,
Henri Meyers, both metallurgists who devoted their lives to the pro-
fession, has inspired Marc Meyers. The Institute for Mechanics and
Materials of the University of California at San Diego generously sup-
ported the writing of the book during the 1993-96 period. The help
provided by Professor R. Skalak, director of the institute, is greatly
appreciated. The Institute for Mechanics and Materials is supported
by the National Science Foundation. The authors are grateful for the
hospitality of Professor B. Ilschner at the Ecole Polytechnique Fédérale
de Lausanne, Switzerland during the last part of the preparation of
the book.

Marc André Meyers
La Jolla, California

Krishan Kumar Chawla
Birmingham, Alabama






Preface to the Second Edition

The second edition of Mechanical Behavior of Materials has revised and
updated material in every chapter to reflect the changes occurring
in the field. In view of the increasing importance of bioengineering,
a special emphasis is given to the mechanical behavior of biologi-
cal materials and biomaterials throughout this second edition. A
new chapter on environmental effects has been added. Professors Fine
and Voorhees! make a cogent case for integrating biological materi-
als into materials science and engineering curricula. This trend is
already in progress at many US and European universities. Our sec-
ond edition takes due recognition of this important trend. We have
resisted the temptation to make a separate chapter on biological and
biomaterials. Instead, we treat these materials together with tradi-
tional materials, viz., metals, ceramics, polymers, etc. In addition,
taking due cognizance of the importance of electronic materials, we
have emphasized the distinctive features of these materials from a
mechanical behavior point of view.

The underlying theme in the second edition is the same as in
the first edition. The text connects the fundamental mechanisms to
the wide range of mechanical properties of different materials under
a variety of environments. This book is unique in that it presents,
in a unified manner, important principles involved in the mechani-
cal behavior of different materials: metals, polymers, ceramics, com-
posites, electronic materials, and biomaterials. The unifying thread
running throughout is that the nano/microstructure of a material
controls its mechanical behavior. A wealth of micrographs and line
diagrams are provided to clarify the concepts. Solved examples and
chapter-end exercise problems are provided throughout the text.

This text is designed for use in mechanical engineering and mater-
ials science and engineering courses by upper division and graduate
students. It is also a useful reference tool for the practicing engineers
involved with mechanical behavior of materials. The book does not
presuppose any extensive knowledge of materials and is mathemat-
ically simple. Indeed, Chapter 1 provides the background necessary.
We invite the reader to consult this chapter off and on because it
contains very general material.

In addition to the major changes discussed above, the mechan-
ical behavior of cellular and electronic materials was incorporated.
Major reorganization of material has been made in the following
parts: elasticity; Mohr circle treatment; elastic constants of fiber rein-
forced composites; elastic properties of biological and of biomaterials;
failure criteria of composite materials; nanoindentation technique
and its use in extracting material properties; etc. New solved and

1 M. E. Fine and P. Voorhees, “On the evolving curriculum in materials science & engin-
eering,” Daedalus, Spring 2005, 134.
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chapter-end exercises are added. New micrographs and line diagrams
are provided to clarify the concepts.

We are grateful to many faculty members who adopted the first
edition for classroom use and were kind enough to provide us with
very useful feedback. We also appreciate the feedback we received
from a number of students. MAM would like to thank Kanika Chawla
and Jennifer Ko for help in the biomaterials area. The help provided by
Marc H. Meyers and M. Cristina Meyers in teaching him the rudiments
of biology has been invaluable. KKC would like thank K. B. Carlisle,
N. Chawla, A. Goel, M. Koopman, R. Kulkarni, and B. R. Patterson
for their help. KKC acknowledges the hospitality of Dr. P. D. Portella
at Federal Institute for Materials Research and Testing (BAM), Berlin,
Germany, where he spent a part of his sabbatical. As always, he is
grateful to his family members, Anita, Kanika, Nikhil, and Nivi for
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A Note to the Reader

Our goal in writing Mechanical Behavior of Materials has been to produce
a book that will be the pre-eminent source of fundamental knowl-
edge about the subject. We expect this to be a guide to the student
beyond his or her college years. There is, of course, a lot more mate-
rial than can be covered in a normal semester-long course. We make
no apologies for that in addition to being a classroom text, we want
this volume to act as a useful reference work on the subject for the
practicing scientist, researcher, and engineer.

Specifically, we have an introductory chapter dwelling on the
themes of the book: structure, mechanical properties, and perfor-
mance. This section introduces some key terms and concepts that
are covered in detail in later chapters. We advise the reader to use
this chapter as a handy reference tool, and consult it as and when
required. We strongly suggest that the instructor use this first chap-
ter as a selfsstudy resource. Of course, individual sections, examples,
and exercises can be added to the subsequent material as and when
desired.

Enjoy!






Chapter |

Materials: Structure,
Properties, and Performance

I.1 ‘ Introduction

Everything that surrounds us is matter. The origin of the word mat-
ter is mater (Latin) or matri (Sanskrit), for mother. In this sense, human
beings anthropomorphized that which made them possible - that
which gave them nourishment. Every scientific discipline concerns
itself with matter. Of all matter surrounding us, a portion comprises
materials. What are materials? They have been variously defined. One
acceptable definition is “matter that human beings use and/or pro-
cess.” Another definition is “all matter used to produce manufac-
tured or consumer goods.” In this sense, a rock is not a material,
intrinsically; however, if it is used in aggregate (concrete) by humans,
it becomes a material. The same applies to all matter found on earth:
a tree becomes a material when it is processed and used by people,
and a skin becomes a material once it is removed from its host and
shaped into an artifact.

The successful utilization of materials requires that they satisfy a
set of properties. These properties can be classified into thermal, optic-
al, mechanical, physical, chemical, and nuclear, and they are in-
timately connected to the structure of materials. The structure, in its
turn, is the result of synthesis and processing. A schematic framework
that explains the complex relationships in the field of the mechanical
behavior of materials, shown in Figure 1.1, is Thomas’s iterative tetra-
hedron, which contains four principal elements: mechanical prop-
erties, characterization, theory, and processing. These elements are
related, and changes in one are inseparably linked to changes in the
others. For example, changes may be introduced by the synthesis and
processing of, for instance, steel. The most common metal, steel has
a wide range of strengths and ductilities (mechanical properties), which
makes it the material of choice for numerous applications. While low-
carbon steel is used as reinforcing bars in concrete and in the body
of automobiles, quenched and tempered high-carbon steel is used in
more critical applications such as axles and gears. Cast iron, much
more brittle, is used in a variety of applications, including automobile
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X-ray diffraction

Scanning electron microscopy
Scanning probe microscopy
Auger electron spectroscopy
Transmission electron microscopy
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Drawing
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Chemical vapor deposition
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Molecular beam epitaxy
Metal-Organic CVD
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Mechanical
Properties

Continuum mechanics
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Crystallography, defects
Diffraction
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Iterative materials engine blocks. These different applications require, obviously, differ-
tetrahedron applied to mechanical ent mechanical properties of the material. The different properties
behavior of materials. (After G. of the three materials, resulting in differences in performance, are
Thomas.) attributed to differences in the internal structure of the materials.

The understanding of the structure comes from theory. The determina-
tion of the many aspects of the micro-, meso-, and macrostructure of
materials is obtained by characterization. Low-carbon steel has a primar-
ily ferritic structure (body-centered cubic; see Section 1.3.1), with some
interspersed pearlite (a ferrite-cementite mixture). The high hardness
of the quenched and tempered high-carbon steel is due to its martens-
itic structure (body-centered tetragonal). The relatively brittle cast
iron has a structure resulting directly from solidification, without
subsequent mechanical working such as hot rolling. How does one
obtain low-carbon steel, quenched and tempered high-carbon steel,
and cast iron? By different synthesis and processing routes. The low-
carbon steel is processed from the melt by a sequence of mechani-
cal working operations. The high-carbon steel is synthesized with a
greater concentration of carbon (>0.5%) than the low-carbon steel
(0.1%). Additionally, after mechanical processing, the high-carbon
steel is rapidly cooled from a temperature of approximately 1,000 °C
by throwing it into water or oil; it is then reheated to an intermedi-
ate temperature (tempering). The cast iron is synthesized with even
higher carbon contents (~2%). It is poured directly into the molds and
allowed to solidify in them. Thus, no mechanical working, except for
some minor machining, is needed. These interrelationships among
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structure, properties, and performance, and their modification by
synthesis and processing, constitute the central theme of materials
science and engineering. The tetrahedron of Figure 1.1 lists the princi-
pal processing methods, the most important theoretical approaches,
and the most-used characterization techniques in materials science
today.

The selection, processing, and utilization of materials have been
part of human culture since its beginnings. Anthropologists refer
to humans as “the toolmakers,” and this is indeed a very realistic
description of a key aspect of human beings responsible for their
ascent and domination over other animals. It is the ability of humans
to manufacture and use tools, and the ability to produce manufac-
tured goods, that has allowed technological, cultural, and artistic
progress and that has led to civilization and its development. Mater-
ials were as important to a Neolithic tribe in the year 10,000 BC as
they are to us today. The only difference is that today more complex
synthetic materials are available in our society, while Neolithic tribes
had only natural materials at their disposal: wood, minerals, bones,
hides, and fibers from plants and animals. Although these naturally
occurring materials are still used today, they are vastly inferior in
properties to synthetic materials.

[.2 | Monolithic, Composite, and
Hierarchical Materials

The early materials used by humans were natural, and their structure
varied widely. Rocks are crystalline, pottery is a mixture of glassy and
crystalline components, wood is a fibrous organic material with a cel-
lular structure, and leather is a complex organic material. Human
beings started to synthesize their own materials in the Neolithic
period: ceramics first, then metals, and later, polymers. In the twen-
tieth century, simple monolithic structures were used first. The term
monolithic comes from the Greek mono (one) and lithos (stone). It means
that the material has essentially uniform properties throughout.
Microstructurally, monolithic materials can have two or more phases.
Nevertheless, they have properties (electrical, mechanical, optical, and
chemical) that are constant throughout. Table 1.1 presents some of
the important properties of metals, ceramics, and polymers. Their
detailed structures will be described in Section 1.3. The differences
in their structure are responsible for differences in properties. Metals
have densities ranging from 3 to 19 g/cm~3; iron, nickel, chromium,

and niobium have densities ranging from to 7 to 9 g/cm~3; alu-

minum has a density of 2.7 g/lcm™3; and titanium has a density of
4.5 g/em~3. Ceramics tend to have lower densities, ranging from
5 g/cm~2 (titanium carbide; TiC = 4.9) to 3 g/cm 3 (alumina; Al,O3 =
3.95; silicon carbide; SiC = 3.2). Polymers have the lowest densities,
fluctuating around 1 g cm 3. Another marked difference among these
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Table 1.1 | Summary of Properties of Main Classes of Materials
Property Metals Ceramics Polymers
Density (g/cm?) from 2 to 20 from | to 14 from | to 2.5
Electrical conductivity high low low
Thermal conductivity high low low
Ductility or 4-40 <l 2-4
strain-to-fracture (%)
Tensile strength (MPa) 100-1,500 |00—400 -
Compressive strength 100-1,500 1,000-5,000 —
(MPa)
Fracture toughness 10-30 [-10 2-8
(IVINm*B/z)
Maximum service 1,000 1,800 250
temperature (°C)
Corrosion resistance low to medium superior medium
Bonding metallic (free-electron ionic or covalent
cloud) covalent
Structure mostly crystalline complex amorphous or
(Face-centered crystalline semicrystalline
cubic; FCC structure polymer

Body-centered cubic; BCC
Hexagonal closed packed;
HCP)

three classes of materials is their ductility (ability to undergo plastic
deformation). At room temperature, metals can undergo significant
plastic deformation. Thus, metals tend to be ductile, although there
are a number of exceptions. Ceramics, on the other hand, are very
brittle, and the most ductile ceramics will be more brittle than most
metals. Polymers have a behavior ranging from brittle (at tempera-
tures below their glass transition temperature) to very deformable (in
a nonlinear elastic material, such as rubber). The fracture toughness
is a good measure of the resistance of a material to failure and is
generally quite high for metals and low for ceramics and polymers.
Ceramics far outperform metals and polymers in high-temperature
applications, since many ceramics do not oxidize even at very high
temperatures (the oxide ceramics are already oxidized) and retain
their strength to such temperatures. One can compare the mechan-
ical, thermal, optical, electrical, and electronic properties of the dif-
ferent classes of materials and see that there is a very wide range of
properties. Thus, monolithic structures built from primarily one class
of material cannot provide all desired properties.

In the field of biomaterials (materials used in implants and life-
support systems), developments also have had far-reaching effects. The
mechanical performance of implants is critical in many applications,
including hipbone implants, which are subjected to high stresses,
and endosseous implants in the jaw designed to serve as the base for
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(a) (b)

._. . j-

%;;Tlmmum post

(d)
(c)

teeth. Figure 1.2 (a) shows the most successful design for endosseous
implants in the jawbone. With this design, the tooth is fixed to the
post and is effective. A titanium post is first screwed into the jaw-
bone and allowed to heal. The tooth is then fixed to the post, and is
effectively rooted into the jaw. The insertion of endosseous implants
into the mandibles or maxillae, which was initiated in the 1980s, has
been a revolution in dentistry. There is a little story associated with
this discovery. Researchers were investigating the bone marrow of rab-
bits. They routinely used stainless steel hollow cylinders screwed into
the bone. Through the hole, they could observe the bone marrow.
It so happened that one of these cylinders was made of titanium.
Since these cylinders were expensive, the researchers removed them
periodically, in order to reuse them. When they tried to remove the
titanium cylinder, it was tightly fused to the bone. This triggered the
creative intuition of one of the researchers, who said “What if . . .?”

Figure 1.2(c) shows the procedure used to insert the titanium
implant. The site is first marked with a small drill that penetrates
the cortical bone. Then successive drills are used to create the orifice
of desired diameter (Figure 1.2(d)). The implant is screwed into the
bone and the tissue is closed (Figure 1.2(c)). This implant is allowed to
heal and fuse with the bone for approximately six months. Chances
are that most readers will have these devices installed sometime in
their lives.

Hip- and knee-replacement surgery is becoming commonplace.
In the USA alone between 250,000 and 300,000 of each procedure
are carried out annually. The materials of the prostheses have an

(a) Complete
enclosures implant, (b) A hole is
drilled and (c) a titanium post is
screwed into jawbone. (d) Marking
of site with small drill. (Courtesy
of J. Mahooti.)
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important bearing on survival probability. Typical hip and knee pros-
theses are shown in Figure 1.3.

The hip prosthesis is made up of two parts: the acetabular compo-
nent, or socket portion, which replaces the acetabulum; the femoral
component, or stem portion, which replaces the femoral head.

The femoral component is made of a metal stem with a metal
ball on the extremity. In some prostheses a ceramic ball is attached
to the metal stem. The acetabular component is a metal shell with a
plastic inner socket liner made of metal, ceramic, or a plastic called
ultra-high-molecular-weight polyethylene (UHMWP) that acts like a
bearing. A cemented prosthesis is held in place by a type of epoxy
cement that attaches the metal to the bone. An uncemented prosthesis
has a fine mesh of holes on the surface area that touches the bone.
The mesh allows the bone to grow into the mesh and become part of
the bone. Biomaterial advances have allowed experimentation with
new bearing surfaces, and there are now several different options
when hip-replacement surgery is considered.

The metal has to be inert in the body environment. The preferred
materials for the prostheses are Co-Cr alloys (Vitalium) and titanium
alloys. However, there are problems that have not yet been resolved:
the metallic components have elastic moduli that far surpass those of
bone. Therefore, they “carry” a disproportionate fraction of the load,
and the bone is therefore unloaded. Since the health and growth of
bone is closely connected to the loads applied to it, this unloading
tends to lead to bone loss.

The most common cause of joint replacement failure is wear of
the implant surfaces. This is especially critical for the polymeric com-
ponents of the prosthesis. This wear produces debris which leads to
tissue irritation. Another important cause of failure is loosening of
the implant due to weakening of the surrounding bone. A third source
of failure is fatigue.
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Biocompatibility is a major concern for all implants, and cer-
amics are especially attractive because of their (relative) chemical
inertness. Metallic alloys such as Vitalium® (a cobalt-based alloy)
and titanium alloys also have proved to be successful, as have poly-
mers such as polyethylene. A titanium alloy with a solid core sur-
rounded by a porous periphery (produced by sintering of powders)
has shown considerable potential. The porous periphery allows bone
to grow and affords very effective fixation. Two new classes of mater-
ials that appear to present the best biocompatibility with bones are
the Bioglass® and calcium phosphate ceramics. Bones contain cal-
cium and phosphorus, and Bioglass® is a glass in which the silicon
has been replaced by those two elements. Thus, the bone “perceives”
these materials as being another bone and actually bonds with it.
Biomechanical properties are of great importance in bone implants,
as are the elastic properties of materials. If the stiffness of a mater-
ial is too high, then when implanted the material will carry more
of the load placed on it than the adjacent bone. This could in turn
lead to a weakening of the bone, since bone growth and strength
depends on the stresses that the bone is subjected to. Thus, the elas-
tic properties of bone and implant should be similar. Polymers rein-
forced with strong carbon fibers are also candidates for such appli-
cations. Metals, on the other hand, are stiffer than bones and tend
to carry most of the load. With metals, the bones would be shielded
from stress, which could lead to bone resorption and loosening of the
implant.

Although new materials are being developed continuously, mono-
lithic materials, with their uniform properties, cannot deliver the
range of performance needed in many critical applications. Compos-
ites are a mixture of two classes of materials (metal-ceramic, metal-
polymer, or polymer—-ceramic). They have unique mechanical proper-
ties that are dependent on the amount and manner in which their
constituents are arranged. Figure 1.4(a) shows schematically how dif-
ferent composites can be formed. Composites consist of a matrix and
a reinforcing material. In making them, the modern materials engi-
neer has at his or her disposal a very wide range of possibilities. How-
ever, the technological problems involved in producing some of them
are immense, although there is a great deal of research addressing
those problems. Figure 1.4(b) shows three principal kinds of reinforce-
ment in composites: particles, continuous fibers, and discontinuous
(short) fibers. The reinforcement usually has a higher strength than
the matrix, which provides the ductility of the material. In ceramic-
based composites, however, the matrix is brittle, and the fibers pro-
vide barriers to the propagating cracks, increasing the toughness of
the material.

The alignment of the fibers is critical in determining the strength
of a composite. The strength is highest along a direction parallel to
the fibers and lowest along directions perpendicular to it. For the
three kinds of composite shown in Figure 1.4(b), the polymer matrix
plus (aramid, carbon, or glass) fiber is the most common combination
if no high-temperature capability is needed.
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(a) Schematic representations of different classes of composites. (b) Different

kinds of reinforcement in composite materials. Composite with continuous fibers with

four different orientations (shown separately for clarity).
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Table 1.2 | Specific Modulus and Strength of Materials Used in Aircraft

Elastic Modulus Tensile Strength

Density Density
Material (GPalg - cm™) (MPalg - cm™3)
Steel (AISI 4340) 25 230
Al (7075-Té6) 25 180
Titanium (Ti-6Al-4V) 25 250
E Glass/Epoxy composite 21 490
S Glass/Epoxy composite 47 790
*Axamid/Epoxy composite 55 890
HS (High Tensile Strength) 92 780
Carbon/Epoxy
composite
HM (high modulus)
Carbon/Epoxy |34 460
composite

Composites are becoming a major material in the aircraft indus-
try. Carbon/epoxy and aramid/epoxy composites are being introduced
in a large number of aircraft parts. These composite parts reduce
the weight of the aircraft, increasing its economy and payload. The
major mechanical property advantages of advanced composites over
metals are better stiffness-to-density and strength-to-density ratios
and greater resistance to fatigue. The values given in Table 1.2 apply to
a unidirectional composite along the fiber reinforcement orientation.
The values along other directions are much lower, and therefore the
design of a composite has to incorporate the anisotropy of the mater-
ials. It is clear from the table that composites have advantages over
monolithic materials. In most applications, the fibers are arranged
along different orientations in different layers. For the central com-
posite of Figure 1.4(b), these orientations are 0°, 45°, 90°, and 135° to
the tensile axis.

Can we look beyond composites in order to obtain even higher
mechanical performance? Indeed, we can: Nature is infinitely
imaginative.

Our body is a complex arrangement of parts, designed, as a whole,
to perform all the tasks needed to keep us alive. Scientists are looking
into the make-up of soft tissue (skin, tendon, intestine, etc.), which
is a very complex structure with different units active at different
levels complementing each other. The structure of soft tissue has
been called a hierarchical structure, because there seems to be a rela-
tionship between the ways in which it operates at different levels.
Figure 1.5 shows the structure of a tendon. This structure begins
with the tropocollagen molecule, a triple helix of polymeric protein
chains. The tropocollagen molecule has a diameter of approximately
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A model of a
hierarchical structure occurring in
the human body. (Adapted from

E. Baer, Sci. Am. 254, No. 10 (1986)
179.)

Schematic illustration of
a proposed hierarchical model for

a composite (not drawn to scale).

(Courtesy of E. Baer.)
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1.5 mm. The tropocollagen organizes itself into microfibrils, sub-
fibrils, and fibrils. The fibrils, a critical component of the struc-
ture, are crimped when there is no stress on them. When stressed,
they stretch out and then transfer their load to the fascicles, which
compose the tendon. The fascicles have a diameter of approxi-
mately 150-300 um and constitute the basic unit of the tendon. The
hierarchical organization of the tendon is responsible for its tough-
ness. Separate structural units can fail independently and thus absorb
energy locally, without causing the failure of the entire tendon. Both
experimental and analytical studies have been done, modeling the
tendon as a composite of elastic, wavy fibers in a viscoelastic matrix.
Local failures, absorbing energy, will prevent catastrophic failure of
the entire tendon until enormous damage is produced.

Materials engineers are beginning to look beyond simple two-
component composites, imitating nature in organizing different
levels of materials in a hierarchical manner. Baer! suggests that the
study of biological materials could lead to new hierarchical designs
for composites. One such example is shown in Figure 1.6, a layered
structure of liquid-crystalline polymers consisting of alternating core
and skin layers. Each layer is composed of sublayers which, in their

1 E. Baer, Sci. Am. 254, No. 10 (1986) 179.
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turn, are composed of microlayers. The molecules are arranged in dif-
ferent arrays in different layers. The lesson that can be learned from
this arrangement is that we appear to be moving toward composites
of increasing complexity.

Example 1.1 | (Design problem)

Discuss advanced materials used in bicycle frames.

This is a good case study, and the instructor can “pop” similar ques-
tions on an exam, using different products. For our specific example
here, we recommend the insightful article by M. E. Ashby, Met. and Mat.
Trans., A 26A (1995) 3057. Ashby states that “Materials and processes under-
pin all engineering design.”

Bending moments (M| and M) and torsional torques (T| and Ty)
generated in bicycle frame by forces F| and F, applied to pedals.

Figure E1.1 shows a bicycle, with forces F; and F, applied to the
frame by the pedals. These forces produce bending moments and
torsions in the frame tubes. In bicycle frames, weight and stiffness are
the two primary requirements. Stiffness is important because excessive
flexing of the bicycle upon pedaling absorbs energy that should be used
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to propel the bicycle forward. This requires the definition of new prop-
erties, because just the strength or endurance limit (the stress below
which no failure due to fatigue occurs) and Young’s modulus (defined
in Chapter 2) are not sufficient. In conversations, we always say that
aluminum bicycles are “stiffer” than steel bicycles, whereas steel pro-
vides a more “cushioned” ride. An aluminum bicycle may indeed be
stiffer than a steel bicycle, although E (=210 GPa) ~ 3 E; (=70 GPa).
We will see shortly how this can happen and what is necessary for it to
occur. The forces F; and F, cause bending moments (M; and M,), respect-
ively. The bending stresses in a hollow tube of radius r and thickness t
are?

o=—,

I
where I is the moment of inertia, M the bending moment, and r the
radius of the tube. Setting o = o,, the endurance limit, and substitut-
ing the expression for the moment of inertia I = 77°t, we obtain the

thickness of the tube, t, from:
0.3t

M = 5
r

From strength considerations, the mass per unit length of the
bicycle frame is

2M
? = 2nrtp = “ <ﬁ> , (E1.1.1)
r

Oe

where p is the density of the frame. Now, the radius of curvature p’ of a
circular beam under bending is given by the Bernoulli-Euler equation,

1 dv M
o/ dx2  EI’
where v is the deflection of the beam. Substituting for I, we obtain

1 M Mp’
— =——,ornrt= ——.
p'  Emrdt r2E

From bending considerations, the mass per unit length is

’

m 2Mp’ /p
M amrtp = (—) E1.12
p T T g (E1.1.2)

A similar expression can be developed for the torsion, which is
important in pedaling. The torsion is shown in Figure E1.2 as T; and
T,. Since M, the applied moment, is given by the weight of cyclist, it
is constant for each frame. Likewise, the maximum curvature 1/p’ can
be fixed. The quantity m/L has to be minimized for both strength and
stiffness considerations. Ashby accomplished this by plotting (o./p) and
(E/p), whose reciprocals appear in Equations (E1.1.1) and (E1.1.2), respect-
ively. (See Figure E1.2.) The computations assume a constant r, but

2 Students should consult their notes on the mechanics of materials or examine a book

such as Engineering Mechanics of Solids, by E. P. Popov (Englewood Cliffs, NJ: Prentice Hall,
1990).
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varying tube thickness t. The most common candidate metals (steels,
titanium, and aluminum alloys) are closely situated in the figure. The
expanded window in this region shows a clearer separation of the vari-
ous alloys. Continuous carbon fiber reinforced composites (CFRPs) are
the best materials, and polymers and glass/fiber reinforced polymer
composites (GFRPs) have insufficient stiffness. By relaxing the require-
ment of constant r and allowing different tube radii, the results are
changed considerably. This example illustrates how material properties
enter into the design of a product and how compound properties (E/p,
o /p) need to be defined for a specific application. It can be seen from
Equations (E1.1.1) and (E1.1.2) that strength scales with r and stiffness
with r2. By varying r, it is possible to obtain aluminum bicycle frames
that are stiffer than steel. Now the student is prepared to go on a bike

ride!
500 TT T TTTT T T T T T
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Normalized strength (o°./p) versus normalized Young’s modulus (E/p) for

potential bicycle frames. (Adapted from M. F Ashby, Met. and Mat. Trans., A26 (1995)

3057.)

10

Example 1.2 |

Suppose you are a design engineer for the ISAACS bicycle company.
This company traditionally manufactures chromium-molybdenum
(Cr-Mo) steel frames. The racing team is complaining that the bi-
cycles are too “soft” and that stiffer bicycles would give them a com-
petitive edge. Additionally, the team claims that competing teams
have aluminum bikes which are considerably lighter. You are asked to
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redesign the bikes, using a precipitation hardenable aluminum alloy
(7075 H4).

(a) Calculate the ratio of the stiffness of the two bikes if the tube diam-
eters are the same.

(b) What would you do to increase the stiffness of the two bikes?

(c) If the steel frame weighs 4 kg, what would the aluminum frame
weigh? State your assumptions.

Given:
o. (MPa)  p (kg/m?) E(GPa) G(GPa)
7075 Al 500 2700 70 27
4340 Steel 1350 7800 210 83

Steel tube diameter, 2r = 25 mm
Wall thickness, t = 1.25 mm

Solution: The mass per unit length, from strength considerations, is

m 2M(p>
= =duirip = — (| = || -
I r @

The mass per unit length, from bending considerations, is

’

m 2Mp’ /p
— =2nrtp = (—) .
L P="2 \E

where p’ is the radius of curvature and M is the bending moment
applied by cyclist.

The radius of curvature p’ is a good measure of the stiffness; the
larger p’, the higher is the stiffness, for a fixed M.

(@)  ra = rse = 12.5 mm.

For the two metals, we have:

Steel Aluminum
p/0e 5.77 54
p/E 37.14 3857
The mass-to-length ratios are
2M P
o) st
) = ( ) = 1.06.

(
(

Il alE

St
2M
2 ()1

For the same weight, we calculate the ratio of the radii of curvature
from bending:

/ L
1.06 24 _ (f;)St =0.96,
pse ()
by _ 9%,
ok 1.06 T

Thus, the stiffness is approximately the same for each metal.
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(b) We increase diameter of the tubes. This is possible because the wall
thickness of aluminum bikes is approximately three times the wall
thickness of steel bikes.? For instance, we can increase the diameter
to 50 mm!*

(c) Let us assume that, for aluminum, 2r,; = 50 mm. Then

,
(%)St _ % (g)St
(F)u (8

X Pus: _ (%)St

para (Fla

Going back to the strength equation, we obtain

2M (o
m= (%)St — (“f)m =2E =214
(B 2(2) 54
Tal \ % /A

If the total weight of the steel frame is 4 kg, then

()

w 4
Y Wg = —— = 1.86.

wse (T 2.14

The stiffness ratio will be
o 1rh(8)y 4 3714

Py xTs (L), 2143854

or
Par = 1.8,

The aluminum bike is almost twice as stiffl

1.3 ‘ Structure of Materials

The crystallinity, or periodicity, of a structure, does not exist in gases or
liquids. Among solids, the metals, ceramics, and polymers may or may
not exhibit it, depending on a series of processing and composition
parameters. Metals are normally crystalline. However, a metal cooled
at a superfast rate from its liquid state - called splat cooled — can have
an amorphous structure. (This subject is treated in greater detail in
Section 1.3.4.) Silicon dioxide (SiO;) can exist as amorphous (fused
silica) or as crystal (crystoballite or trydimite). Polymers consisting of
molecular chains can exist in various degrees of crystallinity.
Readers not familiar with structures, lattices, crystal systems, and
Miller indices should study these subjects before proceeding with

3 Since the wall thickness is larger, we can produce larger tube diameters without danger
of collapse by buckling.

4 A 50-mm steel tube would have walls that would be exceedingly thin; indeed, it could
be dented by pressing it with the fingers.
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the text. Most books on materials science, physical metallurgy, or
X-rays treat the subjects completely. A brief introduction is presented
next.

[.3.1 Crystal Structures

To date, seven crystal structures describe all the crystals that have
been found. By translating the unit cell along the three crystallo-
graphic orientations, it is possible to construct a three-dimensional
array. The translation of each unit cell along the three principal direc-
tions by distances that are multiples of the corresponding unit cell
size produces the crystalline lattice.

Up to this point, we have not talked about atoms or molecules;
we are just dealing with the mathematical operations of filling
space with different shapes of blocks. We now introduce atoms and
molecules, or “repeatable structural units.” The unit cell is the small-
est repetitive unit that will, by translation, produce the atomic or
molecular arrangement. Bravais established that there are 14 space
lattices. These lattices are based on the seven crystal structures. The
points shown in Figure 1.7 correspond to atoms or groups of atoms.
The 14 Bravais lattices can represent the unit cells for all crystals.
Figure 1.8 shows the indices used for directions in the cubic system.
The same symbols are employed for different structures. We simply
use the vector passing through the origin and a point (m, n, o0):

V =mi+nj+ok.

When the direction does not pass through the origin, and we have
the head of the vector at (m, n, 0) and the tail at (p, g, ), the vector V
is given by:

V=m-pJi+n—q)j=(0—rk
The notation used for a direction is
[m n o].

When we deal with a family of directions, we use the symbol
<mmno>.
The following family encompasses all equivalent directions:

<mno> = [mnol,[mon], [omn], [onm], [nmo], [m i o],

[mo ], [omii],[oam], [Amo],...
A direction not passing through the origin can be represented by
[(m — p)(n —q(o —1)).

Note that for the negative, we use a bar on top. For planes, we use
the Miller indices, obtained from the intersection of a plane with the
coordinate axes. Figure 1.9 shows a plane and its intercepts. We take
the inverse of the intercepts and multiply them by their common
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A The 14 Bravais space
lattices (P = primitive or simple;
| = body-centered cubic;

F = face-centered cubic;
.~ C = base-centered cubic).
Cubic P Cubic | Cubic F
Tetragonal P Tetragonal |
/

Orthorhombic Orthorhombic Orthorhombic Orthorhombic
P C | F

Monoclinic P Monoclinic C Triclinic P

Rhombohedral Hexagonal P

4‘2 [111] IS MR Directions in a cubic
[001] [011] unit cell.

[101]

+

-y
Ji [010]

oo

[110]
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Indexing of planes by
Miller rules in the cubic unit cell.

Hexagonal structure
consisting of a three-unit cell.

(a) a

(b)
X
Stacking of (0002) planes
[001]
V4
(0001)
A
k [
t A4~ (0002)
— B 1
(1100) mtr (0001)
A : : 4
[010]
X" 1100]

@ Atoms in primitive cell
o Additional atoms

denominator so that we end up with integers. In Figure 1.9 (a), we
have

11 1 12

v M
Figure 1.9(b) shows an indeterminate situation. Thus, we have to
translate the plane to the next cell, or else translate the origin. The
indeterminate situation arises because the plane passes through the
origin. After translation, we obtain intercepts (—1, 1, oo). By inverting
them, we get (1 10). The symbol for a family of planes is {m n o}.
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For hexagonal structures, we have a slightly more complicated situ-
ation. We represent the hexagonal structure by the arrangement
shown in Figure 1.10. The atomic arrangement in the basal plane
is shown in the top portion of the figure. Often, we use four axes
(x, ¥, k, z) with unit vectors (f, 3 k, T) to represent the structure.
This is mathematically unnecessary, because three indices are suffi-
cient to represent a direction in space from a known origin. Still, the
redundancy is found by some people to have its advantages and is
described here. We use the intercepts to designate the planes. The
hatched plane (prism plane) has indices

1 1 1 1

1 —1" o0’ oo
After determining the indices of many planes, we learn that one
always has

h+k=—i.

Thus, we do not have to determine the index for the third horizontal
axis. If we use only three indices, we can use a dot to designate the
fourth index, as follows:

(11-0).

For the directions, we can use either the three-index notation or a
four-index notation. However, with four indices, the h + k = —i rule
will not apply in general, and one has to use special “tricks” to make
the vector coordinates obey the rule.

If the indices in the three-index notation are /’, k', and ¢, the four
index notation of directions can be obtained by the following simple
equations;

1 i I
h= (20 k)

1 ! !/
k= (2K —1)
: 1 ! !
1_—5(}1 +Kk)
=1

It can be easily verified that h 4+ k = —i. Thus, the student is equipped
to express the directions in the four-index notation.

[.3.2 Metals

The metallic bond can be visualized, in a very simplified way, as an
array of positive ions held together by a “glue” consisting of elec-
trons. These positive ions, which repel each other, are attracted to
the “glue,” which is known as an electron gas. Ionic and covalent
bonding, on the other hand, can be visualized as direct attractions
between atoms. Hence, these types of bonding - especially covalent
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Example 1.3 |

Write the indices for the directions and planes marked in Figure E1.3.

A = A
3 o121 | ° -
_ [100]
[011]
Intercepts
111
222
(222) Py
— > \ >
X2 y
E /
X1 Intercepts %
111
1711
(111)
Az _
[1102] [0111]
k /
7
_ y
Intercepts \ o
1-Te1 Intercepts
(1101) 11-11

(1121)

bonding - are strongly directional and determine the number of
neighbors that one atom will have, as well as their positions.

The bonding - and the sizes of the atoms in turn - determines
the type of structure a metal has. Often, the structure is very com-
plicated for ionic and covalent bonding. On the other hand, the
directionality of bonding is not very important for metals, and
atoms pack into the simplest and most compact forms; indeed, they
can be visualized as spheres. The structures favored by metals are
the face-centered cubic (FCC), body-centered cubic (BCC), and hex-
agonal close-packed (HCP) structures. In the periodic table, of the
81 elements to the left of the Zindl line, 53 have either the FCC
or the HCP structure, and 21 have the BCC structure; the remain-
ing 8 have other structures. The Zindl line defines the boundary
of the elements with metallic character in the table. Some of them
have several structures, depending on temperature. Perhaps the most
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Hexagonal close-packed

complex of the metals is plutonium, which undergoes six poly-
morphic transformations.

Transmission election microscopy can reveal the positions of the
individual atoms of a metal, as shown in Figure 1.11 for molybdenum.
The regular atomic array along a [001] plane can be seen. Molybdenum
has a BCC structure.

Figure 1.12 shows the three main metallic structures. The positions
of the atoms are marked by small spheres and the atomic planes by
dark sections. The small spheres do not correspond to the scaled-up
size of the atoms, which would almost completely fill the available
space, touching each other. For the FCC and HCP structures, the co-
ordination number (the number of nearest neighbors of an atom) is
12. For the BCC structure, it is 8.

Transmission electron
micrograph of atomic resolution of
(001) plane in molybdenum
showing body-centered cubic
arrangement of atoms. (Courtesy
of R. Gronsky.)

Most closely packed
planes in (a) FCC; (b) BCC; (c)
HCP.
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(a)

Layer A

(c) A
Layer
B
Layer

A

Layer

Layer C Layer B

(d) A
Layer
(o

Layer

B
Layer
A b

Layer

s J y

m (a) Layer of most

closely packed atoms
corresponding to (I 11) in FCC
and (00.1) in HCP. (b) Packing
sequence of most densely packed
planes in AB and AC sequence. (c)
Photograph of ball model showing
the ABAB sequence of the HCP
structure. (d) Photograph of ball
model showing the ABCABC
sequence of the FCC structure.

o O]
4 P
@ LA T
! H | '
; :
BBZeRD%:
T BEd
o A=

e Cu ®Mn ®Sn

B-ordered phase in
Heusler alloys (Cu;MnSn).
(Reprinted with permission from
M. A. Meyers, C. O. Ruud, and

C. S. Barrett, J. Appl. Cryst, 6 (1973)
39.)

The planes with the densest packing are indicated in the figure.
They are (111), (110), and (00.1) for the FCC, BCC, and HCP structures,
respectively. These planes have an important effect on the direction-
ality of deformation of the metal, as will be seen in chapters 4 and
6. The distances between the nearest neighbors are also indicated in
the figure. The reader should try to calculate them as an exercise.
These distances are a~/2, (a+/3/2), and a for the FCC, BCC, and HCP
structures, respectively.

The similarity between the FCC and HCP structures is much
greater than might be expected from looking at the unit cells. Planes
(111) and (00.1) have the same packing, as may be seen in Figure 1.13.
This packing, the densest possible of coplanar spheres, is shown in
Figure 1.13(a). The packing of a second plane similar to, and on top
of, the first one (called A) can be made in two different ways; Fig-
ure 1.13(b) indicates these two planes by the letters B and C. Hence,
either alternative can be used. A third plane, when placed on top
of plane B, would have two options: A or C. If the second plane is
C, the third plane can be either A or B. If only the first and second
layers are considered, the FCC and HCP structures are identical. If
the position of the third layer coincides with that of the first (the
ABA or ACA sequence), we have the HCP structure. Since this packing
has to be systematically maintained in the lattice, one would have
ABABAB . . . or ACACAC . . . In case the third plane does not coincide
with the first, we have one of the two alternatives ABC or ACB. Since
this sequence has to be systematically maintained, we have ABCAB-
CABC . . . or ACBACBACB . . . This stacking sequency corresponds to the
FCC structure. We thus conclude that the only difference between
the FCC and HCP structures (the latter with a theoretical c/a ratio of
1.633) is the stacking sequence of the most densely packed planes. The
difference resides in the next neighbors and in the greater symmetry
of the FCC structure.

Figures 1.13(c) and (d) show photographs of ideal ball stackings.
The ABA . . . sequence of layers, characteristic of HCP structure (Figure
1.13(c)) is compared with the ABCA . . . sequence for the FCC structure
(Figure 1.13(d)).

In addition to the metallic elements, intermediate phases and
intermetallic compounds exist in great numbers, with a variety of
structures. For instance, the beta phase in the copper-manganese-tin
(Cu-Mn-Sn) system exhibits a special ordering for the composition
Cu;MnSn. The unit cell (BCC) is shown in Figure 1.14. However, the
ordering of the Cu, Mn, and Sn atoms creates a superlattice composed
of four BCC cells. This superlattice is FCC; hence, the unit cell for the
ordered phase is FCC, whereas that for the disordered phase has a
BCC unit cell. This ordering has important effects on the mechanical
properties and is discussed in Chapter 11.

Table 1.3 lists some of the most important intermetallic com-
pounds and their structures. Intermetallic compounds have a bonding
that is somewhat intermediate between metallic and ionic/covalent
bonding, and have properties that are most desirable for high-
temperature applications. Nickel and titanium aluminides are
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Table 1.3 | Some Important Intermetallic Compounds and Their Structure

Compound Melting Point (°C) Type of Structure

Niz Al 1,390 LI, (ordered FCC)
TisAl 1,600 DO)9 (ordered hexagonal)
TiAl 1,460 Llp (ordered tetragonal)
Ni—Ti 1,310 CsCl

CusAu 1,640 B, (ordered BCC)

FeAl [,250—-1,400 B, (ordered BCC)

NiAl [,380—1,638 B, (ordered BCC)
MoSip 2,025 Cl'ly (tetragonal)

AlTi 1,300 DO,; (tetragonal)
Nb3Sn 2,134 Al5

NbsSis 2,500 (tetragonal)

candidates for high-temperature applications in jet turbines and air-
craft applications.

Example 1.4 |

Determine the ideal c/a ratio for the hexagonal structure.

Solution: The atoms in the basal A plane form a closely packed array,
as do the atoms in the B plane going through the mid plane. If we
take three atoms in the basal plane, with an atom in the B plane rest-
ing among them, we have constructed a tetrahedron. The sides of the
tetrahedron are 2r = a, where r is the atomic radius. The height of
this tetrahedron is c¢/2, since the distance between planes is c. Hence,
the problem is now reduced to finding the height, ¢/2, of a regular

tetrahedron. In Figure E1.4, we have
©
DF = —,
2

AB = AC =BC =AD =DB =DC =a.
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For triangle AEC,

AE? 4+ EC? = AC?,

4 2
For triangle DFE,
EF?2=DF?=DE?
But
1 a
EF = —AE = —/3,
3 6
DE = AE = %«/§
B 3a2  3a2\"?
“\ 4 36 ’
c 2 1/2
—=a — s
:=(3)
c 2\ 2
—=2(= .
-=2(3)
Thus,
C
— =1.633.
a
Example |.5 |

If the copper atoms have a radius of 0.128 nm, determine the density
in FCC and BCC structures.

(i) In FCC structures, 4r = +/2a,
4
ag = —r_—><0128nm

V2o V2

ap = 0.362 nm

There are 4 atoms per unit cell in FCC. Atomic mass (or weight) of copper
is 63.54 g/g.mol. So, density of copper (p) in FCC structures is

63.54 x 4

= 8.89 2
(0.362 x 10-7)® x (6.02 x 10%) glem
T

p:

Avogadro’s number

(ii) In BCC structures, 4r = +/3ao
4
ag = —r_—><0128nm

NERVE]

ap = 0.296 nm

There are 2 atoms per unit cell in BCC structures.

63.54 x 2
(0.296 x 10~7)® x (6.02 x 10%3)

p= = 8.14 g/cm®
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[111]

The stable form of Cu is FCC. Only under unique conditions, such as Cu
precipitates in iron, is the BCC form stable (because of the constraints
of surrounding material).

[.3.3 Ceramics

The name ceramic comes from the Greek KERAMOS (pottery). The pro-
duction of pottery made of clay dates from 6500 Bc. The production
of silicate glass in Egypt dates from 1500 Bc. The main ingredient
of pottery is a hydrous aluminum silicate that becomes plastic when
mixed, in fine powder form, with water. Thus, the early utilization
of ceramics included both crystalline and glassy materials. Portland
cement is also a silicate ceramic; by far the largest tonnage produc-
tion of ceramics today - glasses, clay products (brick, etc.), cement -
are silicate-based.

However, there have been dramatic changes since the 1970s and a
wide range of new ceramics has been developed. These new ceramics
are finding applications in computer memories (due to their unique
magnetic applications), in nuclear power stations (UO, fuel rods), in
rocket nose cones and throats, in submarine sonar units (piezoelectric
barium titanate), in jet engines (as coatings to metal turbine blades)
as electronic packaging components (Al,0O3, SiC substrates), as electro-
optical devices (lithium niobate, capable of transforming optical into
electrical information and vice versa), as optically transparent materi-
als (ruby and yttrium garnet in lasers, optical fibers), as cutting tools
(boron nitride, synthetic diamond, tungsten carbide), as refractories,
as military armor (Al,03, SiC, B4C), and in a variety of structural
applications.

The structure of ceramics is dependent on the character of the
bond (ionic, covalent, or partly metallic), on the sizes of the atoms,
and on the processing method. We will first discuss the crystalline
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Example 1.6 |

Sketch the 12 members of the <110> family for a cubic crystal. Indicate

the four {111} planes. You may use several sketches.

AZ ‘} z
[011]

[101] [101] ot

y
o [110] - .
x x [110]
z
A - _ z
[011] [101]
= N
_ _ ) [o11]
[101] _ Ty [0 y
[110]
x X
‘} z Az
//
=y oLs ;y
X (111) X (ﬁl)
‘rz Az
N
— -

x 111 x (111

ceramics. Transmission electron microscopy has reached the point of
development where we can actually image individual atoms, and Fig-
ure 1.15 shows a beautiful picture of the zirconium atoms in ZrO,.
The much lighter oxygen atoms cannot be seen but their positions
are marked in the electron micrograph. By measuring the atomic dis-
tances along two orthogonal directions, one can see that the structure
is not cubic, but tetragonal. The greater complexity of ceramics, in
comparison to metallic structures, is evident from Figure 1.15. Atoms
of different sizes have to be accommodated by a structure, and bond-
ing (especially covalent) is highly directional. We will first establish
the difference between ionic and covalent bonding.

The electronegativity value is a measure of an atom’s ability to
attract electrons. Compounds in which the atoms have a large dif-
ference in electronegativity are principally ionic, while compounds
with the same electronegativity are covalent. In ionic bonding one
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atom loses electrons and is therefore positively charged (cation). The
atom that receives the electrons becomes negatively charged (anion).
The bonding is provided by the attraction between positive and nega-
tive charges, compensated by the repulsion between charges of equal
signs. In covalent bonding the electrons are shared between the neigh-
boring atoms. The quintessential example of covalent bonding is dia-
mond. It has four electrons in the outer shell, which combine with
four neighboring carbon atoms, forming a tridimensional regular dia-
mond structure, which is a complex cubic structure. Figure 1.16 shows
the diamond structure. The bond angles are fixed and equal to 70°
32'. The covalent bond is the strongest bond, and diamond has the
highest hardness of all materials. Another material that has covalent
bonding is SiC.

As the difference of electronegativity is increased, the bonding
character changes from pure covalent to covalent-ionic, to purely
ionic. Ionic crystals have a structure determined largely by opposite
charge surrounding an ion. These structures are therefore established
by the maximum packing density of ions. Compounds of metals with
oxygen (MgO, Al,03, Zr0O,, etc.) and with group VII elements (NaCl, LiF,
etc.) are largely ionic. The most common structures of ionic crystals
are presented in Figure 1.17. Evidently, one has more complex struc-
tures in ceramics than in metals because the combinations possible
between the elements are so vast.

Ceramics also exist in the glassy state. Silica in this state has the
unique optical property of being transparent to light, which is used
technologically to great advantage. The building blocks of silica in
crystalline and amorphous forms are the silica tetrahedra. Silicon
bonds to four oxygen atoms, forming a tetrahedron. The oxygen atoms
bond to just two silicon atoms. Numerous structures are possible, with

Transmission electron
micrograph of ZrO, at high
resolution, showing individual Zr
atoms and oxygen sites. (Courtesy
of R. Gronsky.)

Crystal structure of

diamond.
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- SNV A Most common

structures for ceramics. (a) Zinc
blende (ZnS, BeO, SiC). (b)
Wurtzite (ZnS, ZnO, SiC, BN).
(c) Perovskite (CoTiO3, BaTiO3,
YCu;yBa307.). (d) Fluorite

(e) NaCl (KClI, LiF, KBr, MgO,
Ca0O, VO, MnO, NiO). (f) Spinel
(FeAl,O4, ZnAl,O4, MoAl;Oy).
(g) Corundum (Al O3, Fe; O3,
Cry03, Ti O3, V703). (h)
Crystobalite (SiO; — quartz). The
CsCl stucture, which has one Cs™
surrounded by four CI~ ions in
cube edges, is not shown.

(ThO,, UO,, CeO,, ZrO,, PuO;).

@ Zn
oS

(a) (b)

® Ca
CF

(c) (d)

O Na*
O O CI-

@ Cationin
octahedral
site

Q

O Cationin
tetrahedral
site

(e) (f)

different arrangements of the tetrahedra. Pure silica crystallizes into
quartz, crystobalite, and trydimite. Because of these bonding require-
ments, the structure of silica is fairly open and, consequently, gives
the mineral a low density. Quartz has a density of 2.65 g/cm~3, com-
pared with 3.59 g/cm~ and 3.92 g/cm~3, for MgO and A1,0s3, respect-
ively. The structure of crystobalite (Figure 1.17 (h)) shows clearly that
each Si atom (open circle) is surrounded by four oxygen atoms (filled
circles), while each oxygen atom binds two Si atoms. A complex cubic
structure results. However, an amorphous structure in silica is more
common when the mineral is cooled from the liquid state. Condensa-
tion of vapor on a cold substrate is another method by means of which
thin, glassy films are made. One can also obtain glassy materials by
electro-deposition, as well as by chemical reaction. Chapter 3 describes
glassy metals in greater detail. Figure 1.18 provides a schematic rep-
resentation of silica in its crystalline and glassy forms in an idealized
two-dimensional pattern. The glassy state lacks long-range ordering;
the three-dimensional silica tetrahedra arrays lack both symmetry
and periodicity.
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AWK Schematic
representation of (a) ordered

crystalline and (b) random-
network glassy form of silica.

Q*

(a) (b)

Example 1.7 |

Determine the C-C-C-bonding angle in polyethylene.

The easiest manner to visualize the bonding angle is to assume that
one C atom is in the center of a cube and that it is connected to four
other C atoms at the edges of the cube. (See Figure E1.7.) Suppose all
angles are equal to «.

26

Xq

The problem is best solved vectorially. We set the origin of the axes
at the center of the carbon atom and have

V 17+ *'+112
= —1 — =%,
1=5tT 3T

V= tip i Iz
=—i+—j+ =k
2= TRl T3

The angle between two vectors is (see Chapter 6 or any calculus
text)

SO

a =109.47°.

(Note: When we have double bonds, the angle is changed.)
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Specific volume
(inverse of density) as a function of
temperature for glassy and
crystalline form of a material.
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1.3.4 Glasses

As described earlier, glasses are characterized by a structure in which
no longrange ordering exists. There can be shortrange ordering, as
indicated in the individual tetrahedral arrays of SiO;4 in Figure 1.18,
which shows both the crystalline and glassy forms of silica. Over dis-
tances of several atomic spacings, the ordering disappears, leading to
the glassy state. It is possible to have glassy ceramics, glassy metals,
and glassy polymers.

The structure of glass has been successfully described by the
Zachariasen model. The Bernal model is also a successful one. It con-
sists of drawing lines connecting the centers of adjacent atoms and
forming polyhedra. These polyhedra represent the glassy structure of
glass. Glassy structures represent a less efficient packing of atoms
or molecules than the equivalent crystalline structures. This is very
easily understood with the “suitcase” analog. We all know that by
throwing clothes randomly into a suitcase, the end result is often a
major job of sitting on the suitcase to close it. Neat packing of the
same clothes occupies less volume. The same happens in glasses. If
we plot the inverse of the density (called specific volume) versus tem-
perature, we obtain the plot shown in Figure 1.19. Contraction occurs
as the temperature is lowered. If the material crystallizes, there is a
discontinuity in the specific volume at the melting temperature T,. If
insufficient time is allowed for crystallization, the material becomes
a supercooled liquid, and contraction follows the liquid line. At a
temperature Ty, called the glass transition temperature, the supercooled
liquid is essentially solid, with very high viscosity. It is then called
a glass. This difference in specific volume between the two forms is
often referred to as excess volume.

In ceramics, reasonably low cooling rates can produce glassy struc-
tures. The regular arrangement of the silica tetrahedra of Figure
1.18(a) requires a significant amount of time. The same is true for
polymeric chains, which need to arrange themselves into regular
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crystalline arrangements. For metals, this is more difficult. Only
under extreme conditions it is possible to obtain solid metals in a
noncrystalline structure. Figure 1.20 shows a crystalline and a glassy
alloy with the same composition. The liquid state is frozen in, and
the structure resembles that of glasses. It is possible to arrive at these
special structures by cooling the alloy at such a rate that virtually
no reorganization of the atoms into periodic arrays can take place.
The required cooling rate is usually on the order of 10° to
10® K/s~!. It is also possible to arrive at the glassy state by means
of solid-state processing (very heavy deformation and reaction) and
from the vapor.

The original technique for obtaining metallic glasses was called
splat cooling and was pioneered by Duwez and students.” An
alloy in which the atomic sizes are quite dissimilar, such as
Fe-B, is ideal for retaining the “glassy” state upon cooling. This
technique consisted of propelling a drop of liquid metal with
a high velocity against a heat-conducting surface such as cop-
per. The interest in these alloys was mainly academic at the
time. However, the unusual magnetic properties and high strength
exhibited by the alloys triggered worldwide interest, and subse-
quent research has resulted in thousands of papers. The splat-
cooling technique has been refined to the point where 0.07- to
0.12-mm-thick wires can be ejected from an orifice. Production rates
as high as 1,800 m/min can be obtained. Sheets and ribbons can be
manufactured by the same technique. An alternative technique con-
sists of vapor deposition on a substrate (sputtering). This seems a
most promising approach, and samples with a thickness of several
millimeters have been successfully produced.

[.3.5 Polymers

From a microstructural point of view, polymers are much more com-
plex than metals and ceramics. On the other hand, they are cheap
and easily processed. Polymers have lower strengths and moduli and
lower temperature-use limits than do metals or ceramics. Because of
their predominantly covalent bonding, polymers are generally poor
conductors of heat and electricity. Polymers are generally more resist-
ant to chemicals than are metals, but prolonged exposure to ultra-
violet light and some solvents can cause degradation of a polymer’s
properties.

Chemical Structure

Polymers are giant chainlike molecules (hence, the name macro-
molecules), with covalently bonded carbon atoms forming the back-
bone of the chain. Polymerization is the process of joining together
many monomers, the basic building blocks of polymers, to form the

> W. Klement, R. H. Willens, and P. Duwez, Nature, 187 (1960) 869.

Wty
g GG

Atomic arrangements
in crystalline and glassy metals. (a)
Crystalline metal section. (b)
Glassy metal section. (Courtesy of
L. E. Murr.)
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chains. For example, the ethyl alcohol monomer has the chemical
formula

The monomer vinyl chloride has the chemical formula C,H;3Cl, which,
on polymerization, becomes polyvinyl chloride (PVC). The structural
formula of polyvinyl chloride is represented by

H H
[
[

H Cl

where n is the degree of polymerization.

Types of Polymers

The difference in the behavior of polymers stems from their molecular
structure and shape, molecular size and weight, and amount and type
of bond (covalent or van der Waals). The different chain configurations
are shown in Figure 1.21. A linear polymer consists of a long chain of
atoms with attached side groups (Figure 1.21(a)). Examples include
polyethylene, polyvinyl chloride, and polymethyl methacrylate. Note
the coiling and bending of the chain. Branched polymers have branches
attached to the main chain (Figure 1.21(b)). Branching can occur with
linear, cross-linked, or any other types of polymers. A crossed-linked
polymer has molecules of one chain bonded with those of another
(Figure 1.21(c)). Cross-linking of molecular chains results in a three-
dimensional network. It is easy to see that cross-linking makes sliding
of molecules past one another difficult, resulting in strong and rigid
polymers. Ladder polymers have two linear polymers linked in a regular
manner (Figure 1.21(d)). Not unexpectedly, ladder polymers are more
rigid than linear polymers.

Yet another classification of polymers is based on the type of the
repeating unit (see Figure 1.22.) When we have one type of repeat-
ing unit - for example, A - forming the polymer chain, we call it a
homopolymer. Copolymers, on the other hand, are polymer chains hav-
ing two different monomers. If the two different monomers, A and B,
are distributed randomly along the chain, then we have a regular, or
random, copolymer. If, however, a long sequence of one monomer A is
followed by a long sequence of another monomer B, we have a block
copolymer. If we have a chain of one type of monomer A and branches
of another type B, then we have a graft copolymer.

Tacticity has to do with the order of placement of side groups on a
main chain. It can provide variety in polymers. Consider a polymeric
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(a) Homopolymer —A-A-A-A-A-A-A-
(b) Random copolymer —A-A-B—A-B-B—A-B—-B—-A-
(c) Block copolymer —A-A-A-A-B-B-B—-B-B—
(d) Graft copolymer —A-A-A-A-A-A-A-A-A-
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backbone chain having side groups. For example, a methyl group
(CH3) can be attached to every second carbon atom in the polypro-
pylene chain. By means of certain catalysts, it is possible to place
the methyl groups all on one side of the chain or alternately on the
two sides, or to randomly distribute them in the chain. Figure 1.23
shows tacticity in polypropylene. When we have all the side groups
on one side of the main chain, we have an isotactic polymer. If the
side groups alternate from one side to another, we have a syndiotactic
polymer. When the side groups are attached to the main chain in a
random fashion, we get an atactic polymer.

Thermosetting Polymers and Thermoplastics
Based on their behavior upon heating, polymers can be divided into
two broad categories:

(i) thermosetting polymers,
(ii) thermoplastics.

When the molecules in a polymer are cross-linked in the form of a
network, they do not soften on heating. We call these cross-linked
polymers thermosetting polymers. Thermosetting polymers decompose
upon heating. Cross-linking makes sliding of molecules past one
another difficult, which produces a strong and rigid polymer. A typi-
cal example is rubber cross-linked with sulfur, i.e., vulcanized rubber.
Vulcanized rubber has 10 times the strength of natural rubber. Com-
mon examples of thermosetting polymers include phenolic, polyester,
polyurethane, and silicone. Polymers that soften or melt upon heat-
ing are called thermoplastics. Suitable for liquid flow processing, they
are mostly linear polymers - for example, low- and high-density poly-
ethylene and polymethyl methacrylate (PMMA).

Polymers can have an amorphous or partially crystalline struc-
ture. When the structure is amorphous, the molecular chains are
arranged randomly, i.e., without any apparent order. Thermosetting
polymers, such as epoxy, phenolic, and unsaturated polyester, have
an amorphous structure. Semicrystalline polymers can be obtained
by using special processing conditions. For example, by precipitat-
ing a polymer from an appropriate dilute solution, we can obtain
small, platelike crystalline lamellae, or crystallites. Such solution-
grown polymer crystals are characteristically small. Figure 1.24 shows
a transmission electron micrograph of a lamellar crystal of poly

m (a) Homopolymer: one

type of repeating unit.

(b) Random copolymer: two
monomers, A and B, distributed
randomly. (c) Block copolymer: a
sequence of monomer A, followed
by a sequence of monomer B. (d)
Graft copolymer: Monomer A
forms the main chain, while
monomer B forms the branched
chains.
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Electron micrograph of
a lamellar crystal showing growth
spirals around screw dislocations.
(Courtesy of H. D. Keith.)
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Some important chain
configurations. (a) A flexible,
coiled chain structure. (b) A
folding chain structure.

(c) An extended and aligned chain
structure. (d) A fringed micelle
chain structure.

(e-caprolactone). Note the formation of new layers of growth spirals
around screw dislocations. The screw dislocations responsible for
crystal growth are perpendicular to the plane of the micrograph.
Polymeric crystals involve molecular chain packing, rather than
the atomic packing characteristic of metals. Molecular chain pack-
ing requires a sufficiently stereographic regular chemical structure.
Solution-grown polymeric crystals generally have a lamellar form, and
the long molecular chains crystallize by folding back and forth in a
regular manner. Lamellar polymeric crystals have straight segments of
molecules oriented normal to the lamellar panes. Figure 1.25 depicts
some important chain configurations in a schematic manner. The
flexible, coiled structure is shown in Figure 1.25(a), while the chain-
folding configuration that results in crystalline polymers is shown in
Figure 1.25(b). Under certain circumstances, one can obtain an
extended and aligned chain structure, shown in Figure 1.25(c) Such a
structure, typically obtained in fibrous form, has very high strength
and stiffness. A semicrystalline configuration called a fringed micelle
structure is shown in Figure 1.25(d). Almost all so-called semi-
crystalline polymers are, in reality, mixtures of crystalline and
amorphous regions. Only by using very special techniques, such as
solid-state polymerization, is it possible to prepare a 100% crystalline
polymer. Polydiacetylene single crystals in the form of lozenges and
fibers have been prepared by solid-state polymerization.

Partially crystallized, or semicrystalline, polymers can also be
obtained from melts. Generally, because of molecular chain en-
tanglement, the melt-formed crystals are more irregular than those
obtained from dilute solutions. A characteristic feature of melt-
formed polymers is the formation of spherulites. When seen under
cross-polarized light in an optical microscope, the classical spherulitic
structure shows a Maltese cross pattern. (See Figure 1.26(a).)
Figure 1.26(b) presents a schematic representation of a spherulite
whose diameter can vary between a few tens to a few hundreds of
micrometers. Spherulites can nucleate at a variety of points, as, for
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example, with dust or catalyst particles, in a quiescent melt and
then grow as spheres. Their growth stops when the neighboring
spherulites impinge upon each other. Superficially, the spherulites
look like grains in a metal. There are, however, differences between
the two. Each grain in a metal is a single crystal, whereas each
spherulite in a polymer is an assembly of radially arranged, narrow
crystalline lamellae. The fine-scale structure of these lamellae, consist-
ing of tightly packed chains folding back and forth, is shown in Figure
1.26(c). Amorphous regions containing tangled masses of molecules
fill the spaces between the crystalline lamellae.

Degree of Crystallinity
The degree of crystallinity of a material can be defined as the frac-
tion of the material that is fully crystalline. This is an important
parameter for semicrystalline polymers. Depending on their degree
of crystallinity, such polymers can show a range of densities, melt-
ing points, etc. It is worth repeating that a 100% crystalline poly-
mer is very difficult to obtain in practice. The reason for the dif-
ficulty is the long chain structure of polymers: some twisted and
entangled segments of chains that get trapped between crystalline
regions never undergo the conformational reorganization necessary
to achieve a fully crystalline state. Molecular architecture also has
an important bearing on a polymer’s crystallization behavior. Linear
molecules with small or no side groups crystallize easily. Branched
chain molecules with bulky side groups do not crystallize as easily.
For example, linear, high-density polyethylene can be crystallized to
90%, while branched polyethylene can be crystallized only to about
65%. Generally, the stiffness and strength of a polymer increase with
the degree of crystallinity.

Like crystalline metals, crystalline polymers have imperfections.
It is, however, not easy to analyze these defects, because the topo-
logical connectivity of polymer chains leads to large amounts and

m Spherulitic structures.

(a) A typical spherulitic structure
in a melt-formed polymer film.
(Courtesy of H. D. Keith.) (b)
Schematic of a spherulite. Each
spherulite consists of an assembly
of radially arranged narrow
crystalline lamellae. (c) Each
lamella has tightly packed polymer
chains folding back and forth.
Amorphous regions fill the spaces

between the crystalline lamellae.
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numerous types of disorder. Polymers are also very sensitive to dam-
age by the electron beam in TEM, making it difficult to image them.
Generally, polymer crystals are highly anisotropic. Because of covalent
bonding along the backbone chain, polymeric crystals show low-
symmetry structures, such as orthorhombic, monoclinic, or triclinic.
Deformation processes such as slipping and twinning, as well as phase
transformations that take place in monomeric crystalline solids, may
also occur in polymeric crystals.

Molecular Weight and Distribution

Molecular weight is a very important attribute of polymers, espe-
cially because it is not so important in the treatment of nonpoly-
meric materials. Many mechanical properties increase with molecular
weight. In particular, resistance to deformation does so. Of course,
concomitant with increasing molecular weight, the processing of
polymers becomes more difficult.

The molecular weight of a polymer is given by the product of
the molecular weight of the repeat unit (the “mer”) and the num-
ber of repeat units. The molecular weight of the ethylene repeat unit
(-CH,—CH,-) is 28. We write the chemical formula: H (-CH,-CH,-), H.
If n, the number of repeat units, is 10,000, the high-density polyethy-
lene will have a molecular weight of 280,002. In almost all polymers,
the chain lengths are not equal, but rather, there is a distribution of
chain lengths. In addition, there may be more than one species of
chain in the polymer. This makes for different parameters describing
the molecular weight.

The number-averaged molecular weight (M,) of a polymer is the
total weight of all of the polymer’s chains divided by the total number
of chains:

M, =Y Ni, M/ N,

where N; is the number of chains of molecular weight M;.

The weight-averaged molecular weight (M,,) is the sum of the
square of the total molecular weight divided by the total molecular
weight. Thus,

My =Y N:M?/ > M;N;.

Two other molecular weight parameters are

M, =) N:M}/> N;M?,

and

M, = I:Z NiM;l+a)/ Z NiMi]l/a ’

where a has a value between 0.5 and 0.8.

Typically, M,,: M,,: M, = 1:2:3. Figure 1.27 shows a schematic mole-
cular weight distribution curve with various molecular weight param-
eters indicated. Molecular weight distributions of the same polymer
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obtained from two different sources can be very different. Also, mole-
cular weight distributions are not necessarily single peaked. For
single-peaked distributions, M, is generally near the peak - that is,
the most probable molecular weight. The weight-averaged molecular
weight, M,,, is always larger than M,,. The molecular weight character-
ization of a polymer is very important. The existence of a very high-
molecular-weight tail can make processing very difficult because of
the enormous contribution of the tail to the melt viscosity of a poly-
mer. The low end of the molecular weight distribution, however, can
be used as a plasticizer.

It is instructive to compare some monomers with low- and high-
molecular-weight polymers. A very common monomer is a molecule
of water, H,O, with a molecular weight of 18. Benzene, on the other
hand, is a low-molecular-weight organic solvent; its molecular weight
is 78. By contrast, natural rubber has a molecular weight of about 10%,
and polyethylene, a common synthetic polymer, can have a molecu-
lar weights greater than this. Polymers having such large molecular
weights are sometimes called high polymers. Their molecular size is
also very great.

Example 1.8 |

A polymer has three species of molecular weights: 3 x 10°, 4 x 10°,
and 5 x 10°. Compute its number-averaged molecular weight M, and
weight-averaged molecular weight M,,.

Solution: For the number-averaged molecular weight, we have
> N M;

2N
_ 3 x 10° +4 x 10° + 5 x 10°
B 3

M, =

=4 x 10°.

A schematic molecular
weight distribution curve. Various
molecular weight parameters are
indicated.
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The weight-averaged molecular weight is

M, = LN M

> NiM;

(3 x10°) + (4 x 10°)* + (5 x 10°)*

T 3x10°+44 x 10° + 5 x 106
50 x 102 .

= =417 x 10°.
12 x 10°

Example 1.9 |

Estimate the molecular weight of polyvinyl chloride with degree of
polymerization, n, equal to 800.

Solution: The molecular weight of each mer of polyvinyl chloride
(C.H;Q) is

2(12) 4 3(1) + 35.5 = 62.5.

For n = 800, the molecular weight is 800 x 62.5 = 50,000 g/mol.

Example 1.10 |

Discuss how a polymer’s density changes as crystallization proceeds
from the melt.

Answer: The density increases and the volume decreases as crystalliza-
tion proceeds. This is because the molecular chains are more tightly
packed in the crystal than in the molten or noncrystalline polymer.
This phenomenon is, in fact, exploited in the so-called density method
to determine the degree of crystallinity.

Quasi Crystals

Quasi crystals represent a new state of solid matter. In a crystal,
the unit cells are identical, and a single unit cell is repeated in a
periodic manner to form the crystalline structure. Thus, the atomic
arrangement in crystals has positional and orientational order.
Orientational order is characterized by a rotational symmetry; that is,
certain rotations leave the orientations of the unit cell unchanged.
The theory of crystallography holds that crystals can have twofold,
threefold, fourfold, or sixfold axes of rotational symmetry; a fivefold
rotational symmetry is not allowed. A two-dimensional analogy of this
is that one can tile a bathroom wall using a single shape of tile if and
only if the tiles are rectangles (or squares), triangles, or hexagons, but
not if the tiles are pentagons. One may obtain a glassy structure by
rapidly cooling a vapor or liquid well below its melting point, until
the disordered atomic arrangement characteristic of the vapor or
liquid state gets frozen in. The atomic packing in the glassy state is
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dense but random. This can be likened to a mosaic formed by taking
an infinite number of different shapes of tile and randomly joining
them together. Clearly, the concept of a unit cell will not be valid in
such a case. The atomic structure in the glassy state will have neither
positional nor orientational order.

Quasi crystals are not perfectly periodic, but they do follow the
rigorous theorems of crystallography. They can have any rotational
symmetry axes which are prohibited in crystals. It is worth remind-
ing the reader that a glassy structure shows an electron diffraction
pattern consisting of diffuse rings for all orientations. A crystalline
structure has an electron diffraction pattern that depends on the
crystal symmetry.

Schectman et al. discovered that a rapidly solidified (melt-spun)
aluminum-manganese alloy showed fivefold symmetry axis.® They
observed a metastable phase that showed a sharp electron diffraction
pattern with a perfect icosahedral symmetry. (Remember that sharp
electron diffraction patterns are associated with the orderly atomic
arrangement in crystals and icosahedral symmetry is forbidden in
crystals.) At first, this was thought to be a paradox. However, some very
careful and sophisticated electron microscopy work showed conclu-
sively that it was indeed an icosahedral (twentyfold) symmetry. Al-Mn
alloys containing 18 to 25.3 weight percent Mn examined by transmis-
sion electron microscopy showed the same anomalous diffraction. In
particular, Al-25.3 wt% Mn alloy consisted almost entirely of one phase
which has a composition close to AlgMn. The selected area diffraction
pattern of AlgMn showed a fivefold symmetry. This new kind of struc-
ture is neither amorphous nor crystalline; rather, the new phase in
this alloy had a three-dimensional icosahedral symmetry.

Perhaps, it would be in order for us to digress a bit and explain
this icosahedral symmetry. Icosahedral means twenty faces. An icosa-
hedron has twenty triangular faces, thirty edges, and twelve vertices.
Consider the two-dimensional case. As pointed out earlier, one can tile
a bathroom wall without leaving an open space (a crack) by hexagons.
Three hexagons can be tightly packed without leaving a crack. Three
pentagons, however, cannot be tightly packed. The reader may try this
out. In three dimensions, four spheres pack tightly to form a tetra-
headron. Twenty tetrahedrons can, with small distortions, fit tightly
into an icosahedron. Icosahedrons have fivefold symmetry (five trian-
gular faces meet at each vertex) and they cannot fit together tightly,
i.e., complete space filling is not possible with them. An icosahedron,
therefore, cannot serve as a unit cell for a crystalline structure. There-
fore, structures, are known as quasi crystals.

[.3.6 Liquid Crystals

A liquid crystal is a state of matter that shares some properties of
liquids and crystals. Like all liquids, liquid crystals are fluids; how-
ever, unlike ordinary liquids, which are isotropic, liquid crystals can
be anisotropic. Liquid crystals are also called mesophases. The liquid

® D. Schectman, I. A. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett., 53 (1984) 1951.
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crystalline state exists in a specific temperature range, below which
the solid crystalline state prevails and above which the isotropic li-
quid state prevails. That is, the liquid crystal has an order between
that of a liquid and a crystalline solid. In a crystalline solid, the
atoms, ions, or molecules are arranged in an orderly manner. This
very regular three-dimensional order is best described in terms of a
crystal lattice. Because of a different periodic arrangement in differ-
ent directions, most crystals are anisotropic. Now consider a crystal
lattice with rod-shaped molecules at the lattice points. In this case,
we now have, in addition to a positional order, an orientational order.
An analogy that is used to qualitatively describe the order in a liquid
crystal is as follows: If a random pile of pencils is subjected to an
external force, it will undergo an ordering process very much akin
to that seen in liquid crystals. The pencils, long and rigid, tend to
align themselves, with their long axes approximately parallel. By far
the most important characteristic of liquid crystals is that their long
molecules tend to organize according to certain patterns. The order of
orientation is described by a directed line segment called the director.
This order is the source of the rather large anisotropic effect in liquid
crystals, a characteristic that is exploited in electrooptical displays or
the so-called liquid-crystal displays. Another important application of
liquid crystals is the production of strong and stiff organic fibers such
as aramid fiber, in which a rigid, rodlike molecular arrangement is
provided by an appropriate polymer solution in the liquid crystalline
state.” When a polymer manifests the liquid crystalline order in a
solution, we call it a lyotropic liquid crystal, and when the polymer
shows the liquid crystalline state in the melt, it is called a thermotropic
liquid crystal. The three types of order in the liquid crystalline
state are nematic, smectic, and cholesteric, shown schematically in
Figure 1.28. A nematic order is an approximately parallel array of
polymer chains that remains disordered with regard to end groups or
chain units; that is, there is no positional order along the molecular
axis. Figure 1.28(a) shows this type of order, with the director vec-
tor n as indicated. In smectic order, we have one-dimensional, long-
range positional order. Figure 1.28(b) shows smectic-A order, which
has a layered structure with long-range order in the direction per-
pendicular to the layers. In this case, the director is perpendicular
to the layer. Other more complex smectics are B, C, D, F, and G. The
director in these may not be perpendicular to the layer, or there
may exist some positional order as well. Cholesteric-type liquid crys-
tals, shown in Figure 1.28(c), have nematic order with a superimposed
spiral arrangement of nematic layers; that is, the director n, pointed
along the molecular axis, has a helical twist.

1.3.7 Biological Materials and Biomaterials
The mechanical properties of biological materials are, of course, of
great importance, and the design of all living organisms is optimized

7 See K. K. Chawla, Fibrous Materials (Cambridge, U.K.: Cambridge University Press, 1998).
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for the use of these properties. Biological materials cover a very broad
range of structures. The common feature is the hierarchical organ-
ization of the structure, so that failure at one level does not gen-
erate catastrophic fracture: The other levels in the hierarchy “take
up” the load. Figure 1.29 demonstrates this fact. Figure 1.29(a) shows
the response of the urether of three animals: guinea pig, dog, and
rabbit. This muscle is a thick-walled cylindrical tube that has the
ability to contract until the closure of the inner hole is complete.
With a nonlinear elastic mechanical response, the urether is not
unlike other soft tissues in that regard: its stiffness increases with
loading, and the muscle becomes very stiff after a certain strain is
reached. The unloading and loading responses are different, as shown
in the figure, and this causes a hysteresis. Increases in length of 50%
can be produced. Bone, on the other hand, is a material with drast-
ically different properties: its strength and stiffness are much higher,
and its maximum elongation is much lower. The structure of bones
is quite complex, and they can be considered composite materials.
Figure 1.29(b) illustrates the strength (in tension) of dry and wet bone.
The maximum tensile strength is approximately 80 MPa, and Young’s
modulus is about 20 GPa.

The abalone shell and the shells of bivalve molluscs are often
used as examples of a naturally occurring laminated composite mater-
ial. These shells are composed of layers of calcium carbonate, glued
together by a viscoplastic organic material. The calcium carbonate
is hard and brittle. The effect of the viscoplastic glue is to provide
a crack-deflection layer so that cracks have difficulty propagating
through the composite. Figure 1.30 shows cracks that are deflected
at each soft layer. The toughness of this laminated composite is vastly
superior to that of a monolithic material, in which the crack would
be able to propagate freely, without barriers. The effect is shown
at two scales: the mesoscale and the microscale. At the mesoscale,
layers of calcium carbonate have a thickness of approximately
500 pm. At the microscale, each calcium carbonate layer is made
up of small brick-shaped units (about 0.5 x 7.5 pm longitudinal sec-
tion), glued together with the organic matter. The formation of this
laminated composite results in a fracture toughness and strength

- MW N Different types of
order in the liquid crystalline state.
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(about 4 MPa/m'? and approximately 150 MPa, respectively) that are
much superior to those of the monolithic CaCOs;. The composite
also exhibits a hierarchical structure; that is, the layers of CaCO3
and organic glue exist at more than one level (at the micro- and
mesolevels). This naturally occurring composite has served as inspira-
tion for the synthesis of B4C-Al laminate composites, which exhibit
a superior fracture toughness.® In these synthetic composites, there
is a 40% increase in both fracture toughness and strength over mono-
lithic B4C-Al cermets. Biomimetics is the field of materials science in
which inspiration is sought from biological systems for the design of
novel materials.

Another area of biomaterials in which mechanical properties have
great importance is bioimplants. Complex interactions between the

8 M. Sarikaya, K. E. Gunnison, M. Yasrebi, and I. A. Aksay, Mater. Soc. Symp. Proc., 174 (1990)
109.
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musculoskeletal system and these implants occur in applications
where metals and ceramics are used as replacements for hips, knees,
teeth, tendons, and ligaments. The matching of material and bone
stiffness is important, as are the mechanisms of bonding tissue to
these materials. The number of scientific and technological issues is
immense, and the field of bioengineering focuses on these.

[.3.8 Porous and Cellular Materials

Wood, cancellous bone, styrofoam, cork, and insulating tiles of the
Space Shuttle are examples of materials that are not compact; their
structure has air as a major component. The great advantage of cel-
lular structures is their low density. Techniques for making foam
metals, ceramics, and polymers have been developed, and these cellu-
lar materials have found a wide range of applications, in insulation,
in cushioning, as energy-absorbing elements, in sandwich panels for
aircraft, as marine buoyancy components, in skis, and more.

The mechanical response of cellular materials is quite different
from that of bulk materials. The elastic loading region is usually fol-
lowed by a plateau that corresponds to the collapse of the pores,
either by elastic, plastic buckling of the membranes or by their frac-
ture. The third stage is an increase in the slope, corresponding to final
densification. Figure 1.31(a) shows representative curves for polyethyl-
ene with different initial densities. The plateau occurs at differ-
ent stress levels and extends to different strains for different initial
densities. The bulk (fully dense) polyethylene is shown for compari-
son purposes. Cellular mullite, an alumina-silica solid solution,
exhibits a plateau marked by numerous spikes, corresponding to the
breakup of the individual cells (Figure 1.31(b)). Materials with initial
densities as low as 5% of the bulk density are available as foams.
Figure 1.31(c) shows a very important use of foams: Sandwich struc-
tures, composed of end sheets of solid material in which a foam forms
the core region, have numerous applications in the aerospace indus-
try. The foam between the two panels makes them more rigid; this is
accomplished without a significant increase in weight.

There are many biological examples of sandwich structures. The
toucan beak (Figure 1.32(a)) is a structure with very low density
(0.04 g cm~3) that consists of an external layer of compact keratin.
Figure 1.32(b) shows the keratin layer. It is composed of superim-
posed scales. The inside of the toucan beak is a cellular material
with extremely low density, Figure 1.33(b). The function of the cel-
lular material is to provide structural rigidity to the system. In the
absence of this foam, the external shell would buckle easily. Hence
the toucan can fly without taking a nose dive.

As examples of foams in synthetic and naturally occurring mater-
ials, we show in Figure 1.33 two structures. Figure 1.33(a) shows an
open-celled aluminum foam. We sectioned the beak of the toucan and
observed that the inside is composed of a foam with similar length
scale. Nature uses foams for the same purposes we do: to provide
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rigidity to structures with the addition of minimal weight. In Chapter
12 we give a detailed analysis of stresses involved in foams.

[.3.9 Nano- and Microstructure of Biological Materials

Biological materials are more complex than synthetic materials.
They form complex arrays, hierarchical structures, and are often
multifunctional, i.e., one material has more than one function. For
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(a) Toucan beak; (b)
external shell made of keratin
scales. (Courtesy of Y. Seki.)

1 mm

(b)

Cellular materials: (a)
synthetic aluminium foam; (b) foam
found in the inside of toucan beak.
(Courtesy of M. S. Schneider and
K. S. Vecchio.)

Exterior of the
beak (keratin)

(b)

example, bone has a structural function and serves as a producer of
red blood cells (in marrow). We classify biological materials, from the
mechanical property viewpoint, into soft and hard. Hard mater-
ials provide the skeleton, teeth, and nails in vertebrates and
the exoskeleton in arthropods. Soft biological materials build
skin, muscle, internal organs, etc. Table 1.4 provides the distri-
bution (on a weight percentage) of different constituents of the
body.
Here are some examples of “hard” biological materials:

* Calcium phosphate (hydroxyapatite-Ca;o(PO4)s(OH);): teeth, bone

¢ Chitin: nails

¢ Keratin: bird beaks, horn, hair

e Calcium carbonate (aragonite): mollusc shells, some reptile eggs

(calcite): bird’s eggs, crustaceans, molluscs

¢ Amorphous silica (SiO,(H20),): spicules in sponges

e Iron oxide (Magnetite — Fe304): teeth in chitons (a weird-looking
marine worm), bacteria.
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Table 1.4 | Occurrence of Different Biological Materials in
the Body

Weight Percentage in

Biological Material Human Body
Proteins |7
Lipids 15
Carbohydrates |
Minerals 7
DNA, RNA 2
Water 58

Of the above, iron oxide, calcium phosphate, silica, and iron oxide
are minerals. Chitin and keratin are proteins.

Figure 1.34(a) shows the atomic arrangement of the calcium, phos-
phorus, and oxygen atoms in hydroxyapatite. The unit cell is quite
complex and consists of four primitive hexagonal cells juxtaposed.
We should remember that the hexagonal cell is composed of three
primitive cells, brought together at their 120° angles (3 x120 = 360).
In the case of the hydroxyapatite unit cell, there are four unit cells:
two at the 60° angle and two at the 120° (2 x 60 + 2 x 120 = 360).

Figure 1.34(b) shows the aragonitic form of calcium carbonate.
Aragonite has the orthorhombic structure. However, it is important
to recognize that the minerals do not occur in isolation in living
organisms. They are invariably intimately connected with organic
materials, forming complex hierarchically structured composites. The
resulting composite has mechanical properties that far surpass those
of the monolithic minerals. Although we think of bone as a cellular
mineral, it is actually composed of 60% collagen (on a volume per-
centage basis) and 30-40% hydroxyapatite (on a weight basis). If the
mineral is dissolved away, the entire collagen framework is retained.

The principal organic building blocks in living organisms are the
proteins. The word comes from Greek (Proteios) which means “of first
rank” and indeed proteins play a key role in most physiological pro-
cesses. The soft tissues in the body are made of proteins. As seen
above, they are also an important component of biominerals. In order
to fully understand proteins, we have to start at the atomic/molecular
level, as we did for polymers.

Actually, proteins can be conceived of as polymers with a greater
level of complexity. We start with amino acids, which are compounds
containing both an amine (-NH;) and a carboxyl (~-COOH) group. Most
of them have the following structure, where R stands for a radical:

R—C—COOH
NH,
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Atomic structure of
hydroxyapatite: (a) small white
atoms (P), large gray atoms (O),
black atoms (Ca). (b) Atomic
structure of aragonite: large dark
atoms (Ca), small gray atoms (C),
large white atoms (O).

(a)

(b)

Table 1.5 shows eight main amino acids. There are currently 20
amino acids in proteins. In addition to these eight, we have the
following: aspartic acid, glycine, methionine, asparagine, glutamine,
arginine, threonine, valine, tyrosine, isoleucine, phenylalaline, and
tryptophan.

In DNA, the four amino acids present are designated by the let-
ters ACTG: adenine, cytosine, thymine, and guanine. In both DNA
and proteins, these amino acids combine themselves by forming links
between the carboxyl group of one amino acid and the amino group
of another. These linear chains, similar to polymer chains, are called
polypeptide chains. The polypeptide chains acquire special configur-
ations because of the formation of bonds (hydrogen, van der Waals,
and covalent bonds) between amino acids on the same or different
chains. The two most common configurations are the alpha helix and
the beta sheet. Figure 1.35(a) shows how an alpha helix is formed. The
NH and CO groups form hydrogen bonds between them in a regular
pattern, and this creates the particular conformation of the chain
that is of helical shape. One such bond is shown in Figure 1.35(a). In
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Table 1.5 | Eight Amino Acids Found in Proteins

Name Chemical Formula
H O
Alanine CH3—(|2—C—OH
NH,
CHy (|3
Leucine /CH—CHZ—(li—COOH
CHg NH,
CH=CH H
. / \ |
Phenylalanine C\H C—CH,—C—COOH
CH—CH NH,
H

Proline

Serine

Cysteyne

Glutamate

Lysine

|
(|2H2—CH2—(|:—COOH

CH,————N—H

|
H—O—CHZ—(|3—COOH

NH,

|
H—S—CHZ—Cl—COOH
NH,
i |
O—C—CHZ—CHZ—Cli—COOH

NH,

H

I
NH3—CH2—CH2—CH2—CH2—Cl—COOH

NH,

Figure 1.35(b) several hydrogen bonds are shown, causing the polypep-
tide chain to fold. The radicals stick out. This is shown in a clear

fashion in Figure 1.36(a). The hydrogen bonds are also shown.

Another common conformation of polypeptide chains is the beta
sheet. In this conformation, separate chains are bonded. Figure 1.36(b)
shows two anti-parallel chains that are connected by hydrogen bonds.
We can see that the radicals (large grey balls) of two adjacent chains
stick out of the sheet plane on opposite sides. Successive chains can
bond in such a fashion, creating pleated sheets.
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(a) Structure of alpha
helix; dotted double lines indicate
hydrogen bonds. (b) Structure of
beta sheet with two anti-parallel
polypeptide chains connected by
hydrogen bonds (double-dotted
lines).

ST TN (2) Hydrogen bond
connecting a CO to an NH group
in a polypeptide. (b) Successive
hydrogen bonds on same
polypeptide chain leading to
formation of a helical arrangement.
(Adapted from A. Vander, J.
Sherman, D. Luciano, Human
Physiology, 8th ed. (New York:
McGraw Hill, 2001).)
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We describe below the most important proteins: collagen, actin,
myosin, elastin, resilin and abductin, keratin, cellulose and chitin.

Collagen

Collagen is a rather stiff and hard protein. It is a basic structural
material for soft and hard bodies; it is present in different organs
and tissues and provides structural integrity. Fung® compares it to
steel, which is the principal load-carrying component in structures.
In living organisms, collagen plays the same role: it is the main load-
carrying component of blood vessels, tendons, bone, muscle, etc. In
rats, 20% of the proteins are collagen. Humans are similar to rats
in physiology and behavior, and the same proportion should apply.
Figure 1.37 shows the structure of collagen. It is a triple helix, each
strand being made up of sequences of amino acids. Each strand is
itself a left-handed helix with approximately 0.87 nm per turn. The
triple helix has a right-handed twist with a period of 8.6 nm. The
dots shown in a strand in Figure 1.37 represent glycine and differ-
ent amino acids. There are over 10 types of collagen, called Type
I, II, X, etc. Fiber-forming collagens organize themselves into fibrils,
Figure 1.38. Figure 1.38(c) is a transmission electron micrograph of
tendon fibrils. Each fibril has transverse striations, which are spaced
approximately 68 nm apart. These striations are caused by the stag-
gering of the individual collagen molecules. This staggering is repre-
sented in a schematic manner in Figure 1.38(b). The length of each
collagen molecule is 4.4 times the distance of stagger, 68 nm. This is
equal to 300 nm. The diameter of the fibrils varies between 20 and
40 nm.

Fibrils, in turn, arrange themselves into fibers. Fibers are bundles
of fibrils with diameters between 0.2 and 12 um. In tendons, these
fibers can be as long as the entire tendon. In tendons and ligaments,
the collagen fibers form primarily one-dimensional networks. In skin,
blood vessels, intestinal mucosa and the female vaginal tract, the
fibers organize themselves into more complex patterns leading to two-
and three-dimensional networks.

The hierarchical organization of a tendon starts with tropocolla-
gen (a form of collagen), and moves up, in length scale, to fascicles.
There is a crimped, or wavy structure shown in the fascicles that

° Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues (Berlin, Springer, 1993)

Triple helix structure
of collagen. (Adapted from Y. C.
Fung, Biomechanics: Mechanical
properties of Living Tissues (Berlin:
Springer, 1993).)
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(a)

(b)  Collagen fibril

o chain

Triple helix

(c)  Collagen fibril

TSN Hierarchical
organization of collagen, starting
with triple helix, and going to
fibrils. (From H. Lodish et al.,,
Molecular Cell Biology, 4th ed. (New
York, W.H. Freeman & Company,
1999).)

__________________ 0 —_————N\g -
kilJ

0

Idealized configuration
of a wavy collagen fiber.

67 nm
1

has an important bearing on the mechanical properties. Figure 1.39
shows an idealized representation of a wavy fiber. Two parameters
define it: the wavelength 2I, and the angle 6,. Typical values for the
Achilles tendon of a mature human are Iy = 20-50 pm and 6y = 6-8°.
These bent collagen fibers stretch out in tension. When the load is
removed, the waviness returns. When the tendon is stretched beyond
the straightening of the waviness, damage starts to occur. Figure 1.40
shows a schematic stress-strain curve for tendons. The tendon was
stretched until rupture. There are essentially three stages:

® Region I: toe part, in which the slope rises rapidly. This is the phys-
iological range in which the tendon operates under normal condi-
tions.

* Region II: linear part, with a constant slope.

* Region III: slope decreases with strain and leads to failure.

The elastic modulus of collagen is approximately 1 GPa and the max-
imum strain is in the 10-20% range. Cross-linking increases with age,
and collagen becomes less flexible.

Actin and Myosin
These are the principal proteins of muscles, leukocytes (white
blood cells), and endothelial cells. Muscles contract and stretch
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through the controlled gliding/grabbing of the myosin with respect
to the actin fibers. Figure 1.41(a) shows an actin fiber. It is composed
of two polypeptides in a helical arrangement. Figure 1.41(b) shows
the myosin protein. It has little heart-shaped “grapplers” called
cross-bridges. The tip of the cross-bridges bind and unbind to the actin
filaments. Figure 1.41(c) shows the myosin and actin filaments, and
the cross-bridges at different positions. The cross-bridges are hinged
to the myosin and can attach themselves to different positions along
the actin filaments as the actin is displaced to the left. Thus, the
muscles operate by a micro-telescoping action of these two proteins.

Figure 1.42 shows how the filaments organize themselves into
myofibrils. Bundles of myofibrils form a muscle fiber. The Z line repre-
sents the periodicity in the myosin—actin units (that are called sarco-
meres) and is approximately equal to 3 um in the stretched config-
uration. It shortens when the muscle is contracted. This gives the
muscle a striated pattern when observed at high magnification. They
resemble a coral snake in the microscope. Myofibrils have a diameter
of approximately 1-2 pm.

Elastin

Elastin is found in skin, walls of arteries and veins, and lung tissue.
A prominent place is in the “ligamentum nuchae,” a long ligament
that runs along the top of the neck in horses and is constantly under
tension. Other vertebrates have it too, but it is less pronounced. In this
manner, the horse can keep the head up without using muscles. The
“ligamentum nuchae” plays a role similar to the cables in a suspension
bridge. It is a rather robust cylinder.

Resilin and Abductin

They are found in arthropods. They have properties similar to those
of elastin, but occur in totally different animals and have a different
structure.

Keratin

Keratin is found in hair, horn, bird beaks and feathers, and whale
baleen. The toucan beak presented in Section 1.3.8 is made of keratin.
It has a structure similar to collagen (three interwoven helices). These
helices combine themselves to form microfibrils with a diameter of
8 nm. Interestingly, it undergoes a phase transformation under tensile
load, which increases its elongation.

Cellulose

Cellulose is the most abundant biological structural material, and is
present in wood (which is a composite of cellulose and lignin) and
cotton (almost pure cellulose). Cellulose is a cross-linked crystalline
polymer. Its basic building block is a fibril with 3.5 nm diameter and
4 nm periodicity.

a1 ~
o o1

Strees, MPa

N
o1

collagen with three characteristic

stages.

0.05 0.1 0.15
Engineering strain

- MWL Stress—strain curve of
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Molecular structure of
(a) actin and (b) myosin; (c) action
of cross-bridges when actin
filament is moved to left with
respect to myosin filament; notice
how cross-bridges detach
themselves, then reattach
themselves to actin.

(a) Actin

r__..- Cross-bridge

Actin-binding sites

e

Cross-bridge

(b) Myosin
Actin
Movement «— 2 filament
stroke % .-
Myosin
filament

(c)

Chitin
Chitin is a polysaccharide found in many invertebrates. The exoskel-
eton of insects is made of chitin.

Silk

Silk is composed of two proteins: fibroin (tough strands) and sericin,
a gummy glue. The mechanical properties (strength and maximum
elongation) can vary widely, depending on the application intended
by the animal. For instance, among the silks produced by spiders
are: dragline and spiral. Dragline, used in the radial components of
the web, is the structural component, and has high tensile strength
(600 MPa) and a strain at failure of about 6%. The spiral tangential
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(a) Sarcomere units

Myofibril

(c) Muscle fibers

components are intended to capture prey, and are “soft” and “sticky.”
The strain at failure in this case can exceed 16, i.e. 1,600%.

Example 111 |

Determine the maximum strain that the collagen fibers can experience
without damage if their shape is as given in Figure 1.39 with a ratio
between amplitude and wavelength of 0.2

We can assume a sine function of the form:

y =ksin2mx/A.

The maximum of y is reached when x = 7 /4.
Hence:

ymaxzkz)‘/s-

We can integrate over the length of the sine wave from 0 to 2. However,
this will lead to an elliptical integral of difficult solution. A simple
approximation is to consider the shape of the wavy protein as an ellipse
with major axis 2a and minor axis 2b. The circumference is given by the

Structure of muscle,
from (a) the sarcomere units, to
(b) myofibril, and finally to (c)
fibers.
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approximate expression (students should consult a mathematics text to
obtain this expression):

L~n B (@a+Db)— (ab)”z} )

In the sine function, we have two arms, one positive and one negative.
Their sum corresponds, in an approximate manner, to the circumfer-
ence of the ellipse. The strain is equal to:
1/2
,_L—4a_ 7 [2(a+b) — (ab)"?] —4a.
4a 4a

Thus:

S HEHRONE

The following ratio is given:

b b
— =02 and - =04.
2a a

The corresponding strain is:
& =0.53.

Beyond this strain, the collagen will break.

[.3.10 The Sponge Spicule: An Example of a
Biological Material

Marine sponges have long tentacles that are called spicules. These
spicules act as antennas, which are subjected to marine currents and
other stresses. These long silica rods have properties that dramati-
cally exceed the strength of synthetic silica. Figure 1.43 shows the
flexure strength of both spicule and synthetic silica. The difference
in flexure strength between sponge spicule and synthetic silica is
remarkable. The synthetic silica fractures at a relatively low stress
of 200 MPa compared to the yield stress of the spicule at 870 MPa.
The area under the stress-strain curve gives a reasonable idea of the
toughness. Clearly the toughness of the spicule is many times higher
than that of synthetic silica. As evidenced by Figure 1.43, failure does
not occur catastrophically in the spicule. Instead, the spicule fails
“gracefully,” which is a considerable advantage.

Figure 1.44 shows the microstructure of a fracture surface. The
spicule consists of many concentric layers. This onion-like structure
is responsible for the strengthening effect observed. When stress is
applied to a silica rod, a crack will initiate at the weakest point in
the material and propagate through the silica rod in a catastrophic
manner. In contrast, crack propagation in the spicule will be arrested
at each interface. This type of “graceful” failure is extremely useful.
We can truly learn and apply this lesson from nature to modern
material applications.
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[.3.11 Active (or Smart) Materials

Technology puts greater and greater demand on materials and there
is a constant push to develop materials with enhanced capabilities.
The term multifunctional materials has been coined to describe mater-
ials with more than one capability. This is inspired by nature, where
materials often have more than one function. For example, the trunk
of a tree is at the same time a structural component and a carrier
for the sap. Bones have a structural as well as a red-blood-producing
function.

Another category of advanced materials are active materials. They
are also called “smart” materials. Active materials have responses that
can be used in all kinds of devices. Given below are the main classes
of active materials.

Stress-deflection
responses of synthetic silica rod
and sponge spicule in flexure
testing. (Courtesy of M. Sarikaya
and G. Mayer.)

TS WER SEM of fractured
sponge spicule showing
two-dimensional onion-skin
structure of concentric layers.
(Courtesy of G. Mayer and M.
Sarikaya.)
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(a)

l—) ™
\J
m

(b)

(a) Effect of applied
field E on dimension of
ferroelectric material. (b) Linear
relationship between strain and
electric field. (Courtesy of G.
Ravichandran.)

* Shape memory alloys: The most common is a NiTi alloy known as
Nitinol. It can undergo strains of 1-5% through a martensitic trans-
formation that is reversible. A detailed description of these alloys is
given in Chapter 11. There are numerous applications through two
effects: the shape memory effect and the superelastic (or pseudo-
elastic) effect: dental braces, stents, etc. They are presented in
Chapter 11.

* Magnetorheological materials: These materials exhibit a viscosity
that depends on an externally applied magnetic field. The suspen-
sion system of a US-made luxury automobile uses this material. The
stiffness can be adjusted by varying the magnetic field.

* Piezoelectric ceramics and ferroelectricity:'® These materials gener-
ate an electric field when strained. Conversely, if an electric cur-
rent is passed through them, they change their dimension. Bar-
ium titanate, lead zirconate titanate (Pb(Zr, Ti)O;) are examples.
They have the perovskite structure with composition ABO3, where A
and B are metals. They are characterized by a linear strain—electric
field response. The maximum strain is on the order of 0.2%. Appli-
cations include vibration control, micropositioning devices, ultra-
sonics, and non-destructive evaluation.

It is a property of ferroelectrics to exhibit polarization in the absence
of an electric field. Polarization is defined as dipole moment per unit
volume or charge per unit area on the surface. The material is divided
into domains, which are regions with uniformly oriented polar-
ization. Ferroelectrics are characterized by a linear relationship
between stress ¢ and polarization P:

P =do.

There is a converse relationship between strain ¢ and electric field,
E:

e =dE,

where d is called the polarizability tensor. Figure 1.45(a) shows how
the application of an externally applied electric field E results in a
change in length of the specimen. Figure 1.45(b) shows the linear
relationship between the strain and the field. This is a property of
ferroelectric crystals, certain noncentrosymmetric crystals (e.g.
quartz, ZnO), textured polycrystals, and polycrystals with a net sponta-
neous polarization. Applications include adaptive optics, active rotors
and control surfaces, robotics, and MEMS/NEMS (microelectromechan-
ical systems/nanoelectromechanical systems) actuators.

[.3.12  Electronic Materials
Electronic materials are composed, for the most part, of thin films
arranged in several layers and deposited on a substrate. The most

10 K. Bhattacharya and G. Ravichandran, Acta Mater., 51 (2003) 5941.
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Dielectric

Metal

Polycrystalline Si

]
]
_ Thermal oxide

n and p Semiconductors

common substrate is monocrystalline silicon (the silicon wafer). Inte- RIS Cross section ofa

grated circuits form the heart of modern computers and the silicon !

.. . . . semiconductor (CMOS). (Adapted
chip is a primary example. Figure 1.46 shows a schematic of the mater- from W. D. Nix, Met. Trans., 20A
ials and structure used in a CMOS (complementary metal oxide semi- (1989) 2217))
conductor) transistor device. The pn junctions form transistors. The
substrate is silicon, which in this case is n doped. The thin film layers
are vapor deposited and there are a number of mechanical aspects
that are of considerable importance. In Figure 1.46, we have mono-
crystalline and polycrystalline silicon, oxide, glass, metal, and a
dielectric passivation layer.

The thin films deposited on the substrate have dimensions of a few
nanometers to a few micrometers. These films may be under residual
stresses as high as 500 MPa. These stresses are due to:

complementary metal-oxide

* Thermal expansion coefficient effects. When the film cools it con-
tracts. The thermal expansion coefficients of the different layers
can be different, creating internal stresses.

* Phase transformations. The phases in thin films are often non-
equilibrium phases.

There are a number of mechanical problems associated with these
stresses. Dislocations at the interface between substrate and thin film,
cracking of the passivation layer, bending of the substrate/thin film
system are a few examples. We will briefly describe these effects in
chapters 2, 6, 9, and 13.

Magnetic hard disks are also made of thin films. The aluminum
disk, upon which a thin layer of magnetic material is deposited,
rotates at surface velocities approaching 80 km per hour, while
the “head” flies aerodynamically over it. The distance between head
and disk is as low as 0.3 pm. Some of the mechanical problems
are friction, wear, and the unavoidable collisions between disk and
head.
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Three configurations
for single wall carbon nanotubes:
(a) armchair; (b) “zig-zag”; (c)
chiral. (Adapted from M. S.
Dresselhaus, G. Dresselhaus, and
R. Saito, Carbon, 33 (1995) 883.)

[.3.13 Nanotechnology!!-1

Nanotechnology refers to the structure and properties of mater-
ials and devices at the nanometer level. Developments in synthesis
and characterization methods have resulted in materials that are
designed from the “bottom up,” rather than from the “top down.”
These terms were first used by the famous physicist Richard Feynman.
The traditional method used in the design of new materials is
to develop synthesis and processing techniques at the macro-
scale, and then to carry out detailed characterization at the micro-
meter and nanometer scale. The new approach is to start with atoms,
then assemble them into small arrays and characterize their struc-
ture and properties at that level. This approach was led by the
semiconductor revolution. As the sizes of devices become smaller,
we approach atomic dimensions. At that level, it is being found
that many materials possess unique properties. Many biological pro-
cesses also use the bottom-up approach. Atoms aggregate them-
selves into molecules and complex arrays through genetic messages.
The atoms come together and self-organize themselves into complex
arrays of amino acids, which in their turn form proteins. It is hoped
that we will be able to fully harness this approach in the future.
There are already applications of nanotechnology in the market-
place.

A material that is showing great potential because of unique
characteristics is the carbon nanotube. The first nanotube was pro-
duced in Japan by S. Iijima. One can envisage a carbon nanotube
by rolling a single layer of carbon atoms into a hollow cylin-
der. The ends can be semi-spherical caps (one half of a “Bucky-
ball”). There are three morphologies for carbon nanotubes, shown
in Figure 147: armchair, zig-zag, and chiral. They differ in the
following:

¢ Armchair: the hexagons have the “pointy” side perpendicular to
cylinder axis.

e Zig-Zag: the hexagons have the pointy side aligned with the cylinder
axis.

e Chiral: The hexagons are inclined with respect to the cylinder axis,
and the carbon sheet wraps itself helically around cylinder.

These carbon nanotubes have typically a diameter between 5 and
20 nm and length between 1 and 100 um. They have outstanding
mechanical properties, since they are based on the C-C bond, the
strongest in nature. There are varying estimates of their strength, and
values between 45 and 200 GPa are quoted. This would make them
the strongest material known, ranking with diamond. Although the
nanotubes are very short, one can envisage a day where continuous

' C. P. Poole and F. ]J. Owens, Introduction to Nanotechnology (Hoboken, NJ, Wiley-
Interscience, 2003).
12 M. Ratner and D. Ratner, Nanotechnology (Englewood Cliffs, NJ, Prentice Hall, 2003).
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nanotubes are manufactured. Their incorporation as reinforcements
in composites presents a bright prospect.

Figure 1.48 shows how arrays of parallel carbon nanotubes can be
produced. The individual nanotubes, approximately 10 pm in length,
form a dense forest. The carbon nanotube is only one example of
nanotechnology. The mechanical properties of metals are significantly
increased when their grain size is reduced to the nanometer range.
This topic, nanostructured materials, is treated in Chapter 5.

1.4 Strength of Real Materials

Materials deform and fail through defects. These defects (cracks, point
defects, dislocations, twins, martensitic phase transformations, etc.)
are discussed in chapters 4 through 8. The two principal mechanisms
are crack growth and dislocations and plastic flow.

Crack growth: Real materials can have small internal cracks, at
whose extremities high-stress concentrations are set up. Hence, the
theoretical cleavage strength can be achieved at the tip of the crack at
applied loads that are only a fraction of that stress. Griffith’s theory
(see Chapter 7) explains this situation very clearly. These stress con-
centrations are much lower in ductile materials, since plastic flow
can take place at the tip of a crack, blunting the crack’s tendency to
grow.

Dislocations and plastic flow: Before the theoretical shear stress is
reached, dislocations are generated and move in the material; if they
are already present, they start moving and multiply. These disloca-
tions are elementary carriers of plastic deformation and can move at
stresses that are a small fraction of the theoretical shear stress. They
will be discussed in detail in Chapter 4.

In sum, cracks prevent brittle materials from obtaining their the-
oretical cleavage stress, while dislocations prevent ductile materials
from obtaining their theoretical shear stress.

MM REN Array of parallel
carbon nanotubes grown as a

forest. (From R. H. Baughman,
A. A. Zakhidov and W. A. de Heer,
Science, 297 (2002) 787.)
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To achieve the theoretical strength of a crystalline lattice, there
are two possible methods: (1) eliminating all defects and (2) creat-
ing so many defects, that their interactions render them inopera-
tive. The first approach has yielded some materials with extremely
high strength. Unfortunately, this has been possible only in spe-
cial configurations called “whiskers.” The second approach is the
one more commonly pursued, because of the obvious dimensional
limitations of the first; the strength levels achieved in bulk metals
have steadily increased by an ingenious combination of strengthening
mechanisms, but are still much lower than the theoretical strength.
Maraging steels with useful strengths up to 2 GPa have been produced,
as have patented steel wires with strengths of up to 4.2 GPa; the latter
are the highest strength steels.

Figure 149 compares the ambient-temperature strength of tri-
dimensional, filamentary, and whisker materials. The whiskers have
a cross-sectional diameter of only a few micrometers and are usually
monocrystalline (although polycrystalline whiskers have also been
developed). Whiskers are one of the strongest materials developed
by human beings. The dramatic effect of the elimination of two
dimensions is shown clearly in Figure 1.49. The strongest whiskers are
ceramics. Table 1.5 provides some illustrative examples. Iron whiskers
with a strength of 12.6 GPa have been produced, compared with
2 GPa for the strongest bulk steels. The value 12.6 GPa is essentially
identical to the theoretical shear stress, because the normal stress
is twice the shear stress. In general, FCC whiskers tend to be much
weaker than BCC whiskers and ceramics. For instance, Cu whiskers
have a strength of about 2 GPa. This is consistent with the much
lower theoretical shear strength exhibited by copper whiskers. It
turns out that silver, gold, and copper have 7.,,4/G ratios of 0.039
(see chapter 4). Hence, they are not good whisker materials. Figure
1.50 shows a stress—strain curve for a copper whisker. The specimen
had a length between 2 and 3 mm and a cross-sectional diameter
of 6.8 um. The stress drops vertically after the yield point, with
a subsequent plateau corresponding to the propagation of a
Liiders band.
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Table 1.6 | Tensile Strength of Whiskers at Room Temperature*

Maximum Tensile Young's Modulus
Material Strength (GPa) (GPa)
Graphite 19.6 686
AL O3 154 532
Iron 12.6 196
SiC 2040 700
Si 7 182
AIN 7 350
Cu 2 192

*Adapted with permission from A. Kelly, Strong Solids (Oxford, U.K.: Claren-
don Press, 1973), p. 263.

In the elastic range, the curve deviates slightly from Hooke’s law
and exhibits some temporary inflections and drops (not shown in the
figure). In many cases, for both metals and nonmetals, failure occurs
at the elastic line, without appreciable plastic strain. When plastic
deformation occurs, as, for example, in copper and zinc, a very large
yield drop is observed. Although the strength of whiskers is not com-
pletely understood, it is connected to the absence of dislocations. It
is impossible to produce a material virtually free of dislocations -
in other words, perfect. However, for whiskers, dislocations can eas-
ily escape out of the material during elastic loading. Their density
and mean free path are such that they will not interact and prod-
uce other sources of dislocation. Hence, the yield point is the stress
required to generate dislocations from surface sources. The irregular-
ities observed in the elastic range indicate that existing dislocations
move and escape out of the whisker. At a certain stress, the whisker
becomes essentially free of dislocations. When the stress required to
activate surface sources is reached, the material yields plastically, or
fails.

Example 1.12 |

Calculate the stresses generated in a turbine blade if its cross-sectional
area is 10 cm? and the mass of each blade is 0.2 kg.

This is an example of a rather severe environment where the mater-
ial properties must be predicted with considerable detail. For example,
the blade may be in a jet engine. Figure E1.12 shows a section of the
compressor stage of a jet. The individual blades are fixed by a dovetail
arrangement to the turbine vanes. Assume a rotational velocity w =
10,000 rpm and a mean radius R = 0.5 m. The centripetal acceleration
in the bottom of each turbine blade is

1 2
a. = w’R = [10,000 X =5 X 271] x 0.5 = 5.4 x 10° m/s>.
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The stress that is generated is

F  ma. 0.2x54x10°
o ==——-—"=——=—

A A 10 x 10—
where F is the centripetal force and A is the cross-sectional area. This
stress of 100 MPa is significantly below the flow stress of nickel-based
superalloys at room temperature, but can be quite significant at higher

temperatures.

= 100 MPa,

o
it
Blades ? .
Detail of

blade

Turbine rotor
m Turbine blade subjected to centripetal force during operation.
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Exercises

1.1 A jet turbine rotates at a velocity of 7,500 rpm. Calculate the stress acting
on the turbine blades if the turbine disc radius is 70 cm and the cross-sectional
area is 15 cm?. Take the length to be 10 cm and the alloy density to be 8.5
glcm?®.

1.2 The material of the jet turbine blade in Problem 1.1, Superalloy IN 718,
has a room-temperature yield strength equal to 1.2 GPa; it decreases with
temperature as

T —Ty
o=o0p(1— s
Tm — To
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where Ty is the room temperature and T,, is the melting temperature in K (T,
= 1,700 K). At what temperature will the turbine flow plastically under the
influence of centripetal forces?

13

(a) Describe the mechanical properties that are desired in a tennis racket,
and recommend different materials for the different parts of the racket.

(b) Describe the mechanical properties that are desired in a golf club, and
recommend different materials for the different parts of the club.

1.4 On eight cubes that have one common vertex, corresponding to the origin
of axes, draw the family of {111} planes. Show that they form an octahedron
and indicate all <110> directions.

1.5 The frequency of loading is an important parameter in fatigue. Estimate
the frequency of loading (in cycles per second, or Hz) of an automobile tire in
the radial direction when the car speed is 100 km/h and the wheel diameter
is 0.5 m.

1.6 Indicate, by their indices and in a drawing, six directions of the <112>
family.

1.7 The density of Cu is 8.9 g/cm® and its atomic weight (or mass) is 63.546.
It has the FCC structure. Determine the lattice parameter and the radius of
atoms.

1.8 The lattice parameter for W(BCC) is a = 0.32 nm. Calculate the density,
knowing that the atomic weight (or mass) of W is 183.85.

1.9 Consider the unit cell of the CsCl which has NaCl structure. The radius of
Cs" is 0.169 nm and that of Cl is 0.181 nm. (a) Determine the packing factor
of the structure, assuming that Cs* and Cl~ ions touch each other along the
diagonals of the cube. (b) Determine the density of CsCl if the atomic weight
of Cs is 132.905 and of Cl is 35.453.

1.10 MgO has the same structure as NaCl. If the radii of 0>~ and Mg?* ions
are 0.14 nm and 0.070 nm, respectively, determine (a) the packing factor and
(b) the density of the material. The atomic weight of O, is 16 and that of Mg
is 24.3.

1.11 Germanium has the diamond cubic structure with interatomic spacing
of 0.245 nm. Calculate the packing factor and density. (The atomic weight of
germanium is 72.6.)

1.12 The basic unit (or mer) of polytetrafluoroethylene (PTFE) or Teflon is
CyF4. If the mass of the PTFE molecule is 45,000 amu, what is the degree
of polymerization?

1.13 Using the representation of the orthorhombic unit cell of polyethylene
(see Figure E1.13), calculate the theoretical density. How does this value com-
pare with the density values of polyethylene obtained in practice?

1.14 A pitch blend sample has five different molecular species with molecular
masses of 0.5 x 10°, 0.5 x 107, 1 x 107, 4 x 107, and 6 x 107. Compute the
number-averaged molecular weight and weight-averaged molecular weight of
the sample.

1.15 Different polymorphs of a material can have different mechanical prop-
erties. Give some examples.
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® = Carbon O = Hydrogen

0.245 nm

0.452 nm

T 0.741 nm
Fibre axis

1.16 What are smart materials? Give some examples.

1.17 What are glass-ceramics? Explain their structure and properties. (Hint:
Think of Corning ware.)

1.18 Explain how the scale of microstructure can affect the properties of a
material. Use steel, an alloy of iron and carbon as an example.

1.19 For a cubic system, calculate the angle between

(a) [100] and [111],
(b) [111] and [112],
() [112] and [221].

1.20 Recalculate the bicycle stiffness ratio for a titanium frame. (See Examples
1.1 and 1.2) Find the stiffness and weight of the bicycle if the radius of the
tube is 25 mm. Use the following information:

Alloy: Ti—6% Al—4%V,
oy = 1,150 MPa,
Density = 4.5 gjcm?®,
E =106 GPa,

G = 40GPa.
1.21 Calculate the packing factor for NaCl, given that ry, = 0.186 nm and
Rq = 0.107 nm.

1.22 Determine the density of BCC iron structure if the iron atom has a radius
of 0.124 nm.

1.23 Draw the following direction vectors in a cubic unit cell:

a [100] and [110], b [112], c[110], d[321].

Crystalline form of
polyethylene with orthorhombic
unit cell.
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1.24 Calculate the stress generated in a turbine blade if its cross-sectional area
is 0.002 m? and the mass of each blade is 0.5 kg. Assume that the rotational
velocity w = 15,000 rpm and the turbine disk radius is 1 m.

1.25 Suppose that the turbine blade from the last problem is part of a jet
turbine. The material of the jet turbine is a nickel-based superalloy with the
yield strength, oy = 1.5 GPa; it decreases with temperature as

o = 0o[(1 = (T = To))/(Tm — To)l,

where Ty = 293 K is the room temperature and Ty, = 1,550 K is the melting
temperature. Find the temperature at which the turbine will flow plastically
under the influence of centripetal forces.

1.26 Calculate the lattice parameter of Ni(FCC) knowing that the atomic dia-
meter of nickel is 0.249 nm.

1.27 Ajet turbine blade, made of MARM 200 (a nickel-based superalloy) rotates
at 10,000 rpm. The radius of the disk is 50 mm. The cross-sectional area is 20
cm? and the length of the blade is equal to 12 cm. The density of MARM 200
is 8.5 glcm®.

(a) What is the stress acting on the turbine blade in MPa?
(b) If the room temperature strength of MARM 200 is equal to 800 MPa, what
is the maximum operational temperature in kelvin?

The yield stress varies with temperature as:

el (£22)]
(Tm _TO)

where T, is the melting temperature (T, = 1,700 K) and T, is the room
temperature; m = 0.5.

1.28 Generate a three-dimensional unit cell for the intermetallic compound
AuCu; that has a cubic structure. The Au atoms are at the cube corners and
the Cu atoms at the center of the faces. Given:

tcy = 0.128 nm A.N. ¢y, = 63.55 amu
Tau = 0.144 nm AN. oy = 196.97 amu

(a) Find the lattice parameter in nanometers.
(b) What is the atomic mass of the unit cell in grams?
() What is the density of the compound in g/cm3?

1.29 Draw the following unit cells with the planes (one plane per cube with
the coordinate axes shown below):

(a) (101),
(b) (111),
( )
(

1.30 Show how the atoms pack in the following planes by drawing circles
(atoms) in the appropriate spots:

(111) in FCC,
(110) in FCC,
(111) in BCC,
(

110) in BCC.

a)
b)
9
d)

— o — —
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1.31 BET is a technique for measuring the surface area of particles, which is
of obvious importance in nanomaterials. Describe this technique. Don’t forget
to mention what the acronym BET stands for.

1.32 “Tin plate” is one of the largest tonnage steel products. It is commonly
used for making containers. If it is a steel product why is it called tin plate?

1.33 Using Figure 1.7, list the important symmetry operations in the following
crystal systems:

(a) Triclinic,
(b) Monoclinic,
(c) Orthorhomic.

1.34 The only possible rotation operations that can be used to define crystal
systems are rotations of type n = 1, 2, 3, 4, and 6. Using other values of n
will result in unit cells which, when joined together, will not fill all space.
Demonstrate this by giving a simple mathematical proof. (Hint: consider two
lattice points separated by a unit translation vector.)

1.35 Calculate the APF (atomic packing factor) for BCC and FCC unit cells,
assuming the atoms are represented as hard spheres. Do the same for the
diamond cubic structure.

1.36 Draw the following crystallographic planes in BCC and FCC unit cells
along with their atoms that intersect the planes:

(101),
(110),
(441),
(111),
(312).

1.37 A block copolymer has macromolecules of each polymer attached to the
other as can be seen in Figure 1.22(c). The total molecular weight is 100,000
g/mol. If 140 g of A and 60 g of B were added, determine the degree of
polymerization for each polymer. A: 56 g/mol; B: 70 g/mol.

1.38 Sketch the following planes within the unit cell. Draw one cell for each
solution. Show new origin and ALL necessary calculations.

1.39 Sketch the following directions within the unit cell. Draw one cell for
each solution. Show new origin and ALL necessary calculations.
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1.40 Suppose we introduce one carbon atom for every 100 iron atoms in an
interstitial position in BCC iron, giving a lattice parameter of 0.2867 nm. For
the Fe—C alloy, find the density and the packing factor.

Given:

Atomic mass of C = 12,

Atomic mass of Fe = 55.89,

a(Fe) = 0.2867 nm,

Avogadro’s number, N = 6.02 x 10%,

141 Determine the maximum length of a polymer chain made with 1,500
molecules of ethylene, knowing that the carbon bond length is 0.13 nm.



Chapter 2

Elasticity and Viscoelasticity

2.1 ‘ Introduction

Elasticity deals with elastic stresses and strains, their relationship,
and the external forces that cause them. An elastic strain is defined as
a strain that disappears instantaneously once the forces that cause it
are removed. The theory of elasticity for Hookean solids — in which
stress is proportional to strain - is rather complex in its more rigor-
ous treatment. However, it is essential to the understanding of micro-
and macromechanical problems. Examples of the former are stress
fields around dislocations, incompatibilities of stresses at the inter-
face between grains, and dislocation interactions in work hardening;
examples of the latter are the stresses developed in drawing, and
rolling wire, and the analysis of specimen-machine interactions in
testing for tensile strength. This chapter is structured in such a way
as to satisfy the needs of both the undergraduate and the graduate
student. A simplified treatment of elasticity is presented, in a man-
ner so as to treat problems in an undergraduate course. Stresses and
strains are calculated for a few simplified cases; the tridimensional
treatment is kept at a minimum. A graphical method for the solution
of two-dimensional stress problems (the Mohr circle) is described. On
the other hand, the graduate student needs more powerful tools to
handle problems that are somewhat more involved. In most cases,
the stress and strain systems in tridimensional bodies can be bet-
ter treated as tensors, with the indicial notation. Once this tensor
approach is understood, the student will have acquired a very helpful
visualization of stresses and strains as tridimensional entities. Import-
ant problems whose solutions require this kind of treatment involve
stresses around dislocations, interactions between dislocations and
solute atoms, fracture mechanics, plastic waves in solids, stress con-
centrations caused by precipitates, the anistropy of individual grains,
and the stress state in a composite material.
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Figure 2.1 shows a cylindrical specimen being stressed in a machine
that tests materials for tensile strength. The upper part of the speci-
men is screwed to the crosshead of the machine. The coupled rotation
of the two lateral screws causes the crosshead to move. The load cell
is a transducer that measures the load and sends it to a recorder; the
increase in length of the specimen can be read by strain gages, extens-
ometers, or, indirectly, from the velocity of motion of the crosshead.
Another type of machine, called a servohydraulic machine, is also
used. Assuming that at a certain moment the force applied on the
specimen by the machine is F, there will be a tendency to “stretch”
the specimen, breaking the internal bonds. This breaking tendency
is opposed by internal reactions, called stresses. The best way of visu-
alizing stresses is by means of the method of analysis used in the
mechanics of materials: The specimen is “sectioned,” and the mis-
sing part is replaced by the forces that it exerts on the other parts.
This procedure is indicated in the figure. In the situation shown,
the “resistance” is uniformly distributed over the normal section and
is represented by three modest arrows at A. The normal stress ¢ is
defined as this “resistance” per unit area. Applying the equilibrium-of-
forces equation from the mechanics of materials to the lower portion
of the specimen, we have

Y F=0

F—-0cA=0
F
= —. 2.1
o= 21

This is the internal resisting stress opposing the externally applied
load and avoiding the breaking of the specimen. The following
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stress convention is used: Tensile stresses are positive and compres-
sive stresses are negative. In geology and rock mechanics, on the
other hand, the opposite sign convention is used because compres-
sive stresses are much more common.

As the applied force F increases, so does the length of the speci-
men. For an increase dF, the length I increases by dl. The normalized
(per unit length) increase in length is equal to

or, upon integration,

hdl
g:/ —=1Hl—1, (22)
o lo

where I, is the original length. This parameter is known as the longi-
tudinal true strain.

In many applications, a simpler form of strain, commonly called
engineering or nominal strain, is used. This type of strain is defined
as

g—e =l (2.2a)
lo o
In materials that exhibit large amounts of eleastic deformation (rub-
bers, soft biological tissues, etc.) it is customary to express the defor-
mation by a parameter called “stretch” or “stretch ratio.” It is usually
expressed as A:

A=¢. +1.

Hence, deformation starts at A=1.

When the strains are reasonably small, the engineering (or nom-
inal) and true strains are approximately the same. We will use sub-
scripts t for true values and e for engineering values. It can be easily
shown that

g, = In(1 + ). (2.2b)

The elastic deformation in metals and ceramics rarely exceeds
0.005, and for this value, the difference between &; and &, can be

neglected.
In a likewise fashion, a nominal (or engineering) stress is defined as
F
= —, 2.2¢
Oe Ao ( )

where A, is the original area of cross-section.
The relationship between the true stress and the engineering
stress is

O Ay

O, A’
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During elastic deformation, the change in cross-sectional area is less
than 1% for most metals and ceramics; thus o, = o;. However, during
plastic deformation, the differences between the true and the engin-
eering values become progressively larger. More details are provided
in Chapter 3 (Section 3.1.2).

The sign convention for strains is the same as that for stresses:
Tensile strains are positive, compressive strains are negative. In
Figure 2.2, two stress-strain curves (in tension) are shown; both speci-
mens exhibit elastic behavior. The solid lines describe the loading
trajectory and the dashed lines describe the unloading. For perfectly
elastic solids, the two kinds of lines should coincide if thermal effects
are neglected. The curve of Figure 2.2(a) is characteristic of metals
and ceramics; the elastic regimen can be satisfactorily described by a
straight line. The curve of Figure 2.2(b) is characteristic of rubber; o
and ¢ are not proportional. Nevertheless, the strain returns to zero
once the stress is removed. The reader can verify this by stretching
a rubber band. First, you will notice that the resistance to stretch-
ing increases slightly with extension. After considerable deformation,
the rubber band “stiffens up,” and further deformation will eventu-
ally lead to rupture. The whole process (except failure) is elastic. A
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conceptual error often made is to assume that elastic behavior is
always linear; the rubber example shows very clearly that there are
notable exceptions. However, for metals, the stress and strain can be
assumed to be proportional in the elastic regimen; these materials are
known as Hookean solids. For polymers, viscoelastic effects are very
important. Viscoelasticity results in different trajectories for loading
and unloading, with the formation of a hysteresis loop. The area of the
hysteresis loop is the energy lost per unit volume in the entire defor-
mation cycle. Metals also exhibit some viscoelasticity, but it is most
often neglected. Viscoelasticity is attributed to time-dependent micro-
scopic processes accompanying deformation. An analogy that applies
well is the attachment of a spring and dashpot. The spring repre-
sents the elastic portion of the material, the dashpot the viscoelastic
portion.

In 1678, Robert Hooke performed experiments that demonstrated
the proportionality between stress and strain. He proposed his law as
an anagram - “ceiiinosssttuv,” which rearranged, forms the Latin Ut
tensio sic vis. The meaning is “As the tension goes, so does the stretch.”
In its most simplified form, we express this law as

E=-—, (2.3)

o
e
where E is Young’s modulus. For metals and ceramics, E has a very
high value - for example, 210 GPa for iron. Chapter 4 devotes some
effort to the derivation of E for materials from first principles.
E depends mainly on the composition, crystallographic structure, and
nature of the bonding of elements. Heat and mechanical treatments
have little effect on E, as long as they do not affect the former param-
eters. Hence, annealed and cold-rolled steel should have the same
Young’s modulus; there are, of course, small differences due to the for-
mation of the cold-rolling texture. E decreases slightly with increases
in temperature.

In monocrystals, E shows different values for different crystallo-
graphic orientations. In polycrystalline aggregates that do not exhibit
any texture, E is isotropic: It has the same value in all directions. The
values of E given in tables (e.g., Tables 2.3-2.5 later in this chapter)
are usually obtained by dynamic methods involving the propagation
of elastic waves, not from conventional stress-strain tests. An elastic
wave is passed through a sample; the velocities of the longitudinal
and shear waves, V, and V;, respectively, are related to the elastic con-
stants by means of the following mathematical expressions (p is the
density, E is Young’s modulus, and G is the shear modulus):!

E G
Vo= = V= [=.
o o

1 For more details, see M. A. Meyers, Dynamic Behavior of Materials (New York: Wiley, 1994).
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Example 2.1 |

Calculate the material properties E, G, and v of SiC, given the graphs of
the longitudinal and shear sound velocities obtained using ultrasonic
equipment. (See Figure E2.1). Here, p =3.18 x 10° kg/m?® and the length
of specimen is L=4 mm.

wave
-

—_—

Transducer Specimen

Longitudinal wave

Signal (V)
men'_\o_\pr

Time (us)

Shear wave

Signal (V)

Time (us)

Solution: We take equivalent peaks, marked by arrows, in sequential
signal packets. We must remember that the pulse reflects at the free
surface, and therefore, we have to take twice the length of the pulse.
We have

2L 2x4x107° .
VZ = = =125 x 10 m/S,
-6 (1.16 —0.52) x 10-°
E
Ve=./—,
)
E =pV7 =3.18 x 10> x (12.5 x 10%)* = 496.9 x 10° Pa = 496.9 GPa,
2L 2x4x107°

= = = 7.62 x 10 m/s
ty—1t;  (2.15—1.10) x 10-° I

S
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G
Vs = )
0

G = pV? =3.18 x 10° x (7.62 x 10%)* = 184.6 x 10° Pa=184.6 GPa.

Since, according to Table 2.2,
_ E
T 2(14v)
where v is Poisson’s ratio, as explained in Section 2.4, it follows that

E 496.9

— —1=————1=0.346.
2G 2 x 184.6

VvV =

(Note: The preceding calculations were conducted assuming uniaxial
stress and without the dispersion correction; hence, the results are
only approximate.)

A correct equation for the elastic modulus would be

P L S Gl ) M
Ve T T a2

This is because the length of the pulse is much shorter than the lateral
dimension of the specimen, and therefore, the specimen is stressed in
uniaxial strain.?

2.3 | Strain Energy (or Deformation
Energy) Density

When work is done on a body, its dimensions change. The work done
(W) is converted into heat (Q) and an increase in internal energy (U)
of the body. We can write as per the first law of thermodynamics

dU = dQ — dw.

For most solids, the elastic work produces an insignificant amount
of heat. Hence, the work done on a body during deformation is con-
verted into internal energy, which is stored in the deformed material
and we call it strain energy or strain energy density when referring to
the stored strain energy per unit volume. In elastic springs the energy
is stored, while in a damping element the energy is dissipated as heat.
Quite frequently, in mechanics, we use the principle of minimization
of energy to arrive at useful expression.

Consider an elemental cube under uniaxial tension, o1, as shown
in Fig. 2.3(a). The work done is given by product of force and change
in length. Figure 2.3(b) shows the plot of tensile force vs. displace-
ment, where we have converted the stress into force and strain into

2 The interested student can obtain more information in M. A. Meyers, Dynamic Behavior
of Materials (New York: Wiley, 1994).
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(a) Cube under a tensile
stress, 0 |. (b) Tensile force vs.
displacement. (c) Cube under a
shear stress, 03;. (d) Shear force
vs. displacement.

110Xy OX3
X:
A 3 A
o
o | 1 .
OX3 > X
Xy 0 B €110X,
oXy
X2
(a) (b)
031 0X OX3
X3
A
031
> X1
0
- ¥310Xq
X2
(c) (d)

displacement. The work done is the area under the force vs. displace-
ment curve:

1 1
Total work done = 5[0’11 (O'XzO'X;;)EHO'Xl] = 5[0'11811 (O'X10'X20'X3)],

where oq; is the tensile stress component in direction 1, &1; is the
corresponding tensile strain, ox;, ox, and ox3 are the lengths of side
of the cube.

The work done per unit volume is

Wy = 5011811~

We can obtain similar expressions for the work done by other stress
components. The reader can show that for the shear stress, o3;, the
work done per unit volume (see Figure 2.3(c) and (d)) is given by

1
Wz = 5081731,

where o3; and y3; are the shear stress and shear strain components,
respectively, acting in direction 3.
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Using the principle of superposition, i.e., combining the results
for two or more stresses (or strains), we can write for the total work
done per unit volume or the strain energy density as

1
W= 5(011811 + 022622 + 033833 + 2012Y12 + 2023Y23 + 2031Y31).

In more compact indicial notation, we can write
1
U=W= Eaijgij’

where the subscripts i and j represent the plane normal on which
the stress is acting and the direction in which the stress is acting,
respectively. This notation is explained in Section 2.9. The units of
strain energy density are J/m® or N-m/m3, or N/m2. The last one is
the same as the units of stress. It should not cause any confusion if
the reader will recall that the strain is a dimensionless quantity. Note
that strain energy density is a scalar quantity, hence no indexes.

For a linearly elastic solid under a uniaxial stress we can use the
Hooke’s law (0;; = E ¢;;) to obtain an alternate expression for the strain
energy density:

1 1., 1,
U=W= 5(71']'8“- = EEEU = EO'“.
One can extend the concept of elastic strain energy density to region
of inelastic behavior by defining the strain energy density as the area
under the stress-strain curve of a material. Sometimes, we take this
area under the stress-strain curve as a measure of the toughness of
a material.

Example 2.2 |

A bar of a material with Young’s modulus, E, length, L, and cross-
sectional area, A, is subjected to an axial load, P. Derive an expression
for strain energy stored in the bar.

Solution: In order to determine the total elastic strain energy stored in
a body under a general stress, o, we need to integrate the elastic strain
energy density over the original volume of the material. Thus, the total
elastic strain energy for a material of volume V, can be written as

2
o
Uotar 2/ Edv-
%

For the simple case of a tensile force P acting on an area, A, we can
write this as

L
P2 P2L
Vit = | 2547 4 = 2527°
0
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(a) Specimen subjected
to shear force. (b) Strain
undergone by small cube in shear
region. (c) Specimen (cylinder)
subjected to torsion by a torque T.

«— D; —>

Region of shear

€ 5>

(a)

(b)

(c)

2.4 ‘ Shear Stress and Strain

Imagine the loading arrangement shown in Figure 2.4(a). The speci-
men is placed between a punch and a base having a cylindrical orifice;
the punch compresses the specimen. The internal resistance to the
external forces now has the nature of a shear. The small cube in
Figure 2.4(b) was removed from the region being sheared (between
punch and base). It is distorted in such a way that the perpendicular-
ity of the faces is lost. The shear stresses and strains are defined as
F dl -
T:X, yZT:taneze (24)
The sign convention for shear stresses is given in Section 2.6. The area
of the surface that undergoes shear is

Dy +D
Aén(%)h.
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The average of the two diameters is taken because D, is slightly larger
than Dj.

A mechanical test commonly used to find shear stresses and strains
is the torsion test. The equations that give the shear stresses and
strains in terms of the torque are given in texts on the mechanics of
materials. Figure 2.4(c) shows a cylindrical specimen subjected to a
torque T. The relationship between the torque and the shear stresses
that are generated is given by®

Tc

Tmax = 7>
J
where ¢ is the radius of the cylinder and J=mc*/2 is the polar
moment of inertia. Tubular specimens are preferred over solid cylin-
ders because the shear stress can be approximated as constant over
the cross section of the cylinder. For a hollow cylinder with b and c as
inner and outer radii, respectively, we subtract out (the hollow part
to obtain)
wct bt

===

For metals, ceramics, and certain polymers (the Hookean solids), the
proportionality between 7 and y is observed in the elastic regimen.
In analogy with Young’s modulus, a transverse elasticity, called, the
rigidity, or shear modulus, is defined as

G =21, (2.5)
Y

G, which is numerically less than E, is related to E by Poisson’s ratio,
discussed in Section 2.5. Values of G for different materials are given
in Table 2.5; it can be seen that G varies between one-third and one-
half of E.

Example 2.3 |
A cylindrical steel specimen (length =200 mm, diameter=5 mm), is
subjected to a torque equal to 40 N - m.

(a) What is the deflection of the specimen end, if one end is fixed?
(b) Will the specimen undergo plastic deformation?

Given:

E=210 GPa,
v=0.3,
0,=300 MPa (tensile yield stress).

3 See E. P. Popov, Engineering Mechanics of Solids (Englewood Cliffs, NJ: Prentice Hall,
1990).
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Solution:

T c
(El) Tmax = ]—
Given

d
T=40N-m, c= 2 = 2.5mm.

To calculate t,,.x, we need to know J:
C4

J=n 2)

Substitute (2) into (1).
_T.c 2T  2-40 N-m
Tmax = B (%) T wcd T - (2.5)2 mm3

= 1630 MPa

= 1.63 GPa.

Shear stress and shear strain are related as
T=Gy.

G can be calculated from E and v.
E 210

G = = = 81GPa,
2(1+v) 2(1+0.3)
1.63
y = o _ 222 0.02.
G 81
But,
co
)/ =

where 0 is the angle of rotation.

Torsional deflection = angle of rotation

_ vl
T e
0.02 x 200 .
= B = 1.6radians.

(b)  Tmax = 1.63 GPa.

The shear stress required to cause permanent deformation is related to
the yield stress as follows:

“y
Ty = =
Y2
When the stress is o,
300

7, = —— = 150 MPa.
2

But from (a), tmax = 1.63 GPa > 150 MPa. Therefore, the specimen will
undergo plastic deformation.
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Example 2.4 |

What is the strain energy density in a low-carbon steel sample loaded
to its elastic limit of 500 MPa?

Solution: Take E for a low-carbon steel to be 210 GPa. For such a
material under a stress o, we have a strain energy density given by
10%  1(500 x 10°)

2E 2 210 x 10°

595 kJ/m°.

U =

2.5 ‘ Poisson’s Ratio

A body, upon being pulled in tension, tends to contract laterally. The
cube shown in Figure 2.5 exhibits this behavior. The stresses are now
defined in a tridimensional body, and they have two indices. The first
indicates the plane (or the normal to the plane) on which they are
acting; the second indicates the direction in which they are point-
ing. These stresses are schematically shown acting on three faces
of a unit cube in Figure 2.5(a). The normal stresses have two iden-
tical subscripts: 011, 022, 033. The shear stresses have two different
subscripts: 012, 013, 023. These subscripts refer to the reference system
Ox1x,x3. If this notation is used, both normal and shear stresses are
designated by the same letter, lower case sigma. On the other hand,
in more simplified cases where we are dealing with only one normal
and one shear stress component, ¢ and v will be used, respectively;
this notation will be maintained throughout the text. In Figure 2.5,
the stress o33 generates strains €11, €3, €33. (The same convention is
used for stresses and strains.) Since the initial dimensions of the cube
are equal to 1, the changes in length are equal to the strains. Poisson’s
ratio is defined as the ratio between the lateral and the longitudinal
strains. Both £4; and &3, are negative (signifying a decrease in length),
and e33 is positive. In order for Poisson’s ratio to be positive, the neg-
ative sign is used. Hence,

v=—t =22 (2.6)

In an isotropic material, £1; is equal to e;5;. We can calculate the value
of v for two extreme cases: (1) when the volume remains constant and
(2) when there is no lateral contraction. When the volume is constant,
the initial and final volumes, V, and V, respectively, are equal to

Vo =1,
V = (1+en) (1+ex)(1+e33).
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(2) Unit cube in body
subjected to tridimensional stress;
only stresses on the three exposed
faces of the cube are shown. (b)
Unit cube being extended in
direction Ox3.

I Xy

X1

(a)

(b)

Neglecting the cross products of the strains, because they are orders

of magnitude smaller than the strains themselves, we have
V =1+en + e +é33.
Since V=V,,

&11 + €22 + €33 = 0.

For the isotropic case, the two lateral contractions are the same

(€11 = €22). Hence,
2811 = —&33.
Substituting Equation 2.7 into Equation 2.6, we arrive at

v = 0.5.

(2.7)
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For the case in which there is no lateral contraction, v is equal to zero.
Poisson’s ratio for metals is usually around 0.3. (See Table 2.5.) The
values given in the table apply to the elastic regimen; in the plastic
regimen, v increases to 0.5, since the volume remains constant during
plastic deformation.

Poisson’s ratio for cork (and other cellular materials) is about
0.2, which means that we can push cork into a glass bottle with-
out expanding the bottle. The student should try to do this with a
rubber stopper (v ~ 0.5)!

It is possible to establish the maximum and minimum for Pois-
son’s ratio. We know that G and E are positive. This is a consequence
of the positiveness and definiteness of the strain energy function (a
subject that we will not treat here - in simple words, the unloaded
state of the body is the lowest energy state).

In the equation below:

B E
C2(14v)
we set
E,G>0
Thus
G 1
— = > (0
E 2(14v) —

This leads to:
v > —1.

The lower bound for Poisson’s ratio is obtained by deforming a body
and assuming that its volume remains constant, as was done earlier
in this section. Thus:

0.5>v>—1.

2.6 | More Complex States of Stress

The relationships between stress and strain described in sections 2.2
and 2.4 are unidimensional or uniaxial stress states, and do not apply
to bidimensional and tridimensional states of stress. The most gen-
eral state of stress can be represented by the unit cube of Figure 2.5(a).
The generalized Hooke’s law (as the set of equations relating tridimen-
sional stresses and strains is called) is derived next, for an isotropic
solid. It is assumed that shear stresses can generate only shear strains.
Thus, the longitudinal strains are produced exclusively by the normal
stresses. 011 generates the following strain:
o011

&1 = ? . (28)
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Since v= —gy/e11 = —e33/e11 for stress o1, we also have

Vo1q
€ = €33 = _—E .

The stress oy, in its turn, generates the following strains:

- Vo
Exp = % and £11 = €33 = —TH (29)
For 033,
(o) Vo
€33 = % and E11 = €xp = —T:B (210)

In this treatment, the shear stresses generate only shear strains:

012 013 023

?, Y13 = ?, Y23 = ?

The second simplifying assumption is called the “principle of super-
position.” The total strain in one direction is considered to be equal
to the sum of the strains generated by the various stresses along
that direction. Hence, the total &;; is the sum of &1; produced by
011, 022, and o33. Adding strains from Equations 2.8 through 2.10, we
obtain the generalized Hooke’s law:

V12 =

1
&1 = T [o11 =V (022 + 033)].
1
&2 = T [022 =V (011 + 033)].
(2.11)
£33 = T (o33 =V (011 + 022)].
_onw  _ow _om
Y12 = G Y13 = G V23 = G

Applying these equations to a hydrostatic stress situation
(011=0x3m=033=—p), we can see perfectly that there are no
distortions in the cube (y12 =y 13 =23 =0) and that g1; = &5, = £33.
The triaxial state of stress is difficult to treat in elasticity (and even
more difficult in plasticity). In the great majority of cases, we try to
assume a more simplified state of stress that resembles the tridimen-
sional stress. This is often justified by the geometry of the body and
by the loading configuration. The example discussed in Section 2.2 is
the simplest state (uniaxial stress). It occurs when beams are axially
loaded (in tension or compression). In sheets and plates (where one
dimension can be neglected with respect to the other two), the state of
stress can be assumed to be bidimensional. This state of stress is also
known as plane stress, because normal stresses (normal to the surface)
are zero at the surface, as are shear stresses (parallel to the surface)
at the surface. In Figure 2.5(a), one would be left with 011, 012, 02
if Ox;x, were the plane of the sheet. Since the sheet is thin, there is
no space for buildup of the stresses that are zero at the surface. The
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solution to this problem is approached graphically in Section 2.7. The
opposite case, in which one of the dimensions is infinite with respect
to the other two, is treated under the assumption of plane strain.
If one dimension is infinite, strain in it is constrained; hence, one
has two dimensions left. This state is called bidimensional or, more
commonly, plane strain. It also occurs when strain is constrained in
one direction by some other means. A long dam is an example in
which deformation in the direction of the dam is constrained. Yet
another state of stress is pure shear, when there are no normal

stresses.

Example 2.5 |

Consider a plate under uniaxial tension that is prevented from con-
tracting in the transverse direction. Find the effective modulus along
the loading direction under this condition of plane strain.

Solution: Take
E = Young’s modulus, v = Poisson’s ratio

Let the loading and transverse directions be 1 and 2, respectively. There
is no stress normal to the free surface, i.e., 03 =0. Although the applied
stress is uniaxial, the constraint on contraction in direction 2 results in
a stress in that direction also. The strain in direction 2 can be written
in terms of Hooke’s law as

gy =0= (1/E)[Gz = VO'1].

Thus, 0, =vo;.
In direction 1, we can write, for the strain,

en = (1/E)[oy — voa] = (1/E)[oy — v2oy]
= (01/E)(1 —v?).

Hence, the plane strain modulus in direction 1 is
E' = (01/e1) = E /(1 —V?).

If we take v=0.33, then the plane strain modulus E’=1.12E.

Example 2.6 |

An isotropic, linear, elastic material is compressed by a force P by means
of a punch in a rigid die. The material has a Young’s modulus E and
a Poisson’s ratio v. The displacement of the material is A, and the
cavity has a height h and a square base of side a. (See Figure E2.6.)
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Determine the stress and strain components. Also, determine the rela-
tionship between P and the displacement A of the material.

Punch

PSP IT sVl 77T

------

X a

Solution: This is a three-dimensional problem. There are no shear
strains, and the only nonzero normal strain component is ¢,, the strain
in the z-direction. The normal strains in the x- and y-directions are zero,
because the rigid die does not allow deformation in these directions.
However, the stress components in these directions are not zero. We
use the generalized Hooke’s law to obtain the three stress components.
We can write, for the strain components,

g, =—A/h, & =&y =&y =&y =&x =0.

Now we can write the following constitutive relationships by inverting
Equation 2.11) and using x, y, and z instead of 1, 2, and 3:

ox = E/[1+v) (1 = 20)][(1 = v)ex +v &y + &)
=E/[(1+v)(1=2v)]-[0+v (—A/h),

or
oy = —[Ev/(1+v)1 — 2v)][A/h].
Similarly,
oy = E/[(1+v)(1 — 2v)][(1 — v)e, + V(e + &)]
= E/[(1 +v)(1 —2v)] - [0+ v(—A/h)),
or
oy = —Ev/[(1+v)(1 - 2v)|[A/h].
Finally,
o, = E/[(14+v)(1 —2v)][(1 —v)e, +v(ey + &)]
=E/[(1+v)A—2v)]-[1 —v(=A/h)+0],
or

o, =—E@1 —v)/[(1+v)(1—2v)|][A/h].
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The load-displacement relationship is obtained by writing

2
P = o0,a”,

0, = P/a* = —E(1 —v)/[(1 +v)(1 - 2v)|[A/h],
or
P = —Ea*(1 —v)(A/h)/[(1 +v)1 — 2v)].

Note the linear relationship between P and A, is as it should be because
the material in the cavity is linear elastic.

2.7 | Graphical Solution of a Biaxial State of Stress:
the Mohr Circle

There are two common graphical methods to obtain the stresses in a
general orientation from o1y, 013, and o,. These methods are simi-
lar and are a graphical representation of the equations below, that
can be found in any mechanics of materials text:

oy = o —5022 + o ; 92 0526 + 012 5in 26,

Oo11 — 022 .
01y = —— sin 26 + o4, cos 26

The angle 6 can be eliminated from the two equations above, leading
to a quadratic equation that represents a circle. We present below
two graphical methods to obtain the values of normal and shear
stresses in any orientation, as well as the maximum normal and shear
stresses.

Figure 2.6(a) shows a biaxial (or bidimensional) state of stress. The
graphical scheme developed by O. Mohr allows the determination of
the normal and shear stresses in any orientation in the plane. The
reader should be warned, right at the onset, that a change in sign con-
vention for the shear stresses has to be introduced here. The former
sign convention - positive shear stresses pointing toward the positive
direction of axes in faces shown in Figure 2.5(a) - has to be temporar-
ily abandoned and the following convention adopted: Positive shear
stresses produce counterclockwise rotation of a cube (or square), and
negative shear stresses produce clockwise rotation. The sign conven-
tion for normal stresses remains the same. Figure 2.6(b) shows Mohr’s
construction. The normal stresses are plotted on the abcissa, while
the shear stresses are plotted on the ordinate axis. Point A in the
diagram corresponds to a state of stress on the face of the cube per-
pendicular to Ox;; point B represents the state of stress on the face
perpendicular to Ox,. From A and B, we construct a circle with center
in the axis of the abcissa and passing through A and B. The center
is the point where the segment AB intersects the abcissa. Note that
the center occurs at (011 + 033)/2. The stress states for all orientations
of the cube (in the same plane) correspond to points diametrically
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(a) Biaxial (or
bidimensional) state of stress. (b)
Mohr circle and construction of
general orientation Oxi X, (c)
Mohr circle and construction of
principal stresses and maximum
shear stresses (Method ).
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opposed in Mohr’s circle. Hence, we can determine the state of stress
for any orientation.

Method I is as follows: Point A (the stress system on the right-hand
of the cube face) is called the “origin of planes.” We will always start
from it on the Mohr circle. We solve two problems.

First, we determine the stresses on a general coordinate direction
Oxj, Ox;. This is shown in Figure 2.6(b). Lines are drawn through A
(the origin of planes) parallel to Ox; and Ox;. We seek the intersec-
tion of the axes with the circle. We draw lines perpendicular to the
normal stress axis and find the new intersection. Thus, (o}, 7,) rep-
resents stresses on the face perpendicular to Ox}, and (o,, 7y,) repre-
sents stresses on face perpendicular to Ox;. These stresses are drawn in
Figure 2.6(b). Remember that the clockwise-counterclockwise conven-
tion has to be used and that shear stresses are such that the summa-
tion of moments is zero.

Now we determine the maximum normal stresses (principal
stresses) and maximum shear stresses. From point A (the origin of
planes), we draw lines to the points corresponding to the maximum
and minimum principal stresses (Figure 2.6(c)). Notice that these
planes make an angle of 90°. Since we are on a normal stress axis,
the intersection of the perpendicular to this axis corresponds to the
initial point. We draw a square and place the stresses (o1, oz) on the
square. This represents the orientation and values of the principal
stresses. For the maximum shear stresses, we repeat the procedure
(Tmax = (01 — 02)[2). At points of intersection, (Figure 2.6(c)), we go to
the opposite intersection with respect to the normal stress axis) and
obtain the values. We draw these on the square, with the conven-
tion that clockwise is positive. This represents the maximum shear
stress value and orientation. Note that the normal stresses for this
orientation (and the one 90° from it) are nonzero. Note also that
Tmax OCcurs in orientations that make 45° with the principal stress
orientations.

In Method II the sign convention for the shear stresses is the
same: clockwise positive, counterclockwise negative. Again, the nor-
mal stresses are plotted in the abscissa and the shear stresses in the
ordinate. Point A in the diagram corresponds to a state of stress on
the face of the cube perpendicular to Ox;: point B represents the state
of stress on the face perpendicular to Ox;. From A and B we construct
a circle with center in the axis of the abscissa and passing through
A and B. The center is the point where the segment AB intersects
the abscissa. The stress states for all orientations of the square (in the
same plane) correspond to points diametrically opposed in Mohr'’s cir-
cle. Hence we can determine the state of stress for any orientation.
The rotations in the square (real rotations) and in Mohr’s circle have
the same sense: however a rotation of # in the square corresponds
to 26 in Mohr’s circle. For instance, a rotation of 26 in the counter-
clockwise direction leads to a state of stress defined by C and D in
Mohr’s circle. The shear stresses are zero for this orientation and the
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(a) Biaxial (or x. b X5
bidimensional) state of stress: (b) 2 \\
Mohr circle construction (Method \ 022 - X1
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012 » g ///
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\ 021
\
022 \
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»
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_____________ B (055, —051)
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normal stresses are called principal stresses. One subscript is sufficient
to designate the stresses in these special orientations: o1, 03, 03. We
use the convention o1 > o, > o03. In Figure 2.7(a) a rotation of only
0 was done in the same counterclockwise sense, leading to the same
principal stresses. The orientations Ox; and Ox, are called principal
axes (or directions). The curious reader should consult a mechanics of
materials text, such as E. P. Popov, Engineering of Solids (Upper Saddle
River, NJ: Prentice Hall, 1999).

Example 2.7 |

Elisabeth S., a bright, but somewhat nerdy, graduate student, went ski-
ing in her brand-new boots. She had an unfortunate mishap on the
slopes, and her right ski twisted beyond the strength of her femur,
resulting in a fracture. The doctor took some X-rays and informed Elisa-
beth that she had a “spiral fracture.” This triggered a spirited dialogue
between Elisabeth and the doctor. Elisabeth claims that her fracture
(“peeking” through the ruptured skin) is helical. With whom do you
agree? Why? Show, using your knowledge of engineering, what is the
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maximum torque? The tensile strength of bone is 80 MPa and the diam-
eter of the femur is 25 mm.

Fracture plane ’*\@/;
7
e

(0, -7)

The Mohr circle construction (see Figure E2.7) shows that the torsion
T applied to the bone leads to a state of simple shear in the cross section.
If the material were ductile, the failure plane would be the plane of
maximum shear. Since bone is brittle, however, failure will occur along
the surface where the tensile stresses are maximum. This surface is at
angle of 45° with the cross-sectional plane. Thus, the fracture is helical,
and not spiral. (Students should repeat this analysis by using a piece of
chalk and subjecting it to torsion.) The maximum torque that the bone
will withstand is

_d

r

T

where ] is the polar moment on inertia. (The student should consult a
text on the mechanics of materials). Now, since 7p,x = 0 1max, it follows
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ﬁ

that t,,,x =80 MPa. Also,

wd*
J=—
32
Thus,
d3
T = a8 o45N-m.
16

The weight of a normal person is 750 N. Here is a ski tip, then: A
distance of 1 meter from the axis of the leg can easily generate a torque
of sufficient magnitude for a helical bone fracture to occur. Skiers,
beware!

Example 2.8 |

A state of stress is given by

o011 = 350 MPa,
o, = 70 MPa,
09y = 210 MPa.

Determine the principal stresses, the maximum shear stress, and their
angle with the given direction by the Mohr circle.

Solution: Figure E2.8 shows the desired quantities.

b SHEAR STRESS 280

280

280

(0, Tmax) = (280, 100)

(07, 0},) =(350,70)

(01,0)=(380,0)

(075 ,0) =(180,0) 8
NORMAL STRESS

0(180)
0; (380)

(022,072))
= (210,-70)
(0, Tyax ) = (280, =100)
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2.8 | Pure Shear: Relationship between G and E

There is a special case of bidimensional stress in which o3, =—013.
This state of stress is represented in Figure 2.8(a). It can be seen that
012 =0, implying that o1; and o, are principal stresses. Hence, we can
use the special subscripts for principal stresses and write o, =—01.
In Mohr’s circle of Figure 2.8(b), the center coincides with the origin
of the axes. We can see that a rotation of 90° (on the circle) leads to a
state of stress in which the normal stresses are zero. This rotation is
equivalent to a 45° rotation in the body (real space). The magnitude of
the shear stress at this orientation is equal to the radius of the circle.
Hence, the square shown in Figure 2.8(c) is deformed to a lozenge
under the combined effect of the shear stresses. Such a state of stress
is called pure shear.

It is possible, from this particular case, to obtain a relationship
between G and E; furthermore, the relationship has a general nature.
The strain ¢4 is, for this case,

=

&1 = E ((71 — VGz) = 1+ V) . (212)

We have, for the shear stresses (using the normal, and not the Mohr,
sign convention),

T = —0y. (2.13)
But we also have,

T1=Gy. (2.14)

A
0 (0,0

T AR W Pure shear.
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Substituting Equations 2.13 and 2.14 into Equation 2.12 yields

G
11 = —?}/(1 +V)
It is possible, by means of geometrical considerations on the triangle
ABC in Fig. 2.8(c), to show that

2611 = —y.

The reader should do this, as an exercise. Hence,

E

G=—7—.

2(1+v)
Consequently, G is related to E by means of Poisson’s ratio. This theor-
etical relationship between E and G is in good agreement with exper-
imental results. For a typical metal having v =0.3, we have G=E|2.6.
The maximum value of G is EJ2.

The state of simple shear should not be confused with pure shear;
simple shear involves an additional rotation, so that two faces remain
parallel after deformation.

2.9 | Anisotropic Effects

Figure 2.5 shows that a general stress system acting on a unit cube
has nine components and is a symmetrical tensor. (The off-diagonal
components are equal, i.e., 013 =031, 012 =021, and 03 =03,.) We can
therefore write

o111 012 O13 011 012 O13
021 022 023 | = | O12 022 023
031 032 033 013 023 033

When the unit cube in Figure 2.5 is rotated, the stress state at that
point does not change; however, the components of the stress change.
The same applies to strains. A general state of strain is described by

€11 €12 €13 11 €12 €13
€21 €22 €23 | = | €12 €22 €23
€31 €32 €33 €13 €23 €33

We can also use a matrix notation for stresses and strains, replacing
the indices by the following:

1—-1 12— 5
22 —>2 13— 5
33—>3 12— 6
11 12 — 13 1 6 <« 5
N T N 1
22 23 = 2 4
N7 A
33 3
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We now have the stress and strain, in general form, as

01 0Og O5s &1 86/2 85/2
O Oy O4 and 85/2 20 84/2
Os 04 O3 85/2 84/2 &3

It should be noted that &; =¢&11, &2 = €95, and &3 = ¢&33, but

£4 = 2833 = Y23,
&5 = 2613 = Y13,
&6 = 2812 = Y12.

These differences in notation are important to preserve the equations
(see shortly) that relate stresses to strains.

The foregoing transformation is easy to remember: One proceeds
first along the diagonal (1—2—3) and then back (4—5—6). It is now
possible to correlate the stresses and strains for a general case, in
which the elastic properties of a material are dependent on its orien-
tation. We use two elastic constants: C (stiffness) and S (compliance),
or

C — Stiffness

S — Compliance.

Symbols are inverted to render treatment more confusing!
We have

o1 Cn Cip Ci3 Cuu Cis Cye 1
lop] Czt Cp Ca3 Cyy Cys Cy &2
o3 | _ C31 Cz» C3z3 Czy C35 Cz6 €3
o4 | | Cu Cuzs Cuzs Cas Cus Cue &4
Os Cs1 Csp Cs3 Csq4 Css Cse &5
06 Cai Ce2 Ce3 Coa Cgs Cos €6

In short notation, noting that repeated indices in one term imply
summation, we have:

Oj :Cijé“j,
& = Sijoj.

The elastic stiffness and compliance matrices are symmetric, and the
36 components (6 x 6) are reduced to 21. We now apply this general
expression to crystals having different structures and, therefore, dif-
ferent symmetries to obtain successive simplifications. In the isotropic
case, the elastic constants are reduced from 21 to 2.

The different crystal systems can be characterized exclusively by
their symmetries. The proof of this is beyond the scope of the book;
however, it is sufficient to say that the cubic system can be perfectly
described by four threefold rotations. The seven crystalline systems
can be perfectly described by their axes of rotation.

Table 2.1 presents the different symmetry operations defining the
seven crystal systems. For example, a threefold rotation is a rota-
tion of 120° (3 x 120° =360°); after 120°, the crystal system comes
to a position identical to the initial one. The hexagonal system
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Table 2.1 | Minimum Number of Symmetry Operations in
Various Systems

System Rotation

Triclinic None (or center of symmetry)
Monoclinic | twofold rotation

Orthorhombic 2 perpendicular twofold rotations
Tetragonal | fourfold rotation around [001]
Rhombohedral | threefold rotation around [ I | 1]
Hexagonal | sixfold rotation around [000 ]
Cubic 4 threefold rotations around <I | [>

exhibits a sixfold rotation around the c axis; after each 60°, the struc-
ture superimposes upon itself. In terms of a matrix, we have the

following:
Orthorhombic Tetragonal
(11 12 13 0o o o] [11 12 13 0 0 16 |
22 23 0 0 0 1 13 0 0 -16
33 0 0 0 . . 33 0 0 0
44 0 o |’ . . . 44 O 0 ’
55 0 . . . . 44 0
L 66_ |- . . . . 66 i
Hexagonal
(11 12 13 0 0 0]
1 13 0 0 0 where
330 0 01 x—2(Sy —Sp), or
44 0 O 1
4 0| X E(CH —Cq2).
X

Laminated composites made by the consolidation of prepregged
sheets, with individual plies having different fiber orientations,
have orthotropic symmetry with nine independent elastic constants.
Orthotropic symmetry is analogous to orthorhombic symmetry: there
are three mutually perpendicular axes of symmetry, and the elastic
constants along these three axes are different. For the Cubic system,
the elastic matrix is the following configuration:

11 12 12 0 0 o
1 12 0 0 0

1 0 0 0

4 0 0

4 0

44

The number of independent elastic constants in a cubic system is
three.
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For isotropic materials (most polycrystalline aggregates can be
treated as such):

Cag = 212 (2.15)

The stiffness matrix is

Cun Cp 0 0 0
Cn 0 0 0
Cin—Cp
2 0 0 (2.16)
Cn ;Cu 0
Cun—Cp
L 2 i

For anisotropic systems, Equation 2.15 does not apply, and we define
an anisotropy ratio (also called the Zener anisotropy ratio, in honor
of the scientist who introduced it):
2C
A= 4 (2.17)
Cll - C12
Some metals have high anisotropy ratios, whereas others, such as
aluminum and tungsten, have values of A very close to 1. For the
latter, even single crystals are almost isotropic.
For the elastic compliances, we have, for the isotropic case:

[S11 Sz Siz 0 0 0 ]
St Si2 0 0 0
S 0 0 0
2(S11 — i) 0 0 (2.18)
2050 —Sw) 0
| 2(S11 — S12) |

Hence, for the cubic system, the 81 components of the elastic con-
stants have been reduced to three independent ones while for the
isotropic case, only two independent elastic constants are needed.
However, it is not under this form that the elastic constants are usu-
ally known.

Table 2.2 gives the various equations interrelating the foregoing
parameters.

The relationships between stresses and strains for isotropic mater-
ials become

&1 = S1101 + S1202 + S1203 = [o1 — v (02 + 03)],

g3 = 81201 + S1103 + S1203 =

&3 = S1201 + S1202 + S1103 =

I T

[o2 — v (01 + 03)],

[o3 — v (01 + 02)],
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Table 2.2 | Relations among the Elastic Constants for Isotropic Materials

In Terms of:
Elastic
Constants  E v EG K v K G A
9K 3+ 2u/x
E =F =F = 3(1-2v)K _ :M( +2u/2)
| +3K/G I+ /A
E | —2G /3K |
VvV =) = — | +— = = =
2G 242G /3K 201 4+ p/2)
E 3(1 =2v)K
201 +v) 201 +v) ’
E E 21
3(1—2v) 9—-3E/G 3
N B Ev _E(I=2G/E) 3Ky B 2G _
S 4v(=2v)  3—E/G 14w B 3 B
E 3(1 —=2v)K
" 2(1 +v) 21 +v) ”
€4 = 2(S11 — S12) 04 = G
es = 2(Snu — Swa)os = o
g6 = 2(S11 — S12) 06 = EG&

Expressing the strains as function of the stresses, we have
01 =Cqne1 +Cr282 + Craez = (210 + A) &1 + A&y + Aeg,
0y = C1261 + C1182 + Ciae3 = Ao + (2 + 1) &2 + Aes,

03 = C1261 +C128y +Cr163 = Aey + Aép + (2u + A) Aez,

1

04 = E (C11 — C12) 84 = ey,
1

05 = E (C11 — C12) &5 = pss,
1

O = 2 (C11 — C12) &6 = uss.

Note that u =G.
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The elastic compliance matrix for isotropic materials is directly
obtained from the generalized Hooke law:

&1 1/E —v/E —v/E 0 0 0 logt
€2 1/E —v/E 0 0 0 02
&3 1/E 0 0 0 o3
e | 16 0 0 04
&5 1/G 0 o5
&6 1/G o6

The elastic stiffness matrix is obtained in a similar manner:

01 20+ X A A 0 0 O €1
e} 21+ A A 0 0 O &2
03 2u+x 0 0 O &3
o | = nw 0 0 €4
Os n 0 €s
06 2 &6

From the product of these two matrices (= I) we can obtain some of
the relations in Table 2.2.

By comparing the terms of the elastic compliance and stiffness
matrices for isotropic materials with the matrices in Equations 2.16
and 2.17, one can obtain the following relationships: Young’s
modulus:

1
E=—. (2.19)
Su
Rigidity or shear modulus:
_ 1
 2(Su— Sp)’
Compressibility (B) and bulk modulus (K):

1 €11 + €22 + €33

K —%(011 + 022 + 033)

Poisson’s ratio:

SlZ
V=——.
Sll
Lamé’s constants:
=Cy = ! (C C) = 1 =G
n = 44—2 11 12—544— ,
A= ClZ-

A great number of materials can be treated as isotropic, although
they are not microscopically so. The individual grains exhibit the
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crystalline anisotropy and symmetry, but when they form a polycrys-
talline aggregate and are randomly oriented, the material is macro-
scopically isotropic (i.e., the elastic constants are the same in all
directions). Often, a material is not completely isotropic; if the elas-
tic modulus E is different along three perpendicular directions, the
material is orthotropic; composites are a typical case.

In a cubic material, the elastic moduli can be determined along
any orientation, from the elastic constants, by application of the fol-
lowing equation:

1 1
Eoe =81 —2|Sn1—S2— 5544

x (zizlzjz'Z + e?zgis + z1'21£1%3) ) (2.20)

where Ej is the Young’s modulus, respectively, in the [ijk] direction;
li1, lj2, and fy3 are the direction cosines of the direction [ijk].

The expression for the shear modulus is a little more complicated
than that for Young’s modulus, because it involves a direction of
shear and a plane of shear. The Young’s modulus, on the other hand,
involves only a direction (the direction of extension or compression).
The plane normal is the same as the direction. The shear modulus
on the cube face planes {100} is equal to:

1
Go = S
This shear modulus is the same, for any direction in these planes. In
the {111} planes, on the other hand, the shear modulus varies with
direction. For shear along [110], it is equal to:

3

Gil=—-—"-—"—.
T St 4(S11 — S12)

For isotropic materials,
Saa = 2(S11 — S12)
and
G =1/S44

for all orientations. For example, for copper Sy; =1.498, S1, = —0.629,
S44=1.329 (x1072 GPa™!); Gy =75.4 GPa, G; =30 GPa.

Figure 2.9(a) illustrates the dependence on orientation of elastic
Young’s modulus for copper. The [100], [010], and [001] directions are
“softer,” whereas the [111], [111], and [111] directions are stiffer. For
cubic zirconia (Figure 2.9(b)), the opposite occurs: The coordinate axes
correspond to the stiff directions. These diagrams illustrate very well
the importance of anisotropy of elastic properties. For a cubic material
that has the same Young’s modulus along all directions (an isotropic
material), we have the relationship

2(S11 — S1z) = Saa. (2.21)
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The tridimensional picture in Figure 2.9(c) shows anisotropy of
Young’s modulus in the hexagonal structure in a clearer fashion.
This corresponds to zirconium. The isotropy of E in the basal plane
is responsible for the “flying saucer” aspect of the polar plot.

For hexagonal crystals, the Young’s modulus is isotropic in the
basal plane, but varies if one moves toward the ¢ axis. The Young’s
modulus is given by:

1
7= (1 —13)S1u +15S33 +13(1 —13)(2S13 + Saa),

where ¢3 is the cosine of the angle with the basal plane. Figure 2.10
shows the variation of E with orientation for SiC. It is constant and
equal to 400 GPa in the basal plane. (Fig. 2.10(a)). In the ¢ direction,
it rises to 465 GPa (Figure 2.10(b)).

[010]

Dependence on
orientation of Young’s modulus for
monocrystalline (a) copper; (b)
cubic zirconia. (Courtesy of R.
Ingel.) (c) Tridimension polar plot
for zirconium. (Courtesy of ). M.
Gebert.)




104

ELASTICITY AND VISCOELASTICITY

Variation of effective E
for silicon carbide as a function of
orientation; (a) basal plane; (b)
perpendicular to basal plane.

(From C. J. Shih, M. A. Meyers, V. E

Nesterenko and S. J. Chen, Acta
Mater., 48 (2000) 2399.)
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In Section 2.5 we defined the Poisson’s ratio for isotropic mater-
ials. In anisotropic materials, we define Poisson’s ratio in a similar
manner. It is the magnitude of the ratio between the lateral and lon-
gitudinal strain (the direction along which the stress is applied). In
the anisotropic case, the Poisson’s ratio will depend on orientation
and for each loading direction we have more than one Poisson’s ratio.
It is quite rare to find materials with negative Poisson’s ratios. This
did not deter Lubarda and Meyers* from finding one. Monocrystalline
zinc, an HCP metal, has a negative Poisson’s ratio in a certain orien-
tation. In anisotropic materials, Poisson’s ratio varies (as do all elastic
constants) with orientation. We define 6 as the angle with the basal
plane. Figure 2.11 shows the variation of vy, (there is another Pois-
son’s ratio in this case: v,,;,) with 6. For 6 less than 18°, it is negative.
It should be noted that for most HCP metals this negative regimen
does not exist.

4 V. A. Lubarda and M. A. Meyers, Scripta Mater., 40 (1999) 975.
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0.4 T T T T Variation in Poisson’s
ratio v|, in direction | due to
stress applied along direction n,
03 L | making an angle 6 with the basal
' plane of the zinc (HCP) crystal.
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Example 2.9 |

A hydrostatic compressive stress applied to a material with cubic sym-
metry results in a dilation of —107°. The three independent elastic con-
stants of the material are C;; =50 GPa, C;; =40 GPa, and Cy4 =32 GPa.
Write an expression for the generalized Hooke’s law for this material,
and compute the applied hydrostatic stress.

Solution: Dilation is the sum of the principal strain components:
eE=¢& +6+6e=—-10">.
Cubic symmetry implies that
&1 =6, =63 =-333x10"°
and
g4 =65 =& =0.
From Hooke’s law,
0; = Cyj¢;
and
01 = C1u1&1 + C1263 + Cizés.
The applied hydrostatic stress is (see p. 98)

o, = 01 = (50 + 40 + 40) (—3.33) 10° Pa
—130 x 3.33 x 10° Pa
= —433 kPa.
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Example 2.10 |

From the elastic stiffnesses for a cubic material, Nb (C;; =242 GPa;

Ci» =129 GPa; C4y =286 GPa), find the elastic compliances.

The relationship between stiffnesses and compliances is given by

the product of their two matrices, which is an identity matrix:

Sn SlZ ...... S16 C11 C12 ...... C16
521 822 ...... 826 C21 sz ...... Cze
=(I).
SGl 552 ...... 555 C61 CGZ ...... CGG
For materials with cubic symmetry,
Su Sz S 0 0 O Ciu Ciu Ciz O 0 0
Siz2 Su S22 0 0 O Cin Ciu Ciz O 0 0
Si2 S12 Su O 0 0 Ciz Ci, Cu O 0 0
0 0 O S4 O O 0 0 0 Cu O 0
0 0 O O Su O 0 0 0 0 Cu O
0O 0 0O O 0 Su 0 0 O 0 0 Cu

All the off-diagonal terms of the identity matrix are zero. The diagonal

terms are equal to 1.
Row 1 and column 1 give

$11C11 + 812C12 + S12C 12 = 1.

From row 6 and column 6, we have

S44C44 - 1
Therefore,
1
Spe= —.
44 C44

Row 1 and column 2 yield
511C12 + S12C 11 + S12C12 = 0.

From equations 1 and 2, we get, for row 1 and column 1,

—C 12 _ —C 12

T CH4CuC—2C%L  (Cu+2C1)(Cu—Cr)

SlZ

Substituting Equation 3 into Equation 1 yields

1 DEES Cin+Co

Su=—-—+ =

Ciu Cu(Cu+2C1)(C1u —C12) (C+2C12)(C1u —Cra)
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Su = 3.5 x 1073 GPa!,
Siz = —0.22 x 1072 GPa™?,
S11 = 0.66 x 1072 GPa™!.

These values are fairly close to the values given in Table 2.4 (p. 112).

2.10 | Elastic Properties of Polycrystals

The elastic constants of materials are determined by the bonding
between the individual atoms. While monocrystals have the elastic
properties dictated by the crystalline symmetry, most metals and
ceramics are polycrystalline. In polycrystals, the properties are deter-
mined from the individual grains by an averaging process.

In a polycrystalline aggregate, the deformation of one grain is not
independent of the deformation of its neighbor. The compatibility
requirements are such that we have to apply either one of two sim-
plifying assumptions:

1. The local strain is equal to the mean strain (all grains undergo the
same strain); this is called the Voigt average. The Young’s modulus
and shear moduli can then be obtained from:

E=YEV, and G =) GV,

where Ej, Gj and V; represent the Young’s modulus, shear modulus,
and volume fraction, respectively, of grains of different orienta-
tions. One possible form attributed to Hill® is:

1
E = < (3F +2G* + H)
1
GZE (F +4G* —2H)
where
1
F =5 (C11 +Ca2+Cz3),
N 1
G :E (Ci2+Cy3+C13),
1
H:§ (Caqa +Cs5 4+ Cop) .-

We use G* instead of G to avoid confusion with shear modulus,
G.
2. The local stress is equal to the mean stress (all grains are under the

same stress); this is called the Reuss average: % = ) ¢ . This provides

5 R. Hill, Proc. Phys. Soc., A65 (1952) 349.
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a lower bound. The inverse of the Young’s modulus is then

L (3F'+2G' + H')
E 5
, 1
where: F' = 3 (S11 + S22 + Sz3),
, 1
G = 3 (S12 + S23 + S13),
, 1
H = 3 (S44 + Ss5 + Se6) -

The actual stress and strain configuration is probably between the
two assumptions. There are more advanced methods, such as the
Hashin-Shtrikman upper and lower bound method; however, this
will not be treated here. The above equation assumes a distribution
of orientation of grains within the polycrystalline aggregate.

Example 2.11 |

Determine the Young’s moduli along [100], [110], and [111] for copper,
tungsten, and ZrO,. We use Equation 2.20:

1
Eijx

1
=S11 — 2 (Su —S1p— 5344> X (11211?2 ‘H?zl%s +lizlllz3) o

The direction cosines are as follows:

lix lj2 ha (313 +1515 +1212).

[100] 1 0 0 0
[110] v2/2 J2/2 0 1/4
[111] 1/4/3 1//3 1/4/3 1/3

The compliances for Cu and W are given in later in this chapter Table
2.4; Table 2.6 provides the stiffnesses for cubic ZrO,. We have:

W Cu
Sy = 0.257 x 1072 GPa! Sy = 1.498 x 1072 GPa!
S4s = 0.66 x 1072 GPa! Si = 1.326 x 10°2 GPa!

Sz =-0.073 x 1072 GPa™!  S;;, = —0.629 x 1072 GPa™"
This yields
Cu: Eq = 66 GPa, Eqi9 =130 GPa, E;; =191 GPa,
W : Ei = E1io = E1n = 389 GPa.

For ZrO,, we have to use the equations derived in Example 2.10 to obtain
the elastic compliances:

C11 = 410 GPa, C12 =110 GPa, C44 =60 GPa,
1 =2 =il
S44 =—=16x10 GPa™ "
C44

—C 12

= —0.058 x 1072 GPa !,
(C11 +2C12)(C11 — C1a)

SlZ =
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CZ
— 4 12
Cll Cll (C11 A 2C12)(C‘11 - C12)

Su = = 0.275 x 1072 GPa™".

These yield

E100 = 363.5 GPa
Eno = 196.7 GPH,
E111 = 171 GPa.

Example 2.12 |

Determine the elastic anisotropy ratios of Ag, Al, Cu, Ni, Fe, Ta, and W.
Which one of these metals has the greatest dependence on orientation
for Young’s modulus? Which one has the smallest?

Solution: First, we have

2C 44

AA=————
Cu—Cp

From Table 2.3 (later on), we obtain the following results:
46.1 x 2

Ag: A= —— =3.01.
124 — 934
28.5 x 2
Al: A= _LO9 XL 1.22.
108.2 — 61.3
75.4 x 2
Cu: A=—— =3.21.
168.4 — 121.4
. 124.7 x 2
Ni: A=——— =251.
246.5 — 147.3
116.5 x 2
Fe: A= —— =243.
228 — 132
82.5 x 2
Ta: A= ———— =1.56.
267 — 161
151.4 x 2
W: A=———=1.00.
501.0 — 198

Copper has the highest and W the lowest anisotropy ratio. Elastic
properties should therefore be most orientation-dependent for Cu and
orientation-independent for W.

Example 2.13 |

Determine the Young’s modulus for polycrystalline iron, using Reuss’s
and Voigt’s averages. From Tables 2.3 and 2.4, we get the elastic stiff-
nesses and compliances:

Cy = 228 GPa, Sy; =0.762 x 1072 GPa™!,

Cas = 116.5 GPa, S, = 0.858 x 1072 GPa!,
Ci, = 312 GPa, S;; = —0.279 x 1072 GPa™'.
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Voigt method:
We first calculate the parameters, taking into account cubic

symmetry:
1
F = 3 (C1 +Cr2+Ca3)=Cr,
. 1
G* = 3 (C12+Cp +Cy3) =Crg,
1
H = 3 (Cysa +Cs5 + Cep) = Cya.
Then:

1
(3C11 +2C12 + Cyy)

1
E=-(BF +2G*=H)= -
5( * ) 5

E = 186.5 GPa.

Reuss method:

1
F'= 3 (S11 + S22 + Sz3) = Su1,
, 1
G' = 3 (S12 + Sa23 + S13) = S12,
, 1
HS = 3 (S44 + Sss5 + Se6) = Saa,
r_1 (3F’—|—2G’+H’)—1 (3811 + 2512 + Sa4)
E - 5 - s 11 12 44)
= 0.517 x 1072
So
E = 193 GPa.
2.11 | Elastic Properties of Materials

Figure 2.12 presents a comparison of the elastic constants of differ-
ent classes of materials. At the top, we have diamond (with covalent
bonding). For metals, there is a correlation between the melting point
(indicative of the bonding energy between atoms) and the Young’s
modulus. Thus, the metals with the highest bonding energies have
the highest melting points, interatomic forces, and Young’s modulus.
The ranking of the metals in the second column of the figure shows
this relationship; at the top are osmium and tungsten, and at the
bottom is lead. The third column of the figure shows the polymers,
which have elastic constants that are much lower than those of the
metals. The composites in the last column show a wide variation in
elastic constants. The carbon-fiber reinforced polymers (CFRPs) can
have a very high modulus.
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Bar chart of data for
Young's moduli. (Adapted from M.
F. Ashby and D. R. H. Jones,
Engineering Materials (Oxford:
Pergamon Press, 1980), p. 32.)
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2.11.1 Elastic Properties of Metals

Tables 2.3 and 2.4 give the elastic stiffnesses and compliances, respect-
ively, of metallic monocrystals. One of the most complete compila-
tions of elastic constants for crystals is that by Simmons and Wang.
(See suggested reading.) The elastic constants for a number of poly-
crystalline metals are given in Table 2.5. We can also determine the
polycrystalline (isotropic) elastic constants from the monocrystalline
ones, using equations given earlier.

2.11.2 Elastic Properties of Ceramics

The elastic properties of ceramic monocrystals possess the sym-
metry of the crystal (see Table 2.6). As an example, consider the stiff-
nesses and compliances for MgO at room temperature. Magnesia is a
cubic crystal, and alumina has the rhombohedral structure. The cor-
responding Young and shear moduli, computed along the three crys-
tallographic axes of the monocrystal from Equation 2.20 are given
in Table 2.7. Table 2.8 presents the elastic moduli for a number of
ceramics and glasses. The largest elastic constant is that for diamond
and is equal to 1,000 GPa. This is due to the C-C bonds, as is explained
in Chapter 4.
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Table 2.3 | Elastic Stiffnesses of Monocrystals at Ambient Temperature (GPa)
Element  Structure Ci Cay Chh C33 Ces Ci3 Cis
Ag FCC 124.0 46.1 934
Al FCC 108.2 28.5 61.3
Au FCC 186.0 42.0 157.0
Cu FCC 168.4 754 121.4
Ni FCC 246.5 124.7 147.3
Pb FCC 49.5 14.9 42.3
Fe BCC 228.0 1165 132.0
Mo BCC 460.0 [10.0 176.0
Ta BCC 267.0 82.5 161.0
W BCC 501.0 1514 198.0
Co HCP 307.0 753 165.0 358.1 103.0
Zn HCP 161.0 383 342 61.0 50.1
Ti HCP 1624 46.7 920 180.7 69.0
Be HCP 292.3 162.5 26.7 3364 4.0
Zr HCP 143.4 320 72.8 164.8 65.3
Mg HCP 59.7 16,7 26.2 61.7 217
Sn Tetragonal 735 22.0 234 87.0 22.6 280
In Tetragonal 44.5 06.6 395 444 2.2 40.5
Hg Rhombohedral  36.0 2.9 289 50.5 30.3 050
Table 2.4 | Elastic Compliances for Monocrystalline Metals at Ambient Temperature (10-2 GPa™1!)
Element Structure St Saq Sy $23 Si3
Ag FCC 2.29 2.17 -0.983
Al FCC .57 351 -0.568
Au FCC 2.33 2.38 —1.065
Cu FCC 1.498 1.326 -0.629
Ni FCC 0.734 0.802 -0.274
Pb FCC 9.51 6.72 —4.38
Fe BCC 0.762 0.858 -0.279
Mo BCC 0.28 091 -0.078
Nb BCC 0.69 342 -0.249
Ta BCC 0.685 [.21 —0.258
W BCC 0.257 0.66 -0.073
Be HCP 0.348 0616 —-0.030 0.298 -0.031
Mg HCP 2.20 6.1 -0.785 .97 -0.50
Ti HCP 0.958 2.14 -0462 0.698 -0.189
Zr HCP 1.013 3.13 —-0.404 0.799 -0.241




2.11 ELASTIC PROPERTIES OF MATERIALS

113

The elastic moduli of ceramics are strongly dependent on porosity.
Ceramics are porous owing to their fabrication, and one should be
aware of the effect of porosity. Figure 2.13 shows the variations in
the Young modulus of alumina with volume fraction of pores. For
10% porosity (a common value for commercial alumina), the Young’s
modulus is decreased by 20%.

The change in Young’s modulus with porosity has been empirically
expressed by Wachtman and MacKenzie,®

E =Eo(1 - fip+ f2p?) (2.22)

where p is the porosity and f; and f, are constants. For spherical voids,
MacKenzie found that f; and f, are equal to 1.9 and 0.9, respectively,
for a Poisson’s ratio of 0.3. The data of Coble and Kingery’ may be
compared with the prediction of Equation 2.22. If one assumes the law
of mixtures for the porosity, then, as a first approximation, one has

E=Ea(1- fp)+ Epfz, (2.23)

where f is the volume fraction of a phase and the subscripts A and
B denote the two phases.

However, if phase B is the pore and denoting the pore fraction by
p, one has

E=Eo(1-p). (2.24)

For relatively low porosity, the quadratic term in Equation 2.22 can
be neglected, leaving

E =Eo(1—1.9p). (2.25)

If E varied linearly with p, the form would be E=E, (1 — p). Thus, the
physical significance of MacKenzie’s equation is that porosity has an
effect of E equal to approximately double the volume of pores.
Another effect of considerable importance on Young’s modulus for
ceramics is the presence of microcracks, which decrease the stored
elastic energy and reduce the effective Young’s modulus. Figure 2.14
shows schematically how the presence of microcracks would affect
the slope of the stress-strain curve. The initial slope, Ey, is decreased
by microcracking. Microcracks can also form during the cooling of
the ceramic due to thermal expansion (or contraction) anisotropy.
Different grains contract by different amounts along different orien-
tations, resulting in a buildup of elastic stress in the boundary area.
Elastic stress can generate microcracks. Similarly, the anisotropy of
elastic constants can generate elastic stress concentrations at the
grain boundaries, where the neighboring grains undergo different
strains (due to differences in crystallographic orientation). The change
in the Young’s modulus with microcracking has been computed by a

6 See J. B. Wachtman, in Mechanical and Thermal Properties of Ceramics, ed. ]. B. Wachtman,
NBS Special Publication 303, NBS Washington, 1963, p. 139; and ]. K. MacKenzie, Proc.
Phys. Soc., B63 (1950) 2.

7 R. L. Coble and W. D. Kingery, J. Am. Cer. Soc. 39 (1956) 377.
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Table 2.5 | Elastic and Shear Moduli and Poisson Ratios for
Polycrystalline Metals®

Metal (20°C) E (GPa) G (GPa) v

Aluminum 703 26.1 0.345
Cadmium 499 19.2 0.300
Chromium 279.1 1154 0210
Copper 129.8 48.3 0.343
Gold 78.0 27.0 0.440
Iron 2114 81.6 0.293
Lead 16.0 55 0.450
Magnesium 44.7 7.3 0.291
Nickel 199.5 76.0 0312
Niobium 104.9 375 0.397
Silver 82.7 303 0.367
Tantalum 185.7 69.2 0.342
Titanium 157 43.8 0.321
Tungsten 411.0 160.6 0.280
Vanadium 127.6 46.7 0.365

% Adapted with permission from R. W. Hertzberg, Deformation and Fracture
Mechanics of Engineering Material, New York: John Wiley, 1976, p. 8.

Table 2.6 | Elastic Constants for Ceramics (S in 107° Pa—!; C; in GPa)

Material Ci Ciy Caq Cis Cs3 Sii Si S44
MgO 289.2 88.0 154.6 403 =094 647
Al O3 497.1 162.3 147.7 17 502

ZrO; 410 110 60

MgAl,O4 279 153 53 583 =208 654
TiC 513 106 |78 0.2 2.1 —0.36 561
Diamond 1076 125 576

LiF 112 46 63

NaCl 49 I3 I3

ThO, 367 106 797 3.13 =070 2.5
LIO, 395 [21 64.1 296 —-0.70 15.6
SiC (hexagonal) 500 186 |68 |76 521

SiC (cubic) 352 140 233

number of investigators. The formulations give predictions that vary
with the orientation of the cracks with respect to the tensile axis,
among other parameters. An expression developed by Salganik® is

P 16 (10 — 3vo) (1 — v3)
=1

-1
3 _ -1
B2 v Na } = (1+ANa®) | (2.26)

8 R. L. Salganik, Izv. Akad. Nauk SSR Mekh. Tverd. Tela, 8 (1973) 149.
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Table 2.7 | Orientation Dependence of Young’s Modulus and Shear
Modulus for MgO and Al,O3 at 25 °C

Young's Young's Shear
Crystal Modulus, Al,Os Modulus, Modulus,
Orientation (GPa) MgO (GPa) MgO (GPa)
< 100> 299 248.2 154.6
<110> 330 3164 121.9
<lll> 344 3489 [13.8

where E is the Young’s modulus of the cracked ceramic, vy, and E, are,
respectively, Poisson’s ratio and Young’s modulus of the uncracked
material, a is the radius of a mean crack, and N is the number of
cracks per unit volume. The factor

~ 16(10 —3vo) (1 —v3)

45(2 — vq) (227)

varies between 1.77 and 1.5 when v, varies between 0 and 0.5. To a
first approximation, one can say that

E
B = [1+1.63 Na®|". (2.28)

O’Connell and Budiansky arrived at a slightly different expression:’

E _ 16(10 — 3v) (1 — v?)
E, 45(2 —v)

f.. (2.29)

Here, f; is defined as the volume fraction of cracks. (i.e., the number of
cracks per unit volume, N, multiplied by the cube of the mean crack
radius, a®) and v is Poisson’s ratio of the porous material, which is
related to Poisson’s ratio of the fully dense material by

v =Y (1 — 169]%) . (2.30)

By applying the same approximation as in Salganik’s equation, we
arrive at

E 3
— =1—-1.63 Na”. (2.31)
Eq

Note that Na® is a measure of the fraction of the material that is under
the effect of the cracks. Figure 2.15 shows the effect of microcracks
on the Young’s modulus of alumina. This effect is substantial. For
fs = 0.1, the Young’s modulus is reduced by 20%. Both Salganik’s and
O’Connell and Budiansky’s predictions are plotted, and it can be seen
that they are in fairly close agreement for values of f; smaller than
0.1. For higher values, O’Connell and Budiansky’s equation predicts a
more rapid decrease in E.

9 R.]. OConnell and B. Budiansky, J. Geol. Res. 79 (1974) 5412.



116

ELASTICITY AND VISCOELASTICITY

Table 2.8 | Modulus of Elasticity of Some Ceramic Materials

Material E (GPa)
Aluminum oxide crystals 378
Sintered alumina® 365
Alumina porcelain (90-95% Al,O3) 365
Sintered beryllia 310
Hot-pressed boron nitride* 82.7
Hot-pressed boron carbide* 289
Graphite* 9
Sintered magnesia* 210
Sintered molybdenum silicide™ 406
Sintered spinel* 238
Dense silicon carbide (cubic or hexagonal) 280-510
Sintered titanium carbide® 310
Sintered stabilized zirconia® 152
Silica glass 72.3
Vycor glass 723
Pyrex glass 68.9
Superduty fire-clay brick 964
Magnesite brick 172.2
Bonded silicon carbide** 345
Silicon nitride 320-365
Aluminum nitride

Mullite (aluminosilicate) porcelain 69
Steatite (magnesia aluminosilicate) 69
Diamond 450-650
Tungsten carbide 400-530
Cobalt/tungsten carbide cermets 379
Titanium dioxide 290
Titanium diboride 440

* (c. 5% porosity).

** (c. 20% porosity).

Adapted from W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction
to Ceramics, 2nd ed., (New York: John Wiley, 1976) p. 3.

2.11.3 Elastic Properties of Polymers

Polymers have elastic constants that range from the lower end of the
metallic elastic constants to values even lower by several orders of
magnitude. As an example, melamines have elastic constants of 6-7
GPa (E (lead) = 14 GPa), while the elastic constant of polymeric foams
is between 3 and 10 MPa. Table 2.9 lists the elastic constants of a num-
ber of polymers. The bar chart of Figure 2.12 provides a comparison
of the elastic constants of the different classes of materials. The elas-
tic behavior of polymeric materials is more difficult to describe than
that of metals or ceramics, because it is strongly dependent on both
temperature and time. This behavior, called viscoelastic or anelastic, is
described separately in Section 2.12. Here we merely introduce the
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subject briefly. In most polymers, there are dramatic changes in E
between 20°C and 200°C; for most metals and ceramics, the changes
in E in this range can be neglected. The glass transition temperature
T, plays an important role in polymers. Above T,, E is considerably
low, and the behavior of the polymer can be described as rubbery
and viscous. Below T, the modulus of elasticity is considerably higher,
and the behavior is closer to linear elastic. Figure 2.16 shows schemat-
ically the elastic behavior of a linear polymer as a function of tem-
perature. The modulus of elasticity ranges from 10 to 10! MPa.

2.11.4 Elastic Constants of Unidirectional Fiber

Reinforced Composite
An orthotropic material has three mutually perpendicular axes
of symmetry, which reduces the number of independent elastic

Effect of porosity on
elastic modulus of alumina. Circles
represent experimental
measurements. (After R. L. Coble
and W. D. Kingery, J. Am Ceram.
Soc., 39 (1956) 377.)

Effect of microcracks
on Young’s modulus for ceramics.
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constants to nine. The S; matrix for an orthotropic material is:

[Si1 Siz Si3 0 0 0]
SZZ 523 O O O

S3 0 0 0

Sij = Ses 0 O
Sss 0

SG6

The compliance matrix for orthotropic materials in terms of E, G, and
v corresponds to:

1/E1 —V21/E2 —V31/E3 0 0 0
l/E2 —V32/E3 0 0 0
. 1/E; 0 o o0
E 1/G a3 0 0
1/Giz 0

I 1/G 1 |
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Table 2.9 | Elastic Constants of Some Polymers®

Material E (GPa)
Phenolformaldehyde 8
Melamines 67
Polymides 3-5
Polyesters [.3-4.5
Acrylics l.6-34
Nylon 2-4.5
PMMA 34
Polystyrene 3-34
Polycarbonate 2.1
Epoxies 2.1-55
Polypropylene 1.2—1.7
Polyethylene, high-density 0.15-0.24
Foamed polyurethane 0.01-0.06
Polyethylene, low-density 0.15-0.24
Rubbers 0.01-0.1
PVC (unplasticized) 2.4-3.0
Foamed polymers 0.001-0.01

¢ Adapted from M. F. Ashby and D. R. H. Jones, Engineering
Materials (Oxford: Pergamon Press, 1986), p. 31, Table 3.1.

Notice that there are three different Young’s moduli on three perpen-
dicular planes, three shear moduli, and three Poisson’s ratios. Thus,
we have nine elastic constants, as in the stiffness matrix.

Unidirectionally fiber reinforced composites represent a special
case of orthotropy. The plane transverse to the fibers is isotropic, see
Figure 2.17. Such a material is called transversely isotropic and has
five independent elastic constants. The compliance matrix for such
unidirectionally fiber reinforced composite is:

[S11 Sz Sus
S11 Sz
S33

0
0
0

oS © © o

S44
S44

2(S11 — S12)

S © O o o

In terms of the elastic constants E, G, and v, the elastic compliance
matrix for a transversely isotropic material is represented as:

_1/E1 —v21/Eq
1/E4

—v31/E3
—v31/E3
1/E3

0 0 0
0 0 0
0 0 0
/Gy 0 0
1/G 13 0

%1(1 — V21) |
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A transversely
isotropic fiber composite. The
plane transverse to fibers (x;—x3
plane) is isotropic.

X3

X2

Notice that there are two Young’s moduli, one for any direction in
the transverse plane and one for the fiber direction. There are two
Poisson’s ratios and one shear modulus. Thus, we have five elastic
constants.

Another example of a transversely isotropic material is a laminate
composite. The elastic properties perpendicular to the plane of the
layers are different than in the layer plane.

There are many examples of laminate composites used in everyday
life, for example, plywood and cardboard. GLARE is a laminate com-
posed of alternate layers of aluminum and glass fibers in an epoxy
matrix. It is used in the aircraft industry, specifically in the Airbus
A380 superjumbo jet. The laminate structure gives it excellent fatigue
resistance because the cracks are arrested at the interface. Another
laminate, ARALL, consists of alternate aluminum and aramid fibers
in an epoxy matrix.

Figure 2.18 gives the elastic constants for the titanium (20%)-
titanium aluminide (80%) laminate. The Young’s moduli Ey; (=1/S"11)
and Ej; (=1/S’5;) were transformed according to orientation f. Their
variation can be seen in Figure 2.18. Likewise, Poisson’s ratios vy; and
v3; vary with orientation.

2.12 | Viscoelasticity

Glasses or amorphous materials show the phenomenon of time-
dependent strain, called viscoelasticity or anelasticity. The deformation
of an amorphous material does not involve atomic displacements on
specific crystallographic planes, as is the case in crystalline metals.
Rather, a continuous displacement of atoms or molecules takes place
with time at a constant load. This flow mechanism of noncrystalline
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materials is associated with the diffusion of atoms or molecules
within the material; that is, it is a thermally activated process and
is thus described by an Arrhenius-type equation. Of course, at suffi-
ciently high temperatures, where diffusion becomes important, crys-
talline as well as amorphous materials show a large amount of
thermally activated plastic flow. Liquids and even fluids in general
show a characteristic resistance to flow called viscosity. The viscos-
ity of a fluid results in a frictional energy loss, which appears as
heat. The more viscous a fluid, the higher is the frictional energy
loss.

Over a range of temperatures, the viscosity n can be described by
the Arrhenius-type relationship

1/n = Aexp(—Q/RT), (2.32)

or

n=Aexp(Q/RT),

where Q represents the activation energy for the atomic or molecular
process responsible for the viscosity, R is the universal gas constant,
and T is the temperature in kelvin. The S. I. units of the viscosity n
are Nm~2 s or Pa-s. Another common unit of viscosity is poise, P; 1
P=0.1Pa-s.

A purely viscous material shows stress proportional to strain rate.
Thus, if we apply a shear stress 7 to a glassy solid above its glass

Poisson’s ratio v,; and v3,
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Linear or Newtonian

response (stress proportional to
deformation rate), nonlinear
response, and plastic response
(stress independent of
deformation rate).

Linear
(Newtonian)

Nonlinear

Shear stress, t©

Plastic

Shear strain rate, y

transition temperature, then we can write, for the rate of shear
deformation,
.oody T
=T 4 2.33
YS9 T ¢ (2.33)
where ¢ is the fluidity (the reciprocal of viscosity) of the material.
Equation 2.33 can be written as

@34

If the viscosity of a material does not change with the strain rate
(i.e., if the stress is linearly proportional to the strain rate), then we
call the viscosity a Newtonian viscosity and such a material a Newtonian
material. Figure 2.19 shows a Newtonian (or linear) response curve. If
the stress is not directly proportional to the strain rate, we have a
non-Newtonian response, which can be written as

T =ny". (2.35)

This is shown by the curve marked “nonlinear” in the figure. If the
stress is independent of the strain rate, we have a plastic material.
A special case is that of a material whose viscosity decreases when
subjected to high strain rates. Such a material is called a thixotropic
material, a good example of which is a latex paint. When we apply
the paint to a vertical wall, it does not sag, because its viscosity is
very high on the wall. However, we can stir and brush the paint easily
because its viscosity decreases when subjected to shear stress in the
stirring action.

Polymers, polymer solutions and dispersions, metals at very high
temperatures, and amorphous materials (organic and inorganic)
show viscoelastic behavior - that is, characteristics intermediate
between perfectly elastic and perfectly viscous behavior. Commercial
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silica-based glasses have a high proportion of additives: about 30% in
soda-lime glass and 20% in high-temperature glasses such as Pyrex.
The main purpose of the additives is to lower the viscosity by breaking
up the silica network, thus making the processing of glass easy.

Conventionally, glasses are formed by melting an appropriate com-
position and then casting or drawing the melt into a desired form.
It is interesting to compare the viscosity values of liquid metals with
glasses. Molten metals have about the same viscosity as that of water
(~107% Pa-s) and transform to a crystalline solid state in a discon-
tinuous manner when cooled. The viscosity of glasses, however, falls
slowly and continuously with temperature. The shaping of glass is car-
ried out in the viscosity range of 103-10° Pa-s. Polymers are formed in
the range 103-10° Pa-s. Perhaps the most important characteristic of a
viscoelastic material is that its rtheological properties are dependent
on time. This characteristic is manifested very markedly by amor-
phous or noncrystalline materials such as polymers.

A viscoelastic substance has a viscous and an elastic component.
Figure 2.20(a) shows the stress-strain curve of an ideal elastic mater-
ial. The load and unload curves are the same, and the energy lost as

Stress—strain plots for
(a) elastic behavior (no energy is
lost during a load—unload cycle)
and (b) viscoelastic behavior
(energy equal to the shaded area is

lost in a load—unload cycle).
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Viscoelastic response
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stress and strain.

o/

e(t) et

+ [ 7 a(t) : 1

27N ’f’ "‘\‘
Strerss ’,‘r \\\ K\ \‘. / -!‘r » 1
(o] ) \ 3 % P
Strain ol N
|~— 2n/w ——|

heat per cycle is zero in this case. In practice, there is always present
an anelastic (i.e., a time-dependent) component, with the result that
the unload curve does not in fact follow the load curve. Energy equal
to the shaded area in Figure 2.20(b) is dissipated in each cycle. This
phenomenon is exploited in damping out vibrations. Some polymers
and soft metals (e.g., lead) have a high damping capacity. In springs
and bells, a high damping capacity is undesirable. For such applica-
tions, one uses materials such as bronze, spring steel, etc., which have
a low damping capacity.

2.12.1 Storage and Loss Moduli

In order to characterize the viscoelastic behavior of a material, the
material is sinusoidally deformed, and the resulting stress is recorded.
For an ideal elastic material, the stress and strain are in phase, and the
phase shift § = 0. For an ideal viscous material, the stress and strain
are 90° out of phase (i.e., § = 90°). As pointed out before, a viscoelastic
behavior - a combination of an ideal elastic response and an ideal
viscous response — is more common. Figure 2.21 shows a viscoelastic
response with a phase lag between the stress and the strain. Dynamic
(commonly sinusoidal) perturbations are used to study the viscoelastic
behavior of a material. The material is subjected to an oscillatory
strain with frequency w. From the figure, we can write the following
expressions for strain and stress:

€ = ¢p sinwt,

o = opsin(wt + §).

In the equation for stress, § is the phase angle or phase lag between
the stress and strain. From these expressions, we can define two mod-

uli,
E' = (@> cos §
€0

E" = <0—0> sin g,
€0

where E’ is the tensile storage modulus and E” is the tensile loss
modulus.
Alternatively, we can use complex variables and write

and

€ = €pexpi(wt),
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o =opexpi(wt+§),

o 00 . 00 .
E=—=—expid =—(cosd +isind)
e €0 €0
:E,—f—iE”,

where i is the imaginary number /—1.

Figure 2.22 shows graphically the relationship among these quan-
tities. Proceeding in a manner similar to that for deriving the tensile
modulus, we can obtain the shear modulus. (Experimentally, this is
generally obtained by means of a torsion pendulum.) The complex
modulus

G =G +iG",

where G’ is the shear storage modulus and G” is the shear loss mod-
ulus. The storage modulus is a measure of the stored energy, i.e., the
elastic part. The loss modulus is a measure of the energy lost as heat,
i.e., the viscous part. These two modulus components can be written
in terms of the phase shift as

G” =Gsind, E” =E siné,
G =Gcoss, E’'=E coss.
We can now define a term called the loss tangent as follows:

energy loss  G” E”
energy stored G’ E’’

Loss tangent = tané =

Sometimes, a related term called the logarithmic decrement A is used,
which is defined as

"

Logarithmic decrement A = 7 tané§ = 5

The logarithmic decrement is the natural logarithm of the amplitude
ratio between successive vibrations; that is,
On

911+1

A= ,
where 6, and 6, are the amplitudes of two successive vibrations.

Both the loss tangent and the logarithmic decrement are propor-
tional to the ratio of the maximum energy dissipated per cycle to the
maximum energy stored in the cycle.

Example 2.14 |

In a free-vibration test, a polymer showed a drop of 50% in two succes-
sive amplitudes. Compute the logarithmic decrement for this polymer.

Solution: If 6, and 0, are the successive amplitudes, then the loga-
rithmic decrement, A = 1n (6,/6,.1) = In 2 = 0.69.

E”

B
>

E’

Relationship between

tensile storage and tensile loss
modulus.




126

ELASTICITY AND VISCOELASTICITY

Example 2.15 |

Recall that the stress-strain relationship involving real and imaginary
moduli is given by

o= (E'+iE")e =Ee.

Derive an expression for the complex modulus E in terms of E’ and tan
8. Show that for small values of tan §, E ~ E.

Solution: The magnitude of the complex modulus is given by

1/2
E:gz( IZ+E”2> =E/[1+tan28]
&

1/2

For tan § < 0.2, E will be within 2% of E'.

2.13 | Rubber Elasticity

A polymeric molecule is generally not rigid like a straight rod,
although there are some special liquid crystal polymers that do have
a rigid, rodlike molecule (e.g., the aramid fibers). Barring these special
cases, the polymeric molecule is a very long and flexible chain that
can change form easily because many independent vibrations and
rotations of the individual atoms that compose the molecular chain
are possible. Long, flexible polymeric chains can change their con-
figuration and lengths rather easily when a stress is applied. When
the number of configurations available is very large and the chains
are cross-linked to form a network, we get a special polymer called an
elastomer. Elastomers characteristically show very high reversible, non-
linear extensions (5-700%) in response to an applied stress. The
requirement of cross-linking (i.e., the existence of a network) is estab-
lished to avoid chains slipping past one another in a permanent man-
ner. This process is called ‘vulcanization’ of rubber and is accom-
plished by adding sulfur. High chain mobility is also required. Glassy
and crystalline polymers will not have enough chain mobility, and
therefore, the reversible strains are not very large. In crystalline
materials such as metals and ceramics, the deformation involves a
change in equilibrium interatomic distance, which requires the appli-
cation of rather large forces. This is why the elastic modulus values
of metals and ceramics are very high.

The first law of thermodynamics says that the internal energy of
a system is given by

dU =dQ + dw, (2.36)

where dQ is the heat absorbed and dW is the work done on the system
by the surroundings. Also, for a reversible process, we can write, from
the second law of thermodynamics,

dQ =Tds (2.37)
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and
dW = Fdl — PdV, (2.38)

where T is the temperature, V is the volume, P is the external pressure,
S is the entropy, and F is the tensile force causing a change in the
length ¢.

From Equations 2.36 and 2.38, we get the following for the internal
energy:

dU =TdS +Fd¢ — PdV.

For conditions of constant temperature and volume, we can write

sU 58
F=(—) -1(=
8 )y 50 )ry

= F, + Fj, (2.39)

where F, is the energy contribution and F; is the entropy contribution
to the tensile force.

In the case of crystalline metals, the first term in Equation 2.39
is predominant, while the second term is negligible. This is because
the crystalline structure of a metal remains essentially unchanged
with deformation. Such is not the case with amorphous polymers,
especially the polymers that are rubberlike and which show rather
large elastic deformations. On deforming these kinds of polymers,
the form of the molecular chains can change considerably, and the
entropy contribution F; = —T(8S/8¢)r,v becomes considerably large (see
Figure 2.23). In fact, the first term (i.e., the energy term) in Equation
2.39 is equal to zero for an ideal rubbery material. The rubber elas-
ticity thus has its origins in the entropy effects. For such polymers,
one can write an expression for the entropy of the form

S=klnp

where k is Boltzmann’s constant and p is the probability of finding a
particular chain configuration for which the entropy effects will be
very important.

When an elastomer is stretched, the distance between cross-linked
points increases and the number of possible chain configurations
decreases. Consider a piece of rubber in the form of a cube. Let the
side of the cube be ¢,, as shown in Fig. 2.24(a). Then, the volume
of rubber before deformation or undeformed volume is equal to £,3.
Let us now deform the rubber cube in direction 1. The rubber gets
elongated in direction to ¢; and the two transverse directions get
shortened to ¢, and ¢3. The volume of the cube after deformation is
equal to £, ¢, £3. In order to describe the large deformations involved
in stretching rubbery materials, we define strain in terms of a param-
eter called draw ratio, A = final length/original length. Thus, we can
write for the draw ratio along direction 1,

A= 61/507

N

(@U/al)

o

Engineering stress (MPa)
1

LT(6S/00);

o 1 2 3 4
Engineering strain

Changes in internal
energy, U, and entropy, S,
accompanying the extension of
rubber. F is the sum of the two
contributions.
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Deformation at
constant volume. (a) Unstrained
state. (b) Strained state.

or,
b1 = M4,.

We remind the reader that A = 1 + «.

Elastomeric materials are treated as incompressible materials, i.e.,
constancy of volume condition holds. Also, taking the strains in the
transverse directions to be equal, i.e., £, = {3, we can write

040203 = (M €,)03 = €3, (2.40)
or,

by =l3 = £/ Ay (2.41)

Thus, the tensile force applied to the rubber cube in direction 1 leads
to draw ratios Aq, Ay, and Az along directions 1, 2, and 3, respectively.
Rearranging Equation 2.41

A=Az =1/ (2.42)

Flexible polymeric chains are joined by bonds at cross-link points,
forming a network. When we stretch a rubber or elastomer, these
chains get stretched. The number of configurations available to a
stretched polymer is less than the number of configuratons available
to an unstretched polymer, i.e. the entropy is reduced on stretching. We
need to use statistics to to treat the properties of a single polymeric
chain and those of a network of chains. We assume the polymeric
chain is freely jointed and has no volume (it is called volumeless). One
end of the chain is at the origin while the other end is at a distance,
r, from the origin; r is called the end-to-end distance of the chain. The
chain is assumed to be freely jointed and volumeless. The network is
treated as a Gaussian network, i.e. a Gaussian distribution function is
used to evaluate the probability of finding the other end of the chain
in some volume element, dV (=dx-dy-dz).

Let the end-to-end distance of a chain be r;. We consider a poly-
mer chain with an end fixed at the origin and the other end at the
extremity of the vector r;, whose magnitude is:

r=(x*+y +22)1/2.

Assuming that the polymer chain follows “random walk” statistics, it
can be shown that the distribution of lengths, r, follows a Gaussian
distribution. This provides a bell-shaped curve for the distribution of
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r. The probability that end-to-end distance is r; is given by:

3 3

P = B e (-p7) = £

exp (—B8% (x> + y*> +2%)).

The parameter j is related to the number of monomers (units), n, in
the chain and to their length, a:

(1.5)"/2
P =g
This comes from Gaussian statistics, and the intelligent student will
readily consult his/her old class notes.

When a cube of rubber is deformed, it becomes a parallelepiped, as
shown in Figure 2.24. Internally, the coordinates of the end-to-end vec-
tor of a typical flexible chain change from x, y, and z to A1x, Ay, A3z,
respectively. The new probability of finding the end of a chain is equal
to:

Py (1) =

s exp [ (13 23y +332)]

The ratio of probabilities corresponding to the initial and deformed
states can be expressed as:

Py (rp)
Pl (Tl)

=exp{-p*[(A] —1)x*>+ (A5 —1)y*+ (13 — 1) 2°]}.

We assume that x = y = z. This leads to a mean value 1y, equal to:
1,O(Xz + yz + 22)1/2 —3l/2y — 31/2y —3l/2,

Thus:

Py (1)
P1 (1’1)

w |oﬁN

=exp—p* (A} + A +13 —3)
The entropy change for one molecular chain associated with the
deformation is defined by:

Pz (1’2)
Py (r1)’

Inserting the expression for the ratio between the probabilities:

AS =kln

2
v
AS = —kB* (A1 4+ A5+ 13 —3) 30

The value of 1o (= n'/?a) and that of B can be substituted, yielding:

AS:—%(A%+A§+A§—3).

The entropy change for N chains is given by

1
AS = —ENk(x§+A§+/\§—3) (2.43)
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where N is the number of chains and k is the Boltzmann’s constant.
Substituting Equation 2.42 into Equation 2.43, we can write for the
change in entropy as

1
AS = - Nk (A 42171 =3) (2.44)

Recall that Equation 2.39 gives the expression for the tensile force
causing a change in length of a rubber or elastomer. It has two
components: an energy contribution and an entropic contribution.
As explained above, the energy contribution, (§U/5¢) is negligible for
rubber for isothermal deformation. So,

F = —T(5S/80)r.y. (2.45)

Differentiating Equation 2.44 and substituting into Equation 2.45, we
obtain

_ NkT
=

F

(h —27%) (2.46)

If we divide the tensile force by the area of cross section, we get
the tensile stress. Recall that the volume remains unchanged, i.e.,
Alel = AOZO' ThuS,

(o2

F _NkT(Zl

=_— = Ay — AT2 2.47
Ay £, Aoeo>(1 i) (247)

Let us denote the number of chain segments per unit volume (N/Ay¢,)
by n and recall that ¢4/¢, = Aq; then we write

o =nkT (A2 —7") (2.48)

In Equation 2.48, the strength of the rubber is seen to increase with
n, the number of chain segments per unit volume. The more cross-
linked the polymer, the greater the number of segments and the
smaller the length of molecule from one cross-link to the next. Thus,
Equation 2.48 correctly predicts the strengthening of rubber with
increasing cross-linking.

Equation 2.48 also shows a linear dependence of stress, at a
given strain, on temperature. This follows from the dominance of
the entropic elasticity. Any deviation from this linear relationship
between stress and temperature of a rubbery or elastomeric mater-
ials can be taken as a measure of its deviation from thermodynamic
ideal behavior. For an ideal rubbery behavior, the energetic compo-
nent of force is zero. Also, the stress is not linearly dependent on
strain, i.e., the Hooke’s law is not obeyed in tension for an elastomer.
Up to ~400% strain, the theoretical stress-strain curve is in quite
good accord with experimental values as shown in Figure 2.25. At
very large strains, i.e., at strains > 400% (> = 5) secondary bonds form
between the partially aligned chains, i.e., strain induced crystalliza-
tion occurs. At such large strain values, the chains begin to align
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Tensile stress (MPa)

0 1 1 1 | 1 |
1 2 3 4 5 6 7 8
Extension ratio (1)

themselves and stretching of the primary bonds in the chain becomes
important.

Because the tensile stress-strain curve of rubber is nonlinear,
Young’s modulus cannot be defined for rubber, as it can be for crys-
talline metals and ceramics. One can, however, define a secant modu-
lus at a given strain. Another important thing that a perceptive reader
may have noticed is that the number of network chains per unit vol-
ume and, correspondingly, the modulus of an elastomer increases as
the degree of cross-linking increases. This is as expected if we just
compare a lightly cross-linked rubber band with a highly cross-linked
bowling ball.

For metals, the ordered crystalline structure is retained during
elastic deformation. Thus, the entropy, which is a measure of disorder
(or randomness) is constant. On the other hand, the internal energy
is increased by the work of deformation, which is stored in the metal
as elastic energy.

In rubbers, the chains become more aligned with stretching. This
decreases the entropy of the stsyem. The internal energy, on the other
hand, is constant.

2.14 | Mooney—Rivlin Equation

The treatment given above is based on what is called Gaussian net-
work theory. Well before that, in the 1940s, Mooney'® derived the

10°M. Mooney, J. Appl. Phys., 11 (1940) 582.

Force—extension curve
for cross-linked rubber. (a)
Experimental. (b) Theoretical.
(After L. R. G. Treloar, The Physics
of Rubber Elasticity, 3d ed. (Oxford:
Clarendon Press, 1975), p. 87.)
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following equation, based on a phenomenological continuum
mechanics model of rubber elasticity:

2C+C2 - /
o = [— [ —
1T A2

where C; and C, are constants (not to be confused with WLF con-
stants discussed in Chapter 13) This equation is referred to as Mooney-
Rivlin equation in the literature because of later contributions from
Rivlin and Saunders.!! They formulated the material law as a strain
energy function in terms of the first and second principal invari-
ants of the deformation. The formulation is called a strain energy
function as the energy is conserved during deformation of these
materials under constant temperature. It seems to describe well the
deformation of highly elastic bodies which are incompressible (vol-
ume is conserved during deformation) and isotropic (the material
has the same mechanical properties in all directions at a material
point).
The above expression can be rearranged to the following form:

L-(C +2)
2=\ )

A plot of:

(e

ﬂ against <C1 =+ %) ,
called Mooney plot, would give a straight line of slope C, and an
ordinate of (C; + Cy) at 1/A.

The Mooney-Rivlin equation or its modification by Ogden'? are
commonly used in Finite Element Method codes for elastomeric
materials.

Example 2.16 |

Make a schematic plot of the internal energy and entropy as a function
of strain for a crystalline solid (e.g., a metal) and for a rubbery solid
(e.g., an elastomer). Make a drawing showing the structure before and
after deformation in the two cases.

11 R. S. Rivlin and D. W. Saunders, Philosophical Transactions of the Royal Society of London,
Series A, 243 (1951) 251-288.
12 R. W. Ogden, Rubber Chemistry and Tech., 59 (1986) 386.
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Solution: Figure E2.16 shows the requested plots.
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Example 2.17 |

It is frequently said that elastic deformation on loading and the recov-
ery of strain on unloading involves the stretching of atomic bonds.
Would this statement be true of the large elastic deformation that is
observed in rubbery, or elastomeric, materials?

Solution: No. The large elastic deformation observed in elastomeric
materials involves the uncoiling of randomly coiled polymeric chains.
When we deform an elastomeric material, the end-to-end distance of
the chains increases. When the material is unloaded, the chains return
to the original random configuration. This uncoiling of chains results
in the entropy effects discussed in the text. Such entropy effects are
insignificant in metals and other nonelastomeric materials.
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Effective elastic modulus (MPa)
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Range of elastic moduli of biological cells and conventional materials. (After
G. Bao and S. Suresh, Nature Materials, 2 (2003) 715.)

1

2.15 | Elastic Properties of Biological Materials

Biological materials have complex elastic properties. Soft tissues
exhibit nonlinear elasticity. Hard tissues, such as bone, have a lin-
ear elastic response conditioned by their density. Figure 2.26 gives
an idea of the range of elastic properties of soft biological materi-
als (in this case, living cells) compared to conventional materials. It
is interesting to note the elastic moduli of cells are low compared
to conventional structural materials by a factor of ~10%. This is an
extreme but illustrates the differences. We give in the following sec-
tions two examples of the elastic behavior of materials that occur in
our body: blood vessels and cartilage.

2.15.1 Blood Vessels

The vascular system provides the transport of nutrients, oxygen, and
other chemical signals to the various parts of the body. The vascular
system is divided into two subsystems: the pulmonary and the circula-
tory system. We will not go into any details of the pathology of these
two subsystems. We will concentrate on their mechanical properties.
Arteries (which carry blood from the heart to the various parts of the
body) and veins (that collect blood back to the heart) exhibit some
significant differences in structure. Arteries are exposed to higher
pressures and fluctuations associated with the diastolic and systolic
portions of the cardiac cycle. Figure 2.27 shows the longitudinal and
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normal sections of an artery. The structure is layered with three dis-
tinct regions: tunica intima (innermost), tunica media (middle), and
tunica adventitia (outermost).

Bursting (longitudinal splitting) of blood vessels or aneurysm (ten-
sile instability forming a local bulge) are highly undesirable but all
too frequent events in humans. There are two unique aspects of the
mechanical response of arteries and veins that are instrumental in
minimizing the chance of the aforementioned problems: nonlinear
elasticity and residual stresses.

Nonlinear Elasticity

The three layers comprising blood vessels have different functions and
composition. Table 2.10 summarizes the similarities and differences
between arteries and veins, including main vessels such as the aorta.
The composition of arteries is made up primarily of elastic fibers
(elastin), collagen, and smooth muscle. Compared to veins, arteries
contain much more elastic material. Thicker arteries, such as the
aorta, contain less smooth muscle than both smaller arteries and
also veins. These differences account for the ability of arteries to resist
large pressure fluctuations during the cardiac cycle.

The mechanical response of blood vessels is shown in Figure
2.28(a). This is the longitudinal stress-strain response of human vena
cava. The response is nonlinear elastic. We know that it is elastic
because on unloading the artery returns to its original dimension.
However, there is a slight hysteresis on loading and unloading, due to
viscoelastic processes. We know that it is nonlinear because the slope
of the curve increases with strain. This slope approaches infinity as
the strain approaches 0.3. This increase in slope is due to the exten-
sion of the collagen and elastin fibers. If they are stretched beyond
this point, failure takes place. Instead of the strain, ¢, the stretch ratio
(A =e+1) is often used.

It is instructive to plot the slope, do|de = E, as a function of stress.
This is done in Figure 2.28(b) for the aorta of a dog (circumferential
strip). The slope first increases by a relationship that can be described

Cross section of an
artery and vein, composed of the

endothelium, tunica intima, tunica
media, and tunica adventitia.
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Table 2.10 | Dimensions and composition of blood vessels

Vessel Dimensions Composition

Artery Aorta
Vessel diameter; 25 mm
Thickness, 2 mm

elastic fibers

endothelium

collagen

smooth muscle

Medium-sized artery
Vessel diameter, 4 mm
Thickness, | mm

elastic fibers

endothelium

smooth muscle

Vein Vessel diameter, 20 mm
Thickness, | mm

elastic fibers

endothelium

collagen

smooth muscle

by a power function. Then, it reaches a linear range, in which the
increase is more gradual. This nonlinear elastic behavior is a charac-
teristic feature of many soft tissues in the human body. It serves as an
important function: as the pressure in the blood vessels is increased,
the vessels become stiffer.

This response, typical of arteries, has been successfully represented
by the Fung equation:

o = (0" + Pl — g,

where o andpg are parameters defined in Figure 2.28(b). « is the slope
of the linear portion and g is related to the intercept. o* and &*
correspond to the onset of the linear portion. This equation can also
be expressed in terms of A, the stretch ratio.

Residual Stresses

Biological materials such as arteries contain residual stress. In the
case of a segment of artery that is not under internal blood pres-
sure, the walls of the artery are under strain and therefore have
residual stress. Fung!® has shown that if one makes an axial cut in
the wall of an artery, the artery will spontaneously open. This geom-
etry is known as the zero-stress state. The angle by which the artery
springs open is defined as the opening angle. As this opening angle
increases the stress distribution in the wall becomes more uniform.
This makes sense since under normal blood pressure arteries inflate,
causing higher strain on the inner wall of the artery (compared to the

13'Y. C. Fung, Biomechanics (New York: Springer, 1993).
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(a) Stress—strain response of human vena cava: circles — loading; squares —
unloading. (Adapted from Y. C. Fung, Biomechanics (New York: Springer, 1993), p. 366.)
(b) Representation of mechanical response in terms of tangent modulus (slope of
stress—strain curve) vs. stress. (Adapted from Y. C. Fung. Biomechanics, New York:
Springer, 1993), p. 329.)

outer wall). In arteries, stress is an exponential function of strain, so
the observed increase in strain at the inner wall will be accompanied
by an increase in stress at the inner wall. This is shown in Figure 2.29.
Four different arteries, with different zero-stress angles, are shown:
a =0, 10, 70, and 155°. For the same arteries, the wall stresses at two
values of the applied internal pressure are shown. For zero pressure,
there is a detrimental effect on the stress distribution. However, this
is not the critical condition. For 100 mm Hg internal pressure (in
the range of pressure of blood inside our body), the artery with the
highest value of @ has the lowest stress in the wall. Thus, the residual
stress reduces the maximum stress in the artery walls.

2.15.2 Articular Cartilage

Articular cartilage, which covers the ends of long bones and bones
within synovial joints, is a highly hydrated connective tissue. It con-
sists of two distinct phases: a solid phase made up of collagen, pro-
teoglycans (aggrecan), proteins, and chondrocytes and a liquid phase
composed of water and electrolytes. Aggrecan and collagen are pri-
mary components of the solid phase, or extracellular matrix, and are
responsible for the biomechanical properties (compressive and ten-
sile, respectively) of articular cartilage. Figure 2.30 shows a schematic
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Residual stresses in
arteries; the artery is sliced
longitudinally and the angle « is
measured. (From Y. C. Fung,
Biomechanics (New York: Springer,
1993), p. 389.)

m Schematic of

aggrecan—collagen meshwork in
cartilage tissue. (After V. C. Mow
and A. R. Ratcliffe, Structure and
Function of Articular Cartilage and
Meniscus, In Basic Orthopedic
Biomechanics, ed. V. C. Mow and
W. C. Hayes (New York: Raven
Press, 1997), pp. 113-178.)

) O

Aggrecan

Interstitial fluid

Collagen fibril

of the aggrecan—collagen meshwork in cartilage tissue. The character-
istic banded structure of collagen is shown (coral snake-like).

Cartilage is a low friction, weight-bearing, viscoelastic material
which distributes stresses generated by translational and rotational
motion to the underlying bone. It possesses a stratified architecture
made of distinct zones - superficial, middle, and deep. Figure 2.31(a)
shows these regions. At the surface, the collagen is arranged parallel
to the surface. The chondrocites are elongated along the surface. In
the middle zone, which comprises between 40 and 60% of the carti-
lage, the chondrocites are dispersed in a matrix of collagen. The deep
zone is composed of spheroidal chondrocites in columnar arrays. The
collagen fibers are of large diameter and are arranged perpendicular
to the bone. The last zone and interface with the bone consists of cal-
cified cartilage. The chondrocites are round and less organized. The
cartilage can be considered, from a materials viewpoint, as a gradi-
ent material, since the properties and structure vary in a continuous
fashion. Figure 2.31(b) shows the mesostructure of human cartilage.
The four regions drawn schematically in Figure 2.31(a) are seen in
Figure 2.31(b).

The mechanical properties of articular cartilage depend very much
on the orientation of the collagen fibrils. At the surface of cartilage,
collagen fibrils are oriented parallel to the surface. Therefore, it is
not surprising to find that under tension samples from the superfi-
cial zone are very strong. This is directly due to collagen content and
orientation. Figure 2.32 shows that the cartilage is much stronger
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(From G. L. Lucas, F. W. Cooke, and E. A. Friis, A Primer on Biomechanics (New York:
Springer, 1999), p. 273.) (b) Cross-section of human cartilage showing regions drawn

schematically in (a). (Courtesy of K. D. Jadin and R. I.

of four zones) showing differences

Sah.)

28

- N N
[«2) o L
T T T

-
N
T

Tensile stress, MPa

Parallel

Perpendicular

parallel to the surface than perpendicular

1
0.2
Strain

to it. When cartilage begins

to degenerate, due to age and/or excessive exercise (load), defects may
form. The stiffness of cartilage is approximately 1/20 of that of sub-
chondral cancellous bone and 1/60 of that of cortical bone. Unfor-
tunately, cartilage does not have capacity to repair itself. For this

Surface

Middle

Stress—strain curve for
samples from the superficial zone
of articular cartilage. Samples were
cut parallel and perpendicular to
collagen fiber orientation. (From
G. E. Kempson, Mechanical
Properties of Articular Cartilage.
In Adult Articular Cartilage, ed.

M. A. R. Freeman (London: Sir
Isaac Pitman and Sons Ltd., 1973),
pp. 171-228.)
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(b)

(a) Schematic of the optical trap setup for the stretching of a
double-stranded DNA molecule. (b) Plots of stretching force against relative extension
of the single DNA molecule at increasing (from bottom to top curves) concentrations of

salt. (Courtesy of C. T. Lim, National Singapore University.)

reason, along with the large numbers of people affected by joint- and
arthritis-related ailments, tissue engineering alternatives are explored
as an option for repairing cartilage defects.

2.15.3 Mechanical Properties at the Nanometer Level

Figure 2.33 shows the degree of miniaturization that can be attained
with modern methods to establish the mechanical properties of bio-
materials. It is possible to stretch single strands of DNA. This is accom-
plished by using a contraption called optical (laser) tweezer, shown in
Fig. 2.33(a). Microsized beads are attached to the DNA strand, one end
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is fixed and the other, trapped in the optical tweezer, is pulled. The
mechanical response of the DNA is definitely nonlinear, Figure 2.33(b).
There is a plateau at a force varying from 40 to 65 pN (depending on
the concentration of NaCl). At this plateau, the strand can receive a
stretch of up to 1.8. Beyond this value, the DNA stiffness increases
considerably. These results show that salinity has a definite effect on

DNA mechanical properties.

Example 2.18 |

Calculate the stress on the femur (a) with and (b) without a total
hip replacement prosthesis (see Figure E2.18(a)). Assume that the cross-
sectional diameter of the femur is equal to 3 cm and that of the implant
is 1.5 cm. (c) What would you do to improve the situation?

Cancellous bone E(N E(B)

Vitallium implant

(a)

Given:

(b)

Weight = 1000 N (100 kg),
E; = 210 GPa,
Ey = 20 GPa,

where E; and E; are the moduli of the implant and bone, respectively.
Solution:

(a) In the presence of the implant, we can consider the situation analo-
gous to two springs in parallel, as shown in Figure E2.18(b). For
two springs in parallel (the analog for a bone joined to the implant
stem), the strains are equal:

&1 = €,

where ¢; and e5 are the strains in the implant and bone, respectively.
The elastic deformation of bone and implant can be expressed as:

(o3}
== =gy
Ep
and
o1
—-— = €.



142

ELASTICITY AND VISCOELASTICITY

The areas are:

3\> [15)\° ) e
AB:JTX 5 — 7 x 107" =5.3 x 10 m

and
A; =1.76 x 107* m?.
The total load is

Py =Py + Py = 01A; + 05 Az.

But:
(03] _ o1
Ez E;’
Thus:
Ap
op = —E1 +AB IPT
Eg
Py 6 2
op = = 0.42 x 10° N/m*.

(tr+m)
In the absence of implant,
1000 1000

x [(%)2 _ (LZS)Z] 10—+ 5301 x10*

op =

=1.89 x 10° N/m?.

It can be seen that the stresses in the bone are significantly reduced
by the introduction of the implant: they are one-fourth of the orig-
inal stresses. This has a deleterious effect on the bone growth and
leads to weakening of the implant.

One solution would be to develop a metallic foam with a Young’s
modulus of 20 GPa. This would have the added advantage of
enabling bone growth into the implant. However, the strength of
this stem would be severely reduced.

Example 2.19 |

From the curves (Figure E2.19) reporting the force-strain response of
human skin along the direction of loading (extension) and perpendi-
cular to it (lateral contraction) determine the in-plane Poisson’s ratio at

20,

40, and 60 N.
What can you conclude from the results?

Solution: We can see that the behavior of the skin is nonlinear elastic,
with the slope increasing with load.

Poisson’s ratio is defined as:

Elat

v = 9
Elon
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where ¢,; is the lateral strain and ¢),, is the longitudinal strain The
following values are obtained from Figure E2.19:

(P =20 N)v =0.81,
(P =40 N)v = 0.91,
(P =70 N)v = 0.95.

The values are close to 1. If we assume that the skin volume remains
constant during deformation, then we can write for the volume change

E1ar + Eon + &m = 0,

100

80

Force, N
[}
o
—

N T TV

0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8
Lateral contraction Extension

Force—extension and force—lateral contraction curves for human skin in
uniaxial tension. (Adapted from R. M. Kenedi, T. Gibson, J. H. Evans, and J. C.
Barbanel, Phys. Med. Biol., 20 (1975) 619.)

where the subscripts lat, long, and th indicate lateral, longitudinal, and
thickness directions. Dividing the equation by &jo,:

v—14vy =0.
Since v ~ 0.9, we have:
Vin ~~ 0.1.

The results indicate that the strain in the thickness direction is small
in comparison with the in-plane strains. Thus, the thickness of human
skin remains approximately constant when it is uniaxially stretched.

2.16 | Elastic Properties of Electronic Materials

Microelectronic integrated circuit materials are characteristically
composed of a silicon (monocrystalline) substrate and thin film lay-
ers (Section 1.3.10). The thickness of the substrate is of the order of
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(a)

Effect of stresses
acting on thin film on bending of
substrate; (a) tensile stresses in
thin film; (b) compressive stresses
in thin film.

(b)

0.5-1 mm, and the thin films are characteristically 1 pm thick. The
thin film and substrate have often different coefficients of thermal
expansion. Additionally, the substrate density might change as it
grows. There are also epitaxial strains, caused by a lattice parame-
ter mismatch between the substrate and film. As a result, the thin
film is either under compression or tension. Figure 2.34 shows both
situations. If the film is under tension, it will bend the substrate up
(Figure 2.34(a)); on the other hand, if the film is under compression, it
will bend the substrate down (Figure 2.34(b)). It is possible to estimate
the radius of curvature and the stresses. We start with the general-
ized Hooke’s law and set o33 equal to zero in the thin film. We do
this because we have a state of plane stress. For isotropic materials,
from Equation 2.11:

1
&1 = f [o11 — voa],
oy 1
€y = — |02y — VO11],
2= g lon 11
1
£33 = I [=v(o11 + 022)].
Therefore:
1—v
&1 = E o11.

The term E /(1 — v) can be defined as a biaxial modulus. For the sub-
strate:

Es
- 1—vg

M;

E; and vs are the Young’s modulus and Poisson’s ratio of the substrate,
respectively. This is the so-called Stoney equation.

The radius of curvature of the system can be estimated from an
equation for plates:

Esh?
6(1 — VS)thf ’

where h; and hy, defined in Figure 2.34, are the thickness of substrate
and film, respectively. o is the maximum stress in the film.

For a monocrystalline substrate, one has to compute the biaxial
modulus using the elastic stiffness components C,,.
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For instance, the values for Si are:

Ci1 =166 GPa,
C12 =64 GP&,
C44 =80 GPa.

For the anisotropic case, when the cube plane is parallel to the inter-

face, the following expression can be derived (see Section 2.9):
! S
- — Q11
E 100

For Poisson’s ratio, we use the expression:

SlZ
V=——
Sll
Thus
1/51
M —
100 1 + h

We obtain the stiffnesses from the compliances by inverting the
matrix (Section 2.9, Example 2.10). The result is:

2C2,

MS = C11 + C12 — C = 180.7 GPa.

1
For the (111), we repeat the procedure and obtain:

6C 44 (C11 + 2C12)

M = .
C11+2C12 +4Cyy

For the (110) plane, the stiffness depends on direction. For more
details, the reader is referred to Nix™ and Freund and Suresh.!®

We can also use the isotropic Young’s modulus of Si (= 163 GPa)
and a Poisson’s ratio of 0.2. This would give us close enough results.
For hy=1 pm and hy; = 500 um, we have, assuming a maximum stress
in the film of 500 MPa:

2
s6afhf

2.17 | Elastic Constants and Bonding

There are four types of bonds between atoms:

* Metallic: metals,

e Jonic: ceramics,

¢ Covalent: ceramics, backbone of polymers and biological materials,
¢ van der Waals: polymers and biological materials.

4 W. D. Nix, Met. Trans., 20A (1989) 2217.
15 L. B. Freund and S. Suresh, Thin Film Materials (Cambridge, U.K.: Cambridge University
Press, 2003), Ch. 3.
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Two atoms with an

imaginary spring between them; (a)
equilibrium position; (b) stretched
configuration under tensile force;
(c) compressed configuration
under compressive force.

(a) fo

(c) r2

The first three are called primary bonds. van der Waals bonds (which
include the hydrogen bond) are called secondary bonds. The primary
bonds are in general much stronger than secondary bonds. Secondary
bonds “melt” between 100 and 500 K.

Many materials have mixed bonds. Intermetallic compounds may
be bonded by as mixture of metallic and ionic bonds. Many ceramic
and semiconducting compounds have a mix of covalent and ionic
bonding. Polymers and biological materials have covalent bonds along
the primary chains (C-C, Si-Si, etc.) and van der Waals (often, hydro-
gen) bonds between segments inside a chain.

The interaction energy between two adjacent atoms is often con-
sidered as the sum of an attractive and a repulsive term. The result-
ant curve gives the potential well. There are many calculations of
interatomic potentials, the Condon-Morse and Lennard-jones being
examples.

The linear theory of elasticity makes the assumption that the
material is a continuum. The assumption is good when we are deal-
ing with large bodies; the micromechanics of deformation, on the
other hand, describes a scale where the continuum breaks down into
a periodic array of atoms: the crystalline structure. It is theoretically
possible to calculate the elastic constants from the consideration of
the interatomic forces. These calculations can be conducted for ionic
structures, such as NaCl, considering only electrostatic forces using
measured values of the ion sizes. In metals the situation is more com-
plex. Even approximate quantitative determinations require the use
of wave mechanics. The effect of temperature on atomic vibrations
and/or the lattice parameter is discussed, as well as the attendant
changes in elastic properties.

Figure 2.35 shows two atoms, which are at their equilibrium
separation ry. Tensile forces increase the separation to ry; compres-
sive forces decrease it to rp. The variation of the interaction energy
with atomic separation is shown in Figure 2.36. At equilibrium, the
interaction energy is minimum; the equilibrium separation r,
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corresponds to the bottom of the well. One can represent the energy
by:

A B
Ui=-—+—,

o (2.49)

where the first term represents the attraction and the second term
the repulsion. The exponent of the repulsive term, n, is usually much
larger than m because, as the two atoms are brought together, their
electronic orbitals superimpose and strong repulsion (due to Pauli’s
exclusion principle) ensues. This is reflected in Figure 2.36(a), where
the repulsive term increases sharply as as the separation is decreased

(a) Interaction energies
(attractive and repulsive terms) as
a function of separation; (b) Force
between two atoms as a function
of separation; notice decrease in
slope as separation increases.
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Array of atoms
representing tensile stress applied
to crystal.

‘ ‘
‘ r ’

below ry. The repulsive force operates at a close range. The interatomic
force is obtained from:
oU;
F = .
ar

This force is equal to zero at the bottom (trough) of the interaction
energy curve, which corresponds to the equilibrium separation, . It
is possible to estimate the elastic modulus from 9F /dr. This can be
accomplished by expressing stress and strain in terms of atomic pos-
itions. Figure 2.37 shows, in a schematic fashion, an array of atoms.
We consider only the nearest neighbors aligned with the stress
direction. In a more accurate calculation nextmnearest and next to
next-nearest neighbors have to be included, since they play an impor-
tant role.
The engineering strain can be expressed as:
de = d_r’
To

where 1, is the equilibrium atomic separation and dr is the change
in atomic separation. The stress is equal to:

do = NdF,

where N is the number of atoms per unit area of cross section and
dF is the interatomic force producing a displacement dr. If we ascribe
an area rp X ro per atom, we have:

__dF

do = 7
0
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The Young’s modulus is expressed as:

_|do _ dF _ d2U; (2.50)
de e=0 ° dr r=ro ° dr? r=rg .

From Equation 2.49:

du; _ Am Bn

dr  pmtl gt
At r =r1p:

Am Bn

pmtl - pm =0

Bn = Amry~ ™.
Thus:

au;  Am  Amrg "

dr  pmtl . pmt2

d’U;  dF  Am(m+1)  Am(n+)rg™"

arz ~ dr | ymt2 2
At the equilibrium separation, ty:

dF _ Amm+1)  Am(n+ g "

dr o - rg1+2 1,(1)1+2

dF Am(n —m)

—| = (2.51)

dar — ré"*
Substituting Equation 2.51 into Equation 2.50:

Am(n —m)
E = W (2.52)
0

The attraction forces in ionic solids are of a coulombic nature and
the exponent in Equation 2.52 is m=1.

Thus:
An—1
To

The parameter A is related to the electrical charges of the ions. For
monovalent ions:

eZ

A= ,
4meg

where e is the electric charge of an electron and ¢, is the permittivity

of vacuum. One can thus estimate the elastic modulus of ionic solids.

Thus:

where k comes from the grouping of constants. The r,* dependence
of elastic constants is actually much more general.
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The electrostatic nature of the forces between ionic crystals ren-
ders the determination of elastic constants less arduous. The NaCl
structure is a simple cubic structure, with Na and Cl occupying alter-
nate positions in the lattice. Each Na™ ion is surrounded by six Cl~
ions. If we consider one isolated ion (either Na* or C17) and compute
all attractive and repulsive forces by neighbors, next-neighbors, and
so on, it is possible to determine the resultant electrostatic force.

The force between individual ions is coulombic (i.e. it varies with
the square of the distance). Computing all the forces and transforming
the resultant force into a stress and the displacement into strain, we
showed above that one obtains an equation of the form:

ke?

—>
To

E = (2.53)
where 1, is the interatomic distance, k a constant, and e the charge
of an electron. This very simplified calculation shows that Young’s
modulus should vary with r,*. The same dependence should exist for
the bulk modulus k. Figure 2.38 shows that this type of dependence
is actually observed. In the log-log plot, the slope of —4 corresponds
to the dependence shown in Equation 2.53. Elements from groups I,
11, III, and IV obey that relationship. Elements of the same group were
taken together because they have the same valence. Group I elements
are monovalent and have the weakest bonding. Hence their line is
the lowest in Figure 2.38.

In spite of the fact that bonding is more complex in metals than
in ionic crystals, Gilman'® has shown that an r;* type of relationship
can be found for metals. This is shown in Figure 2.39. The alkali

16 7. J. Gilman, Electronic Basis of the Strength of Materials (Cambridge, U.K.: Cambridge
University Press, 2003).
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metals seem to obey the r;* (where ry is the interatomic distance)
quite well; the transition metals are situated above them. The elastic
properties are strongly dependent, obviously, on bonding. Figure 2.40
shows a plot of the bulk modulus versus melting point for a number
of transition metals. The melting point is the temperature at which
thermal energy is sufficient to disrupt the metallic bonding. Hence,
the stronger the bonding, the higher the melting point. This correl-
ation is clearly evident in Figure 2.40. The lines join elements from
the same column in the periodic table. Some of the series of three
elements fall remarkably well in a straight line: Cr-Mo-W, V-Nb-Ta,
Ag-Cu-Au.

A plot that emphasizes the importance of the electronic structure
on elastic constants is shown in Figure 2.41. The periodicity in the
variation of the Young’s moduli (lines represent rows in the periodic
table) is indicative of the importance of the electronic structure. Tran-
sition metals, which are characterized by strong bonding by electrons
from the d shell, have particularly high Young’s moduli. Os, Ru, and
Fe have six d electrons each and are the elements that have the high-
est melting point for each of the three rows of transition elements
in the periodic table. In Figure 2.40, it can be seen that the transi-
tion elements have Cy44 higher than would have been predicted from
the r,* relationship. This confirms the indication that the strong d

Variation of elastic

constant Cy4 with ro for BCC
metals. (Adapted from J. ). Gilman,
Mechanical Behavior of Crystalline
Solids, NBS Monograph, 59 (1963)

79)
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- Ay XN Relationship between
melting point and bulk modulus for
transition elements.

Periodic variation of
Young’s modulus of elements. The
three lines represent the rows in
the periodic table. (Adapted with
permission from O. D. Sherby, in
Nature and Properties of Materials,
ed. J. Park (New York: Wiley,
1967), p. 373.)
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bonding is responsible for additional stiffness. One element stands
out in Figure 2.41: beryllium. Having a relatively small atomic number,
it has an extremely high stiffness, comparable with that of tungsten
and molybdenum. The ratio between Young’s modulus and density
is extremely high (six to seven times as high as for titanium and
aluminium). It has unique applications in the aerospace industry. Its
first use was in spacers for the Minuteman missile, and it is used in
space vehicles. A high stiffness is required in large satellites because
the lowest natural frequency of vibration must exceed a specified
value to avoid resonant coupling with the booster control system dur-
ing powered flight. The higher the stiffness, the higher the natural
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frequency of vibration. However, the metallurgical problems posed in
beryllium production are many, because of its structure (HCP), high
chemical reactivity, and high toxicity.

The dependence of elastic properties of a metal on interatomic
separation (which can, as a first approximation, be expressed as
Ty %) may be applied to rationalize two different phenomena: the
temperature dependence of elastic properties and the effect of mag-
netic fields on elastic properties. They will be discussed below. As
the temperature increases, the metals expand; this lattice expansion
is treated in detail by Mott and Jones,'” but is beyond the scope of
this book. Suffice to say that as the temperature increases, the ampli-
tude of vibration of the atoms increases. This amplitude increase will
accommodate the thermal energy term (kT) and the expanded lat-
tice will have a larger ry. This, in turn, will produce a decrease in
the elastic constants. The change in elastic constants with tempera-
ture is much less pronounced than the change of yield stress, tensile
strength, and strain to failure. The Young’s modulus at the melting
point is usually between one-half to two-thirds of the low-temperature
value. The temperature dependence of the yield point is much more
pronounced because plastic deformation is a thermally activated pro-
cess. Figure 2.42 illustrates the changes in E with temperature for
some metals.

The effect of magnetic fields can be explained by the same ration-
ale. A magnetic field, due to the magnetostrictive effect, changes
the lattice parameter slightly; this, in turn, affects the elastic prop-
erties. When the Young’s modulus of nickel in the presence and
absence of a magnetic field is measured, appreciable differences are
found. Actually, between 200 and 360°C (Curie temperature, where
ferromagnetic-paramagnetic transformation takes place) the Young’s
modulus of nickel increases with temperature.'® By appropriate alloy-
ing it is possible to obtain alloys that have essentially a constant

7' N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (New York: Dover,
1958).

8 0. D. Sherby, in Nature and Properties of Materials, ed. J. Park (New York: Wiley, 1967),
pp. 373, 375, 376.

Effect of temperature
on dynamic Young’s modulus.
(Adapted with permission from O.
D. Sherby, in Nature and Properties
of Materials, ed. ). Park (New York:
Wiley, 1967), p. 376.)
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(a)

Modulus ratios
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Young’s and shear moduli ratios as a function of §, a parameter that is a
measure of the strength of the second neighbour interaction compared to that of the
first neighbor interaction. (a) FCC and (b) BCC crystals (data points — experimental;
lines — calculated). In each of these figures a, b, ¢, and d refer to E||/E|oo, Ei10/Ei00,
G(111y/G(100), and Gio0)(110)/G(100), respectively. (From T. Milstein and T. Marchall, Acta
Mater., 40 (1992) 1229.)

Young’s modulus over a certain temperature range. Such an alloy is
Elinvar (36% Ni, 12% Cr, 1 to 2% Si, 0.8% C, balance Fe), and it has an
essentially constant E between 15 and 40 °C; it is ideal for springs in
watches and other precision instruments.

The crystal structure has a very marked effect on the elastic
anisotropy of crystals. The standard ordering of Young’s moduli in
FCC and BCC crystals is:

Eq11 > E110 > E1g0,

where the subscripts indicate the cubic axes.
This was clearly seen earlier in Figure 2.9(a), for copper. For simple
cubic crystals, the ordering is:

E100 > E110 > E111.

This corresponds to the elastic moduli of cubic zirconia, as was seen
in Figure 2.9(b). The bonding of atoms along different crystallographic
orientations has been correlated with the relative values of Young’s
moduli.

Milstein and Marschall’® defined a parameter, §, which is a meas-
ure of the strength of the second-neighbor interaction compared with
that of the nearest-neighbor interaction. The moduli ratios for FCC
and BCC materials as a function of this parameter are shown on
Figure 2.43(a) and (b), respectively. We plot ratios E111/E100. E110/E100,
G111)/G100)» and Giooy110)/Gii00)- Note that among FCC, aluminium has

19 T. Milstein and T. Marschall, Acta Mater., 40 (1992) 1229.
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the least anisotropy; for BCC, W is at the interaction of all curves, cor-
responding to a ratio of 1, i.e., perfect isotropy. The ratios for Young’s
moduli values range from 3.2 to 1 for FCC structures and from 8 to 0
for BCC structures. The important conclusion is that second-neighbor
interactions are very important in determining these ratios.

The Poisson’s ratios (v) for monocrystals has values that range
widely, and can be quite different from the polycrystalline values
(~0.3). These values vary much more than the bounds calculated ear-
lier for isotropic materials (0 < v < 0.5).
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Exercises

2.1 Rubber specimens, having an initial length of 5 cm, are tested, one in
compression and one in tension. If the engineering strains are —1.5 and +1.5,
respectively, what will be the final lengths of the specimens? What are the
true strains, and why are they numerically different?

2.2 An aluminum polycrystalline specimen is elastically compressed in plane
strain. If the true strain along the compression direction is —2 x 10~#, what
are the other two longitudinal strains?

2.3 Determine K, A, and G for polycrystalline niobium, titanium, and iron,
from E and y.

24 A state of stress is given by
o011 = 250 MPa,

013 — 70 MPa,

oy = 310 MPa.
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Determine the principal stresses and the maximum shear stress, as well as
their angle with the system of reference.

2.5 Calculate the anisotropy ratio for the cubic metals in Table 2.3.

2.6 Show that a uniaxial compressive stress can be decomposed into a hydro-
static pressure and two states of pure shear. Use sketches if necessary.

2.7 Determine the principal stresses and the maximum shear stress, as
well as their angles with the system of reference given by the following
stress state:

o] = (Z (2))MPa.

2.8 Extensometers attached to the external surface of a steel pressure vessel
indicate that &; = 0.002 and &; = 0.005 along the longitudinal and transverse
directions, respectively. Determine the corresponding stresses. What would be
the error if Poisson’s ratio were not considered?

2.9 Calculate Young’s and shear moduli for monocrystalline iron along [100],
[110], and [111].

2.10 From the values obtained in Exercise 2.9, obtain a rough estimate of
the Young’s modulus of a polycrystalline aggregate, assuming that there are
only three orientations for the grains ([100], [110], and [111]) and that they
occur proportionally to their multiplicity factors. Compare your result with
the predictions of Voigt averages (isostrain) and Reuss averages (isostress).

2.11 A silver monocrystal is extended along [100]. Obtain the values for the
Young’s and shear moduli, as well as Poisson’s ratio.

2.12 (a) For Figure 2.25, plot the curve of true stress vs. true strain. (b) Taking
the slopes of the curve at various strains, plot the elastic modulus of rubber
as a function of strain. (c¢) Schematically draw polymer chains at different
positions in the curve.

2.13 A steel specimen is subjected to elastic stresses represented by the
matrix

2 -3 1
Ojj = -3 4 5 MPa.
1 5 -1

Given that E = 200 GPa, v= 0.3, calculate the corresponding strains.

2.14 Ultrasonic equipment was used to determine the longitudinal and shear
sound velocities of a metallic specimen having a density of 7.8 g/cm®. The
values obtained are

V., =5,300m/s,

Vs = 3,300m/s.

Determine the Young’s and shear moduli and Poisson’s ratio for this material.
What is the material?

2.15 A tubular specimen is being subjected to a torsional moment T =
600Nm. If the shear modulus of the material (Al) is equal to 26.1 GPa, what
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is the total angular deflection if the length is 1 m? The tube has a diameter
of 5 cm and a wall thickness of 0.5 cm. Assume the process to be elastic.

2.16 Using the Mohr circle construction, calculate the principal stresses and
the maximum shear stresses, as well as their orientation, for the sheet sub-
jected to the stresses shown in Figure Ex2.16.

1200 MPa

-—

l 300 MPa
—_—

— 450 MPa

T

2.17 A state of stress is given by
o011 = —500 MPa,

073 = 300 MPa,

01 = 150 MPa.

Determine the principal stresses and the maximum shear stress, as well as
their orientation, using the Mohr circle construction.

2.18 From the elastic stiffnesses for copper (see Table 2.3), determine the elas-
tic compliances.

2.19 From the elastic compliances Sy;, Siz, and Sy4 for iron and tungsten,
determine the Young’s moduli along [111], [110], and [100].

2.20 Determine the elastic Young’s moduli for tungsten and ZrO, along [112],
[122], and [123].

2.21 Determine the polycrystalline Young’s modulus for molybdenum using
Reuss’s and Voigt’s averages. Use elastic stiffnesses and compliances from
Tables 2.3 and 2.4.

2.22 Consider a bar made of steel with a cross-sectional area of 25 cm? and
length of 20 cm. If we apply a load of 500 N along its length, what is the
strain energy density. Take E = 210 GPa.

2.23 Derive an expression for the strain energy stored in a circular bar of
length L subjected to a torque, T, along its axis. Recall that the shear stress
resulting from the torque T is given by t = Tr|], where r is the distance from
the centroid of the cross section and ] is the polar moment of inertia. Use G
as the shear modulus of the material.

2.24 Plot Young’s modulus as a function of porosity for alumina, and
show what the value should be for a specimen having 5% porosity
(EA1203 =378 GPa)

2.25 A specimen of Al,O3; contains microcracks that are approximately equal
to its grain size (20 pum). One grain in each 10 grains contains cracks. If the
uncracked materials has E; = 378 GPa, determine Young’s modulus for the
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cracked material by use of Budiansky and O’Connell’s and Salganik’s equa-
tions.

2.26 Young’s modulus (E) of a cubic single crystal as a function of orientation
is given by

1 1 1 1 292 292 292
Fo = e 3 (m - m) (€165 + 6365 + €3¢7) .
where ¢1, {5, and ¢3 are the direction cosines between the direction hkl and
[100], [010], and [001], respectively. This is another version of the expression
given in Example 2.10. For copper, E;;; = 19 GPa and E;pp = 66 GPa. Calculate
Young’s modulus for a copper single crystal in the [110] direction, and check
your answer against the one in Example 2.10.

2.27 A polymer has a viscosity of 10'2 Pa, at 150 °C. If this polymer is subjected
to a tensile stress of 100 MPa at that temperature, compute the deformation
after 10 h. Assume the polymer to behave as a Maxwell solid. Take E = 5 GPa,
and use the equation

O’+1 :
&1 = — —O0l.
T F T3y

2.28 For a given polymer, the activation energy for stress relaxation was meas-
ured to be 10 KkJ/mol. If the stress relaxation time for this polymer at room
temperature is 3,600 s, what would be the relaxation time at 100 °C?

2.29 For an elastomeric material, we have the constitutive equation

1 E 1
O':G A_A_Z :E )\‘_)\_2,

where E is the elastic modulus at zero elongation. Show that, for very small
strains, this equation reduces to o = Ee.

2.30 A cylindrical aluminum specimen (length =100 mm, diameter =10 mm)
is subjected to a torque equal to 40 Nm. If one end of the specimen is fixed
what is the deflection of the other end? Take E=70 GPa and v=0.3.

2.31 A steel bolt has 12 threads per mm. If the nut is tightened by one turn,
what stress will be generated in the steel bolt and aluminium sleeve? The bolt
diameter is 10 mm and the sleeve thickness is 2 mm.

2.32 Calculate Young’s modulus for rubber with a density of 1000 g/mol and
having intercross-link segments with a molecular weight of 2000 g/mol.

2.33 Describe dilation that occurs in the elastic deformation of a solid. Give
a mathematical expression in terms of strain components.

2.34 Consider a solid subjected to hydrostatic pressure, p, that results in a
dilation or volumetric strain given by

AV/V =&,

The bulk modulus, K, is defined by the ratio p/e,. By use of the generalized
Hooke’s law, show that

K = E/3(1 — 2v),

where E is the Young’s modulus and v is the Poisson’s ratio.
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2.35

(a) Compute the Poisson’s ratio for a material that is undergoing a uniaxial
tensile test with zero dilation.

(b) A student was given three different unidentified materials to determine
their Posson’s ratio. She determined the Poisson’s ratios to be 0.5, 0.3, and
0. She needs your help in identifying the class of material for each of
these v values.

2.36 Discuss the advantages and disadvantages of Al, Ti, and Vitalium for use
in total hip replacement prostheses.

2.37 From Table 2.5, estimate the theoretical shear and cleavage strength for
nickel and titanium.

2.38 From Table 2.5, estimate the theoretical shear and cleavage strength for
magnesium and niobium.

2.39 From Table 2.3 find the elastic compliances for nickel.
2.40 From Table 2.3 find the elastic compliances for aluminum.

2.41 Plot the stress-strain curve for alumina in tension, knowing that the
density of microcracks increases linearly with stress (N=ko). The grain size
is 30 um and the failure stress is 1 GPa; k=5.45 x 10* m®/Pa, Ey =380 GPa.

2.42 The following are given for tantalum:

Cn =267 GPa,
C44 =82.5 GPa,
C12 =161 GPa. E

Determine the Young’s moduli in the directions [100], [110], and [111] after
calculating the elastic compliances.

2.43 The following values are given for niobium:

E=105 GPa,
v= 04.

Calculate the values of G, B, K, and A.

2.44 Plot the engineering stress—engineering strain curve for a rubber at ambi-
ent temperature and liquid nitrogen temperature, up to a strain of 10, using
the Equation 2.48. The number of chain segments per unit volume (m?®) is
2 x 10%.

2.45 From the elastic stiffness for a cubic material, Nb (Cy; =242 GPa, C1, =129
GPa, C44 =286 GPa), find the elastic compliances.

2.46 The potential energy of a Na* Cl~ ion pair at the distance r is given by:

q° B

U=U - =,
R &

where q=1.6 x 107" C is the electronic charge, g0 =8.85 x 107'% C?/
(Nm?) is the permittivity of vacuum, and U; =1.12 €V is the reference energy
of two infinitely separated ions. If the equilibrium distance between the ions
is 1o =0.276 nm, calculate:

(a) the value of the constant B;
(b) the total force between ions, and its attractive and repulsive portions,
when r=0.25 nm;
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(c) the total force between ions, and its attractive and repulsive portions,
when r=0.3 nm;

(d) the potential energy between two ions when they are at a distance r=1
nm.

2.47 The potential energy of two atoms, a distance r apart, is

A B
U= *r—m + 17
Given that the atoms form a stable molecule at a separation r=r,, with a
binding energy U = Uy, derive:

(a) the expressions for the constants A and B in terms of m, n, o, and Up;

(b) the expressions for the stiffness S of the bond at arbitrary r and at ro;

(c) the expression for the distance r of the maximum tensile force (needed
to break the bond between atoms), and the expression for that force (F*);

(d) Given that m=2, n=10, and that the atoms form a stable molecule at a
separation o =0.3 nm, with a binding energy Uy, = —4 eV, evaluate A, B,
r*, F*, and the stiffness Sy of the bond at r=rj.

2.48 Plot the stress-strain curve for SiC in tension, knowing that the den-
sity of microcracks increases linearly with stress (N = ko ). The grain size is
20 pm. The failure stress is 1 GPa; given: k = 5.45 x 10* m3/Pa, E, =420 GPa.

249 Derive the expression:

E
¢= 2(1+v)

The symbols have their usual significance.

2.50 Describe the microscopic changes that occur during the solidification
and cooling process of a partly crystalline thermoplastic as it encounters the
glass transition regimen.

2.51 From the data on elastic stiffness and compliances for HCP zirconium
(Tables 2.3 and 2.4), determine the elastic stiffness, C;3, missing in Table 2.3.

2.52 Using the elastic stiffness of tin (exhibiting a tetragonal structure) given
in Table 2.3, find the elastic compliances.

2.53

(a) Describe the internal structure of an artery, and state the importance of
its components to the mechanical response.

(b) Explain how you would go about developing an artificial blood vessel,
taking into account materials selection and properties, the harsh envir-
onment within the body, and biocompatibility.



Chapter 3

Plasticity

3.1 ‘ Introduction

Upon being mechanically stressed, a material will, in general,
exhibit the following sequence of responses: elastic deformation,
plastic deformation, and fracture. This chapter addresses the second
response: plastic deformation. A sound knowledge of plasticity is of
great importance for the following reasons.

Many projects are executed in which small plastic deformations of
the structure are accepted. The “theory of limit design” is used
in applications where the weight factor is critical, such as space
vehicles and rockets. The rationale for accepting a limited plastic
deformation is that the material will work-harden at that region,
and plastic deformation will cease once the flow stress (due to work-
hardening) reaches the applied stress.

It is very important to know the stresses and strains involved in
deformation processing, such as rolling, forging, extrusion, draw-
ing, and so on. All these processes involve substantial plastic de-
formation, and the response of the material will depend on its
plastic behavior during the processes. The application of plasticity
theory to such processes is presented later in this chapter.

The mechanism of fracture can involve plastic deformation at the
tip of a crack. The way in which the high stresses that develop at
the crack can be accommodated by the surrounding material is
of utmost importance in the propagation of the crack. A mater-
ial in which plastic deformation can take place at the crack is
“tough,” while one in which there is no such deformation is
“brittle.”

The stress at which plastic deformation starts is dependent upon
the stress state. A material can have a much greater strength when
it is confined - that is, when it is not allowed to flow laterally -
than when it is not confined. This will be discussed in detail later.
A number of criteria for plastic deformation and fracture will be
examined in this chapter.
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m Common tests used to

determine the monotonic strength
of materials. (a) Uniaxial tensile
test. (b) Upsetting test. (c)
Three-point bending test. (d)
Plane-strain tensile test. (e)
Plane-strain compression (Ford)
test. (f) Torsion test. (g) Biaxial
test.

SPECIMEN
(c) (d) (e)

(f)

The mechanical strength of a material under a steadily increasing
load can be determined in uniaxial tensile tests, compression (upset-
ting) tests, bend tests, shear tests, plane-strain tensile tests, plane-
strain compression (Ford) tests, torsion tests, and biaxial tests. The
uniaxial tensile test consists of extending a specimen whose longitu-
dinal dimension is substantially larger than the two lateral dimen-
sions (Figure 3.1(a)). The upsetting test consists of compressing a cylin-
der between parallel platens; the height/diameter ratio has to be lower
than a critical value in order to eliminate the possibility of instability
(buckling) (Figure 3.1(b)). After a certain amount of strain, “barreling”
takes place, destroying the state of uniaxial compression. The three-
point bend test is one of the most common bending tests. A specimen
is simply placed between two supports; a wedge advances and bends
it through its middle point (Figure 3.1(c)). Plane-strain tests simulate
the conditions encountered by a metal in, for instance, rolling. Load-
ing is imparted in such a way as to result in zero strain along one
direction. The two most common geometries are shown in Figure
3.1(d) and (e). In the tensile mode, two grooves are made parallel to
each other, on opposite sides of a plate. The width of the plate is
much greater than its thickness in the region of reduced thickness;
hence, flow is restricted in the direction of the width. In the com-
pressive mode (Ford test), a parallelepiped of metal is machined and
inserted between the groove-and-punch setup of Figure 3.1(e). As the
top punch is lowered, the specimen is plastically deformed. Strain is
restricted in one direction. In the torsion test (Figure 3.1(f)), the cylin-
drical (or tubular) specimen is subjected to a torque and undergoes
an attendant angular displacement. One of the problems in the ana-
lysis of the torsion test is that the stress varies as the distance from
the central axis of the specimen. Accordingly, the biaxial test is usu-
ally applied to thin sheets, and one of the configurations is shown
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A servohydraulic
universal testing machine linked to
a computer. (Courtesy of MTS
Systems Corp.)

in Figure 3.1(g). Other configurations involve testing a tubular speci-
men in tension with an internal pressure and testing a tubular speci-
men in tension with torsion. The results of the tests just described
can be expressed graphically as stress-versus-strain curves. They can be
compared directly by using effective stresses and effective strains. A
machine commonly used to carry out the tests is the so-called univer-
sal testing machine. Both screw-driven (Figure 2.1) and servohydraulic
machines are very useful for mechanical testing. Figure 3.2 shows a
typical servohydraulic testing machine.

3.2 ‘ Plastic Deformation in Tension

Figure 3.3 shows a number of stress-strain curves for the same
material: AISI 1040 steel. This might look surprising at first, but
it merely reflects the complexity of the microstructural-mechanical
behavior interactions. Both engineering and true stress-strain curves
are shown. (The definitions of these are given in Chapter 2.) Engin-
eering (or nominal) stress is defined as P/Ay, while true stress is P/A,
where Ay and A are the initial and current cross-sectional areas,
respectively. Engineering (or nominal) strain is defined as AL/Ly, while
true strain is In L/Ly, where L and L, are the current and initial lengths,
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Stress—strain curves for
AISI 1040 steel subjected to
different heat treatments; curves
obtained from tensile tests.

1200

1000

& 800 [f 1
=
g 600f" N\ .
o Annealed
@ 400 &
200 L —— Eng. stress — eng. strain -
--= True stress — true strain
0 | 1 | | 1 1 !
0 0.1 0.2 0.3 0.4

Strain

respectively. The yield stress varies from 250 to 1,100 MPa, depending
on the heat treatment. Conversely, the total strain varies from 0.38
to 0.1. The properties of steel are highly dependent upon heat treat-
ment, and quenching produces a hard, martensitic structure, which
is gradually softened by tempering treatments at higher temperatures
(200, 400, and 600 °C). The annealed structure is ductile, but has a low
yield stress. The ultimate tensile stresses (the maximum engineering
stresses) are marked by arrows. After these points, plastic deform-
ation becomes localized (called necking), and the engineering stresses
drop because of the localized reduction in cross-sectional area. How-
ever, the true stress continues to rise because the cross-sectional area
decreases and the material work-hardens in the neck region. The
true-stress-true-strain curves are obtained by converting the tensile
stress and its corresponding strain into true values and extending the
curve.
We know that the volume V is constant in plastic deformation:

V =A¢lo=AL.

Consequently,

AoL 0

. (3.1)

In what follows, we use the subscripts e and t for engineering (nomi-
nal) and true stresses and strains, respectively. We have

— =1, 3.2
& I, n (3.2)
Ot P Ao Ao
SR 3.3
e AP T At (33)
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On the other hand, the incremental longitudinal true strain is defined
as

dL
d€£ = T (35)

For extended deformations, integration is required:

Latr L
5t:/ — =In—, (3.6)
1o L Lo
L
eXP(St) = L_O (37)

Substituting Equations 3.2 and 3.3 into Equation 3.7, we get

oy = Aio exp(&). (3.8)
Engineering (or nominal) stresses and strains are commonly used in
tensile tests, with the double objective of avoiding complications in
the computation of ¢ and ¢ and obtaining values that are more sig-
nificant from an engineering point of view. Indeed, the load-bearing
ability of a beam is better described by the engineering stress, referred
to the initial area Ay. It is possible to correlate engineering and true
values.

From Equations 3.4 and 3.8, the following relationship is
obtained:

& =1n(1+ &) (3.9)

All of the preceding curves, as well as other ones, are represented
schematically by simple equations in various ways. Figure 3.4 shows
four different idealized shapes for stress-strain curves. Note that these
are true-stress-true-strain curves. When we have a large amount of
plastic deformation, the plastic strain is large with respect to the
elastic strain, and the latter can be neglected. If the material does
not work-harden, the plastic curve is horizontal, and the idealized
behavior is called perfectly plastic. This is shown in Figure 3.4(a). If
the plastic deformation is not so large, the elastic portion of the
curve cannot be neglected, and one has an ideal elastoplastic mater-
ial (Figure 3.4(b)). A further approximation to the behavior of real
materials is the ideal elastoplastic behavior depicted in Figure 3.4(c);
this is a linear curve with two slopes E; and E, that represent the
material’s elastic and plastic behavior, respectively. One could repre-
sent the behavior of the steels in Figure 3.3 fairly well by this elasto-
plastic, linear work-hardening behavior. It can be seen that E, < E;.
For example, for annealed steel, E, = 70 MPa, while E; =210 GPa.
However, a better representation of the work-hardening behavior is
obtained by assuming a gradual decrease in the slope of the curve
as plastic deformation proceeds (shown in Figure 3.4(d)). The convex

c ‘r c
0'0 — Op =
1
—
(a € (b)y €
o c Cfu =0
E, GD= a
0'0 og

m

(d)

Idealized shapes of
uniaxial stress—strain curve. (a)
Perfectly plastic. (b) Ideal
elastoplastic. (c) Ideal elastoplastic
with linear work-hardening. (d)
Parabolic work-hardening

(0 = 0o + Ke").
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shape of the curve is well represented by an equation of the

type
o=Ke", (3.10)

where n < 1. This response is usually called “parabolic” hardening,
and one can translate it upward by assuming a yield stress o, so that
Equation 3.10 becomes

a1

The exponent n is called the work-hardening coefficient.

These equations that describe the stress-strain curve of a poly-
crystalline metal are known as the Ludwik-Hollomon equations.! In
them, K is a constant, and the exponent n depends on the nature of
the material, the temperature at which it is work-hardened, and the
strain. The exponent n generally varies between 0.2 and 0.5, while the
value of K varies between G/100 and G/1,000, G being the shear modu-
lus. In Equation 3.11 ¢ is the true plastic strain, while in Equation 3.10
¢ is true total strain. Equations 3.11 and 3.10 describe parabolic behav-
ior. However, such a description is valid only in a narrow stretch of the
stress-strain curve. There are two reasons for this. First, the equations
predict a slope of infinity for ¢ =0, which does not conform with the
experimental facts. Second, the equations imply that 0 — co when
& — oo. But we know that this is not correct and that, experimentally,
a saturation of stress occurs at higher strains.

Voce? introduced a much different equation,

%79 _exp (—3> , (3.12)

0s — 0p Ec

where o, 0¢, and ¢, are empirical parameters that depend on the
material, the temperature, and the strain rate. This equation says that
the stress exponentially reaches an asymptotic value of o at higher
strain values. Furthermore, it gives a finite slope to the stress-strain
curve at e=0 or 0 =o0y.

It should be noted that the parameters in the preceding equations
(3.10 to 3.12) depend on the choice of the initial stress and/or strain.
For instance, if one prestrained a material, one would affect K in the
Ludwik-Hollomon equation.

The fact that some equations reasonably approximate the stress-
strain curves does not imply that they are capable of describing the
curves in a physically satisfactory way. There are two reasons for this:
(1) In the different positions of stress-strain curves, different micro-
scopic processes predominate. (2) Plastic deformation is a complex

1 See P. Ludwik, Elemente der Technologischen Mechanik (Berlin: Springer, 1909), p. 32; and
J. H. Hollomon, Trans. AIME, 162 (1945) 268.
2 E. Voce, J. Inst. Met., 74 (1948) 537.
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physical process that depends on the path taken; it is not a thermody-
namic state function. That is to say, the accumulated plastic deform-
ation is not uniquely related to the dislocation structure of the mate-
rial. This being so, it is not very likely that simple expressions could
be derived for the stress-strain curves in which the parameters would
have definite physical significance.

Some alloys, such as stainless steels, undergo martensitic phase
transformations induced by plastic strain. This type of transformation
alters the stress-strain curve. (See Chapter 11.) Other alloys undergo
mechanical twinning beyond a threshold stress (or strain), which
affects the shape of the curve. In these cases, it is necessary to divide
the plastic regimen into stages. It is often useful to plot the slope
of the stress-strain curve vs. stress (or strain) to reveal changes in
mechanism more clearly.

In spite of its limitations, the Ludwik-Hollomon Equation 3.11 is
the most common representation of plastic response. When n=0, it
represents ideal plastic behavior (no work-hardening). More general
forms of this equation, incorporating both strain rate and thermal
effects, are often used to represent the response of metals; in that
case they are called constitutive equations. As will be shown in Chap-
ter 6, the flow stress of metals increases with increasing strain rate
and decreasing temperature, because thermally activated dislocation
motion is inhibited.

The Johnson-Cook equation

. é T—T,\"

is widely used in large-scale deformation codes. The three groups of
terms in parentheses represent work-hardening, strain rate, and ther-
mal effects, respectively. The constants K, n, C, and m are material
parameters, and T, is the reference temperature, T, the melting point,
and ¢, the reference strain rate. There are additional equations that
incorporate the microstructural elements such as grain size and dis-
location interactions and dynamics: they are therefore called “phys-
ically based.” The most common ones are the Zerilli-Armstrong® and
the MTS (materials threshold stress, developed at Los Alamos National
Laboratory) equations. The basic idea is to develop one equation that
represents the mechanical response of a material from 0 K to 0.5 Ty,
and from very low strain rates (~107° s~!) to very high strain rates
(~10% s71!). Nevertheless, three factors throw monkey wrenches into
these equations: creep (see Chapter 13), fatigue (Chapter 14), and envir-
onmental effects (Chapter 16). The effects of these factors are very
complex and cannot be simply “plugged into” the equations.

3 See F. Zerilli and R. W. Armstrong, J. Appl. Phys., 68 (1990) 1580.
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Example 3.1 |

For the stress-strain curve shown in Figure E3.1.1 (tantalum tested at
strain rate of 10~* s™!), obtain the parameters of the Ludwik-Hollomon
equation. Estimate the duration of the test in seconds.

700 T T T T T T
600 | S

s O
S o
o o
1
1

True stress, MPa

0 | 1 L . | |
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35

True strain

Solution: From the o — ¢ curve, we have

0o = 160 MPa.

We use the Ludwik-Hollomon equation
o —o0y=Keg",

so that
log(c — 0p) =1logK + nloge,

which is a linear equation. We then make a plot of log (¢ — o) vs log
¢ (shown in Figure E3.1.2) from the following table of values.

o 3 log(o —o0) log &
280 0.05 2.08 —1.3
345 0.1 227 =
385 0.15 235 -0.82
415 0.2 241 -0.70
435 0.25 244 —0.60
455 0.3 247 —0.52

From the new plot, we have

logK = 2.75,
K = 589,
n = slope ~ 0.5.

Substituting K and n into the Ludwik-Hollomon equation yields

o = 160 + 589¢%° (in MPa).
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log (o — oy)
N
>  »® w
]
| 1 1

N
[N}

——
L

ol
-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
log e

The duration of the test, given that

& =10"*s""!
. de N Aeg
Tdr At
is
Ag 0.33
€ 104
= 3.3 x 10°s.

The volume of a material is assumed to be constant in plastic defor-
mation. It is known that such is not the case in elastic deform-
ation. As was shown in Section 2.5, the constancy in volume implies
that

€11 + & +e33=0
or
&1 + &y + &3 = 0 (314)

and that Poisson’s ratio is 0.5. Figure 3.5 shows that this assumption
is reasonable and that v rises from 0.3 to 0.5 as deformation goes
from elastic to plastic.

However, prior to delving into the plasticity theories, we have to
know, for a complex state of stress, the stress level at which the body
starts to flow plastically. The methods developed to determine this
are called flow criteria (see Section 3.7). Figure 3.6 shows engineering-
and true-stress-strain curves for the same hot-rolled AISI 4140 steel.
In the elastic regimen the coincidence is exact, because strains are
very small (~0.5%). From Equation 3.9, we can see that we would have
&. ~ g;. As plastic deformation increases, ¢, and &, become progres-
sively different. For &;=0.20 (a common value for metals), we have
&, =0.221. For this deformation, the true stress is 22.1% higher than
the nominal one. It can be seen that these differences become greater
with increasing plastic deformation. Another basic difference between
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Change in Poisson’s
ratio as the deformation regimen
changes from elastic to plastic.

True- and
engineering-stress—strain curves
for AISI 4140 hot-rolled steel.
R. A. is reduction in area.
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the two curves is the decrease in the engineering stress beyond a
certain value of strain (~0.14 in Figure 3.6). This phenomenon is
described in detail in Section 3.2.2.

3.2.1 Tensile Curve Parameters
Figure 3.7 shows two types of engineering stress-strain curves. The
first does not exhibit a yield point, while the second does. Many
parameters are used to describe the various features of these curves.
First, there is the elastic limit. Since it is difficult to determine the
maximum stress for which there is no permanent deformation, the
0.2% offset yield stress (point A in the Figure 3.7(a) is used instead;
it corresponds to a permanent strain of 0.2% after unloading. Actu-
ally, there is evidence of dislocation activity in a specimen at stress
levels as low as 25% of the yield stress. The region between 25 and
100% of the yield stress is called the microyield region and has been
the object of careful investigations. In case there is a drop in yield,
an upper (B) and a lower (C) yield point are defined in Figure 3.7(b). The
lower yield point depends on the machine stiffness. A proportional
limit is also sometimes defined (D); it corresponds to the stress at
which the curve deviates from linearity. The maximum engineering
stress is called the ultimate tensile stress (UTS); it corresponds to point
D' in Figure 3.7. Beyond the UTS, the engineering stress drops until
the rupture stress (E) is reached. The uniform strain (F) corresponds to
the plastic strain that takes place uniformly in the specimen. Beyond
that point, necking occurs. Necking is treated in detail in Section
3.2.2. G is the strain-to-failure. Additional parameters can be obtained
from the stress-strain curve: (1) The elastic energy absorbed by the
specimen (the area under the elastic portion of the curve) is called
resilience; (2) the total energy absorbed by the specimen during deform-
ation, up to fracture (the area under the whole curve), is called work
of fracture. The strain rate undergone by the specimen, &, = de,/dt, is
equal to the crosshead velocity, divided by the initial length L, of the

specimen.
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(7SR W Tensile specimen being
tested; arrows show onset of
necking.

The reduction in area is defined as
Ag— Ay
=74
0
where Ay and Ay are the initial area and cross-sectional area in the

fracture region, respectively. The true strain at the fracture is defined
as

(3.15)

A
gy =In -2, (3.16)
Ay
The true uniform strain is
A
g, = In A_O’ (3.17)

u

where A, is the cross-sectional area corresponding to the onset of
necking (when the stress is equal to the UTS).

3.2.2 Necking

Necking corresponds to the part of the tensile test in which instability
exists. The neck is a localized region in the reduced section of the
specimen in which the greatest portion of strain concentrates. The
specimen “necks” down in this region. Figure 3.8 shows the onset
of necking in a tensile specimen; arrows show the region where the
cross section starts to decrease.

Several criteria for necking have been developed. The oldest one
is due to Consideére.* According to Considére, necking starts at the
maximum stress (UTS), when the increase in strength of the material
attributed to work-hardening is less than the decrease in the load-
bearing ability owing to the decrease in cross-sectional area. In other
words, necking starts when the increase in stress due to the reduction
in cross-sectional area starts to exceed the increase in load-bearing
ability because of work-hardening. We have, at the onset of necking,

do,
— =0 3.18
i, (3.18)

Substituting Equations 3.4 and 3.9 into 3.18 yields

() a4

dless —1)  d(es —1)

=0.

Making the transformation of variables

e —1=27, e"=Z+1

yields
d (2(11) Az +1)7! doy
= Z+1)1=—==0
a7 ¢ a7 +(Z +1) a7 ,
do;
—n(Z+ 1)+ (Z+1) 22 =0,
oz + 12+ (2 + 175

4 A. Consideére, Ann. Ponts. Chaussées, Ser. 6. (1885) 574.
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Using Equation 3.10, we obtain

d

do; = nK " lde;, or &9 _ ot (3.19)
dSt

and it follows from Equation 3.19 that o, =nKe"~!. Finally, applying

Equation 3.10 again results in K" =nKe" !, so that

&y = M.

This is an important result. The work-hardening coefficient is numer-
ically equal to the true uniform strain and can be easily obtained in
this way.

It is sometimes useful to present results of tensile tests in plots of
do[de versus o or do|de versus ¢. An example of a plot of log (do/de)
versus log ¢ for AISI 302 stainless steel is given in Figure 3.9. It can
be seen that do/de decreases with ¢, indicating that the necking ten-
dency steadily increases. For metals that do not exhibit any work-
hardening capability, necking should start immediately at the onset
of plastic flow. Under certain conditions (predeformation at very low
temperature or very high strain rate) some metals can exhibit this
response, called work-softening.

The formation of the neck results in an accelerated and localized
decrease in the cross-sectional area. Figure 3.6 shows how the true-
stress-true-strain curve continues to rise after the onset of necking. It
can also be seen that the true strain at fracture is much higher than
the “total strain.” The correct plotting of the true-stress-true-strain
curve beyond the UTS requires determination of the cross-sectional
area in the neck region continuously after necking. This is difficult
to do, and the simplest way is to obtain one single point on the

Log do/de versus log ¢
for stainless steel AlSI 302.
(Adapted with permission from
A.S. deS. eSilvaand S. N.
Monteiro, Metalurgia-ABM, 33
(1977) 417.)
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plot, joining it to the point corresponding to the maximum load. For
this reason, a dashed line is used in Figure 3.6. The deformation in
the neck region is much higher than the one uniformly distributed
in the specimen. It can be said that the neck acts as a second ten-
sile specimen. Since its length is smaller than that of the specimen,
and the crosshead velocity is constant, the strain rate is necessarily
higher.

The onset of necking is accompanied by the establishment of a tri-
axial state of stress in the neck; the uniaxial stress state is destroyed by
the geometrical irregularity. After studying flow criteria (see Section
3.7), we will readily see that the flow stress of a material is strongly
dependent on the state of stress. Hence, a correction has to be intro-
duced to convert the triaxial flow stress into a uniaxial one. If we
imagine an elemental cube aligned with the tensile axis and situated
in the neck region, it can be seen that it is subjected to tensile stresses
along three directions. (The external boundaries of the neck gener-
ate the tensile components perpendicular to the axis of the speci-
men.) The magnitude of the transverse tensile stresses depends on
the geometry of the neck, the material, the shape of the specimen,
the strain-rate sensitivity of the material, the temperature, the pres-
sure, and so on. Bridgman® introduced a correction from a stress
analysis in the neck. His analysis applies to cylindrical specimens.
The equation that expresses the corrected stress is

GBV
° (14 2R/ry)In(1 +1,/2R)’ (3.20)

where R is the radius of curvature of the neck and r, is the radius
of the cross section in the thinnest part of the neck. Thus, one has
to continuously monitor the changes in R and r, during the test to
perform the correction.

Figure 3.10 presents a plot in which the corrections have already
been computed as a function of strain beyond necking. There are three
curves, for copper, steel, and aluminum. The correction factor can be
read directly from the plot shown. g, is the true uniform strain (the
strain at onset of necking). In Figure 3.6, the true-stress-true-strain
curve that was corrected for necking by the Bridgman technique lies
slightly below the one determined strictly from the reduction in area
at fracture and the load at the breaking point. This is consistent with
Figure 3.10; o is always lower than o ,y.

Necking is a characteristic of tensile stresses; compressive stresses
are not characterized by necking. Barreling is the corresponding devi-
ation from the uniaxial state in compressive tests. Hence, metals will
exhibit necking during deformation processing only if the state of
stress is conducive to it (tensile). Figure 3.11 shows plainly how the
work-hardening capacity of a metal greatly exceeds that in an indi-
vidual tensile test. Wire was drawn to different strains: drawing the

5> P. W. Bridgman, Trans. ASM, 32 (1974) 553.
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m Correction factor for

necking as a function of strain in
neck, In(Ag/A), minus strain at
necking, ¢,,. (Adapted with
permission from W. J. McGregor
Tegart, Elements of Mechanical
Metallurgy (New York: MacMillan,
1964), p. 22.)
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Stress—strain curves for Fe—0.003% C alloy wire, deformed to increasing
strains by drawing; each curve is started at the strain corresponding to the prior
wire-drawing reduction. (Courtesy of H. J. Rack.)

wire consists of pulling it through a conical die; at each pass, there is
a reduction in cross section. Tensile tests were conducted after differ-
ent degrees of straining (0 to 7.4) by wire drawing; it can be seen that
the wire work-hardens at each step. However, the individual tensile
tests are interrupted by necking and fracture. In wire-drawing, neck-
ing and fracture are inhibited by the state of stress in the deformation
zone (compressive). The individual true-stress-true-strain curves were
corrected for necking by Bridgman’s technique; in each case, the indi-
vidual curve fits fairly well into the overall work-hardening curve. It
may be concluded that the individual tensile test gives only a very
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limited picture of the overall work-hardening response of a metal; for
the wire in Figure 3.11 the total strain exceeded 7.4.

3.2.3 Strain Rate Effects
For many materials, the stress-strain curves are sensitive to the strain
rate ¢. The lowest range of strain rates corresponds to creep and stress-
relaxation tests. The tensile tests are usually conducted in the range
107* s! < & < 1072 s71. At strain rates on the order of 10% s71,
inertial and wave-propagation effects start to become important. The
highest range of strain rates corresponds to the passage of a shock
wave through the material.

More often than not, the flow stress increases with strain rate;
the work-hardening rate is also affected by it. A parameter defined to
describe these effects

_ dlno

. (3.21)
e, T

dlne

is known as the strain rate sensitivity. Equation 3.21 can also be
expressed as

(3:22)

where K is a constant. Note that this K is different from the Ludwik-
Hollomon parameter.

Materials can be tested over a wide range of strain rates; however,
standardized tensile tests require well-characterized strain rates that
do not exceed a critical value. High-strain-rate tests are often used to
obtain information on the performance of materials under dynamic
impact conditions. The cam plastometer is one of the instruments
used. In certain industrial applications, metals are also deformed at
high strain rates. Rolling mills generate bar velocities of 180 km/h;
the attendant strain rates are extremely high. In wire-drawing, the
situation is similar.

Figure 3.12(a) shows the effect of different strain rates on the ten-
sile response of AISI 1040 steel. The yield stress and flow stresses at dif-
ferent values of strain increase with strain rate. The work-hardening
rate, on the other hand, is not as sensitive to strain rate. This illus-
trates the importance of correctly specifying the strain rate when
giving the yield stress of a metal. Not all metals exhibit a high strain
rate sensitivity: Aluminum and some of its alloys have either zero
or negative m. In general, m varies between 0.02 and 0.2 for homolo-
gous temperatures between 0 and 0.9 (90% of the melting point in K).
Hence, one would have, at the most, an increase of 15% in the yield
stress by doubling the strain rate. It is possible to determine m from
tensile tests by changing the strain rate suddenly and by measuring
the instantaneous change in stress. This technique is illustrated in
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Figure 3.12(b). Applying Equation 3.22 to two strain rates and elimin-
ating K, we have

_ In(oz/01)
™= Tn (/) (3:23)

The reader can easily obtain m from the strain-rate changes in the
figure.

Some alloys show a peculiar plastic behavior and are called super-
plastic. When necking starts, the deformation concentrates itself at
the neck. Since the velocity of deformation is constant, and the effec-
tive length of the specimen is reduced during necking, the strain
rate increases (¢ = v[L). If a material exhibits a positive strain-rate
sensitivity, the flow stress in the neck region will increase due to the
increased strain rate; hence, necking is inhibited. This topic is treated

(a) Effect of strain rate
on the stress—strain curves for
AISI 1040 steel. (b) Strain-rate
changes during tensile test. Four
strain rates are shown: 107!,
1072, 1073, and 107* s~
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in greater detail in Section 15.8 — Superplasticity; it is what takes place
in superplastic alloys, which can undergo uniform plastic strains of
up to 5,000%.

Example 3.2 |

Can the necking phenomenon be observed in any kind of mechanical
test? Point out some of the problems that this phenomenon can cause
during tensile testing.

Solution: No, necking is an artifact of the tensile test only. A reduction
in cross-sectional area at any irregularities along the length of the speci-
men occurs in the tension mode only, and therefore, the phenomenon
of necking occurs in tension only. In compression, the specimen bulges
out.

After necking starts, the plastic deformation is concentrated in a
very narrow region of the sample. Thus, one must not compare the
total deformation corresponding to failure for two specimens that have
different gage lengths. In order to avoid such complications, one should
only compare the uniform elongation or use the reduction in area, i.e.,
the true-strain definition of the final strain. Strain gages and clip-on
extensometers will not function properly or give accurate results after
necking has begun.

Example 3.3 |

Tensile testing of brittle materials such as ceramics is not very common,
but is being resorted to in many laboratories. Why? Comment on the
problems of doing tensile testing on ceramics.

Solution: Direct tensile testing of a sample results in a simple stress
state over the whole volume of the sample gage length. All the volume
and surface flaws in the gage length of the specimen are called into
play and lead to a true measure of the material strength. Hence, there
is increasing interest in tensile testing of ceramics. One major problem,
however, is that of alignment of the sample. Any offcenter application
of the load or loading at an angle can result in a combined state of
bending and tension in the specimen. Stresses induced in such a state
are called parasitic bending stresses and can lead to errors in the computed
tensile strength values or even fracture the sample while it is being
aligned in the machine. Some self-aligning grips have been designed to
take care of these problems. This leads to rather long specimens and
rather complex machining of the specimen. All of this makes tensile
testing of ceramics very expensive!
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Example 3.4 |

Determine, for the curve shown in Figure E3.4.1,

L L L L L L L L L L L L L L L e e |

Force, kN

N W R o o N
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0 04 08 12 16 2 24 28 32 36

Change in length, mm

(a) Young’s modulus

(b) the UTS

(c) the yield stress (with a 0.2% offset)
)
)

&~

(d) the uniform strain
(e) the total strain
(f) the engineering stress-strain curve.

Do

The dimensions of the specimen, which is depicted in Figure E3.4.2,

are:
Lo = 20 mm,
Dy = 4 mm.
Solution:

(a) The elastic region is the straight line of the stress-strain curve.
Taking both ends of this line, we obtain

Point1 : F; = OKkN, Al; =0,
Point2 : F, = 55KkN, Al, =0.175mm.
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To calculate Young’s modulus (E= Ao [Ag), we have to change F, Al
in terms of o, &:
Fq

= = 0,
[o5] AO
Point 1: Aly
&1 = L_ =
0
F, 5.5 kN 2
Oy = — = ~ 0.44 KN/mm* = 440 MPa,
Ay  7(2)> mm?
Point 2: Al 0175
&= — ~ —— ~ 0.009.
Ly 20
So

_ Ao o, —o0p _ 440

= — = Ay ~ 49000 MPa ~ 49 GPa
Aeg &y — &1 0.009

E

(b) The UTS is the maximum value of the stress reached just before
necking. Therefore, from the stress-strain curve, the UTS is equal to
the stress corresponding to F =~ 7.5 kN. So

7.5 )
UTS = ~ 0.6 kKN/mm?* ~ 600 MPa

- m(2p
(c) The 0.2%-offset yield stress is

- Al e =0.2% = 0.002,
T Ly lo = 20 mm.
Therefore,

Al =¢-1p = 0.002 x 20 = 0.04 mm.

If you draw a line parallel to the elastic region calculated in part
(a), from Al=0.04 mm, you will find that the point of intersection
with the stress-strain curve is at F ~ 6 kN. At that point,

6
oy = ~ 0.48 kKN/mm” = 480 MPa.
7(2)?

(d) For uniform strain, make a parallel line from the UTS point to the
stress axis. You will then find that

Al, & 1.5mm.

The percent uniform strain is

Al

0

1.5
x 100% = 20 x 100% = 7.5%.

(e) To find the total strain, we repeat (d) from the failure point. We
have

Al ~ 3.7 mm.

The percent total strain is

Al 3.7
L % 100% = —— x 100% = 18.5%.
Lo 20
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(f) The engineering stress-strain curve is as shown in Figure E3.4.3.
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Example 3.5 |

The load-extension curve of an aluminum alloy, shown in Figure E3.5.1
was taken directly from a testing machine. A strain-gage extensometer
was used, so machine stiffness effects can be ignored. From this curve,
obtain the true and engineering stress-strain curves. Also, calculate the
following parameters:

(a) Young’s modulus

(b) the UTS

(c) the 0.2%-offset yield stress

(d) the uniform strain

(e) the total strain

(f) the reduction in area at the fracture.

Lo =54 mm
Dy =6 mm
10 0
D=4 mm
9..
8_.
= 7|k
£
= @k
]
5 5
[T
4
3
2
1
0 I L ! 1 |
0 1 2 3 4 5

Change in length (mm)
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Solution: We first change the coordinates to stress and strain. For engin-
eering stresses, this is easily done:

P 2
@ = — (Ap = 28.26 mm*),
Ao
AL
e = — (Lo = 54 mm).
Lo

The shape of the curve remains the same. For true stresses and true
strains, we have to convert the engineering values into true values using
the equations

0y = 0e(1 + &),
& =1In(1 + &).

This is valid up to the onset of necking. Beyond necking (which starts
at the UTS), we have only one point: that corresponding to failure. We
can establish the true strain in the neck from the equation

T X9
= 0.81.

|
Ef—llA——Il
f T X4

The corresponding true stress is

2 6.5 kN
= 7 = >

A 7 x4 mm?
Oy = 515 MPa.

The other parameters are determined as follows:

(@) Young’s modulus:

E = slope of elastic part
Ao

Ae

250

= —— MPa
0.004

~ 63 GPa.

(b) UTS ~ 300 MPa (0 max).
The corresponding true stress is

o1 = 300(1 + 0.056) = 317 MPa.
(c) 0.2%-offset yield stress:
oys ~ 280 MPa.

(d) The uniform strain is approximately equal to 0.056.
The corresponding true strain is

& = In(1 + 0.056) = 0.054.

(e) The total strain is approximately equal to 9%.
(f) Reduction in area at the fracture:

_Ag—A; o x3—mx2?

1 D =0.55, or 55%.
0 T X
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The true and engineering stress-strain curves are shown in Fig-
ure E3.5.2(a). The engineering curve is shown blown up in Figure
E3.5.2(b).
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3.3 | Plastic Deformation in Compression Testing

In compression testing, a cylinder or a parallelepiped cube (with one
side - the one parallel to the loading direction - longer than the
other two) is subjected to compression between two parallel plates.
The plates should have a self-alignment system, and they often ride
on one or two hemispherical caps, as shown in Figure 3.13(a). If ceram-
ics are being tested, it is also common to use special ceramic (WC,
for instance) inserts between the specimen and the hemispherical
caps. This eliminates indentation and plastic deformation of platens.
Lubrication between the specimen and the plate is also very desirable,
to decrease barreling (nonuniform deformation) of the specimen.
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(a) Compression

specimen between parallel platens.

(b) Length inhomogeneity in
specimen.

Platen Ah
b
Specimen — @ h h[ Ihz

Platen

(a) (b)

(Barreling will be discussed shortly.) The use of a thin Teflon™ coat-
ing, molybdenum disulfide, or graphite is recommended. It is also
very important to ensure homogeneous loading of the specimen. This
is particularly critical for ceramics, which often fail in the elastic
range. It is easy to calculate stresses that arise when one of the paral-
lel sides of a specimen is longer than the other. Figure 3.13(b) shows
a specimen with a height difference Ah. The right side will experi-
ence a stress o =E(Ah/h;) before the left side is loaded. For a typical
ceramic, it is a simple matter to calculate the relationship between
Ao, the difference in stress from one side to the other, from Ah. For
example, consider alumina, for which E=400 GPa and h=10 mm.
The compressive strength of alumina can be as high as

o, = 4GPa.
Therefore, the failure strain is

e =2 =102,
F=E

The corresponding displacement is
Ah = ¢h = 0.1 mm.

If the difference in height in the specimen is greater than 0.1 mm,
the right side will fail as the left side starts to experience loading.
This inhomogeneous loading is eliminated by the hemispherical caps,
which can rotate to accommodate differences in height. However,
if the surfaces of the specimen are not flat, stress inhomogeneities
will arise, which can cause significant differences in the stress-strain
response.

In reality, the platens also undergo elastic deformation, and a
more uniform stress state is reached. Nevertheless, it is not a good
practice to have the stresses on the two sides vary significantly, as this
will result in erroneous strength determinations. The use of Teflon
or thin metallic shims (stainless steel foil) also helps to alleviate the
problem. This example illustrates the care that has to be exercised in
choosing the dimensions of the specimen. In the case of ductile mater-
ials, it is not so critical, because plastic deformation will “homoge-
nize” stresses.
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Figure 3.14(a) shows a typical compressive stress-strain curve for
a metal (70-30 brass). The engineering-stress—engineering-strain curve
(oe, €¢) 1s concave, whereas it is convex in a tensile test. (See, for
instance, Figure 3.3). The true-stress-true-strain curve is obtained by
means of Equations 3.4 and 3.9. (See also Section 2.2). The transla-
tion of five points by using these equations is shown in Figure 3.14(a).
After conversion to true-stress-true-strain values, the concavity of the
curve is, for the most part, lost. In contrast, the true stress-strain
curves in tension are displaced to the left (on the strain axis) and
up (on the stress axis) from the engineering stress-strain curves. (See
Figure 3.6) The phenomenon of necking is absent in compression
testing, and much higher strains are reached. However, necking is
replaced by barreling, a nonuniform plastic deformation resulting
from friction between the specimen and the platen. Figure 3.14(b)
shows the barreling of the brass specimen after the test. This barrel-
ing is responsible for some concavity in the true stress-strain curve
(at a strain greater than —0.4) and limits the range of strain in com-
pression testing of ductile materials to approximately —0.3 to —0.4. It
will be shown, through a stress analysis, that frictional effects play an
increasing role as the length/diameter ratio is decreased. This can sig-
nificantly affect the results of a test. The compression of a cylindrical
specimen under an engineering strain of —0.5, as simulated by finite
elements under sticking conditions (i.e., there is no sliding at the

(a) Stress—strain
(engineering and true) curves for
70-30 brass in compression. (b)
Change of shape of specimen and
barreling.
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(a) Distortion of Finite Element Method (FEM) grid after 50% reduction in
height h of specimen under sticking-friction conditions. (Reprinted with permission
from H. Kudo and S. Matsubara, Metal Forming Plasticity (Berlin: Springer, 1979),

p. 395.) (b) Variation in pressure on surface of cylindrical specimen being
compressed.

specimen-platen interface), is shown in Figure 3.15. The distortion
of the initially perpendicular grid is visible. This is an extreme case;
strain inhomogeneities in the specimen are evident by differences in
distortion of the grid. Barreling also can be seen.

The pressure or compressive stress is not uniform over the top
and bottom surfaces of the specimen. Pressure differences can be
calculated from an equation derived by Meyers and Chawla:®

p = age2ula—n/h

® M. A. Meyers and K. K. Chawla, Mechanical Metallurgy (Englewood Cliffs, NJ: Prentice-
Hall, 1984), p. 122.
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This is the equation for the “friction hill.” The compressive stress at
the outside (r=a) is equal to o, the material flow stress. In the center,
it rises to pmax. The greater the ratio a/h, the more severe the prob-
lem is. The “friction hill” is schematically plotted in Figure 3.15(b).
The pressure rises exponentially toward the center of the cylinder.
The greater the coefficient of friction, the greater is pmax. A friction
coefficient ©=0.15 is a reasonable assumption. It is instructive to
calculate the maximum pressure for three a/h ratios:

a/hZZ, pmale.SZUO;
a/h=1, Pmax = 1.3400;
a/h =0.5, Pmax = 1.1600.

A specimen with an initial length/diameter ratio of 2 would have
a maximum pressure of 1.070,. However, after a 50% reduction in
length, the ratio a/h is changed to 1.230. The calculation is left as a
challenge to the student; remember that the volume is constant. This
can cause significant differences between the actual strength values
of materials and stress readings. It is therefore recommended that
these effects be considered. On the other hand, if a/h is too small, the
specimen will tend to buckle under the load.

3.4 | The Bauschinger Effect

In most materials, plastic deformation in one direction will affect sub-
sequent plastic response in another direction. The translation of the
von Mises ellipse (kinematic hardening; see Section 3.7.4) is a mani-
festation of this relationship. The ellipse will move toward the direc-
tion in which the material is stressed. In one-dimensional deform-
ation, the phenomenon is known as the Bauschinger effect. A material
that is pulled in tension, for example, shows a reduction in compres-
sive strength. Figure 3.16 illustrates the effect. A stress-strain curve is
drawn, and the sequence 0-1-2 represents the loading direction. The
material is first loaded in tension and yields at 1. At 2, the loading
direction is reversed. Unloading occurs along the elastic line until the
stresses become compressive. If there were no directionality effect, the
material would start flowing plastically at a stress equal to o,. The
idealized reverse curve is also shown in the figure. If the material
did not exhibit a dependence on the stress direction, the compressive
curve would be symmetrically opposite to the tensile curve. This ideal-
ized curve is drawn in dashed lines. The sequence is 0-1R-2R. Thus,
compressive plastic flow, after the 0-1-2 tensile sequence, should
occur at o3 =0,R= —0;. If the material exhibits a Bauschinger effect,
this stress is decreased from o3 to 4. Hence, the material “softens”
upon inversion of the loading direction.

An actual example is shown in Figure 3.17. The 0.2% proof stress
(the stress at which 0.2% plastic strain occurs) in compression is
divided by the tensile flow stress that preceded it. These values are
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m The Bauschinger effect.
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marked in the figure, which shows three plain carbon steels and one
alloy steel. The change in flow stress is indeed highly significant and
increases with plastic strain in tension. Thus, this factor cannot be
ignored in design considerations when a component is to be subjected
to compression stresses in service after being plastically deformed in
tension.

3.5 | Plastic Deformation of Polymers

3.5.1 Stress—Strain Curves

At a microscopic level, deformation in polymers involves stretching
and rotating of molecular bonds. More commonly, one distinguishes
the deformation mechanisms in polymers as brittle, ductile (with or
without necking), and elastomeric. Figure 3.18 shows schematically
the curves that correspond to these mechanisms. Clearly, factors such
as the strain rate and temperature affect the shape of stress-strain
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curves, much more so in polymers than in ceramics or metals. This
is because the polymers are viscoelastic; that is, their stress-strain
behavior is dependent on time. Temperature and strain rate have
opposite effects. Increasing the strain rate (or decreasing the tem-
perature) will lead to higher stress levels, but lower values of strain.
Figure 3.19 shows this schematically.

Polymers (especially, linear, semicrystalline polymers), in a man-
ner superficially similar to metals, can show the phenomena of yield-
ing and necking. The necking condition for polymers can be repre-
sented, again in a manner similar to that for metals (see Section 3.2.2,
Equation 3.19), by:

dot _ or. (3.24)

de;
This equation says that necking occurs when the work-hardening
rate do/de; attains a value equal to o. At that point, the increase
in strength due to work-hardening cannot compensate for the loss
in strength caused by a decrease in cross-sectional area, and necking
ensues.

3.5.2 Glassy Polymers
In a manner similar to its occurrence in metals, plastic deformation
occurs inhomogeneously in polymers. Two forms of inhomogeneous

- BN KN Schematic of the
different types of stress—strain

curves in a polymer.

Effect of strain rate

and temperature on stress—strain
curves.
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deformation are observed in glassy polymers: shear bands and crazes.
Shear bands form at about 45° to the largest principal stress. The
polymeric molecular chains become oriented within the shear bands
without any accompanying change in volume. The process of shear
band formation can contribute to a polymer’s toughness because it
is an energy-dissipating process. Shear yielding can take two forms:
diffuse shear yielding and localized shear band formation. In local-
ized shear, the shear is concentrated in thin planar regions, and the
process involves a “cooperative” movement of molecular chains. The
bands form at about 45° to the stress axis. Crazes are narrow zones
of highly deformed polymer containing voids; the zones are oriented
perpendicular to the stress axis. In the crazed zone, the molecular
chains are aligned along the stress axis, but they are interspersed
with voids. The void content in a craze may be as much as 55%. Unlike
shear band formation, craze formation does not require the condition
of constancy of volume. Generally, crazing occurs in brittle polymers.
It can also occur to some extent in ductile polymers, but the domi-
nant mode of deformation in these polymers is shear yielding. The
phenomena of shear yielding and crazing are discussed further in
Chapter 8.

Like ceramics, glassy or amorphous polymers show different
stress — strain behaviors in tension and compression. The reason for
this is that the surface flaws are much more dangerous in tension
than in compression.

3.5.3 Semicrystalline Polymers

Semicrystalline polymers containing spherulites show a highly com-
plex mode of deformation. Characteristically, these materials exhibit
a ductile stress-strain curve with necking. Figure 3.20 shows such a
stress-strain curve. Also illustrated is the process of transformation
of a spherulitic structure to a fibrillar structure under the action
of a tensile stress. Such orientation of polymeric chains parallel to
the direction of stress increases the strength in that direction. Figure
3.21(a) shows a picture of the neck propagating in a linear polyethy-
lene tensile sample while Figure 3.21(b) shows a schematic of the neck
formation and propagation.
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(a) Neck propagation
in a sheet of linear polyethylene.
(b) Neck formation and
propagation in a specimen, shown

in schematic fashion.

(a)

Necked
region

(b)

3.5.4 Viscous Flow

At high temperatures (T > T, the glass transition temperature), poly-
mers undergo a viscous flow. Under these conditions, the stress is
related to the strain rate, rather than the strain. Thus,

dy

r=n. (3.25)

where 7 is the shear stress, n is the viscosity, and t is the time. (The
derivation of Equation 3.25 is given in Section 3.6.2.)

Viscous flow is a thermally activated process. It occurs by molecu-
lar motion, which increases as the temperature increases. The reader
can appreciate the fact that such a viscous flow would involve the
local breaking and re-forming of the polymeric network structure.
The thermal energy for this is available above the glass transition
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temperature T,. Below Ty, the thermal energy is too low for breaking
and re-forming bonds, and the material does not flow so easily. At
very high temperatures, the viscosity 7 is given by the Arrhenius-type
relationship

n = Aexp (%) , (3.26)

where A is a constant, Q is the activation energy, R is the universal
gas constant, and T is the temperature in kelvin.

3.5.5 Adiabatic Heating

There is a unique feature associated with the plastic deformation of
polymers. Most of the work done during the plastic deformation of
any material is converted into heat. In metals, this is not very import-
ant, because metals are good conductors, and except at extremely
high rates of deformation, the heat generated is dissipated to the
surroundings rather quickly, so that the temperature rise of the metal
is insignificant. Polymers are generally poor conductors of heat. Thus,
any heat generated in localized regions of a specimen due to plastic
deformation can cause local softening. In the case of fatigue, heat
may be dissipated rather easily at low strains and at low frequencies,
even in polymers. A significant amount of softening, however, can
result under conditions of high strain rates and high-frequency cyclic
loading. This phenomenon is called adiabatic heating.

Example 3.6 |

Polyethylene is a linear-chain thermoplastic; that is, relatively speaking,
it is easy to crystallize by stretching or plastic deformation. An extreme
case of this is the high degree of crystallization obtained in a gel-spun
polyethylene fiber. Describe a simple technique that can be used to
verify the crystallization in polyethylene.

Solution: An easy way would be to use an X-ray diffraction technique.
Unstretched polyethylene will consist mostly of amorphous regions.
Such a structure will give diffuse halos. A diffuse halo indicates an
irregular atomic arrangement - that is, an amorphous structure. A
polyethylene sample that has been subjected to stretching or a gel-
spun polyethylene fiber will have highly crystalline regions aligned
along the draw axis. There may also be some alignment of chains in
the amorphous regions. An X-ray diffraction pattern of such a sample
would show regular spots and/or regular rings. The discrete spots indi-
cate regular spacing characteristic of an orderly arrangement in a sin-
gle crystal. Well-spaced regular rings indicate a polycrystalline region.
Regular rings result from overlapping spots due to random crystalline
orientations.
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Table 3.1 | Mechanical Properties of Some Metallic Glasses®

Alloy HV (GPa) oy, (GPa) Hio, E; (GPa) Eglo,

Ni36Fe32CI"|4P|zBé 6.1 .9 3.16 99.36 52

(Metglas 286AA) (tension)

NisgFeroP4BgS) 55 1.7 3.26 91.1 54

(Metglas 286B) (tension)

F680P|6CZB| 58 |7 3.35

(Metglas 2615) (tension)

Pd775CugSizes 34 1.08 3.17 61.9 57
(compression)

Pdg4NijsPoo 3.1 | 3.7 619 57
(compression)

FegoBao 7.6 2.55 297 6.6 45

(Metglas 2605) (tension)

%Adapted with permission from: L. A. Davis in Rapidly Quenched Metals, N. J. Grant and B. C. Giessen (eds.)

(Cambridge, MA: MIT Press, 1976, p. 401), p. 369, Table 1.

3.6 ‘ Plastic Deformation of Glasses

The unique mechanical properties exhibited by metallic glasses are
connected to their structure. Table 3.1 lists the hardnesses, yield
stresses, and Young’s moduli for several metallic glasses. The unique
compositions correspond to regions in the phase diagram that have a
very low melting point. The low melting points aid in the retention of
the “liquid” structure. Metallic glasses are primarily formed by rapid
cooling from the molten state, so that the atoms do not have time to
form crystals. The Metglas group is commercially produced in wire
and ribbon form. Young’s modulus for glasses varies between 60 and
70% of the Young’s modulus of the equilibrium crystalline structure.
Li” has proposed a relationship between the shear modulus of the
glassy and crystalline states, namely,

0.947

=" G 3.27
§7 1947 —v ¢ (3:27)

where G, and G, are the shear moduli of the glassy and crystalline
states, respectively, and v is Poisson’s ratio. The crystalline Young’s
modulus of glasses is recovered when the material is annealed and
crystallinity sets in. The yield stresses of metallic glasses are high,
as can be seen in Table 3.1. For Fe-B metallic glasses, strength levels
over 3.5 GPa were achieved. This is close to the highest yield strengths
achieved in polycrystalline metals. (See Section 1.4.) The yield stresses

7 J. C. M. Li, in Frontiers in Materials Science - Distinguished Lectures, L. E. Murr and C. Stein,
eds. (New York: Marcel Dekker, 1976), p. 527.
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of the metallic glasses are usually 10 to 30 times higher than the
yield stress of the same alloy in the crystalline state.

The micromechanical deformation mechanisms responsible for
the unique mechanical properties of metallic glasses are still not
very well understood. The absence of crystallinity has a profound
effect on the mechanical properties. Grain boundaries, dislocations,
mechanical twinning, and other very important components of the
deformation of crystalline metals are not directly applicable to metal-
lic glasses. Although the dislocations are not fully described until
Chapter 4 (a brief description is given in Section 1.4), the concept
is used in this section in an attempt to rationalize the mechani-
cal response of metallic glasses. The lower Young’s modulus is prob-
ably due to the less efficient packing of atoms, with a consequent
larger average interatomic distance. The plastic part of the stress-
strain curve also differs from the crystalline one. Here we have to
distinguish between the behavior of the metallic glass above and
below T, the glass transition temperature. As in silicate glasses, a
temperature is defined above which the glass becomes viscous and
deformation occurs by a viscous flow that is homogeneous. Only the
deformation at temperatures below T, will be discussed here. Curves
for small cylindrical specimens under compression are shown in Fig-
ure 3.22. There is little evidence of work-hardening, and the plas-
tic range is close to horizontal. The surface of the specimens usu-
ally exhibits steps produced by shear bands. These shear bands have
been found to be 20 nm thick, and the shear offset (step) has been
found to be around 200 nm. This shows that deformation is highly
inhomogeneous in metallic glasses and that, once shear starts on a
certain plane, it tends to continue there. The plane of shear actu-
ally becomes softer than the surrounding regions. We can compute
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the amount of shear strain in a band by dividing the band offset by
the thickness. In the preceding case, it is equal to 10. This behavior
is termed work-softening. The curves of Figure 3.22 provide macro-
scopic support for the absence of work-hardening. The equivalent
of a dislocation can exist in a glass. The slip vector of the disloca-
tion would fluctuate in direction and magnitude along the disloca-
tion line, but its mean value would be dictated by some structural
parameter.

Figure 3.23 shows slip lines and steps produced after bending
and after unbending. We can see the slip lines terminating inside
the metallic glass. The slips decrease in height on unbending. These
observations tend to confirm the relevance of some kind of shear
localization in the plastic deformation of metallic glasses.

3.6.1 Microscopic Deformation Mechanisms
Of the theories explaining the microscopic aspects of plastic deform-
ation of metallic glasses, the best known are the dislocation theory
of Gilman and the strain ellipsoid theory of Argon.

Figure 3.24(a) shows dislocation lines in crystalline and vitreous
silica. Dislocations in crystalline solids will be studied in Chapter 4.

ST BKIWEW Shear steps

terminating inside material after
annealing at 250°C/h, produced by
(a) bending and decreased by (b)
unbending. Metglas

Nigy 4Cr7Fe3SigsB3 | strip.
(Courtesy of X. Caoand ). C. M.
Li.)
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The two-dimensional picture in the figure is analogous to the Zachari-
asen model for silica in Figure 1.18. The dislocation line is shown in
the two cases, and we are looking at the dislocation “from the top
down;” that is, the extra atomic plane is perpendicular to the surface
of the paper. For the regular crystalline structure, all Burgers vectors
are parallel and have the same magnitude. For the glassy structure,
b fluctuates both in magnitude and direction. The dislocation line is
not forced to remain in a crystallographic plane (there are no such
planes in glasses), but can fluctuate. This is the Gilman mechanism
for plastic deformation of glasses.

Experiments using “bubble rafts” and computational simulations
indicate that there are localized regions of approximately ellipsoidal
shape that undergo larger distortions than the bulk of the material
and that are the main entities responsible for the plastic deformation
of glasses. The ellipsoidal regions do not move, but undergo gradual
distortion. Figure 3.24(b) shows the result of a computer simulation,
including the positions and displacements of individual atoms. The
lengths of the lines represent the displacements of the atoms. One
can see regions of the material where the displacements of the atoms
are larger. The ellipses become distorted, and the entire body deforms.
This is the so-called Argon model for deformation of glasses, named
after a renowned MIT professor (and not after a gas!).



3.6 PLASTIC DEFORMATION OF GLASSES

197

3.6.2 Temperature Dependence and Viscosity

The mechanical response of glasses is often represented by their vis-
cosity, which is a property of liquids. The viscosity, n is defined as
the velocity gradient that will be generated in a liquid when it is
subjected to a specific shear stress, or

T=1 (3.28)

@5
where 7 is shear stress, v is the velocity and dv/dy is the velocity
gradient. For temperature T > Ty, the viscosity is very low and the
glass is a fluid. A characteristic value is n = 1073 Pa-s. For T ~ Tg,
(the glass transition temperature), the viscosity is between 10'° and
10'® Pa-s. A common unit of viscosity is the Poise (P). Note that 1 P=
0.1 Pa-s. For T < T, the viscosity is n > 10'° Pa-s. Mechanically speak-
ing, the material is solid. Figure 3.25 shows these different regimens
of mechanical response as a function of temperature, for soda-lime-
silica glass and for some metallic glasses (Au;;Sij4Geqg, Pd775CusSise s,
Pdg(Siy, and CoysPys). The temperature is normalized by dividing it
by T,. The viscosity decreases at T > T, as

n = noe X", (3.29)

where Q is the activation energy for viscous flow. This is a classic
Arrhenius response. The shear strength of the material can be related
to the viscosity by

ds B ds

dv.d (ds\ d (ds\ dy .
Tay “Tay\ar) " "ar\ay ) = Tar T

where v is the velocity of one part of the material with respect to the
other. The velocity is the displacement with time, ds/dt. By changing
the order of differentiation, we obtain dy = ds/dy. The change of strain
with time is y = dy/dt. A general relationship between shear stress,
shear strain, and shear strain rate is

630

where n is the work-hardening coefficient and m is the strain rate
sensitivity. Since glasses do not work harden, n=1. When t is pro-
portional to y, the strain rate sensitivity is equal to unity, and the
material will be resistant to necking in tension. This is why glass
can be pulled in tension to extremely high strains. Such behavior
is discussed in greater detail in Chapter 13. Another class of mater-
ials, called superplastic materials, also exhibits this response when the
grain size of the material is very small.

Viscosity is a very important characteristic of glassy materials. On
the viscosity versus temperature curve of a given glassy material, one
can identify certain important points. The strain point of glass is the
temperature at which internal stresses are reduced significantly in a
few hours. This corresponds to n = 10" Pa-s. The annealing point of
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a glass is the temperature at which the internal stresses are reduced
in a few minutes such that n=10'2 Pa-s. The softening point of a
glass corresponds to n = 10%°° Pa - s. At this viscosity, the glass deforms
rapidly under its own weight. The working point of glass corresponds
to n=10% Pa - s. At this viscosity, the glass is soft enough to be worked.
The viscosity of glasses is dependent on their composition. Soda-
lime-silica and high-lead glasses have lower softening temperatures
and are easier to work on. Pure silica, on the other hand, has a sig-
nificantly higher softening point and requires significantly higher
temperature. On the other hand, it can be used at higher tempera-
tures. Figure 3.26 shows the temperature dependence of viscosity for
these three glasses. Note that the ordinate of plot is in P, not Pa-s.
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Example 3.7 |

Consider a glass with a strain point of 500 °C and a softening point of
800 °C. Using the preceding viscosity values for the strain point and
softening point, estimate the activation energy for the deformation of
this glass.

Solution: We can write the viscosity as a function of temperature as
n = Aexp[Q/RT].

At the softening point,

10%%° = A exp e ,
8.314 x 1073

while at the strain point,

10%° = A exp e :
8.314 x 773

From these two expressions, we obtain, by division
1 1
10°% = exp | (2 ) (o - =),
8.314 773 1073

Q = 362kJ/mol.

or

3.7 ‘ Flow, Yield, and Failure Criteria

The terms flow criterion, yield criterion, and failure criterion have differ-
ent meanings. Failure criterion has its historical origin in applications
where the onset of plastic deformation indicated failure. However,
in deformation-processing operations this is obviously not the case,
and plastic flow is desired. Yield criterion applies only to materials that
are in the annealed condition. It is known that, when a material is
previously deformed by, for instance, rolling, its yield stress increases
due to work-hardening. (See Chapter 6.) The term flow stress is usually
reserved for the onset of plastic flow in a previously deformed mater-
ial. Failure criterion is applied to brittle materials, in which the limit of
elastic deformation coincides with failure. To be completely general,
a flow criterion has to be valid for any stress state. In a uniaxial stress
state, plastic flow starts when the stress-strain curve deviates from
its initial linear range. Uniaxial stress-strain curves are very easily
obtained experimentally, and the deformation response of a material
is usually known for this situation. The main function of flow criteria
is to predict the onset of plastic deformation in a complex state of
stress when one knows the flow stress (under uniaxial tension) of the
material. Note that the value of the flow stress is strongly dependent
on the state of stress, and if this effect is not considered, it can lead
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to potentially dangerous errors in design. We next present some of
these criteria.

3.7.1 Maximum-Stress Criterion (Rankine)

According to the maximume-stress criterion, plastic flow takes place
when the greatest principal stress in a complex state of stress reaches
the flow stress in uniaxial tension. Since 01 > o5 > o3, we have

op(tension) < oy < 0y (compression),

where o is the flow stress of the material. Later (Section 3.7.5) we
will see the situation where the compressive strength is greater than
the tensile strength. The great weakness of this criterion is that it
predicts plastic flow of a material under a hydrostatic state of stress;
however, this is impossible, as shown by the following example. It
is well known that tiny shrimp can live at very great depths. The
hydrostatic pressure due to water is equivalent to 1 atm (10° N/m?)
for every 10 m; at 1,000 m below the surface, the shrimp would be
subjected to a hydrostatic stress of 107 N/m?. Hence

—p =01 =0y =03 = —107N/m2

A quick experiment to determine the yield stress of the shrimp could
be conducted by carefully holding it between two fingers and pressing
it. By doing the test with a live shrimp, one can define the flow stress
as the stress at which the amplitude of the tail wiggling will become
less than a critical value. This will certainly occur at a stress of about
0.1 MPa. Hence,

[ 0.1 MPa.
The Rankine criterion would produce shrimp failure at
P = -0y = —0.1 MPa.

This corresponds to a depth of only 10 m. Fortunately for all lovers
of crustaceans, this is not the case, and hydrostatic stresses do not
contribute to plastic flow.

3.7.2  Maximum-Shear-Stress Criterion® (Tresca)
Plastic flow starts when the maximum shear stress in a complex state
of deformation reaches a value equal to the maximum shear stress at
the onset of flow in uniaxial tension (or compression). The maximum
shear stress is given by (see Section 2.6)
01 — 03
2
For the uniaxial stress state, we have, at the onset of plastic flow,

(3.31)

Tmax =

01 =09, 03=03=0;

SO
0o

Tmax =

8 H. Tresca, Compt. Rend. Acad. Sci. Paris, 59 (1864) 754; 64 (1867) 809.
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Therefore,
09 = 01 — 03. (3.32)

This criterion corresponds to taking the differences between o, and
o3 and making it equal to the flow stress in uniaxial tension (or
compression). It can be seen that it does not predict failure under
hydrostatic stress, because we would have o1 = 03 =p and no resulting
shear stress.

3.7.3 Maximum-Distortion-Energy Criterion (von Mises)’
This criterion was originally proposed by Huber as “When the expres-
sion

V2

7[(01 —03)” + (02 — 03)* + (01 — 03)*]'/* > 0 (3.33)

then the material will plastically flow.” The left hand side is known as
effective stress. The criterion was stated by von Mises without a physical
interpretation. It is now accepted that it expresses the critical value
of the distortion (or shear) component of the deformation energy
of a body. Based on this interpretation, a body flows plastically in
a complex state of stress when the distortional (or shear) deform-
ation energy is equal to the distortional (or shear) deformation energy
in uniaxial stress (tension or compression). This will be shown shortly.
This criterion is also called J,, which is the second invariant of the
stress deviator. Students will learn about this in advanced “Mechanics
of Materials” courses. ], is given by:

1

J2= E[(Ul —02)* + (02 — 03)* + (01 — 03)2]
Hence: J, > ‘g—"z

3.7.4 Graphical Representation and Experimental
Verification of Rankine, Tresca, and
von Mises Criteria
There is a convenient way to represent the Rankine, Tresca, and von
Mises criteria for a plane state of stress. For this, one makes o3 =0
and has o, and o,. It will be necessary to momentarily forget the
convention that o1 > 0, > o3, because it would not be obeyed for
0y < 0; we have 0, < 03 =0. Figure 3.27(a) shows a plot of o, versus
0. According to the Tresca criterion, plastic flow starts when
00
Tmax = E
The four quadrants have to be analyzed separately. In the first quad-
rant, there are two possible situations. For o; greater than oj,
Tmax = (01 — 03)[2 and o1 =0. This is a line passing through o1 =0
and parallel to Oc,. For o, greater than o, we have the converse
situation and a line passing through o, =0, and parallel to 0.

° R. von Mises, Géttinger Naehr. Math. Phys. Klasse, 1913, p. 582.
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In the second quadrant, o, > 0 and o7 < 0. We have

01 — 02

Tmax = and o1 — o0y = 0y.

This equation represents a straight line intersecting the Oc; axis at
0o and the Oo, axis at —o . The flow criteria for quadrants III and IV
are found in a similar way.

For the von Mises!® criterion, we have, from Equation 3.33 and
03=0,

[

o0 = Bllo1 — 02 + 07 + o],
012 — 010y + 022 =o?.
This is the equation of an ellipse whose major and minor axes are
rotated 45° from the orthogonal axes Oo; and Oo,, respectively. It can
be easily shown by applying a rotation of axes to the equation of an
ellipse referred to its axes:
01 2 (o)) 2 2

(;) + (?) — k2. (3.34)
From Equation 3.34, it can be seen that the Tresca criterion is more
conservative than von Mises. The criterion would predict plastic flow
for the stress state defined by point P;, whereas the von Mises would
not. However, both criteria are fairly close. It can be seen from Figure
3.27(a) that plastic flow may require a stress o; greater than o, for
a combined state of stress. (See point P;). However, there are regions
(when one stress is tensile and another is compressive) where plastic
flow starts when both stresses are within the interval

og < 01, Oy < 0.

This occurs in the second and fourth quadrants. Point P, shows the
situation very clearly. The conclusion is that the correct application

of a yield criterion is very important for design purposes. For com-
parison purposes, the maximum-normal stress (Rankine) criterion is
also drawn in Figure 3.27(a). It is just a square with sides parallel to
the Oo; and Oo; axes and intersecting them at (¢, 0), (—og, 0) (0, 0y),
and (0, —o(). We see that there is a considerable difference between
the Rankine criterion, on the one hand, and the Tresca and von Mises
criteria, on the other, for quadrants II and IV. This difference is read-
ily explained by the fact that the Rankine criterion applies to brittle
solids (including cast irons and steel below the ductile-brittle transi-
tion temperature), in which failure (or fracture) is produced by tensile
stresses.

Figure 3.27(b) shows the three criteria, together with experimental
results for copper, aluminum, steel, and cast iron. While copper and
aluminum tend to follow the von Mises criterion (and, in a more con-
servative way, the Tresca criterion), cast iron clearly obeys the Rankine
criterion. This is plainly in line with the low ductility exhibited by

10 1t is also called J» criterion; in this case, flow occurs at a critical value of J, = %[(01 —
02)* + 0} + o).
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cast iron. The reader is warned that the ratio ooy, and not ooy, is
used in the figure. Nevertheless, it serves to illustrate the difference

in response.

The determination of the flow locus is usually conducted in bi-
axial testing machines, which operate in a combined tension-torsion
or tension-hydrostatic-pressure mode. These two modes use tubular
specimens, and one has to use the appropriate calculations to find
the principal stresses. As the material is plastically deformed, we have
an expansion of the flow locus. For the von Mises criterion, we can

ST MKW YB (2) Comparison of the

Rankine, von Mises, and Tresca
criteria. (b) Comparison of failure
criteria with test. (Reprinted with
permission from E. P. Popov,
Mechanics of Materials, 2nd ed.
(Englewood Cliffs, NJ:
Prentice-Hall, 1976), and G.
Murphy, Advanced. Mechanics of
Materials (New York: McGraw-Hill,
1964), p. 83.)
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- B WE W Displacement of the
yield locus as the flow stress of the

o2

material due to plastic
deformation. (a) Isotropic
hardening. (b) Kinematic

hardening.

(0'0)1

(a)

LE/ o

(b)

envision concentric ellipses having increasing major and minor axes.
This is illustrated in Figure 3.28(a). When the ellipse expands in a
symmetric fashion, the hardening is the same in all directions and
is called isotropic. Often, however, hardening in one direction (the
loading direction) causes a change in flow stress in other directions
that is different. This is very important in plastic-forming operations
(stamping, deep drawing). The extreme case where the ellipse is just
translated is shown in Figure 3.28(b). This case is called kinematic hard-
ening. (See Section 3.4.)

Example 3.8 |

A region on the surface of a 6061-T4 aluminum alloy component has
strain gages attached, which indicate the following stresses:

011 = 70 MPa,
Opp = 120 MPa,
O1p = 60 MPa.

Determine the yielding for both the Tresca and von Mises criteria, given
that 0o =150 MPa (the yield stress).
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(b) 0

Solution: We first have to establish the principal stresses. This is easily
accomplished by a Mohr circle construction or by its analytical expres-
sion (the equation of a circle):

. 1/2
011 + 02 011 — 022 2
012 = 5 e b a4 01y s

o1 = 160 MPa; o0, = 30 MPa; o3 = 0.

According to Tresca, Ty =(160 — 0)/2 =80 MPa.
The value t.,.x = 80 MPa exceeds the Tresca criterion (o(/2 =75 MPa)
and the alloy would be unsafe. The von Mises criterion gives

1
J2= g[(al — 03’ + (01 — 03)* + (02 — 03)’]
1 2 2 2
= —[130° 4+ 160° + 30
6

7233 MPa?.

The maximum value of J M = (1/3)0 = (1/3)150% = 7500 MPa’.
So J» < JM, and the material does not yield. Plainly, the Tresca
criterion is more conservative than von Mises.

3.7.5 Failure Criteria for Brittle Materials

As shown in Figure 3.29, the tensile strength of Al,O3 is approximately
one-tenth of its compressive strength. Such is also the case for many
brittle materials, such as concrete, rock, etc. Therefore, the Rankine,
Tresca, and von Mises criteria have to be modified to incorporate this
behavior. This will be done in the rest of the section, with the presen-
tation of the Mohr-Coulomb, Griffith, and McClintock-Walsh criteria.

(a) Tensile strength and

(b) Compressive strength of

Al,0s.
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Schematic
two-dimensional representation of
Mohr—Coulomb failure criterion.

O3

Ot

01

There are also other criteria (e.g., Babel-Sines), which will not be pre-
sented here.

Mohr-Coulomb Failure Criterion

This is simply the equivalent of the Tresca criterion with different ten-
sile and compressive strengths. Figure 3.30 shows the Mohr-Coulomb
criterion in a schematic fashion. The criterion for failure is a maxi-
mum shear stress; the compressive strength o, is much higher than
the tensile strength o;.

Griffith Failure Criterion!!

This criterion simply states that failure will occur when the ten-
sile stress tangential to an ellipsoidal cavity and at the cavity sur-
face reaches a critical level 0. The criterion is a classic spin-off of
Griffith’s work of 1919. Griffith recognized that brittle materials con-
tained flaws and that failure would occur at a specific level of stress
at the flaw surfaces. He considered an elliptical crack oriented in a
general direction with respect to the compression axis and calculated
the stresses generated at the surface of the crack. Tensile stresses are
generated by compressive loading; this might appear surprising at
first sight, but will become clear in Chapter 7. If o is the tensile
strength of the material, the following relationship is obtained:

(01 — 02)* + 80g(0y +02) =0 if o1 + 205 > 0,

oy =09 ifo;+ 20, <O. (3.35)

The criterion proposed by Griffith is shown in Figure 3.31. The
compressive failure stress is eight times the tensile failure stress, as
is evident from Equation 3.31. This very important result is consistent
with the experimental results observed for brittle materials.

A, A. Griffith, Proc. 1st Int1. Congress in Appl. Mech., 1925, p. 55.
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McClintock-Walsh Criterion

McClintock and Walsh'? extended Griffith’s criterion by considering a
frictional component acting on the flaw faces that had to be overcome
in order for the crack to grow. This term is a function of the applied
stress. The frictional stress f was considered equal to the product of
the frictional coefficient u and the normal stress oo acting on the flaw
surface. McClintock and Walsh assumed that there was a stress o at
infinity necessary to close the flaw so that the opposite surfaces would
touch each other. This approach led to the following expression:

or|(1? + 1)V — u] — oaf(1® + 1)V +

0.\ 172
C
= 40y (1 + U—()) — 2uo;. (3.36)
Assuming that o.=0, we get the following simple version of this
criterion:

al(n? + 1) = pl = oaf(p® + 1) + pu] = 400 (3.37)

McClintock and Walsh’s criterion is shown in Figure 3.31 for pu=1.
Griffith’s criterion is more conservative, and the compressive strength
is 10 times the tensile strength for McClintock and Walsh. The fric-
tional forces retard failure in compression.

Example 3.9 |

Determine the fracture stress for SiC in compression in a complex load-
ing situation in which o4/o, =2 if oy in tension is 400 MN/m?. Perform
all calculations assuming (a) no friction between crack surfaces and (b)
a friction coefficient of 0.5.

Solution: Applying Equation 3.35 (with no friction), we have
((71 - i)2+8><400(al+ﬁ) =0,
2 2
01
Y + 4,800 = 0,

o1 = —19,200 MPa,
01 = —19.2 GPa.

Applying Equation 3.37 (with friction), we obtain

01[(0.5% + 1)/ — 0.5] — 0.501[(0.5% + 1)/ + 0.5] = 4 x 400,
71(0.618) — 07(0.809) = 1,600,
—1,600

0.272 °
o1 = —5.88 GPa.

o1 =

The very high compressive strengths are due to the confinement. If the
ceramic were not confined (i.e., if o, =0), the compressive strengths
would be —3.2 GPa (Griffith) and —2.5 GPa (McClintock-Walsh).

12 F. A. McClintock and J. B. Walsh, Proc. 4th US. Natl. Cong. of Appl. Mech. (1962),
p. 1015.
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(a) Simple model for solid with cracks. (b) Elliptical flaw in elastic solid
subjected to compression loading. (c) Biaxial fracture criterion for brittle materials
initiated from flaws without (Griffith) and with (McClintock and Walsh) crack friction.
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3.7.6 Yield Criteria for Ductile Polymers
Brittle polymers such as epoxies fail at the end of their linear elas-
tic stage without any significant plastic deformation. Ductile poly-
mers such as thermoplastics undergo plastic deformation. Does this
mean that we can use the Tresca or von Mises criteria to describe
their yielding? The answer is no, because, unlike the yield strength of
metals, that of polymers depends on the hydrostatic component of
stress. The Tresca and von Mises criteria, on the other hand, do not
show any such dependence. This dependence on hydrostatic stress
in polymers stems from the more liquidlike structure of polymers.
Specifically, the polymers have some free volume, which makes them
highly compressible.

Let us consider the von Mises criterion for isotropic metals. Accord-
ing to this criterion, yielding occurs when the condition

(0'1 — 0'2)2(02 — (73)2 + (03 — 01)2 > 6k2 = constant

is satisfied, where o4, 03, and o3 are the principal stresses and k is
constant equal to the yield stress in torsion t,. For metals, we take
k or 7o to be a constant at room temperature, equal to oo/+/3 for
uniaxial stress, with o the uniaxial yield stress. This equation also
implicitly assumes that the tensile and compressive yield strengths
are numerically the same, equal to +/3k or /3 7. It turns out that for
polymers, yield stress in compression is greater than that in tension
by 10 to 20%.!% This stems from the fact that, again unlike yielding
in metals, yielding in polymers shows a strong dependence on any
superimposed hydrostatic pressure. That is,

k=K T, op),

where ¢ is the strain rate, T is the temperature, and o, is the hydro-
static pressure. As we mentioned, in molecular terms, this depend-
ence of yield stress on hydrostatic pressure can be traced to the fact
that polymers have some free volume associated with them, which is
diminished by hydrostatic compression. We can modify the yield cri-
terion to take into account this dependence on the hydrostatic com-
pressive stress o, by using the expression

k=ko+AUp,

where kg is a constant and A is another constant that represents the
dependence of yield stress on hydrostatic pressure. As o, increases,
the free volume decreases, and molecular motion becomes more dif-
ficult. The presence of a hydrostatic component translates the von
Mises ellipse from quadrant I to quadrant III, as shown in Figure 3.32.
The yield envelopes for a polymer or metal that does not show yield
stress dependence on the hydrostatic component is shown in Figure
3.32(a), while that for a polymer showing yield stress dependence on
hydrostatic stress takes the shape shown in Figure 3.32(b). Note that

13 K. Matsushige, S. V. Radcliffe, and E. Baer, J. Polymer Sci., Polymer Phys., 14 (1976) 703.
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Translation of von

Mises ellipse for a polymer due to
the presence of hydrostatic stress.
(a) No hydrostatic stress, (b) with
hydrostatic stress.

Shear yielding

Envelopes defining
shear yielding and crazing for an

amorphous polymer under biaxial
stress. (After S. S. Sternstein and L.
Ongchin, Am. Chem. Soc., Div. of
Polymer Chem., Polymer Preprints, 10
(1969), 1117.)
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crazing occurs only in tension, not in compression. The yield envelope
in Figure 3.32(b) has been translated with respect to that in Figure
3.32(a).

Several glassy polymers, such as polystyrene, polycarbonate, and
PMMA, show the phenomenon of crazing. (See Section 8.4.2.) Crazing
involves the formation of microvoids and stretched chains or fibrils
under tension. The fibril formation depends on shear flow and free
volume. A yield criterion that takes crazing into account is

B
01 0'2—A+(01+02),
where (01 — o) represents the shear, (01 + 0;) represents the hydro-
static component, and A and B are adjustable constants that depend
on temperature. Note that as the hydrostatic component (61 + o3)
increases, the shear stress (o7 — 03) required for yielding decreases.

A better and more complete scenario for yielding in polymers is as
follows. Under multiaxial stress, glassy polymers can undergo yield-
ing by shear or crazing. Figure 3.33 shows schematically the yield
envelope under a biaxial stress condition. The constants A and B
can be chosen to fit the curve to experimental data. The pure-shear
line, 01 = — 03, is the boundary between hydrostatic compression and
hydrostatic tension. Below the pure-shear line, crazing (a void-forming
process) does not occur because hydrostatic pressure reduces the vol-
ume. Above this line, crazing is the main mechanism of failure. The
curves for crazing are asymptotic to the pure shear line. The yield
envelope shown in the figure also shows the pressure-dependent shear
yielding; that is, the envelope has been translated with respect to the
conventional von Mises criterion. Note that in the first quadrant the
crazing envelope is completely inside the shear yield envelope. This
means that for all combinations of biaxial tensile stresses, crazing
will precede shear yielding. In the second and fourth quadrants, the
two envelopes intersect. The heavy line indicates the overall yielding
or failure envelope.

A word of caution is in order here. Crazing in air does not occur
in pure shear or under conditions of compressive hydrostatic stress.
The modified criterion just described requires a dilative component of
the applied stress for crazing in air. In the presence of an appropriate
environmental agent, crazing can be observed under conditions of
simple tension and hydrostatic pressure.
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3.7.7 Failure Criteria for Composite Materials
Unidirectionally aligned fiber reinforced composites are generally
quite anisotropic in elastic constants as well as in strength. This, of
course, stems from the fact that fibers generally are a lot stiffer and
stronger than the matrix and the fact that the fibers are aligned in
the matrix. Quite frequently, the strength in the longitudinal direc-
tion is as much as an order of magnitude greater than that in the
transverse direction. We shall consider the case of laminated com-
posites made by stacking plies of different orientations in an appro-
priate sequence. We assume that the fiber reinforced lamina is a
homogeneous, orthotropic material. We use a continuum mechan-
ics approach, i.e., we treat the fiber reinforced composite as a homo-
geneous material, i.e., its properties do not change from point to
point. We do, however, consider the fiber reinforced composite to be
an orthotropic material, i.e., the anisotropic nature of the compos-
ite is taken into account. There are many criteria available in the
literature; for a summary, see Chawla'*. Here, we describe one crite-
rion, called quadratic interaction criterion, which is quite general and
seems to work quite well for laminated composites made by stacking
laminae of fiber reinforced composites in different orientations. The
thickness of the individual lamina as well as the laminated composite
is much smaller than either the length or width, which allows us to
use plane stress condition to analyze the failure criterion. In practical
terms, it means that we need to worry about the in-plane stress com-
ponents, viz, two normal components, o; and o,, and one in-plane
shear component, o,. In the composite literature, it is customary to
use symbol o4 for o1;. Thus, the reader must keep in mind in what
follows that o represents the in-plane shear component.

Quadratic Interaction Criterion

This criterion, a combination of linear and quadratic terms, takes into
account the stress interactions. Tsai and Wu proposed this, a modifi-
cation of the Hill theory, for a fiber reinforced composite laminate by
adding some additional terms. According to this theory, the failure
surface in stress space can be described by a function of the form

flo) = fioy + fijoio; =1 i,j=1,2,6 (3.38)

where f; and fj; are the strength parameters. For the case of plane
stress, i, j=1, 2, 6 and we can expand Equation (3.38) as follows:

J1+ 01+ fao2 + feos + f11(712 + fzszzz + f66052 (3.39)
+2 f120102 + 2 f120102 + 2 f160106 + 2 f260206 = 1

For an orthotropic lamina, it is important to distinguish between
the signs of normal stresses, i.e., tensile or compressive. The linear
stress terms provide for this difference. For the shear stress compo-
nent, the sign reversal should be immaterial. Thus, terms containing
the first degree shear stress must vanish in Equation (3.39). These

4 K. K. Chawla, Composite Materials, 2nd ed. (New York: Springer-Verlag, 1998).
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terms are fge06, 2160106, and 2f,60206. The stress components in gen-
eral are not zero. Therefore, for these three terms to vanish we must
have

fis = fas = fo =0
Equation (3.39) is now simplified to

fior + faor + f11012 + f22022 + fse%z + 2 fipo100 =1 (3.40)
There are six strength parameters in Equation (3.40). We can measure

five of these by the following simple tests.

Longitudinal (Tensile and Compressive) Tests
If X;+ and X, are the longitudinal tensile and compressive strengths,
respectively, then we can write

fiXa + an%t =1
and
- fiXie + fuXi =1.

From these two expressions, with two unknowns, we get

1 1
fi= g -5
Xlt ch
and
1
n =X

Transverse (Tensile and Compressive) Tests
If X;; and X, are the transverse tensile and compressive strengths,
respectively, then proceeding as above, we get

1 1
fom o -
Xor Xac
and
1
o= .
Xt Xoc

Longitudinal Shear Test
If X; is the shear strength, we have

1
o6 X2
Thus, we can express all the failure strength parameters in Equation
3.40 except f1 in terms of the ultimate intrinsic strength properties of
the composite. fj; must be evaluated by means of a biaxial test, which
is not easy to do. In the absence of other data, we can take fj, =
—0.5( fi1 f22)/2. It turns out, however, that small changes in fi, can
significantly affect the predicted strength. Equation 3.40 describes the
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Failure envelope for unidirectional E-glass/epoxy composite under biaxial
loading at different levels of shear stress. (After |. M. Daniel and O. Ishai, Engineering
Mechancis of Composite Materials (New York: Oxford University Press, 1994), p. 121.)

failure envelope, a three-dimensional ellipsoid, in the oy, 03, and o¢
space. For constant values of shear stress, o =kXg, we shall have the
failure envelope in the form of a two-dimensional ellipse described
by the following equation:

fio1 + f202 + frof + fao3 + fe60¢ + 2 fin0100 =1 —ky  (3.41)

Figure 3.34 shows schematically the failure envelopes under biaxial
loading for a unidirectionally reinforced glass fiber/epoxy composite,
for different values of k, where k = 04/Xc. Just as the name quadratic
interaction indicates, the stress interaction is clear in all quadrants.
The reader should note that the quadratic interaction criterion merely
predicts the conditions of failure, it does not tell us anything about
the mode of failure, i.e., fiber failure, interface failure in shear,
etc.

3.7.8 Yield and Failure Criteria for Other

Anisotropic Materials
Besides fiber reinforced composites, there are other anisotropic mate-
rials. The source of anisotropy in these materials can be one of the
following.

* Asingle crystal can have different properties in different directions
due to its inherent crystal symmetry.

* A cold-rolled sheet, tube, or wire of a metal or alloy can show a very
high degree of preferred orientation of grains. Polymers are also
frequently processed by drawing, extrusion, or injection molding
techniques. Such techniques impart a high degree of anisotropy to
the polymer. Figure 3.35 shows the change in shape of the yield
surface as a function of anisotropy, where R =0;/0;. For R=1, we
have isotropy, and a classical von Mises curve is obtained.

-1200 -800 —400 0 400 800 1200
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Plane-stress yield loci
for sheets with planar isotropy or
textures that are rotationally
symmetric about the thickness
direction, x3. (Values of R indicate
the degree of anisotropy =
oqloy.)

While the most anisotropic crystal would render the plasticity treat-
ment prohibitively complex, there is one type of anisotropy that can
be studied without excessive complications. The type of response dis-
played by wood is a good illustration of this anisotropy. Wood has
different yield stresses along the three directions defined by the wood
fibers and by the normals to the fibers. Similarly, a rolled sheet or slab
of metal will exhibit orthotropic plastic properties; the rolling direc-
tion, transverse direction, and thickness direction define the three
axes.

3.8 ‘ Hardness

The simplest way of determining the resistance of a metal to plas-
tic deformation is through a hardness test. Indentation tests consti-
tute the vast majority of hardness tests. They are essentially divided
into three classes, commonly called nanoindentation, microindenta-
tion, and macroindentation tests, but improperly referred to as micro-
hardness and macrohardness tests. The division between micro and
macro occurs for a load of approximately 200 gf (~2 N). In nano-
indentation testing, the load is of the order of mN. The indentation
tests in metals measure the resistance to plastic deformation; both
the yield stress and the work-hardening characteristics of the metal
are important in determining the hardness. In spite of the theoret-
ical studies done on hardness, hardness cannot be considered a funda-
mental property of a metal. Rather, it represents a quantity measured
on an arbitrary scale.’®> Hardness measurements should not be taken

15 M. C. Shaw, in The Science of Hardness Testing and its Research Applications, J. H. Westbrook
and H. Conrad, eds. (Metals Park, OH: ASM, 1973), p. 1.
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O 0 o

BRINELL ROCKWELL-C SUPERFICIAL VICKERS 10 kg
BHN=690 HRC=62 ROCKWELL VPN 10 = 750
HR (N SCALE) 91

Comparison of the impression sizes produced by various hardness tests on
material of 750 HV. BHN = Brinell hardness number, HRC = Rockwell hardness
number on C scale, HRN = Rockwell hardness number on N scale, VPN = Vickers
hardness number. (Adapted with permission from E. R. Petty, in Techniques of Metals
Research, Vol. 5, Pt. 2, R. F. Bunshah, ed. (New York: Wiley-Interscience, 1971), p. 174.)

to mean more than what they are: an empirical, comparative test of
the resistance of the metal to plastic deformation. Any correlation
with a more fundamental parameter, such as the yield stress, is valid
only in the range experimentally determined. Similarly, compari-
sons between different hardness scales are meaningful only through
experimental verification. For steels, Table 3.2 gives a fair conversion
of hardness and the tensile strength equivalents.

The most important macro-, micro-, and nanoindentation indent-
ation tests are described in Sections 3.8.1-3.8.3.

3.8. Macroindentation Tests

The impressions caused by macroindentation tests are shown in
Figure 3.36. The Brinell test produces by far the largest indentation.
The Vickers test may produce very small indentations, depending on
the load used.

Brinell Hardness Test

In this test, a steel sphere is pressed against a metal surface for a
specified period of time (10 to 15 s, according to the ASTM), and the
surface of the indentation is measured. The load (in kgf) divided by
the area (in mm?) of the curved surface gives the hardness HB, or

B P
~ 7D x depth
2P
= , (3.43)
7D(D — /D2 — d?)

where D and d are the diameters of the sphere and impression, res-
pectively. The parameters are indicated in Figure 3.37. Since d = D
sin ¢, we have

HB (3.42)

2P

HB= —————.
7 D2(1 — cos @)

(3.44)

Different spheres produce different impressions, and if we want to
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maintain the same HB, independent of the size of the sphere, the
load has to be varied according to the relationship

% = constant. (3.45)
This assures the same geometrical configuration (the same ¢). The
diameter of the impressions between 0.25D and 0.5D gives good, repro-
ducible results. The target sought is d = 0.375D. If the same d/D ratio
is maintained (constant ¢), the Brinell test is reliable. Spheres with
diameters of 1, 2, 5, and 10 mm have been used, and some of the
ratios P/D? that provide good d/D ratios for different metals are: steels
and cast irons (30), Cu and Al (5), Cu and Al alloys (10), and Pb and Sn
alloys (1). The softer the material, the lower is the P/D? ratio required
to produce d/D = 0.375.

One of the problems of the Brinell test is that HB is dependent on
the load P for the same sphere. In general, HB decreases as the load is
increased. ASTM standard E10-78 provides details and specifications
for Brinell hardness tests. It states that the standard Brinell test is
conducted under the following conditions:

Ball diameter: 10 mm
Load: 3000 kgf
Duration of loading: 10 to 15 s

In this case, 360 HB indicates a Brinell hardness of 360 under the
foregoing testing conditions. For different conditions, the parameters
have to be specified. For example, 63 HB 10/500/30 indicates a Brinell
hardness of 63, measured with a ball of 10 mm diameter and a load
of 500 kgf applied for 30 s. Brinell tables and additional instructions
are provided in ASTM E10-78. Meyer!® was aware of this problem and
proposed a modification of the Brinell formula. He found out that
the load divided by the projected area of the indentation (7 d?/4) was
constant. Hence, he proposed, in place of Equation 3.42, the equation

4P
Meyer = T (3.46)

16 E. Meyer, Z. Ver. Dtsch. Ing., 52 (1980) 645, 740, 835.

Impression caused by
spherical indenter on metal plate.
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Dial reads BC plus
a constant amount
Dial is set due_to the added ) Dla_l re_ads BD
Dial is idle at zero strain of the machine which is Rockwell Dial is idl
under major load hardness number lal 1s idie
i
- — —
P
Major load Major
. not yet load
:Vllr:jor applied Major withdrawn
oa Minor load Minor . e,
not yet . applied load . Pg;rzior y
applied SRREEE left X withdrawn,
applied v
Steel ball

indenter

Elevating Test piece

screw

S

AP
T

Test piece now has
a firm seating due !

to minor load ’

Test piece is
placed in
machine

Wheel is turned,

neel - Crank is pressed, Crank is turned, Wheel is turned,
b””_g'ngbp:fc_i up applying major withdrawing lowering test
against ball ti load major load piece
index on dial reads but leaving minor
zero. This applies load applied

minor load

AB = Depth of hole made by minor load.
AC = Depth of hole made by major load and minor load combined.
DC = Recovery of metal upon withdrawal of major load. This is caused by
elastic recovery of the metal under test, and does not enter the hardness reading.
BD = Difference in depth of holes corresponds to Rockwell hardness number.

J- ST B Procedure in using
Rockwell hardness tester.
(Reprinted with permission from
H. E. Davis, G. E. Troxel,and C. T.
Wiscocil, The Testing and Inspection
of Engineering Materials, (New
York: McGraw-Hill, 1941), p. 149.)

where P is expressed in kilograms force and d in millimeters. The
Meyer hardness never gained wide acceptance, in spite of being more
reliable than the Brinell hardness. For work-hardened metals, it seems
to be independent of P.

Rockwell Hardness Test

The most popular hardness test is also the most convenient, since
there is no need to measure the depth or width of the indenta-
tion optically. This testing procedure is illustrated in Figure 3.38. A
preload is applied prior to the application of the main load. The dial
of the machine provides a number that is related to the depth of the
indentation produced by the main load. Several Rockwell scales are
used, and the numbers refer to arbitrary scales and are not directly
related to any fundamental parameter of the material. Two differ-
ent types of indenters are used. The A, C, D, and N scales use the
Brale indenter, which is a diamond cone with a cone angle of 120°.
The other scales use either 1/8-in. (3.175-mm) or 1/16-in. (1.587-mm)-
diameter steel spheres. The loads also vary, depending on the scale.



3.8 HARDNESS 219

Table 3.3 | Details of the More Important Scales Available for the Rockwell Hardness Tester

Scale Major Load

Designation Type of Indenter (kgf) Typical Field of Application

A Brale 60 The only continuous scale
from annealed brass to
cemented carbide, but is
usually used for harder
materials

B |.587 mm-diameter steel ball 100 Medium-hardness range (e.g,,
annealed steels)

C Brale 150 Hardened steel > HRB100

D Brale 100 Case-hardened steels

E 3.175 mm-diameter steel ball 100 Al and Mg alloys

F [.587 mm-diameter steel ball 60 Annealed Cu and brass

L 6.35 mm-diameter steel ball 60 Pb or plastics

N N Brale I5, 30, or 45 Superficial Rockwell for thin
samples or small
impressions

Table 3.3 shows the various loads and typical applications. Usually,
the C scale is used for harder steels and the B scale for softer steels;
the A scale covers a wider range of hardness. Because of the nature
of the measurement, any sagging of the test piece will produce
changes in hardness. Therefore, it is of utmost importance to have
the sample well supported; specimens embedded in Bakelite cannot
be tested. The Brinell and Vickers tests, on the other hand, which are
based on optical measurements, are not affected by the support.

For very thin samples, there is a special superficial Rockwell test.
The testing procedure is described in detail in the ASTM Standard
E18-74, and conversion tables for a number of alloys are given in
ASTM Standard E140-78. The symbol used to designate this hardness
is, according to the ASTM, HR; 64HRC corresponds to Rockwell hard-
ness number 64 on the C scale.

The following precautions are recommended for reproducible
results in Rockwell testing.!”

1. The indenter and anvil should be clean and well seated.

2. The surface to be tested should be clean, dry, smooth, and free from
oxide. A rough-ground surface is usually adequate for the Rockwell
test.

. The surface should be flat and perpendicular to the indenter.

4. Tests on cylindrical surfaces will give low readings, the error

depending on the curvature, load, indenter, and hardness of the
material. Corrections are given in ASTM E140-78.

W

7 G. E. Dieter, Mechanical Metallurgy, 2" ed. (New York: McGraw-Hill, 1976), p. 398.
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5. The thickness of the specimen should be such that a mark or bulge
is not produced on the reverse side of the piece. It is recommended
that the thickness be at least 10 times the depth of the indentation.
Tests should be made on only a single thickness of material.

6. The spacing between indentations should be three to five times the
diameter of the indentation.

7. The speed of application of the load should be standardized. This
is done by adjusting the dashpot on the Rockwell tester. Variations
in hardness can be appreciable in very soft materials, unless the
rate of application of the load is carefully controlled. For such
materials, the operating handle of the Rockwell tester should be
brought back as soon as the major load has been fully applied.

Vickers (or Diamond Pyramid) Hardness Test

This test uses a pyramidal indenter with a square base, made of dia-
mond. The angle between the faces is 136°. The test was introduced
because of the problems encountered with the Brinell test. One of the
known advantages of the Vickers test is that one indenter covers all
the materials, from the softest to the hardest. The load is increased
with hardness, and there is a continuity in scale. The angle of 136°
was chosen on the basis of results with spherical indenters. For these,
the best results were obtained when d/D = 0.375. If we take the points
at which the sphere touches the surface of the specimen and draw
perpendiculars to the radii, their intersection will form an angle of
136°. This exercise is left to the student. The description of the proced-
ures used in testing is given in ASTM Standard E92-72. The Vickers
hardness (HV) is computed from the equation and is equal to the load
divided by the area of the depression

2P sin(w/2)  1.8544P
HV = 42 =Tz

(3.47)

where P is the applied load (in kgf), d is the average length of the
diagonals (in mm), and « is the angle between the opposite faces of
the indenter (136°). Conversion to MPa is accomplished by multiply-
ing this value by 9.81. The Vickers test described by ASTM E92-72
uses loads varying from 1 to 120 kgf. For example, 440HV30 repre-
sents a Vickers hardness number of 440, measured with a load of
30 kgf. Vickers testing requires a much better preparation of the
material’s surface than does Rockwell testing; hence, it is more time-
consuming. The surface has to be ground and polished, care being
taken not to work-harden it. After the indentation, both diagonals of
impression are measured, and their average is taken. If the surface
is cylindrical or spherical, a correction factor has to be introduced.
ASTM Standard E92 (Tables 4 through 6) provide correction factors. As
with other hardness tests, the distance between the indentations has
to be greater than two-and one-half times the length of the indent-
ation diagonal, to avoid interaction between the work-hardening
regions.
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The manner in which the material flows and work-hardens (or
work-softens) beneath the indenter affects the shape of the impres-
sion. The sides of the square impression can be deformed into con-
cave or convex curves, depending on the nature of the deformation
process, and this results in reading errors.

Relationships Between Yield Stress and Hardness
For non-work-hardening materials, one has (this will be derived in
Example 3.10):

o

Since there is a lot of plastic deformation under the indenter, in work-
hardening materials we cannot use oy. Tabor'® gives the following
equation for the mean plastic strain under the indenter:
d/
& =5p
where d’ is the diameter at the top of the pileup and D is the diameter
of the indenter. For d'/[D = 0.375, a reasonable value for indentation,
the plastic strain, &, = 0.075. Hence, for work-hardening metals one
should take the flow stress at a plastic strain of 0.375 before multi-
plying it by 3 for a good correlation with the hardness.

)

3.8.2 Microindentation Tests

Microindentation hardness tests — or microhardness tests — utilize
a load lighter than 200 gf, and very minute impressions are thus
formed; a load of 200 gf produces an indentation of about 50 pum
for a medium-hardness metal. These tests are ideally suited to investi-
gate changes in hardness at the microscopic scale. One can measure
the hardness of a second-phase particle and identify regions within
a grain where differences in hardness occur. Microhardness tests are
also used to perform routine tests on very small precision compo-
nents, such as parts of watches.

The results shown in Figure 3.39 illustrate well an application of
microindentation testing. When a metal is alloyed, the distribution
of the solute is not even throughout the grain, due to the stress
fields produced by the solute atom. (See Chapter 7.) The solute atoms
often tend to segregate at the grain boundaries. Figure 3.39(a) shows
how the addition of aluminum to zinc is reflected by an increase in
the hardness in the grain-boundary region, and the addition of gold
results in a lowering of the grain-boundary hardness. This effect can
be noted at extremely low concentrations of solute (a few parts per
million). Figure 3.39(b) shows how this “excess” hardening increases
with the concentration of aluminum.

In spite of the attempts made, several problems have arisen in
the standardization of microindentation testing and its extrapola-
tion to macroindentation results. There are several reasons for this.

18 D. Tabor, The Hardness of Metals, (Oxford: Oxford Univesity Press, 1951).
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First, almost invariably, the microhardness of any material is higher
than its standard macrohardness. Additionally, the microhardness
varies with load. Second, there is a tendency for the microhardness
to increase (up to a few grams); then the hardness value drops with
load. At very low loads, one is essentially measuring the hardness of
a single grain; the indenter “sees” a single crystal, and the plastic
deformation produced by the indentation is contained in this grain.
As the load is increased, plastic deformation of adjoining grains is
involved, and a truly polycrystalline deformation regimen is achieved.
As we know well (see Chapter 5), the grain size has a marked effect on
the yield strength and work-hardening characteristics of metals. Yet
another source of error is the work-hardening introduced in the sur-
face by polishing. The effect of crystallographic orientation, when the
impression is restricted to a single grain, is of utmost importance. It
is well known that both the yield stress and the work-hardening are
dependent on the crystallographic orientation of the material. The
Schmid law relates the applied stress to the shear stress “seen” by
the various slip systems. The Schmid relation is discussed in Section
6.2.2.

The two most common microindentation tests are the Knoop and
Vickers tests. The Knoop indenter is an elongated pyramid, shown in
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Figure 3.40. The hardness is obtained from the surface area of the
impression and is given by

14.228P
KHN = —=2 (3.49)
12
where P is the load of kgf and L is the length of the major diagonal,
in mm. The ratio between the dimensions of the impression is

h/W/L =1 :4.29 : 30.53.

This results in an especially shallow impression, making the tech-
nique very helpful for testing brittle materials. Indeed, that was the
purpose of introducing the test. The ratio between the major and
minor diagonal of the impression is approximately 7:1, resulting in
a state of strain in the material that can be considered to be plane
strain; the strain in the L direction may be neglected. This subject is
treated in Section 3.3. The very shallow Knoop impression is also help-
ful in testing thin components, such as electrodeposits or hardened
layers. The Vickers microhardness test uses the same 136° pyramid
with loads of a few grams. Both Knoop and Vickers indenters require
prepolishing of the surface to a microscopic grade.

Example 3.10 | (Inspired by M. F. Ashby and D. R. H. Jones)

Obtain, for a simple two-dimensional case, a relationship between the
hardness H and flow stress o, of a material.

l Indenter

Area A f Material

v

Fig. E.3.10.2

L Operating
o \Iposition

AT AN Some of the details of
the Knoop indenter, together with
its impression.
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Solution:We assume a flat indenter and deformation on one plane only,
as shown in Figure E.3.10.1. Deformation is assumed to occur by the
movement of blocks. We assume a total displacement u of the punch,
shown in Figure E.3.10.2. Block (1) moves down by u. Blocks (2 and
(3 move sideways by u. Blocks @ and (5) are pushed upward by u/2
and we compute the forces on two of their surfaces. The shear yield
strength is 7. We set the work done by the punch, Fu, equal to the
energy dissipated at the various interfaces. Student should compute
the areas of triangles and assume that the resistance to motion is 7.
The frictional forces between blocks is 7, times the areas (A or A/+/2).
We have
Fu:Zxﬂxuﬁ+2xAroxu+4xﬂx@,

72 22

| < (block 1) — || < (blocks 2, 3)— || <— (block4, 5) — |

central triangle two lateral triangles two end triangles

where F is the applied force, u is the displacement of the punch, and
A is the area of the indentation (Figure E.3.10.1).

= HGAT(),

= 61’0.

55
> e

But 7y = 0y/2; hence,

F H =3
— = H = 3o0y.
A 0

This is, indeed, Equation 3.48. Thus, the derivation above is a proof for
Equation 3.48.

Example 3.11 |

Estimate the flow stress of the material shown in Figure E.3.11 if the
indentation was done with a load of 1,000 g and the magnification of
the photograph is 100x.

Indentation into iron-nickel single crystal; notice {111} traces of slip
planes with specimen surface.
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Solution: This is a Vickers microindentation. We measure the sides of
the square, which are more visible (in this case) than the diagonal:
26 + 28
qa = ———
2

= 27 mm.

The diagonal is d = a+/2 = 38.2 mm. Dividing this value by the magni-
fication, we obtain d’ = 0.382 mm. So
1.8544P 1.8544
2 0145
H = 12.80 kg/mm?.

H =

We will convert this value to a yield stress, assuming that the material
does not work-harden. We have (see Example 3.10)

H =30y, so oy, =4.25kg/mm>.
But 1 kg/mm? = 9.8 x 10° Pa; thus,

oy = 41.8 MPa.

3.8.3 Nanoindentation
An instrumented indentation test, the apparatus for which is some-
times called a nanoindenter, was developed in the last quarter of the
twentieth century, and is readily available commercially. The instru-
ment is essentially a computer-controlled depth-sensing indentation
system that allows extremely small forces and displacements to be
measured. Very small volumes of a material can be studied and local
characterization of microstructural features such as grain boundary
regions, coatings, or reinforcement/matrix interface can be obtained.
It can be regarded as a general microstructural investigation tech-
nique.

A schematic of a nanoindenter apparatus is shown in Figure 3.41.
Commonly, a triangular pyramid or Berkovich indenter is used,

Load application

_iﬂRRENT SOURCE I—
-{H OSCILLATOR

Capacitive
displacement — [— ‘—-‘HLOCK-INAMPLIFIER
DISPLACEMENT |__]
Indenter SENSOR
column

oo — 1 -

' COMPUTER I -

A schematic of a
nanoindenter apparatus.
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An impression made
by means of Berkovich indenter in
a copper sample. (From X. Deng,
M. Koopman, N. Chawla, and K. K.
Chawla, Acta Mater., 52 (2004)
4291.) (a) An atomic force
micrograph, which shows very
nicely the topographic features of
the indentation on the sample
surface. The scale is the same
along the three axes. (b) Berkovich
indentation as seen in an SEM.

(b)

although other types of indenters can also be used. An impression
made by means of Berkovich indenter in a copper sample is shown
in Figure 3.42. Figure 3.42(a) is an atomic force micrograph, which
shows very nicely the topographic features of the indentation on the
sample surface, while Figure 3.42(b) shows a view of the indentation
as seen in an SEM micrograph. The penetration of the indenter into
the specimen is measured by a very sensitive capacitance gage. The
resolution of the applied load may be less than 50 nN while displace-
ment resolutions can be <0.02 nm. Remote position control is done
by means of a joystick (motorized in x-, y-, and z- directions).
Generally, a series of load/unload curves is obtained, Figure 3.43.
A nanoindenter records the total penetration of an indenter into the
sample. The indenter may be moved toward the sample or away from
the sample by means of a magnetic coil assembly. One can measure
the hardness or elastic modulus of a phase in a material. As the
indenter penetrates the specimen, the indentation load and displace-
ment are recorded continuously during a load/unload cycle. The max-
imum load and the corresponding displacement are calculated from
the plastic depth of the indentation. The hardness, H, is given by

H = Pmax/A,
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Loading

Unloading

Load, P

hmax 1

Displacement, h

where P« is the load and A is the projected area of contact at peak
load. The contact area at the peak load is determined by the geom-
etry of the indenter and the depth of contact, h.. Assuming that the
indenter does not deform significantly, we can write A = f{h;). The
form of function f must be established experimentally. The area A can
be calculated by means of the following expression:

1/2
i

32 4 24 56h? (3.50)

A =a+Dbh;’" +ch; +dh;

where h; is the plastic depth of the indentation and a, b, ¢, and d are
adjustable coefficients. For a perfect tip,a = b = ¢ = d = 0, and
the only coefficient is 24.56.

The stiffness, S, can be obtained from the load, P vs. penetration
depth, h by the following expression relating the reduced modulus,
E,, the contact area A, and the stiffness, §:19-20-21

S =dP/dh = (2//7)E.VA.

The reduced modulus E, of indenter-sample combination takes into
account the fact that elastic deformation under load occurs in the
sample as well as in the indenter. The reduced modulus is given by

E.=(1-v})/E;+(1—v3)/E;

where E; and E; are the Young’s moduli, and v; and v; are the Poisson’s
ratio of the indenter and sample, respectively. The initial unloading
slope gives us the reduced modulus provided one can measure the
contact area at the peak load.

Modulus and hardness of a material can be obtained more accur-
ately by measuring contact stiffness throughout the test. This tech-
nique is called continuous stiffness measurement (CSM). In this
technique, a small harmonic force is superimposed on the primary
load, P. This technique enables the instrument to determine the con-
tact stiffness throughout the experiment. The displacement of the

19 M. F. Doerner and W. D. Nix, J. Mater. Res., 1 (1986) 601.
20 W. C. Oliver, MRS Bull., 11 (1985) 15.
21 W. C. Oliver and G. M. Pharr, J. Mater. Res., 7 (1992) 1564.

A schematic
representation of load vs. indenter
displacement.
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indenter at the excitation frequency and the phase angle between
force and displacement are measured continuously as a function of
depth. The stiffness, S, is given by the following relationship:

-1
1
S=|+ —Ki! (3.51)
ne; €Os ® — (K5 — mw?)

where Py is the magnitude of the force oscillation, hy,) is the magni-
tude of the resulting displacement oscillation, w is the frequency of
the oscillation, @ is the phase angle between the force and displace-
ment, K; is the spring constant of the leaf springs that support the
indenter, K is the stiffness of the indenter frame, Gy is the compliance
of the load frame, and m is the mass of the indenter.

The nanoindentation technique has been successfully used to
measure the interfacial strength in a variety of fiber reinforced com-
posites.?

Example 3.12 |

A copper specimen was tested in a commercial nanoindentation
machine. A Berkovich indenter (pyramid with triangular base) was used.
The specimen was loaded to different load levels shown in Figure E.3.12,
then unloaded. For each maximum load, determine the hardness. Estab-
lish whether the hardness changes with depth of indentation.

5000 T T T T T

4000

Force (uN)
w
o
o
o
T

N

o

o

o
T

1000 -

0 I 1
0 50 10 150 200

Displacement (nm)

Load vs. displacement curves obtained for copper specimen in a
Tribolndenter machine. (Courtesy of Andrea Hodge, USC.)

1
250 300

22 K. K. Chawla, Ceramic Matrix Composites, 2nd ed. (Boston: Kluwer Academic Publishers,
2003), p. 176.
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Solution: The relationship between depth of indentation, h;, and area
of a perfectly sharp Berkovich tip, is (Equation 3.50):

A = 24.56h?

We find the forces and displacements at the top of the five loading
cycles. We obtain the corresponding displacements (depths of indenta-
tion).

Load, P (uN) Displacement, h (hnm)  Area, A (hm?) Hardness (GPa)

760 ['15 324,012 2.34
1350 165 667,012 2.02
2150 205 1,029,612 1.99
2850 243 1,446,700 1.97
3900 295 2,132,112 1.83

There is a slight but consistent decrease in nanoindentation hardness
as the load is increased.

3.9 | Formability: Important Parameters

Deep drawing and stretching are the two main processes involved
in most sheet-metal-forming operations. An excellent introductory
overview on sheet-metal forming is provided by Hecker and Ghosh.??
In a stamping operation, one part of the blank might be subjected to
a deformation process similar to deep drawing (thickness increasing
with time). In deep drawing the material is required to contract cir-
cumferentially, while in stretching the stresses applied on the sheet
are tensile in all directions. Sheet-metal forming has evolved from
an art into a science, and important material parameters have been
identified. These material properties are obtained in special tests and
allow a reasonable prediction of the blank in the actual sheet-forming
operation.

The work-hardening rate n is important, because it determines the
onset of necking (tensile instability), an undesirable feature. Accord-
ing to Considere’s criterion (see Section 3.2.2), n is equal to g, the
uniform strain. Hence, the higher n, the higher ¢,. The strain-rate sen-
sitivity m is an important parameter, too, because it also helps to avoid
necking. If m is positive, the material becomes stronger at incipient
necks because the strain rate in the necked region is higher. (See Sec-
tion 3.2.3.) The parameter R (the through-thickness plastic anisotropy)
is also important; it is equal to the ratio between the strain in
the “stretching” direction and the strain in the thickness direction.
The greater the resistance to “thinning” in stretching, the better is
the formability of the metal. This resistance to thinning corresponds

2 8. S. Hecker and A. K. Ghosh, Sci. Am., Nov. (1976), p. 100.
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ISP MR TR Simple formability tests

to a value of R larger than 1: the strength in the thickness direction is
greater than the strength in the plane of the sheet. The three param-
eters n, m, and R are readily obtained in a tensile test. (See Sections
2.2 and 3.2).

Additional important information on the workability of sheets is
provided by the yield and flow loci. Section 3.7.8 gives a description of
yield criteria and how they are graphically presented in a plane-stress
situation. The experimental determination of the yield locus and its
expansion as plastic deformation takes place is conducted in biaxial
tests. (See Section 3.7.4, Figure 3.28.)

Figure 3.44 shows the most simple formability tests applied to
metals. In the simple bending test, the specimen is attached to a die,
and one end is clamped in a vise. The other end is bent to a specific
radius. Specimens are bent to 180° using bending dies with smaller
and smaller bending radii. Observations are made to see whether
cracks are formed. In the free-bending test, the specimen is first bent
between two rollers until an angle between 30° and 45° is achieved.
It is then further bent between two grips, such as a vise.

The Olsen and Erichsen tests are typical stretch tests. A hardened
steel sphere (diameter of 22.2 mm for the Olsen test, 20 mm for the
Erichsen test) is pushed into the clamped metal, forming a bulge.
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The depth of the bulge at the fracture point is measured. The clamp-
down pressure is very high (>70 kN), to minimize the drawing of the
material.

The Swift and Fukui tests (Figure 3.44(d) and (e)) are drawing tests.
The clamp-down pressure in the Swift test allows the sheet to slip
inward. The overall diameter of the part is decreased in the pro-
cess. This test simulates the deep drawing of parts. The drawability is
expressed as the limiting draw ratio

maxmimum blank diameter D

LDR = - .
punch diameter d

There are two geometries for the Swift test, shown in Figure 3.44(d):
the round-bottomed cup test and the cup test. The latter test causes
stretching of the center of the cup in addition to drawing. The Fukui
test (Figure 3.44(e)) is the Japanese (JIS Z 2249) equivalent of the US
stretch-drawing Swift test. A sphere 12.5 to 27 mm in diameter is
pushed into a disk and advanced until either failure results or neck-
ing occurs in the cup. A hold-down ring maintains the specimen in
place. The ratio between the diameters of the base of the deformed
cup and the original disk provides the Fukui conical cup value. The
modern counterpart of these older, but reliable, tests is the forming-
limit curve, described in Section 3.9.2. The circle-grid analysis, which
consists of applying a circle grid to the blank and measuring the
strains in the critical regions of the stamped part, is also described
in that section.

3.9.1 Plastic Anisotropy

Elastic deformation under anisotropic conditions is described by
elastic constants, whose number can vary from 21 for the most
anisotropic solid to 3 for one exhibiting cubic symmetry. (For isotropic
solids, the number of independent elastic constants is 2.) In a simi-
lar way, plasticity increases in complexity as the anisotropy of the
solid increases. Sections 3.2-3.3 cover only the isotropic case, and
even that in a very superficial way. In polycrystals, anisotropy in
plasticity is more the rule than exception. Essentially, there are two
sources of anisotropy. First is texture, in which the grains are not
randomly oriented, but have one or more preferred orientations. Tex-
turing is often introduced by deformation processing. Well-known
and well-characterized textures accompany cold rolling, wire draw-
ing, and extrusion. This type of anisotropy is also called crystallo-
graphic anisotropy. Second, anisotropy is produced by the alignment of
inclusions or second-phase particles along specific directions. When
steel is produced, the inclusions existing in the ingot take the shape
and orientation of the deformation process (rolling). These inclusions,
such as MnS, produce mechanical effects called fibering. This type of
anisotropy is also known as mechanical anisotropy. Whereas crystallo-
graphic anisotropy can strongly affect the yield stress, mechanical
anisotropy usually manifests itself only in the later stages of deform-
ation, influencing fracture.
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“Ears” formed in
deep-drawn cups due to in-plane
anisotropy. (Courtesy of Alcoa,
Inc.)

Figure 3.45 shows the effect of texture on a deep-drawn cup. This
effect is known as “earing.” Prior to drawing, the sheet exhibited
different yield stresses along different directions. The orientation in
which the sheet is softer is drawn in faster than the harder direc-
tion, resulting in “ears.” The number of ears (four) actually shows the
type of texture. Figure 3.46 on the other hand, illustrates the effect
of inclusions on the formability of an alloy. Fracture is much more
probable if the sheet is bent along the second-phase strings than if it
is bent perpendicular to them.

Section 3.7.8 shows the yield locus for anisotropic materials; this
equation is an ellipse essentially identical to that described by the von
Mises yield criterion in plane stress. (See Section 3.7.4.) The ellipse is
distorted, however.

3.9.2 Punch-Stretch Tests and Forming-Limit Curves (or
Keeler—Goodwin Diagrams)

An ideal test is the one that predicts exactly the performance of a
material. The m, n, and R values are insufficient to predict the form-
ability, and tests more closely resembling the actual plastic-forming
operations have been used for a long time. The main parameter
that they can provide is the strain to fracture. These tests are called
punch-stretch tests, or simply, “cupping” tests.

The punch-stretch test consists of clamping a blank firmly on its
edges between two rings or dies; the next step is to force a plunger
or punch through the center area of the specimen enclosed by the
area of the ring, until the blank fractures. Several punch-stretch tests
have been developed over the years, including the Olsen, Erichsen,
Guillery, and Wazau tests. These “cupping” tests are routinely used for
inspection purposes, since they provide a quick indication of ductility;
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Rolling direction

Rolling direction

Elongated inclusions

Effect of “fibering” on formability. The bending operation is often an integral
part of sheet-metal forming, particularly in making flanges so that the part can be
attached to another part. During bending, the fibers of the sheet on the outer side of
the bend are under tension, and the inside ones are under compression. Impurities
introduced in the metal as it was made become elongated into “stringers” when the
metal is rolled into sheet form. During bending, the stringers can cause the sheet to fail
by cracking if they are oriented perpendicular to the direction of bending (top). If they
are oriented in the direction of the bend (bottom), the ductility of the metal remains
normal. (Adapted with permission from S. S. Hecker and A. K. Ghosh, Sci. Am., Nov.
(1976), p. 100.)

they also show the change in surface appearance of the sheet upon
forming. Two important defects appear in stamping:

1. The orange-peel effect (surface rugosity) is due to the large grain
size of the blank. The anisotropy of plastic deformation of the
individual grains results in an irregular surface, perfectly visible
to the naked eye, when the grain size is large.

2. Stretcher strains are produced when Liiders bands appear in the
forming process. The interface between the Liiders band and un-
deformed materials exhibits a step easily visible to the naked eye.
This is an undesirable feature that can be eliminated either by
prestraining the sheet prior to forming (beyond the Liiders band
region) or by alloying the material in such a way as to eliminate the
yield drop and plateau from the stress-strain curve. In low-carbon
steels, Liiders bands are formed by the interactions of carbon and
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Sheet specimen
subjected to punch—stretch test
until necking; necking can be seen
by the clear line. (Courtesy of

S. S. Hecker.)

nitrogen atoms with dislocations. After a process called temper
rolling, the susceptibility is eliminated; however, it can return fol-
lowing aging. This problem is easily solved by flexing the sheet by
effective roller leveling just prior to forming.?*

The poor correlation between the common “cupping” test and
the actual performance of the metal led investigators to look at
some more fundamental parameters. The first breakthrough came in
1963, when Keeler and Backofen?® found that the localized necking
required a critical combination of major and minor strains (along
two perpendicular directions in the sheet plane). This concept was
extended by Goodwin to the negative strain region, and the resulting
diagram is known as the Keeler-Goodwin,?® or forming-limit, curve
(FLC). The FLC is an important addition to the arsenal of techniques for
testing formability and is described after the description of Hecker’s
testing technique, presented next.2’

Hecker developed a punch-stretch apparatus and technique well
suited for the determination of FLC. The device consists of a punch
with a hemispherical head with a 101.6-mm (4-in.) diameter. The die
plates are mounted in a servohydraulic testing machine with the
punch mounted on the actuator. The hold-down pressure on the die
plates (rings) is provided by three hydraulic jacks. (The hold-down load
is 133 kN.) The bead-and-groove arrangement in the rings eliminates
any possible drawing in. The specimens are all gridded with 2.54mm
circles by a photoprinting technique. The load versus displacement
is measured and recorded during the test, and the maximum load
is essentially coincident with localized instability and the onset of
fracture. A gridded specimen after failure is shown in Figure 3.47. The

24 H. E. McGannon (ed.), The Making, Shaping, and Treating of Steel, 9th ed. (Pittsburgh, PA:
US Steel, 1971), pp. 1126, 1260.

25 S, P. Keeler and W. A. Backofen, Trans. ASM, 56 (1963) 25.

26 G. M. Goodwin, “Application of Strain Analysis to Sheet Metal Forming Problems in
the Press Shop,” SAE Automotive Eng. Congr., Detroit, Jan. 1968, SAE Paper No. 680093.

27'S. S. Hecker, Metals Eng. Quart., 14 (1974) 30.
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circles become distorted into ellipses. The clear circumferential mark
is due to necking. The strains ¢; and ¢, are called meridian and cir-
cumferential strains, respectively, and are measured at various points
when the test is interrupted. Figure 3.48(a) shows how these strains
vary with distance from the axis of symmetry of the punch, at the
point where the punch has advanced a total distance of h = 27 mm.
&1, the meridional strain, is highest at about 25 mm from the center
(1 &~ 0.25); &3, the circumferential strain, shows a definite plateau. By
using sheets with different widths and varying lubricants between
the sheet and the punch, different strain patterns are obtained.
(Figure 3.48(b) shows the geometry of the deformed sheet.) The tests
are conducted to obtain different combinations of minor-major
strains leading to failure. Figure 3.49 shows how the FLC curve
is obtained. The minor strain (circumferential) is plotted on the
abscissa, and the major strain (meridional) is plotted on the ordinate
axis. Four different specimen geometries are shown. The V-shaped
curve (FLC) marks the boundary of the safe-fail zone. The region
above the line corresponds to failure; the region below is safe.
In order to have both major and minor strains positive, we use a
full-sized specimen. By increasing lubrication, the major strain is
increased; a polyurethane spacer is used to decrease friction. The
drawings on the lower left- and right-hand corners of the figure
show the deformation undergone by a circle of the grid. When both
strains are positive, there is a net increase in area. Consequently,
the thickness of the sheet has to decrease proportionately. On

- BN Schematic of sheet
deformed by punch stretching. (a)
Representation of strain
distribution: ¢, meridional strains;
&2, circumferential strains; h, cup
height. (b) Geomety of deformed
sheet.
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the left-hand side of the plot, negative strains are made possible
by reducing the lateral dimension of the blank. This allows free
contraction in this dimension. The strains in an FLC diagram are
obtained by carefully measuring the dimensions of the ellipses
adjacent to the neck-failure region. It is interesting to notice
that diffuse necking (thinning) starts immediately after deform-
ation, whereas localized necking occurs only after substantial form-
ing. Semiempirical criteria for localized necking that agree well with
experimental results have been developed.

FLCs provide helpful guidelines for press-shop formability. Cou-
pled with circle-grid analysis, they can serve as a guide in modifying
the shape of stampings. Circle-grid analysis consists of photoprinting
a circle pattern on a blank and stamping it, determining the major
and minor strains in its critical areas. The strain pattern in the stamp-
ing is then compared with the FLC to verify the available safety mar-
gin. The strain pattern can be monitored with changes in lubrication,
hold-down pressure, and size and shape of drawbeads and the blank;
such monitoring can lead to changes in the experimental procedure.
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Plain strain

Circle-grid analysis also serves, in conjunction with the FLC, to indi-
cate whether a certain alloy might be replaced by another one, possi-
bly cheaper or lighter. During production, the use of occasional circle-
grid stampings provides valuable help with respect to wear, faulty
lubrication, and changes in hold-down pressure. Hecker and Ghosh?®
claim that the circle-grid analysis has replaced the craftsman’s “feel”
for the proper flow of the metal.

The strain pattern undergone by a stamped part is shown schemat-
ically in Figure 3.50. Different portions exhibit different strains, and
this is evident by observing the distortion of circles at different
regions.

3.10 ‘ Muscle Force

The maximum force that a muscle fiber can generate depends on the
velocity at which it is activated. Figure 3.51 shows the stress that can
be generated as a function of strain rate for “slow-twitch” and “fast-
twitch” muscles. We use slow-twitch muscles for long-range events
(e.g., distance running) and fast-twitch muscles for explosive activi-
ties, such as sprinting or throwing a punch at our professor. Both
muscles show a decreasing ability to generate stress as the strain rate
is increased. However, the fast-twitch muscles show a lower decay.

The plot shown in Figure 3.51 is only schematic and represents
the rat soleus (slow-twitch) and extensor digitorum longus (fast-twitch).
The equation that describes the response in Figure 3.51 is called the
Hill* equation. It has the form:

(0 +a)¢ + b) = (00 + a)b,

28 S, S. Hecker and A. K. Ghosh, Sci. Am., Nov. (1976), p. 100.
2 A. V. Hill, Proc. Roy. Soc. London, 126 (1938), 136-195.

Different strain
patterns in stamped part. (Adapted
from WV. Brazier, Closed Loop, 15,
No. | (1986) 3.)
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where oy is the stress at zero velocity (equal to 200 kPa in Figure
3.51). The range of oy is usually between 100 and 300 kPa; a and b are
parameters and ¢ is the strain rate (obtained from the velocity).

Example 3.13 |

A person is lifting a weight by contracting the biceps muscles. Assuming
that each muscle fiber has the capacity to lift 300 ug, and that each
muscle fiber has a diameter of 5 um, what is the required cross section
of biceps muscle needed to lift a mass of 20 kg?

F

5cm—> -~ F2
35cm }

\
m Forearm and force F, exerted by weight and reaction F; applied by
biceps.
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Solution: The cross section of each fiber is:
T 2 2
A= x5 =19.625 um’.

We can see from Figure E3.13 that we need to apply a lever rule to
calculate the force that the muscle has to exert. Distances given in
Figure E3.13 are typical. Students should check by measuring their
arms. Equating the sum of the moments to zero,

EMO =0
F1X1 - F2X2 =0.

We have, for typical values: X; = 5 cm; X, = 35 cm.
But:

Fy, =20 x 9.8 =196 N.

Thus:
196 x 35
Fi = — =1372 N.
D)

The maximum force that each muscle fiber can lift is:

F; =300 x 107° x 9.8 x 10™® = 2940 x 10~° N.
The ratio F;/F; gives the number of fibers:

N = 4.66 x 10°.
The total area is equal to:

A, =N x A =91.425 x 10® um?.
This may be converted into cm?:

A, =91.4 cm>.

This is indeed a biceps with a diameter of:
4A, 1/2
D = (—) = 10.7 cm.
b4

This corresponds to Arnold on steroids!

Example 3.14 |

Determine the safety factor built into the Achilles’ tendon of a person
weighing 80 kg, assuming a cross-sectional area of 1.5 cm?, if the person
can jump up to a height of 1 m, then land with a deceleration time
of 0.3 s. Assume that the tensile strength of the tendon is 60 MPa.
Dimensions are given in Figure E3.14.
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Achilles’
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(a) Structure of foot with Achilles’ tendon shown; (b) force T on
tendon; (c) jump from a height h.

Solution: We first calculate the relationship between T, the tension in
the Achilles’ tendon, and F, the force exerted on the ground. We assume
that the person is standing on the ball of the foot.

Setting the sum of moments equal to zero,

EMB - 0,

BC xF —AB xT =0,
__ BC xF
- AB

T

The forces and distances are defined in Figure E3.14(b). We now calcu-
late F for the static and dynamic cases. For the static case, we simply

have:

F;, =80 x 9.8 =784 N.

For the dynamic case, we have to consider the kinetic energy gained by
the person, when jumping down from a height of 1 m. The potential
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energy is converted into kinetic energy

1
mgh = — mv?,
J 2

The velocity is:
v = (2gh)? = 4.43 m/s.

In order to find the dynamic force, F;, we set the impulse equal to the
change in momentum:

mv —mx0=Fy; xt.

The deceleration time is given: t = 0.3 s.
Thus:

Fq =707 N.

The total force is:
F =F, + F4 = 1492N.

From the figure we obtain the values of AB and BC
T = 5968 N.

Assuming a round section, the area of the tendon is:
i
7L

A= 2 1.5x107%) =17 x 10°* m>.

Thus, the stress is:

T
o = — = 35.1 MPa.
A

The safety factor is:
60

T 355

This is indeed a small number, and a weakened Achilles’ tendon could
easily rupture. Indeed, this happened to one of the coauthors (MAM)
while playing soccer (his last game). The tendon was operated upon
and reconnected through stitches. The foot was immobilized in the
stretched position for 4 months enabling the tendon to repair itself.
Interestingly, the operated tendon now has a cross section twice as
large as the other one. Hence, nature somehow remembers the trauma
and overcorrects for it. The same thing happens in bones. The healed
portion becomes stronger than the original bone.

3.11 | Mechanical Properties of Some
Biological Materials

Figure 3.52 shows the stress-strain response of a number of bio-
logical materials. It may be seen that the properties vary widely. As
is the case with synthetic materials, the strength increases as the
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ductility decreases. The strongest materials in our body are the cor-
tical bone, followed by tendons and ligaments. The wide range in
properties is due to differences in structure and constituents, pre-
sented in Chapter 1. Table 3.4 provides some important mechanical
properties for a number of biological materials.

Elastin, which is described in Chapter 1, is an important compo-
nent in skin and arteries. As the name implies, it provides elasticity.
Figure 3.53 gives the stress-strain response from elastin taken from
ligamentum nuchae (a long ropelike fiber running along the top of a
horse’s neck and holding it upright). The material is approximately
linearly elastic with a Young’s modulus of approximately 0.6 MPa.

Bone is the structural component of our body. It also has other
functions, but we will concentrate on the mechanical performance
here. There are two principal types of bone: cortical (or compact) and
cancellous (or porous). Figure 3.54 shows the structure of a long bone.
The surface regions consist of cortical bone; the inside is porous and
is cancellous bone. The porosity reduces the strength of the bone,
but also reduces its weight. Bones are shaped in such a manner that
strength is provided only where it is needed. The porosity of can-
cellous bone provides interesting mechanical properties, which are
quantitatively treated in Chapter 12. The pores also perform other
physiological functions and contain the marrow. Thus, bone is a
true multifunctional material. Researchers are developing synthetic
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Table 3.4 | Mechanical Properties of Some Biological Materials

Fracture Stress Strain at
Material E (MPa) (MPa) Fracture
Elastin 0.6
Resilin 1.8
Collagen 1,000 70 0.09
Fibroin 10,000
Cortical bone —
Longitudinal (14-24) x 103 150 ~0.015
Transverse (8-18) x 10° 50
Cancellous (porous) bone 10-200
Cellulose 80,000 1000 0.024
Tendon 1,300 75 0.09
Keratin 2,500 50 0.02
Alpha (mammalian) Beta (birds) 2,000 20
Dentine 300
Spider Silk (radial) 1,500 0.06
Silkworm Silk 500
100 Stress—strain response
Elastin for elastin; it is the ligamentum
nuchae of cattle (Adapted from Y.
C. Fung and S. S. Sobin, J. Biomech.
80 Eng., 1103 (1981) I21. Also in Y.
C. Fung, Biomechanics: Mechanica
properties of Living Tissues (New
York: Springer, 1993) p. 244.)
o 60
o
=
5 Loading
401 Unloading
20+
0 \ \ \ !
0 0.05 0.10 0.15 0.20
Strain

multifunctional materials that have more than one function; this par-
ticular area of research is based on biological systems and is called
“biomimetics” (mimicking nature).

Cortical bone is found in long bones (femur, tibia, fibula, etc.).
The longitudinal mechanical properties (strength and stiffness)
are higher than the transverse ones. Thus, cortical bone can be
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Longitudinal section of
a femur. (From S. Mann,
Biomineralization (New York:
Oxford University Press, 2001).)

compressive stress—strain curves
for cortical bone in longitudinal
and transverse directions.
(Adapted from G. L. Lucas, . W.
Cooke, and E. A. Friis, A Primer on
Biomechanics (New York: Springer,
1999).)

considered as transversely isotropic. Figure 3.55 provides the tensile
and compressive stress-strain curves for cortical bone in longitudinal
and transverse directions. The anisotropy is clearly visible. The bone
is stronger in the longitudinal direction.

Bone is a composite of collagen, hydroxyapatite, and water.
Hydroxyapatite is a calcium phosphate with the composition:
3Ca3(P0O4)2Ca(OH),. Water corresponds to 15-25 vol.% of the bone in
mammals. The Young’s modulus of cortical bone varies from 14 to 24
GPa (see Table 3.4). This is much lower than that of hydroxyapatite,
which has a Young’s modulus of approximately 130 GPa and a tensile
strength of 100 MPa. Although collagen is not linearly elastic, we can
define a tangent modulus; it is approximately 1.25 GPa. The strength
achieved in bone is therefore higher than both hydroxyapatite (100
MPa) and collagen (50 MPa), demonstrating the synergistic effect of
a successful composite. Hydroxyapatite is the major mineral compo-
nent of bone. The hydroxyapatite content of bone varies from animal
to animal, depending on function. For instance, an agile animal like
a gazelle has bones that have to be highly elastic. Thus, the hydroxy-
apatite level is fairly low (around 50% by weight). Collagen provides
the elasticity. On the other hand a whale has bones with a much
higher mineral content (~80% by weight). We are somewhere in
between. A young athletic student has more compliant bones than
a sedentary professor!

The mechanical response of bone is also quite strain-rate sensitive.
As the velocity of loading increases, both the elastic modulus and the
fracture stress increase. Hence, the stiffness increases with strain rate.
This is shown in Figure 3.56.
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An equation called the the Ramberg-Osgood equation is used to
describe this strain-rate dependence of the elastic modulus:

E=¢

. =

e,

where o is the stress, ¢ is the strain, ¢ is the strain rate, and C and d
are experimental parameters. The following are typical values:

Human cranium: C = 15 GPa; d = 0.057
Bovine cortical bone (longitidinal): C =12 GPa; d =0.018.
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Exercises

3.1 A polycrystalline metal has a plastic stress-strain curve that obeys Hol-
lomon’s equation,

o =Ke".

Determine n, knowing that the flow stresses of this material at 2% and 10%
plastic deformation (offset) are equal to 175 and 185 MPa, respectively.

3.2 You are traveling in an airplane. The engineer who designed it is, casually,
on your side. He tells you that the wings were designed using the von Mises
criterion. Would you feel safer if he had told you that the Tresca criterion
had been used? Why?

3.3 A material is under a state of stress such that 01 = 30, = 203. It starts
to flow when o, = 140 MPa.

(a) What is the flow stress in uniaxial tension?

(b) If the material is used under conditions in which 07 = — 03 and 0, =
0, at which value of o3 will it flow, according to the Tresca and von Mises
criteria?

3.4 A steel with ayield stress of 300 MPa is tested under a state of stress where
0y = 01/2 and o3 = 0. What is the stress at which yielding occurs if it is
assumed that:

(a) The maximum-normal-stress criterion holds?
(b) The maximum-shear-stress criterion holds?
(c) The distortion-energy criterion holds?

3.5 Determine the maximum pressure that a cylindrical gas reservoir can
withstand, using the three flow criteria. Use the following information:

Material: AISI 304 stainless steel — hot finished and annealed, 6y = 205 MPa
Thickness: 25 mm

Diameter: 500 mm

Length: 1 mm

Hint: Determine the longitudinal and circumferential (hoop) stresses by the
method of sections.

3.6 Determine the value of Poisson’s ratio for an isotropic cube being plastic-
ally compressed between two parallel plates.

3.7 A low-carbon-steel cylinder, having a height of 50 mm and a diameter of
100 mm, is forged (upset) at 1,200°C and a velocity of 1 m/s, until its height is
equal to 15 mm. Assuming an efficiency of 60%, and assuming that the flow
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stress at the specified strain rate is 80 MPa, determine the power required to
forge the specimen.

3.8 Obtain the work-hardening exponent n using Considére’s criterion for the
curve of Example 3.4.

3.9 The stress-strain curve of a 70-30 brass is described by the equation
o = 600¢)*> MPa
until the onset of plastic instability.

(a) Find the 0.2% offset yield stress.
(b) Applying Considere’s criterion, find the real and engineering stress at the
onset of necking.

3.10 The onset of plastic flow in an annealed AISI 1018 steel specimen is
marked by a load drop and the formation of a Liiders band. The initial strain
rate is 107* s~1, the length of the specimen is 5 cm, and the Liiders plateau
extends itself for a strain equal to 0.1. Knowing that each Liiders band is
capable of producing a strain of 0.02 after its full motion, determine:

(a) The number of Liiders bands that traverse the specimen.
(b) The velocity of each Liiders band, assuming that only one band exists at
each time.

3.11 A tensile test on a steel specimen having a cross-sectional area of 2 cm?
and length of 10 cm is conducted in an Instron universal testing machine
with stiffness of 20 MN/m. If the initial strain rate is 1072 s~!, determine the
slope of the load-extension curve in the elastic range (E = 210 GN/m?).

3.12 Determine all the parameters that can be obtained from a stress-strain
curve from the load-extension curve (for a cylindrical specimen) shown in
Figure E.3.12, knowing that the initial cross-sectional area is 4 cm?, the
crosshead velocity is 3 mm/s, the gage length is 10 cm, the final cross-sectional
area is 2 cm?, and the radius of curvature of the neck is 1 cm.

1250

1000 |- —

Load, N
o1 ~
o ol
o o
] |

250 - -

0 | | l
0 5 10 15

Extension, mm

3.13 Draw the engineering-stress-engineering-strain and true-stress-true-
strain (with and without Bridgman correction) curves from the curve in Exer-
cise 3.12.
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3.14 What is the strain-rate sensitivity of AISI 1040 steel at a strain of 0.02
and a strain of 0.05 (Obtain your data from Figure 3.12(a).)

3.15 From the load-extension curve shown in Example 3.4, draw the true-
stress-true-strain curve.

3.16 An AISI 1045 steel obeys the following relationship relationship between
stress (o) and strain (e) in tension:

o (MPa) = 300 4 450¢°°.

Obtain the compressive stress-strain curve, considering the Bauschinger
effect. Use the data from Figure 3.17.

3.17 The PMMA specimens, Figure Ex.3.17, were deformed in uniaxial tension
at different temperatures. (a) Plot the total elongation, ultimate tensile stress,
and Young’s modulus as a function of temperature. (b) Discuss changes in
these properties in terms of the internal structure of the specimen.

(o]
o

S
o

N
o

Engineering stress, MPa

10 20 30
Engineering strain, %

Fig. Ex.3.17

3.18 For the force-displacement curve of Figure Ex.3.18, obtain the engineer-
ing and true-stress-strain curves if the specimen were tested in compression.

o
o
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Strain rate = 3 X 10-4/s ]
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Displacement, mm
Fig. Ex.3.18
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3.19 Calculate the softening temperature for a soda-lime silica glass at which
the viscosity is equal to 107 Pa-s if the activation energy for viscous flow is
250 kJ/mol and the viscosity at 1,000°C is 10> Pa-s.

3.20 The viscosity of a SiO, glass is 10™* P at 1,000 °C and 10! P at 1,300 °C.
What is the activation energy for viscous flow in this glass? Note: 1 P = 0.1
Pa-s.

3.21 When tested at room temperature, a thermoplastic material showed a
yield strength of 51 MPa in uniaxial tension and 55 MPa in uniaxial compres-
sion. Compute the yield strength of this polymer when tested in a pressure
chamber with a superimposed hydrostatic pressure of 300 MPa.

3.22 From Equation 3.35, obtain Equation 3.34. Then prove that Equation 3.34
represents an ellipse rotated 45° from its principal axis.

3.23 An annealed sheet of AISI 1040 steel (0.85 mm thick and with in-plane
isotropy) was tested in uniaxial tension until the onset of necking, to deter-
mine its formability. The initial specimen’s length and width were 20 and
2 cm, respectively. At the onset of necking, the length and width were 25 and
1.7 cm, respectively.

(a) Determine the ratio between the through-thickness and the in-plane yield
stress, assuming that R does not vary with strain.
(b) Draw the flow locus of this sheet, assuming that oy, = 180 MN/m?.

3.24 Repeat Exercise 3.23 if the final width of the specimen is 1.9 cm, and
explain the differences. Which case has a better formability?

3.25 Imagine that you want to perform a circle-grid analysis, but you do not
have the facilities for photoprinting. Hence, you decide to make a grid of
perpendicular and equidistant lines. After plastic deformation of the material,
can you still determine the major and minor strains from the distorted grid?
(Hint: Use the method for determining principal strains.)

3.26 Determine the activation energy for deformation for the three glasses
shown in Figure 3.26. (Hint: plot In viscosity vs. 1/T.)

3.27 You are given a 2.5 mm diameter cylindrical specimen 180 mm long. If
the specimen is subjected to a torque of 50 N-m.

(a) Calculate the deflection of the specimen end, if one end is fixed.
(b) Will the specimen undergo plastic deformation?

3.28 Calculate the resulting rod diameter for 1040 carbon steel subjected to
a 4000 N compressive load, with an initial diameter of 15 cm.

3.29 You are asked to design a spherical pressure vessel for space application.
The weight has to be minimized. Given that o = Pr|T, among materials below,
which one you would select?

Density
Alloy (kg/m?) Y.S. (MPa)
304 SS 7.8x10° 400
Ti6Al4V 446x10° 850

2024 Al 2.7x10° 400
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3.30 You have a piece of steel, and you are able to measure its hardness:
HV = 250 kg/mm?. What is its estimated yield stress, in MPa?

3.31 You received a piece of cast iron, and you want to estimate its yield
strength. You are able to make a hardness indentation using a 10 mm diameter
tungsten carbide sphere. The diameter of the indentation is 4 mm. What is
the estimated yield strength?

3.32 Describe the similarities and differences in the phenomena of Liiders
band formation in low-carbon steels and tensile drawing of a polymer.

3.33 The shear yield strength of a polymer is 30% higher in compression
than in tension. Determine the coefficient A that represents the dependence
of yield stress on hydrostatic pressure.

3.34 Looking at Figure 3.3, give reasons as to why the ultimate tensile stress
(UTS) of AISI 1040 steel decreses with increased heat treatment.

3.35

(a) Describe the changes that occur at a microstructural level when a thin
semicrystalline polymer begins to neck.

(b) Why does the strength increase in the load direction? Does the necking
region become more or less transparent if the material is made of a semi-
transparent material?

3.36 The following stresses were measured on a metal specimen:

o011 = 94 MPa
O — 155 MPa
o1, = 85 MPa.

Determine the yielding for both the Tresca and von Mises criteria, given that
oo = 180 MPa (yield stress). Which criterion is more conservative?

3.37 A flat indenter strikes the surface of an iron block and sinks into the
material by 0.4 cm. Assuming that the surface of a piece of iron (r9 = 6.6
GPa, 0y = 12.6 GPa, A = 0.5 cm?) can be modeled as triangular blocks as in
Figure E2.10.2, determine the force with which the indenter hits the material.

3.38 Determine the hardness of the copper specimen from the nanoindent-
ation SEM image in Figure 3.42(b) knowing that the applied load is 2000 puN.

3.39 Calculate the projected area of an indentation made in keratin, the pene-
tration depth h is 600 nm. Assume we used the Berkovich tip (A = 24.5h?).

3.40 You are designing a kinetic energy penetrator for the M1 tank. This
penetrator is made of depleted (non-radioactive but highly lethall) uranium-
0.75%Ti. Plot the stress-strain curve, from 0 to 1:

(@) At the following strain rates: 10~3 s~1, 10® s~! (ambient temperature).
(b) At a strain rate of 1072 s~! and the following temperatures: 77 K, 100 K,
300 K.

Given:

Tn = 1473 K
oo = 1079 MPa
K = 1120 MPa
n = 0.25

C = 0.007
m=1

e = 10"*s7!



Chapter 4

Imperfections: Point and Line
Defects

4.| ‘ Introduction

The mechanical properties of materials are often limited by their
imperfections. The theoretical cleavage and shear strengths of mater-
ials are given by (see Section 4.2):

/[Ey E Gb G
Oh=4/—~— and tp=—~ —,
a T 2ra 2

where E and G are the Young’s and shear moduli, respectively; a is
the interatomic spacing, and y is the surface energy of the material.
These equations predict exceedingly high strengths (on the order of
GPas), and few materials reach such strengths. (See Chapter 1.) Indeed,
this is somehow the Holy Grail of materials science: If materials were
perfect, those values could be reached. However, all materials contain
imperfections, either by design or inadvertently produced during pro-
cessing. We review these in this and subsequent chapters. They are
classified, according to their dimensions, into four kinds, each dis-
cussed in a separate section as follows:

¢ Point (atomic or electronic) defects (Section 4.3)

¢ Line (or one-dimensional) defects (Section 4.3)

¢ Interfacial (or two-dimensional) defects (Chapter 5, Section 5.1)
* Volume (or three-dimensional) defects (Chapter 5, Section 5.2).

Cracks are discussed in chapters 7 and 8, on fracture.

Imperfections determine the mechanical response of materials,
and the manner in which the response is used to enhance perform-
ance in a material will be analyzed in considerable detail in chapters
5 through 9. Note that the dimensional scale of defects covers a wide
spectrum, 10™* m, as shown schematically in Figure 4.1. Electronic
point defects do not affect mechanical properties significantly and
will therefore not be discussed in this text.
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Dimensional ranges of Electronic point Atomic point
- defects defects \ Interfacial defects \
different classes of defects. ‘ |
J J | Line defects | |, Volume defects _|
F [ \
L 1 1 1 1 1 1 1 1
10-14 10-10 10-6 10-2 102

Dimensional scale (m)

Stress required to shear
a crystal.

Shear
stress

Displacement, x

4.2 | Theoretical Shear Strength

Frenkel' performed a simple calculation of the theoretical shear
strength of crystals by considering two adjacent and parallel lines
of atoms subjected to a shear stress; this configuration is shown in
Figure 4.2 where a is the separation between the adjacent planes and
b is the interatomic distance. Under the action of the stress t, the
top line will move in relation to the bottom line; the atoms will
pass through successive equilibrium positions A, B, C, for which t is
zero. When the applied shear stress is enough to overcome these bar-
riers, plastic deformation will occur, and the atoms will move until a
shear fracture is produced. The stress is also zero when the atoms are
exactly superimposed; in that case, the equilibrium is metastable.
Between these values the stress varies cyclically with a period b.
Frenkel assumed a sine function, as one would expect:

T = ksin Zyr_x (4.1)

b
where x is the displacement, b is the Burgers vector, and k is the
constant to be determined (see below).
For small displacements,
2mx

T = kT' (4.2)
Since, for small displacements, one can consider the material to
deform elastically, we have

X
T=G-, (4.3)
a
where x/a is the shear strain and G is the shear modulus. Substituting
Equation 4.3 into Equation 4.2, we have

_ Gb

= (4.4)

! J. Frenkel, Z. Phys., 37 (1926) 572.
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Table 4.1 | Theoretical Shear Strength®

Element G (GPa) Tmax (GPa) Trax/G
Iron 60.0 6.6 0.1
Silver 19.7 0.77 0.039
Gold 19.0 0.74 0.039
Copper 30.8 [.2 0.039
Tungsten 150.0 6.5 0.1
Diamond 505.0 121.0 0.24
NaCl 23.7 2.8 0.12

4 From A. Kelly, Strong Solids (Oxford, UXK.: Clarendon Press, 1973),
p- 28.

Substituting Equation 4.4 into Equation 4.1 yields

Gb . 2mx

T=—sin
2ma b

The maximum of 7 occurs for x = b/4:

Gb

Tmax =

For FCC materials, the relationship between qa, (the lattice parameter),
a, and b can be calculated. Drawing a unit cell, the student will be
able to show that b = ay/2; the spacing between adjacent planes is
given by (see crystallography textbooks):

g = ———e
hkl = h2+k2+gz'

For (111) planes:
dinn = ao/ V3.

This is equal to a in Figure 4.2.
Substituting b and a into Equation 4.5, we obtain

G

=1 (4.6)

tmax ~
More complex models have been advanced in which the sine func-
tion is replaced by more precise curves expressing the interaction
energy. The method used by Kelly (Mackenzie’s method) is an exam-
ple. Kelly took into account the distortion of the planes. Table 4.1
shows the stresses calculated by Mackenzie’s method. Note that the
ratio Tmax/G varies between 0.039 and 0.24. Consequently, it is fairly
close to Frenkel’s ratio (0.18), obtained by the simpler method.

The theoretical strength derived above is on the order of
gigapascals; unfortunately, the actual strength of materials is orders
of magnitude below that. We derive an expression for theoretical
cleavage strength in Chapter 7.



254

IMPERFECTIONS: POINT AND LINE DEFECTS

Example 4.1 |

Estimate the theoretical shear and cleavage strength for copper and
iron. From Table 2.5 in Chapter 2, we have the following data:

lron E=2114GPa G = 81.6 GPa
Copper E = 1298 GPa G = 433 GPa

For the shear strength, we assume, to a first approximation, that
b = a. Thus,

Tmax =

and
Fe: tmax = 13.0 GPa
Cu: thax = 7.7 GPa.

For the cleavage strength,

So

ez A — X

10

&m‘
N
(o8]
»—k‘m
(o)}

Therefore, we have

Fe: opnax = 66.9 GPa
Cu: opax = 41.1 GPa.

The actual tensile strength of pure Fe and Cu is on the order of 0.1 GPa.
Since these metals fail by shear, the actual shear strength is equal to
0.05 GPa.

43 ‘ Atomic or Electronic Point Defects

These defects exist on an atomic scale. These defects can have a dia-
meter of approximately 1071° m. Although relatively small compared
to other imperfections, atomic defects do generate a stress field in
the crystal lattice and affect the properties of the material. Figure 4.3
shows the following three types of atomic point defects.

1. Vacancy. When an atomic position in the Bravais lattice is vacant.

2. Interstitial point defect. When an atom occupies an interstitial pos-
ition. This interstitial position can be occupied by an atom of the
material itself or by a foreign atom; the defect is called a self-
interstitial and an interstitial impurity, respectively, for the two
cases.
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Vacancy Substitutional m Atomic point defects. |

O O O O Osolute atom
O / o8
O O O O O Self-interstitial
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- AN Two most common

point defects in compounds:

Schottk
Y Schottky and Frenkel defects.

defect

Frenkel
defect

3. Substitutional point defect. When a regular atomic position is occu-
pied by a foreign atom.

The vacancy concentration in pure elements is very low at low tem-
peratures. The probability that an atomic site is a vacancy is approxi-
mately 107° at low temperatures, rising to 1073 at the melting point.
In spite of their low concentration, vacancies have a very important
effect on the properties of a material, because they control the self-
diffusion and substitutional diffusion rates. The movement of atoms
in the structure is coupled to the movement of vacancies. In Section
4.3.1, the equilibrium concentration of vacancies is calculated.

In compounds (ceramics and intermetallics), defects cannot occur
as freely as in metals, because we have additional requirements, such
as electrical neutrality. Two types of defects are prominent in com-
pounds and are shown in Figure 4.4: the Schottky defect, which is a
pair of vacancies that have opposite sign (one cation and one anion);
and the Frenkel defect, which consists of a vacancy-selfinterstitial
pair.

The selfinterstitial and interstitial impurities lodge themselves in
the “holes” that the structure has. There is more than one type of
hole in the FCC, BCC, and HCP structures, and their diameters and
positions will be determined in what follows.

The FCC structure, shown in Figure 4.5 has two types of voids:
the larger, called octahedral, and the smaller, called tetrahedral. The
names are derived from the nearest neighbor atoms; they form the
vertices of the polyhedra shown. If we consider the atoms as rigid
spheres, we can calculate the maximum radius of a sphere that would
fit into the void without straining the lattice. The reader is encour-
aged to engage in this exercise; with some luck, he or she will find
radii of 55 and 31 pm for octahedral and tetrahedral voids, respect-
ively, in y-iron. Hence, carbon (r = 80 pm) and nitrogen (r = 70 pm)
produce distortions in the lattice when they occupy the voids.
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Interstices in FCC

structure. (a) Octahedral void.
(b) Tetrahedral void.

Interstices in the BCC

structure. (a) Octahedral void.
(b) Tetrahedral void.

Interstices in the HCP

structure. (a) Octahedral void.
(b) Tetrahedral void.

(a) (b)

In BCC metals there are also octahedral and tetrahedral voids, as
shown in Figure 4.6. In this case, however, the larger void is tetra-
hedral. For rigid spheres in «-iron, the void radii are 36 and 19 pm
for tetrahedral and octahedral interstices, respectively. Hence, a solute
atom is accommodated in an easier way in FCC than in BCC iron, in
spite of the fact that the FCC structure is more closely packed.

Analogously, the HCP structure presents tetrahedral and octa-
hedral voids, shown in Figure 4.7; the reader is reminded of the
similarity between the FCC and HCP structures, which explains the
presence of the same voids.

4.3.1 Equilibrium Concentration of Point Defects

A very important characteristic of vacancies and self-interstitial
atoms, in contrast to line and surface defects, is that they can exist in
thermodynamic equilibrium at temperatures above 0 K. The thermo-
dynamic equilibrium in a system of constant mass, at a constant pres-
sure and temperature, and that does not execute any work in addition
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to the work against pressure, is reached when the Gibbs free energy
is minimum. The formation of point defects in a metal requires a cer-
tain quantity of heat 8q (as there is no work being executed, except
against pressure). Hence, if dH = §q, the enthalpy H of the system
increases. The configurational entropy S also increases, because there
are a certain number of different ways of putting the defects into the
system.
The Gibbs free energy is, by definition,

G=H-TS. (4.7)

One can thus see that the free energy will reach a minimum for a
certain value of n (the number of point defects) different from zero;
at 0 K, the entropic term is zero and the equilibrium concentration
is zero.

The equilibrium concentration of point defects can be calculated
from statistical considerations and is given by

% = exp(— G¢/kT) (4.8)

where n and N are the number of point defects and sites, respectively,
Gy is the free energy of formation of the defects, and k is Boltzmann’s
constant. For copper, the formation of vacancies and interstitials are

G, =83 kJ/mol, G; =580 kJ/mol.

We have, approximately, the following ratio:

Therefore, for copper, the free energy of formation of a vacancy
is approximately one-seventh that of a self-interstitial defect. Using
Equation 4.8, we can obtain the ratio between the vacancy (X,) and
interstitial (X;) concentrations:

X, Gi—G,
2 nexp (). 49
X; eXP( kT ) (4.9)

For copper at 1,000 K (we have to convert molar quantities or use
R = 8.314 J/(mol K):

X 10%.

i
It can be concluded that, at least in close-packed structures, the con-
centration of interstitials is negligible with respect to that of the

vacancies. Using Equation 4.9 for copper at 1,000 K, we obtain
X, =4.5x107°,

Hence, there is only one vacancy for each 2 x 10* copper atoms
at 1,000 K. This number is very small; in spite of this, it corres-
ponds to approximately 10'* vacancies/cm®. The low concentration
of selfinterstitials in close-packed structures is a consequence of the
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small diameter of the interstitial voids. (See Figures 4.5 and 4.6.) In
more open structures these concentrations can be higher. Even so,
high interstitial concentrations are not observed in equilibrium struc-
tures.

Example 4.2 |

If, at 400°C, the concentration of vacancies in aluminum is 2.3 x
10>, what is the excess concentration of vacancies if the aluminum
is quenched from 600 °C to room temperature? What is the number of
vacancies in one cubic um of quenched aluminum?
We are given:
G, =0.62¢V,
k = 86.2 x 10~° eV/K,

ra = 0.143 nm.

Solution: We have
M _ p—Gvir
N

At 400 °C (= 673 K),

— — —6
2.3 x 10 5 _ e 0.62/86.2x10 ><673’

Thus,

n _ —6 _
v _ p—062/86.2x107°x873 _ 2.6 x 1072,
n

Aluminum has the FCC structure, with four atoms per unit cell. The
lattice parameter a is related to the unit cell by

a = 2+/2r = 0.404 nm.
The corresponding volume is
V =a’ =0.0662 nm®.

In one um?®, the number of atoms is

4 x 10° "
n= = 6.04 x 10",
0.0662

n, = (2.6 x 107*)n = 1.6 x 10”.

Hence, there are about 1.6 x 107 vacancies per cubic pum of the
quenched aluminum.

Point defects can group themselves in more complex arrangements
(for instance, two vacancies form a divacancy, two interstitials form
a diinterstitial, etc.) The energy of formation of divacancies has been
determined for several metals. For example, for copper (with Gy = 5.63
x 107 J), it is: 0.96 x 10~ ' J. The energy of formation of divacancies
in noble metals in on the order of 0.48 x 10~%° J. It is thought that di-
vacancies are stable, in spite of the fact that their enthalpies of bonding
are not very well known.
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Diinterstitials also exist, and their energies can be calculated by the
same processes as for monointerstitials. Similarly, the vacancies can
bind themselves to atoms of impurities when the binding energy is
positive.

4.3.2 Production of Point Defects

Intrinsic point defects in a metal - either vacancies or self-interstitials
- exist in well-established equilibrium concentrations. (See Section
4.3.1.) By appropriate processing, the concentration of these defects
can be increased. Quenching, or ultra-high-speed cooling, is one of
these methods. The concentration of vacancies in BCC, FCC, and HCP
metals is greatly superior to that of interstitials and on the order of
1072 when the metal is at a temperature close to the melting point;
it is only 107® when the metal is at a temperature of about half the
melting point. Hence, if a specimen is cooled at a high enough rate,
the high-temperature concentration can be retained at low tempera-
tures. For this to occur, the rate of cooling has to be such that the
vacancies cannot diffuse to sinks - grain boundaries, dislocations,
surface, and so on. Theoretically, gold would have to be cooled from
1,330 K to ambient temperature at a rate of 10'* K/s to retain its high-
temperature vacancy concentration. The fastest quenching technique
to cool thin wires produces cooling rates lower than 10° K|s; never-
theless, a significant portion of the high-temperature point defects is
retained.

Another method of increasing the concentration of point defects
is by plastic deformation. The movement of dislocations generates
point defects by two mechanisms: the nonconservative motion of
jogs, and the annihilation of parallel dislocations of opposite sign,
producing a line of vacancies or interstitials. Jogs are created by dis-
location intersections; since they cannot glide with dislocations, they
have to climb as the dislocation moves. In a screw dislocation, they
are small segments having the character of an edge. The slip plane
of this segment is not compatible with that of the dislocation. The
climb is possible only by continuous emission of vacancies or inter-
stitials. The second mechanism is depicted schematically in Figure 4.8.
When the two dislocations cancel each other, they create a row of
interstitials or vacancies if their slip planes do not coincide.

HH 1
17 1T, Row of
T vacancies
I
(a)

Y111 Row of
= I | ll l\ - 4 — interstitials
3 {

1 { | ==
1 | ]

-8 RN Formation of point
defects by the annihilation of
dislocations. (a) Row of vacancies.
(b) Row of interstitials.
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Quenching produces mostly vacancies and vacancy groups. The
concentrations obtained are lower than 10~*. Deformation, on the
other hand, can introduce higher concentrations of vacancies and
equivalent ones of interstitials; the problem is that it also introduces a
number of other substructural changes that complicate the situation.
Dislocations are introduced, and they interact strongly with point
defects. One method of producing point defects does not present these
problems: Irradiation of the metal by high-energy particles allows the
introduction of a high concentration of point defects. The radiation
displaces the electrons, or ionizes, displaces atoms by elastic colli-
sions, and produces fission and thermal spikes. This subject is treated
in greater detail in Section 4.3.4. The displacement of atoms is pro-
duced by the elastic collision of the bombarding particles with the
lattice atoms, transferring the kinetic energy of the particles to the
atoms. This may cause the atoms to travel through the lattice. In
the majority of cases, an atom travels a few atomic distances and
enters an interstitial site. Consequently, a vacancy is produced,
together with a selfinterstitial. The energy transferred in the colli-
sion has to be well above the energy required to form an interstitial-
-vacancy pair in a reversible thermodynamic process (3 to 6 eV, or
4.8 x 1071 t0 9.6 x 107 J). It is believed that the energy transferred
to the atom has to be approximately 25 eV (40 x 10719 J). Different par-
ticles can be used in the bombardment process: neutrons, electrons,
y rays, and « particles.

4.3.3 Effect of Point Defects on Mechanical Properties
Point defects have a marked effect on the mechanical properties of a
material. For this reason, the effect of radiation is of great importance.
Maddin and Cottrell> used aluminum single crystals with various
purity levels, observing that the yield stress increased with quench-
ing. Quenching was accomplished by taking the specimens from
600 °C and throwing them into a water-ice mixture, while annealed
material was slowly cooled in the furnace. The yield stress increased
from 550 to 5,900 kPa, on average. The effect of impurity atoms
could be neglected because the increase in yield stress was consist-
ent throughout the specimens. The effect of possible residual stresses
due to quenching was also neglected. With the purpose of obtaining
evidence that was still more convincing, a single crystal was tested
immediately after quenching, while another was tested after staying
a few days at ambient temperature. The yield stress increased from
59 MPa to 8.4 MPa in the aged condition. The strengthening by
quenching is due to the interaction of dislocations and vacancies
or groups thereof. The effect of jogs, formed by the condensation of
vacancies on the dislocations, can also be considerable. During aging,
the excess concentration of vacancies forms groups and/or annihilates
preexisting dislocations.

2 R. Maddin and A. H. Cottrell, Phil. Mag., 46 (1955) 735.
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There are also alterations in the plastic portion of the stress-
versus-strain curve seen in Figure 4.9. The initial work-hardening
rate of the quenched aluminum is lower than that of slowly (fur-
nace) cooled aluminum. At greater strains, however, the two work-
hardening rates become fairly similar. Hence, the effect of quench-
ing disappears at higher strains. This is thought to be because the
excess concentrations of point defects are eliminated during plastic
deformation; at the same time, excess vacancies are generated by
dislocation motion, so that the concentrations in the quenched and
furnace cooled materials become the same.

The increase in hardness in many quenched metals is negligible,
in spite of the obvious changes in the stress-versus-strain curve. This
is explained by the fact that the effect of quenching disappears after
a certain amount of plastic deformation. Since the indenter deforms
the metal plastically (in an extensive way), the effect of quenching is
minimal.

4.3.4 Radiation Damage
Irradiation of solids by high-energy particles may produce one or
more of the following effects:

1. Displaced electrons (i.e., ionization).
2. Displaced atoms by elastic collision.
3. Fission and thermal spikes.

Ionization has a much more important role in nonmetals than it
has in metals. The high electrical conductivity of metals leads to a
very quick neutralization of ionization, and there is no observable
change in properties due to this phenomenon. Electronic excitations
in metals are also eliminated almost instantaneously. Such would
not be the case in semiconductors and dielectrics, where electronic
excitation configurations are almost permanent. Thus, in the case of
metals, only collisions among incident particles and atomic nuclei are
of importance. The basic mechanism in all processes of radiation dam-
age is the transfer of energy and motion from the incident particle
beams to the atoms of the material. The incident particle beam may
consist of positive particles (protons, for example), negative particles
(which are invariably electrons), or neutral particles (X-rays, y-rays,
neutrons, etc.). [rradiation by neutrons results in a large spectrum of
constant energy until the maximum energy that a particle can trans-
mit to an atom which suffered the impact. A neutron of 1 MeV (0.16 pJ)
can transfer about 10° eV (0.016 pJ) to an atom. High-energy transfers
can also be obtained by means of positive particles, but such energy
transfers are less common. In the case of electrons, only low-energy
transfers are possible. We shall consider here mainly the effects of
neutron radiation on metals. The primary collision has the function
of transferring energy to the atomic system. The subsequent events
that occur are as follows.

Quenched

()

Furnace
cooled

Resolved shear stress, N/m?2
N ~

0 0.04 0.08 0.12
Strain

- RM Stress-versus-strain
curves for aluminum single crystals.
The crystallographic orientation is
shown in the stereographic
triangle. (Adapted with permission
from A. H. Cottrell, Phil. Mag., 46
(1955) p. 737.)
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1. Displacement of an atom from its normal position in the lattice
to a position between the normal lattice sites.

2. Creation of defects by displacements and their migrations and
interactions.

When an atom is displaced from its normal lattice site, two defects
are created: an interstitial atom referred to as autointerstitial or self-
interstitial, and a vacant lattice site called a vacancy. More complex
configurations can be regarded as having started from this funda-
mental step. When an atom receives an energy impulse greater than
a certain value E, called the effective displacement energy, some atom
is displaced from its normal position to an interstitial position. In
the most simple case, if an atom receives the primary impact of
energy E,, the atom itself is displaced. This, however, is not inevitable;
sometimes another atom, a neighboring one, is displaced. With an
increase in the energy imparted to the affected atom, various events
can occur. At low energies, but higher than E., only an interstitial
and its connected vacancy are possible. At high energies, the affected
atom becomes an important particle for creating more damage. This
leads to cascade elements.

Near the end of its trajectory, an energetic atom displaces all
the atoms that it encounters; this is called a “displacement spike.”
Through a cascade effect, damage propagates through the lattice.
Many atoms that spread about by displacement spikes will become
situated along the atomic packing lines, and thus these lines will be
a most efficient manner of transporting energy far away from the
spike. The impact transferred along a crystallographic direction is
called a Focuson (analogous to photon and phonon). If the energy is not
well above the energy required for atomic displacement, it will be
transferred into a chain of exchange collisions that makes the atom
travel far away from the spike before it comes to a stop as an inter-
stitial. The efficiency of this process is much higher in the close-
packed directions (the <110> directions in FCC crystals). The atomic
configuration in the <110> direction in which an interstitial is prop-
agated along a line is called a dynamic crowdion. The efficiency of the
focusing processes is directly proportional to the interatomic poten-
tial, being higher for heavy metals and lower for light metals (such as
Al). According to the Seeger model, at zero kelvin, for each initially
displaced atom, one would have one or more regions in which a good
fraction of atoms (about 30%) disappear. These regions are surrounded
by interstitial clouds that extend a few hundreds of atomic distances
in noble metals and perhaps a few atomic distances in a metal such
as Al. Seeger called the region of lost atoms in the center of a cascade
a “depleted zone” and estimated that its typical size would be less
than 1 nm. Figure 4.10 shows the Seeger model of damage produced
by irradiation.

Vacancies generated during exposure to radiation often condense
and form voids inside the material. An illustration of this is pro-
vided in Figure 4.11, which shows Ni irradiated by a high dosage of
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In any event, a major portion of radiation damage in common
metals caused by neutrons in reactors consists of a large number of
interstitials and vacancies produced in a cascade process that follows
after a primary knock-on impact. These point defects act as small
obstacles to dislocation movement and result in a hardening of the
metals. Besides this direct effect on mechanical properties, some in-
direct effects are possible. These indirect effects, which arise from the
fact that irradiation by neutrons changes the rates and mechanisms
of atomic interchange, are as follows.

1. Destruction of order of lattice.
2. Fractionating of precipitates.
3. Acceleration of nucleation.

4. Acceleration of diffusion.

These processes have their origin, directly or indirectly, in the
kinetic energy exchanges between energetic neutrons and atoms.
According to Seeger’s model, atoms can be transported long dis-
tances by “cooperative” focalization along the more densely packed

NN Seeger model of

damage produced by irradiation. P
indicates the position where the
first “knock-on” terminates.
(Reprinted with permission from
A. Seeger, in Proc. Symp. Radiat.
Damage Solids React., Vol. 1,
(Vienna, IAEA, 1962) pp. 101, 105.)

Voids formed in nickel
irradiated using 400 keV 4N, *
ions to a dose of 40 dpa at 500 °C;
notice the voids with polyhedral
shape; dpa = displacements per
atom. (Courtesy of L. J. Chen and
A. ). Ardell.)
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directions, and the collision processes create simple defects, such as
interstitials and vacancies, and complex defects, such as displacement
spikes. If an alloy is ordered, focalization and displacement spikes may
destroy the order. If the alloy contains precipitates, a displacement
spike may break the precipitates if they are smaller than the spike
and thus return the precipitates into solution. In an alloy that can
have precipitates, the damaged regions caused by spikes can serve
as nucleation sites. The excess vacancies produced by irradiation can
accelerate the diffusion rate. All these effects influence significantly
the mechanical properties. At ordinary temperatures (i.e., ambient or
slightly above) one or both the defects (interstitials and vacancies)
are mobile, and thus, the ones that survive the annihilation, due
to recombination or loss of identity at sinks such as dislocations or
interfaces, group together. It is well established that in a majority of
metals, irradiation at low temperatures (<0.2T,,» where T, is the melt-
ing point, in kelvins) results in joining of vacancies and interstitials to
form groups that are surrounded by dislocations (i.e., loops and tetra-
hedral packing defects). These groups impede dislocation motion, as
well as increase the strength and reduce the ductility of the mater-
ial. At high temperatures, the vacancies can group together to form
voids. The formation of such groups of defects can cause important
and undesirable changes in mechanical properties and result in a
dimensional instability of the material. Damage accumulated during
irradiation by neutrons (and other particles) can cause significant
changes in important properties. For example, the yield stress or the
flow stress increases, and frequently there is a loss of ductility.

The problem of mechanical and dimensional stability is a very
serious one for structural components in fast reactors. In 1967, it was
discovered that nuclear fuel cladding consisting of austenitic stainless
steel, when exposed to high doses of fast neutrons, showed internal
cavities (~10 nm). These cavities, called voids, result in an increase
in the dimensions of the material. It is estimated that the maxi-
mum possible dilation in the structural components is of the order
of 10%. However, as neutron flux and the temperature of the sodium
coolant are not uniform in the core, the swelling of the component
will be nonuniform. This nonuniformity can influence the compo-
nent’s behavior.

Irradiation by neutrons causes marked changes in the properties
of the zirconium alloys Zircaloy-2 and Zircaloy-4 (both very much
used in light water reactors) and in 304 and 316 stainless steels (used
in liquid metal fast-breeder reactors). Figure 4.12 shows the increase
in strength (yield strength and ultimate tensile strength) of Zircaloy
after neutron radiation. The exact nature of the defects introduced
by radiation that are responsible for these changes in Zircaloy are not
well characterized. There is a considerable variation in the observed
microstructures. One of the few observations about which there exists
general agreement is the absence of radiation-induced vacancies in
Zircaloy, which is a significant difference compared with, say, the
behavior of stainless steels. Stainless steels show swelling due to
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neutron irradiation. The dilation induced by neutron irradiation in
stainless steel depends on the neutron flux and the temperature, as
shown in Figure 4.13. It is believed that the vacancies introduced by
irradiation combine to form voids, while the interstitials are preferen-
tially attracted to dislocations. According to Shewmon? this dilation
of stainless steel does not affect the viability or security of breeder-
type reactors, but will have a significant effect on core design and
economy of reproduction. It would appear that, in spite of not being
able to eliminate the effect completely, cold work, heat treatments,
or changes in composition can reduce the swelling by a factor of two
or more. Figure 4.14 shows the change in dilation of stainless steel as
a function of Cr and Ni content.

4.3.5 lon Implantation

An interesting technological application using charged particles is
called ion implantation. Charged ions are accelerated in an electric
field (e.g., in a linear accelerator) to very high energies (~200 keV) and

3 P. G. Shewmon, Science, 173 (1971) 987.
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allowed to strike the target solid in a moderate vacuum (~1 mPa). It
is worth emphasizing that the selected species of ions is implanted
into, and not deposited on, the target surface. The technique, origin-
ally developed for preparing semiconductor devices in a controlled
fashion, has been made into a sophisticated tool for altering the com-
position and structure of surfaces for any number of purposes - for
example, modifying the surface chemistry for better corrosion and
oxidation resistance, tribological properties, and superconductivity.
The reader can well imagine the power of the technique by the fact
that it allows one to introduce elements into a surface, which may
not be possible in conventional heat treatment because of low diffu-
sivity. Depending on the dose, B*, N*, and Mo™ ions implanted into
steel can reduce the wear of a tool by an order of magnitude.

The ion implantation technique of modifying the composition and
structure of surfaces has a number of advantages over conventional
techniques:

1. The process is essentially a cold one; therefore, there is no loss of
surface finish and dimensions (i.e., the process can be applied to
finished parts).

2. One can implant a range of metallic and nonmetallic ions, indi-
vidually or combined.

3. One can implant selected critical areas.

Ion implantation is particularly suited for the selected modification of
small, critical parts. Oil burners used for injecting a mixture of fuel
oil and air into boilers of oil-fired power plants face rather severe
erosion conditions. Ti and B implantation of oil-burner tips improved
erosion properties and increased the service life of the boilers.

Another very important aspect of ion implantation has to do with
the fact that it is basically a nonequilibrium process. There are thus
no thermodynamic constraints, such as solubility limits. In other
words, we are able to produce metastable alloys with new and unusual
characteristics, amorphous alloys, and so on. Hence, the technique
offers a novel way of producing surfaces, in a controlled manner, for
scientific studies.

4.4 ‘ Line Defects

Bands in the surface of plastically deformed metallic specimens were
reported as early as the 19th century. With the discovery of the crys-
talline nature of metals, these bands were interpreted as being the
result of the shear of one part of the specimen with respect to the
other. Similar slip bands (or markings) were observed by geologists
in rocks. However, calculations of the theoretical strength of crystals
based on the simultaneous motion of all atoms along the slip band
showed systematic deviations of several orders of magnitude with
respect to the experimental values. (See Section 4.2.) This discrepancy
led to the concept of line imperfections in crystals called dislocations.
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Later, the actual existence of such imperfections was verified by a
variety of techniques.

Figures 4.15 and 4.16 present two analogies that help us to visu-
alize dislocations. The displacement of a rug can be accomplished
by applying a much lower force if a wave is created in the rug and
moved from the back to the front. This displacement, b, is indicated
in Figure 4.15. In a similar manner, caterpillars move by creating a
“dislocation” and displacing it from the back to the front. (See Fig-
ure 4.16.) Sidewinders use a similar principle: these snakes generate
“waves” along their bodies. The movement of the wave propels the
snake sideways. Having understood this concept, the diligent student
can readily comprehend how the movement of a dislocation in a body
can produce plastic deformation.

Figure 4.17 shows two distinct types of dislocations encountered
in crystalline solids: edge and screw dislocations. The atomic arrange-
ment surrounding these dislocations is distorted from the regular
periodicity of the lattice. The edge dislocation (Figure 4.17(a)) may be
visualized as an extra half plane of atoms terminating at the disloca-
tion line (perpendicular to the plane of the paper and passing through
the symbol “_L”) The screw dislocation can be visualized as a “parking
garage:” a car, driving around the dislocation line will go up or down
the building. Another analogy is the screw. Figure 4.17(a) shows the
atomic arrangement. The distortion of the periodic atomic arrange-
ment is represented by the Burgers vector b. A circuit is created
around the dislocation line, as indicated by ABCDE. AB and CD corres-
pond to 4a, where a is the interatomic spacing. BC and DE correspond
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to 3a. The failure of the circuit to close represents the vector b. A Burg-
ers circuit is also represented around the screw dislocation in Figure
4.17(b). The essential difference between these two types of disloca-
tion is that in the edge dislocation, b is perpendicular to dislocation
line vector, ¢, whereas in the screw dislocation, b is parallel to £.

Edge dislocations were proposed by Orowan, Polanyi and Tay-
lor, in 1934.* Screw dislocations were proposed by Burgers in 1939.5
Figure 4.18 shows how the shearing of the lattice can generate edge
and screw dislocations. Imagine a cut made along ABCD in Figure
4.18(a). If the shearing direction is as marked in Figure 4.18(b), the
Burgers vector is perpendicular to line AB or £. The resultant dis-
location is of edge character. If the shearing direction, defined by b,
is parallel to AB, then b /[ £, and the resulting dislocation is of screw
character. (See Figure 4.18(c).) The movement of an edge dislocation
under an applied shear stress t is shown in Figure 4.19. The perfect
lattice shown in Figure 4.19(a) is broken and the dislocation is formed
as shown in Figure 4.19(b). This edge dislocation (b L £ ) moves from
left to right, and the final, deformed configuration is shown in Figure
4.19(c). The relationship between the applied shear stress, the direc-
tion of movement of dislocation, and the plastic strain generated is
quite different for the two types of dislocation. Figure 4.20 shows how
a hypothetical crystal subjected to a shear stress T undergoes plastic
deformation by means of the propagation of (a) an edge dislocation
and (b) a screw dislocation. The direction of motion of the dislocations
is always parallel to b. The final shear is the same, but the motion
of the two dislocations is completely different. There is also a mixed
dislocation that possesses both screw and edge character. Figure 4.21
shows such a dislocation, together with the “cut.” It can be seen that
the shear direction is neither parallel (screw) nor perpendicular (edge)
to the direction of the cut.

4 E. Orowan, Z. Phys., 89 (1934) 604. M. Polanyi, Z. Phys., 89 (1934) 660. G. 1. Taylor, Proc.
Roy. Soc. (London), A145 (1934) 362.
5 J. M. Burgers, Proc. Kon. Ned. Akad. Wetenschap., 42 (1939) 293, 378.
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dislocation. (c) Screw dislocation.
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- AR RA The plastic
deformation of a crystal by the
movement of a dislocation along a
slip plane.

7
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- MW Plastic deformation

(shear) produced by the movement
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screw dislocation. Note d is the
direction of dislocation motion; £
is the direction of dislocation line.

Another type of dislocation is called a helical dislocation. It forms
a large helix and is sometimes observed in crystals that were heat-
treated to produce climb. “Climb” is the movement of a dislocation
perpendicular to its slip plane. “Glide” is the movement along the slip
plane. Climb is described in Chapter 13 (Creep). These dislocations are
of mixed character; the reader should not confuse them with screw
dislocations.

Dislocations will be studied in detail in this chapter, since they are
the building blocks for the understanding of the mechanical response
of metals. The treatment, however, still is far from comprehensive. For
further details, the reader is referred to the suggested readings at the
end of the chapter.

4.4.1 Experimental Observation of Dislocations
It took 20 years to prove, beyond any doubt, the existence of disloca-
tions experimentally, and this period (1935-1955) was surrounded by
skepticism and harsh polemics. Nevertheless, the existence of disloca-
tions is nowadays universally recognized, and the “lunatic” theories
and models have been proven to be remarkably correct. A number
of techniques have allowed the observation of dislocations, including
etch pitting, X-ray diffraction (Berg-Barrett topography), and, most
importantly, transmission electron microscopy (TEM). The last one is
established as the principal method for observing dislocations.

In TEM, the foil has to be thinned to a thickness between 0.1
and 0.3 pm, becoming transparent to electrons when the accelerating
voltage is in the 100-300kV range. Dislocations produce distortions
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of the atomic planes. Hence, for certain orientations of the foil with
respect to the beam, the region around a dislocation diffracts the
beam. The dislocations can then be seen as dark, thin lines under
a bright field. TEMs with higher operating voltages (in the megavolt
range) are available and allow thicker specimens to be observed. Fig-
ure 4.22 shows dislocations in titanium and silicon rendered visible
by this technique. The dislocations in titanium (Figure 4.22(a)) appear
as sets of parallel segments; the segments are parallel because the
dislocations minimize their energy by being along certain crystallo-
graphic planes. The same phenomenon is observed in silicon (see Fig-
ure 4.22(b)). A hardness indentation (lower right-hand corner) gener-
ated a profusion of dislocation loops. These loops are not circular, but
consist of segments that are crystallographically aligned because of
energy minimization considerations. The dislocation configurations
in materials are highly varied and depend on a number of param-
eters, such as total strain, strain rate, stress state, deformation tem-
peratures, crystallographic structure, etc. Note that the dislocations
in silicon (Figure 4.22(b)) appear as white lines, whereas in Figure
4.22(a) they are dark lines. This is because Figure 4.22(b) is a dark-field
image, in which the grain diffracts, and the dislocation transmits, the
electron beam. The figure is opposite to the normal bright-field trans-
mission images (Figure 4.22(a)).

Dislocations are also present in ceramics, although they are less
mobile. They can be produced by plastic deformation at high tempera-
tures, by thermal stresses during cooling, or by applying very high
stresses, made possible by, for instance, impacts at several hundred
meters per second. Figure 4.23 shows dislocations observed in alumina
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(a) (b)

(A WLW Atomic resolution transmission electron micrograph of dislocation in
molybdenum with a Burgers circuit around it. (Courtesy of R. Gronsky.)

and titanium carbide. The dislocations in the alumina were generated
by impact at 600 m/s. The dislocations in the titanium carbide were
produced by plastic deformation above the material’s ductile-to-brittle
transition temperature (~2,000 °C). At room temperature, this ceramic
would simply undergo brittle fracture.

High-resolution TEM can resolve the individual atoms and iden-
tify the lattice distortions around a dislocation. Figure 4.24 shows



4.4 LINE DEFECTS

273

molybdenum imaged in such a fashion. The dark spots represent one
atom each. Mo has the BCC structure, and the foil plane imaged is
(100). The right-hand side of the picture shows a unit cell. A Burg-
ers circuit is drawn around an edge dislocation, which has a line £
perpendicular to the plane of the foil. The closure gap represents the
Burgers vector of the dislocation. A comparison of the figure with the
unit cell establishes the magnitude of the Burgers vector; it is equal
to the lattice parameter a. This is clearly indicated in the figure. The
presence of the dislocation can also be felt by noticing the break in
the [110] planes, making 45° with the cube axes.

The electron micrographs of Figures 4.22-4.24 illustrate the pres-
ence and variety of dislocation configurations observed in crystalline
materials.

442 Behavior of Dislocations

Dislocation Loops

A dislocation line can form a closed loop, instead of extending until
it reaches an interface or the surface of the crystal. This is illustrated
in Figure 4.25(a), where a square loop is sketched. Two cuts, along
perpendicular sections, were made: AAA and BBB. Figure 4.25(b) and
(c) show these sections. It can clearly be seen that the dislocation seg-
ments CF and DE (Figure 4.25(b)) are of edge character, while segments
CD and FE (Figure 4.25(c)) are of screw character. This is due to the
direction of the shear. The loop can be imagined as a cut made in
the interior of the crystal (an impossible feat, of course); the edges
of the cut form the dislocation line, after shear is applied to the crys-
tal. Dislocations CF and DE are of the same type, with opposite signs;
the same applies to CD and FE. The sign convention used for edge
dislocations is the following: If the extra semiplane (wedge) is on the
top portion, it is positive; if on the bottom, it is negative. Hence, CF
is positive and DE is negative. For screw dislocations, a similar con-
vention is used. If the helix turns in accord with a normal screw, it
is positive. If not, it is negative. According to this convention, CD is
positive and FE is negative.

The actual dislocation loops are not necessarily square. An ellip-
tical shape would be more favorable energetically than a square.
For an elliptical or circular shape, the character of the disloca-
tion changes continuously along the line. Figure 4.26(a) shows this
situation; the regions that are edge and screw are shown by appro-
priate symbols. The symbols most commonly used are an inverted
T (1) for a positive edge, and an S for a positive screw disloca-
tion. The negative signs can be described by a correct T and by
an inverted S (<¢>). In Figure 4.26(a), all the portions of the loop
between the short segments of pure screw and edge character are
mixed. These loop segments move as shown in the figure. The loop
expands and eventually “pops out” of the parallelepiped, creating the
shear shown in Figure 4.26(b). Figure 4.26(c) shows a shear loop in
copper.

B
A . I
B~ A
[ Y
.é;__ﬂ :
c—p|
3 A
B
(a)
= A
IR
L\
A tA
(b)
B
B B
B

(c)

Square dislocation
loop.
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B
A
B A
A
B

Prismatic loop
produced by the introduction of a
disk into metal. (a) Perspective
view. (b) Section AAAA. (c) Section
BBBB.

e

. ' 500 nm

(c)

- W1 W Elliptic dislocation loop. (a) Intermediate position. (b) Final (sheared)
position. (c) TEM of shear loop in copper (Courtesy of F. Gregori and M. S. Schneider.)

There is another type of loop, called a prismatic loop, that should
not be confused with a common loop. A prismatic loop is created
when a disk of atoms is either inserted or removed from the
crystal. Figure 4.27(a) shows this situation; cuts AAAA and BBBB
are indicated. A disk having the thickness of one atomic layer was
introduced and it can be seen that sections AAAA (Figure 4.27(b))
and BBBB (Figure 4.27(c)) are identical. They are edge dislocations
with opposite signs. This configuration is very different from that
encountered in normal loops. One can also remove a disk of atoms,
instead of adding it. These loops do not have the same ability to move
as do normal loops because the Burgers vector is perpendicular to the
loop.

Movement of Dislocations

The plastic deformation of metals is normally accomplished by the
movement of dislocations. The elements of dislocation motion are
reviewed in this section, together with the resulting deformations.
In actual deformation and for elevated strains, complex interactions
occur between dislocations. These interactions can be broken down
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into simple basic mechanisms that will be described next. Two edge
dislocations are shown in Figure 4.28(a). After the passage of one of
them, one part of the lattice is displaced in relation to the other
part by a distance equal to the Burgers vector. Both a positive and a
negative dislocation can generate the same shear; however, they have
to move in opposite directions in order to accomplish this. The reader
is reminded (see Figure 4.20(a)) that the shear and motion directions
are the same for edge dislocation.

Screw dislocations can produce the same lattice shear (Figure
4.28(b)). However, in this case the shear takes place perpendicular
to the direction of motion of the dislocations; positive and negative
screw dislocations have to move in opposite directions in order to
produce the same shear strain.

The plane in which a dislocation moves is called a slip plane. The
slip plane and the loop plane coincide in Figure 4.29. A loop will
eventually be ejected from a crystal upon expanding if there is no
barrier to its motion. The expansion of a loop will produce an amount
of shear in the crystal equal to the Burgers vector of the dislocation.
It is worth noting that the shears of the different dislocations are all
compatible; there is no incompatibility of movement.

The prismatic loops, consisting totally of edge dislocations, can-
not expand like the normal loops. Thus, because the plane of the dis-
location does not coincide with the loop plane, the coupled move-
ment of the edge dislocations will force the loop to move perpendic-
ular to its plane, maintaining the same diameter. Upon being ejected
from the crystal, a step will be formed at the surface. Figure 4.30
shows a succession of vacancy loops formed by punching of prismatic
dislocations.

4.4.3 Stress Field Around Dislocations

Dislocations are defects; hence, they introduce stresses and strains
in the surrounding lattice of a material. The mathematical treat-
ment of these stresses and strains can be substantially simplified
if the medium is considered to be isotropic and continuous. Under
conditions of isotropy, a dislocation is completely described by the
line and Burgers vectors. With this in mind, and considering the
simplest possible situation, dislocations are assumed to be straight,
infinitely long lines. Figure 4.31 shows hollow cylinders sectioned

1

- |

(a)

3-8 1N Slip produced by the
movement of dislocation. (a)
Positive and negative edge
dislocations. (b) Positive and
negative screw dislocations.

-8 WI R Expansion of a
dislocation loop.
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- A XN Nickel heated at

600 °C for 10 min and quenched in
liquid nitrogen. Strings of vacancy
loops can be clearly seen.
(Courtesy of L. E. Murr.)

Simple models for (a)
screw and (b) edge dislocations;
the deformation fields can be
obtained by cutting a slit
longitudinally along a thick-walled
cylinder and displacing the surface
by b parallel (screw) and
perpendicular (edge) to the
dislocation line.

along the longitudinal direction. Different deformations are applied
in the two cases. The one in Figure 4.31(a) portrays the deformation
around a screw dislocation, while Figure 4.31(b) is an idealization of
the strains around an edge dislocation. The cylinders, with external
radii R, were longitudinally and transversally displaced by the Bur-
gers vector b, which is parallel (perpendicular) to the cylinder axis in
the representation of a screw (an edge) dislocation. In either case, an
internal hole with radius r, is made through the center. This is done
to simplify the mathematical treatment. In a continuous medium,
the stresses on the center would build up and become infinite in
the absence of a hole; in real dislocations the crystalline lattice is
periodic, and this does not occur. In mechanics terminology, this
is called a singularity, A “singularity” is a spike, or a single event.
For instance, the Kilimanjaro is a singularity in the African plains.
Therefore, we “drill out” the central core, which is a way of recon-
ciling the continuous-medium hypothesis with the periodic nature
of the structure. To analyze the stresses around a dislocation, we
use the formal theory of elasticity. For that, one has to use the rela-
tionships between stresses and strains (constitutive relationships), the
equilibrium equations, the compatibility equations, and the bound-
ary conditions. Hence, the problem is somewhat elaborate. We
present the derivation of these relationships here only for the screw
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dislocation; see Kuhlmann-Wilsdorf, and Weertman and Weertman
(in the suggested reading) for details.

In Figure 4.31, we have the following displacements, for a screw
dislocation, along the axes x1, Xy, and x3:

up =0, uy=0, uz#0.
The displacement in the direction x; can be assumed to be approxi-

mately equal to
b

=§,

us = f(0)
This is so because the displacement is b after a rotation of 2z. The

angle 0 is given by tan 6 = x4/x, thus

b X
uz3 = — arctan 2 (4.10a)
2 X1

The strain components in indicial notation are:

1 8ui Buj L.
gj=—-|—+ i,j=1,2,3

2 8XJ Bxi
enn = 0,62 =0,
1 3”3
e12 =0, 83 = 2%,
1 3“3 3”3
13 = 58_961’833 = 3_?63 =

Substituting Equation 4.10a into the equations above, we obtain

—sz
&3 = ——5—5=» 4.10b
Pan(xi+x3) (10
bx1
&3 = ———-, 4.10c
BT 4n(x? +x2) ( )
033 = 0.
Now, using the generalized Hooke’s law, we have
o3 = 2G ez,
O3 = 2G Er3.
O3 =031 = —————, 1la
13 31 27T(X12 + XZZ)
Gbx
O3 = 032 1 (411]3)

T 2r(x2 4+ x2)

The stresses around an edge dislocation are (given without
derivation):

Gbxy(3x? + x2
o = — 2 L Zl =, (4.12a)
21 (1 — v)(x{ + x3)

Gbxq(x? — x2
o1y = 1% 5 2)2 . (4.12b)
27 (1 — v)(x7 + x5)
Gbxy(x? — x2)
= . 4.12
727 2 —v)(xE + 2P (@129
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m Stress fields around an

edge dislocation. (The dislocation
line is Ox3): (a) o 1; (b) 0225 ()
033; (d) 0 12. (Adapted with
permission from J. C. M. Lj, in
Electron Microscopy and Strength of
Crystals, eds. G. Thomas and |.
Washburn (New York:
Interscience Publishers, 1963).)
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It then follows that
Gbvx,

033 = V(Ull + 022) = _m-
1 2

(4.12d)

These stresses are shown in Figure 4.32 through isostress lines.

444 Energy of Dislocations

The elastic deformation energy of a dislocation can be found by inte-
grating the elastic deformation energy over the whole volume of the
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deformed crystal. The deformation energy is given by

1
U= 50}]‘8“'. (413)

For an isotropic material, converting the strains to stresses, we have

1 1
=6 [m (0 + 035 + 035) + (0 + 03 + 033)

v

—m(anasa + 011022 + 022033)] . (4.13a)

Using Equations 4.10a and 4.10b we have, for a screw dislocation,

1 G2b%x2 G2b2x?
Us = — i —L (4.14)
2G [ 4m2(x] 4+ x5)%  4m2(x7 + x35)?
B Gb?
8m2(xf + x3)
Substituting (x? + x2) by 72 (see Figure 4.31), we find that
. - CP’ (4.15)
B '
Integrating Equation 4.15 between 1, and R, we get
R 2 2
Gb Gb R
Us = / ——=2nrdr = —In —. (4.16)
v 8mir? 4 1o

In a similar way, the energy of a straight edge dislocation per unit
length is equal to
Gb? R

n—. (4.17)

L 47(1—v) 10

It should be observed that the factor (1 — v) is approximately equal
to 2/3. Hence, the energy of an edge dislocation is about 3/2 of that
of a screw dislocation.

The schematic drawing of Figure 4.31 removes the core of the
dislocation so as to avoid the infinite stresses along the dislocation
line. Several methods have been used to estimate ry. In this book, 1y
will be assumed to be equal to 5b. Note that the energy given by the
foregoing equations become infinite for infinite R; hence, one has to
establish an approximate value for R. Dislocations in a metal never
occur in a completely isolated manner; they form irregular arrays
with mean density p. This density is given as the total length of dis-
location line per unit volume. The spaghetti analogy can be used here.
Imagine a pot with water and spaghetti. The density of the spaghetti
would be obtained by measuring the total length of the spaghetti and
dividing it by the volume of the pot. The stress fields of the various
dislocations interact, as will be seen in subsequent sections; we gen-
erally assume a value of R equal to the average distance between the



4.4 LINE DEFECTS

281

(a)

=

)
v Y
4 4 o4 -
(b)

dislocations. It can be shown, by means of a simplified array, that the
average distance or mean free path of dislocations is approximately
equal to p~12,

It is possible to calculate the radius of influence of each dislocation
line, R, from the dislocation density p. This radius of influence is
equal to L2, in Figure 4.33. Figure 4.33(a) shows a two-dimensional
array of dislocations; all dislocation lines “poke out” of the plane of
the page. The mean spacing is L, and the hatched area is L. This area
is bounded by four dislocations, and each dislocation is shared by
four areas. Thus,

L? area — 1 dislocation,
unit area — p dislocations.

As a result,

fa15)

The tridimensional calculation is slightly more complicated. Figure
4.33(b) shows a tridimensional array of dislocations. The hatched vol-
ume is V = I3. This volume is composed of dislocations that lie along
the edges. The total dislocation length can be taken to be 12 L. How-
ever, each dislocation is shared by four adjacent cubes. Hence,

12L /4
= LB/ =312 (4.19)
But
L
R =—,
2
so that

o = 3(2R)?

Schematic
representation of an idealized
dislocation array (a) in two
dimensions and (b) in three
dimensions; note that dislocations
on three perpendicular atomic
planes define a volume V.
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and
1 —1/2
R=- (3) —0.86p 12,
2\3
The average dislocation radius is often taken to be
R~ pfl/ 2,

We now add the energy of the dislocation core. This energy is taken
to be Gb%[10 for metals. Hence, the total energy of a dislocation is

Ur = Unucleus + Uperiphery-

Equation 4.17 can then be generalized to:

Gh? G b2 p—1/2
Uy=—+——(1—vcos’a)ln ,
"= 90 Tamp oyt Ve an Ty

(4.20)

where « is a parameter that describes the nature of the dislocation
(edge @ = m/2, screw o = 0), which can be mixed.
The energy of dislocations is often taken to be approximately

Gb?

For typical metals, U, is equal to a few electron volts per atomic
plane. The energy of the nucleus is 10% of this total. The energy of
a dislocation per atomic plane is high in comparison with that of a
vacancy: approximately 3 eV (4.8 x 107'° J) versus about 1 eV (1.6 x
1079 J).

Example 4.3 |

Annealed materials have a dislocation density of approximately
10® cm~2 or 10'* m~2. Calculate the total strain energy for copper.

Solution: For copper, the Burgers vector is b = 0.25 nm. Inserting these
values into Equation 4.14 and using « = O (for a screw dislocation), we
obtain

Gb? 10

Gb? Gb
U =0.1Gb* + 4—In7 = 0.63Gb? =
TT

12

2
5 x 0.25 x 102 ~ 1.587 2

For this example, the energy per unit length is equal to 1.5 x 10~° J/m
(G = 48.3 GPa). The total strain energy is 1.5 KJ/m?.

4.4.5 Force Required to Bow a Dislocation

Two additional equations will be derived next: the force required to
curve a dislocation to a radius R and the Peach-Koehler equation.
The analogy of a string helps to explain the energy of a dislocation.
In the absence of an external stress field, a dislocation will tend to be
straight, minimizing its length and overall energy. The same occurs
for a string under tension. If the string is pushed by a force, it will
exert a force back. Thus, a curved dislocation is said to possess a “line
tension,” which can be calculated. The energy of a curved dislocation
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with radius R can be calculated (see Weertman and Weertman, p. 50,

in the suggested reading) and is equal to
Gb?> R

= 1

U=—In—. 4.22
4 n5b ( 3)

It is possible to calculate the force F required to bend a dislocation
into a radius R. Figure 4.34 shows a curved dislocation with radius
R. The line tension T is defined as the self-energy per unit length of
dislocation. In the figure, the segment of the dislocation ds is “sec-
tioned off,” and the remaining dislocation is replaced by two tensions
T acting tangentially to the line at the section points. The line tension
is always tangential to the dislocation line. The (downward) vertical
force exerted by the line tension on the segment ds is

F1 = 2T sin(d0/2).

This is balanced by the force F, (per unit length) exerted on the dis-
location, multiplied by its length:

Fyds = 2T sin(d6/2).

Since df/2 is a small quantity,

deS =T deo.
But
RdfO = ds,
F,RdO =Tao,
F, =T/R

Assuming, to a first approximation, that the line tension of a curved
dislocation is equal to the energy of a straight dislocation (Eqn. 4.21),
we have

e

Peach-Koehler equation

The Peach-Koehler equation relates the force applied to a dislocation
to a stress. F is the force per unit length of dislocation, and t is the
shear stress acting on the slip plane along the slip direction. This
relation can be demonstrated by considering a parallelepiped with
dimensions dxq, dx,, dxz. If a dislocation, with length dx;, on which
a force per unit length is F, moves through the parallelepiped, the
work done is

W = (F dX1)dX2.

The change in strain energy of the cube is equal to 1/2 > y in elas-
ticity and = ¢y in plasticity.
For volume dxidx,dxs:

U = (T]/)dX1dX2dX3,

S-AEXEN Curved dislocation.
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Decomposition of
dislocation in an FCC crystal.

where dx; dx, dx; is the volume of the parallelepiped. The shear strain
produced by one dislocation is

Yy = b/ng.
Since W =T,
(F dX1)dX2 = ('L'b/dX3)dX1dX2dX3

and

(4.22¢)

By applying the Peach-Koehler equation to Equation 4.2b, we get the
stress required to bow a dislocation to radius R:

(220

4.4.6 Dislocations in Various Structures

Dislocations in Face-Centered Cubic Crystals

In Section 1.3.2, we saw that, among the 80 or so metals, 55 are
FCC. The FCC structure is the closest packed one, together with the
HCP structure. Thus, it is natural that dislocations be more carefully
studied for the FCC structure.

When we visualize a dislocation, we generally think of a defect
that, upon passing, recomposes the original structure of the crystal.
Hence, in a simple cubic structure, the Burgers vector would have the
direction [100] and magnitude a (lattice parameter). However, there
are cases in which the original structure is not recomposed. This
type of dislocation is called imperfect or partial.

In FCC crystals, the closest packed planes are (111). These planes are
usually termed A, B, and C, depending on their order in the stacking
sequence. Figure 4.35 shows an atomic plane A. The glide movement of
the atoms of the plane A that would recompose the same lattice would
be indicated by the Burgers vector b;. This vector has the direction
[101]. Its magnitude is (it can be also seen in Figure 4.35 that it is
equal to the atomic size, and half the side AB):

o

by = =2r (4.23)
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Vector b; is expressed with respect to unit vectors i, j, and k of the
coordinate system Ox;X;X3 as

§Z=m+m—m1h=%+q—%k=;pxy (4.24)
It can be seen that the magnitude is
a
by| = —.
RN

This vector is, logically, the same as that of Equation 4.23. The sim-
plified notation used for Burgers vectors is

1
Sl

a - _
by = _[10I] or b = _[10i].

Hence, the term in brackets gives the direction of the vector, while
the term that precedes it is the same fraction as that used in the
definition of the unit vectors i, j, and k (see Equation 4.24). There is
also a graphic method to determine this fraction. First, one draws the
vector b connecting point (0, 0, 0) to point (1, 0, -1). Then one draws
by, which will be a fraction of b (in this case, half). The fraction is the
term that precedes the bracketed term.

One possibility of decomposition for the dislocation is shown in
Figure 4.35, where b, and bz add up to b;. b, is obtained from BD
and b; from EA.

a. a
BD = —i+ -j—ak
2 +ZJ
m:ai—gj—gk.

2 2

It can be shown that b, = BD/3 and that b; = EA/3. Both b, and b;
define partial dislocations, because they change the stacking sequence
ABC. But, acting together (or sequentially), they would have the same
effect as b; and maintain the correct stacking sequence. b, and b;
are:

b, = %(i—i—j 2K

bs = %(Zi—j—k)
and

by = by + by

It is easy to establish whether by, b, and bz belong to (111): the scalar
product should be zero, because [111], which is perpendicular to (111),
should also be perpendicular to by, by, and b;. The magnitude of b,
is given by:

36
_a

NG

Hence, we have the following possible reaction:

az 1/2
|M|=[—41+1+4q

a - a = a. -
S1101] — Z[112] + [211].
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-2 K] W Decomposition of a
dislocation b into two partial
dislocations by and b3, separated
by a distance dp.

(a) (b)

From Equation 4.21, the energy is Gb?/2. Therefore, we need to check
whether

Gr_ch G

2 2 2

or b? =b2 + b2. Taking the square of the magnitude of the Burgers
vectors yields

a’?  a? a?

? > E + E7
and we can see that the total energy decreases with decomposition.

When a perfect dislocation decomposes itself into partials, a

region of faulty stacking is created between the partials. This decom-
position is shown in Figure 4.36. The dislocations generate a region
in which the stacking is ABC AC ABC. Hence, we have four planes in
which the stacking is CACA. This is exactly the stacking sequence of
the HCP structure. This structure has a higher Gibbs free energy than
the equilibrium FCC structure, because it is not thermodynamically
stable under the imposed conditions. This specific array of planes is
called the stacking fault, and the energy associated with it determines
the separation between the two partial dislocations: The repulsive
force between the two partials is balanced by the attraction trying to
minimize the region with the stacking fault. The following equa-
tions from [Murr® and Kelly and Groves, (see the suggested read-
ing) respectively]|, allow the calculation of the equilibrium separation
between the partial dislocations d:

_G|bp|2 2—v 1 2v cos 20
VP Tend [1-v 2-v )|

)

G b1 bz 05 6; COS 6, -+ sin 91 sin 92
= Ci C — s
VSF md 1 2 2 v
or, in simplified form:
_¢ L (4.25)
VSE = md” .

Here, y is the stacking-fault free energy (SFE) per unit area (free
energy of HCP minus free energy of FCC), b, is the Burgers vector of

6 L. E. Murr, Interfacial Phenomena 