Giai Nobel 2012
10:21:21 PM Ngày 07 Tháng Mười Hai, 2019 *

Chào mừng bạn đến với Diễn Đàn Vật Lý.

Bạn có thể đăng nhập hoặc đăng ký.
Hay bạn đã đăng ký nhưng cần gửi lại email kích hoạt tài khoản?
Vui lòng nhập tên Đăng nhập với password, và thời gian tự động thoát





Lưu ý: Đây là diễn đàn của Thư Viện Vật Lý. Tài khoản ở Diễn Đàn Vật Lý khác với tài khoản ở trang chủ Thuvienvatly.com. Nếu chưa có tài khoản ở diễn đàn, bạn vui lòng tạo một tài khoản (chỉ mất khoảng 1 phút!!). Cảm ơn các bạn.
Phòng chát chít
Bạn cần đăng nhập để tham gia thảo luận
Vật lý 360 Độ
Tương lai của tâm trí - Michio Kaku (Phần 34)
07/12/2019
Tương lai của tâm trí - Michio Kaku (Phần 33)
07/12/2019
Tương lai của tâm trí - Michio Kaku (Phần 33)
07/12/2019
Tương lai của tâm trí - Michio Kaku (Phần 33)
07/12/2019
Về sự ra đời của quang electron
07/12/2019
Vì sao các bọt khí bám dính bên trong thành ống nghiệm?
07/12/2019

follow TVVL Twitter Facebook Youtube Scirbd Rss Rss
  Trang chủ Diễn đàn Tìm kiếm Đăng nhập Đăng ký  


Quy định cần thiết


Chào mừng các bạn đến với diễn đàn Thư Viện Vật Lý
☞ THI THỬ THPT QG LẦN 8 MÔN VẬT LÝ 2019 - 21h00 NGÀY 9-6-2019 ☜

Trả lời

Bài tập về Max-Min và số phức cần các bạn giúp.

Trang: 1   Xuống
  In  
Tác giả Chủ đề: Bài tập về Max-Min và số phức cần các bạn giúp.  (Đọc 4449 lần)
0 Thành viên và 1 Khách đang xem chủ đề.
gmvd
Thành viên triển vọng
**

Nhận xét: +0/-2
Cảm ơn
-Đã cảm ơn: 91
-Được cảm ơn: 11

Offline Offline

Bài viết: 56


Xem hồ sơ cá nhân Email
« vào lúc: 05:05:04 PM Ngày 08 Tháng Sáu, 2012 »

Câu 1: Cho [tex]x[/tex] là số thực dương và [tex]y[/tex] là số thực tùy ý . Tìm GTLN và GTNN của biểu thức:
[tex]P=\dfrac{xy^{2}}{\left(x^{2}+y^{2}\right)\left(\sqrt{x^{2}+y^{2}}+x\right)}[/tex]

Câu 2:Tìm số phức [tex]z[/tex] thỏa: [tex]\left(\dfrac{z+i}{1+i}\right)^{3}-\dfrac{z^{2}-1+2iz}{2i}+2=0[/tex]
« Sửa lần cuối: 06:48:49 PM Ngày 08 Tháng Sáu, 2012 gửi bởi Alexman113 »

Logged


mark_bk99
Sinh Viên +1
Lão làng
*****

Nhận xét: +22/-4
Cảm ơn
-Đã cảm ơn: 124
-Được cảm ơn: 629

Offline Offline

Giới tính: Nam
Bài viết: 818


Phong độ là nhất thời,đẳng cấp là mãi mãi!!!BKU

mark_bk94
Xem hồ sơ cá nhân Email
« Trả lời #1 vào lúc: 09:35:05 AM Ngày 09 Tháng Sáu, 2012 »


Câu 2:Tìm số phức [tex]z[/tex] thỏa: [tex]\left(\dfrac{z+i}{1+i}\right)^{3}-\dfrac{z^{2}-1+2iz}{2i}+2=0[/tex]

(1)<--->[tex](\frac{z+i}{1+i})^{3}-\frac{(z+i)^{2}}{2i}+2=0[/tex]
Đặt t=z+i   PT<===>[tex]\frac{t^{3}}{(1+i)^{3}}-\frac{t^{2}}{2i}+2=0[/tex]
<--->[tex]\frac{t^{3}-(1+i)t^{2}}{(1+i)^{3}}+2=0[/tex]
<---->[tex]t^{3}-(1+i)t^{2}+4-4i=0[/tex]
Tới đây ta nhẩm nghiệm ,tiến hành đọ casio fx xem của đứa nào xịn hơn , chắc của mềnh là I hề hề   .
nhẩm được t=2 thì nghiệm đúng PT ,chia horne ta được: (t-2)[[tex]t^{2}+(1-i)t+2-2i]=0[/tex]

Đơn giản rồi t=2 v .....
Giải cho cái này cái kia tự giải  
z+i=2 ==>z=2-i ,tương tự tính denta ==>z (bài này bên nâng cao hay gì ế, căn bậc 2 của số phức cơ bản làm gì học hớ hớ chém tất  (ko chém được thì ta đây ra tay tiếp)



« Sửa lần cuối: 05:25:53 PM Ngày 09 Tháng Sáu, 2012 gửi bởi mark_bk99 »

Logged

Seft control-Seft Confident , All Izz Well
gmvd
Thành viên triển vọng
**

Nhận xét: +0/-2
Cảm ơn
-Đã cảm ơn: 91
-Được cảm ơn: 11

Offline Offline

Bài viết: 56


Xem hồ sơ cá nhân Email
« Trả lời #2 vào lúc: 08:21:05 PM Ngày 09 Tháng Sáu, 2012 »


Câu 2:Tìm số phức [tex]z[/tex] thỏa: [tex]\left(\dfrac{z+i}{1+i}\right)^{3}-\dfrac{z^{2}-1+2iz}{2i}+2=0[/tex]

(1)<--->[tex](\frac{z+i}{1+i})^{3}-\frac{(z+i)^{2}}{2i}+2=0[/tex]
Đặt t=z+i   PT<===>[tex]\frac{t^{3}}{(1+i)^{3}}-\frac{t^{2}}{2i}+2=0[/tex]
<--->[tex]\frac{t^{3}-(1+i)t^{2}}{(1+i)^{3}}+2=0[/tex]
<---->[tex]t^{3}-(1+i)t^{2}+4-4i=0[/tex]
Tới đây ta nhẩm nghiệm ,tiến hành đọ casio fx xem của đứa nào xịn hơn , chắc của mềnh là I hề hề   .
nhẩm được t=2 thì nghiệm đúng PT ,chia horne ta được: (t-2)[[tex]t^{2}+(1-i)t+2-2i]=0[/tex]

Đơn giản rồi t=2 v .....
Giải cho cái này cái kia tự giải  
z+i=2 ==>z=2-i ,tương tự tính denta ==>z (bài này bên nâng cao hay gì ế, căn bậc 2 của số phức cơ bản làm gì học hớ hớ chém tất  (ko chém được thì ta đây ra tay tiếp)



mark hinh như bạn chia pt cho t-2 , kết quả sai rồi, còn phần dư nưa mà


Logged
gmvd
Thành viên triển vọng
**

Nhận xét: +0/-2
Cảm ơn
-Đã cảm ơn: 91
-Được cảm ơn: 11

Offline Offline

Bài viết: 56


Xem hồ sơ cá nhân Email
« Trả lời #3 vào lúc: 08:28:45 PM Ngày 09 Tháng Sáu, 2012 »



Câu 2:Tìm số phức [tex]z[/tex] thỏa: [tex]\left(\dfrac{z+i}{1+i}\right)^{3}-\dfrac{z^{2}-1+2iz}{2i}+2=0[/tex]

Đặt [tex]W=\frac{z+i}{1+i}[/tex]
ta có
W3-w2+2=0



Logged
mark_bk99
Sinh Viên +1
Lão làng
*****

Nhận xét: +22/-4
Cảm ơn
-Đã cảm ơn: 124
-Được cảm ơn: 629

Offline Offline

Giới tính: Nam
Bài viết: 818


Phong độ là nhất thời,đẳng cấp là mãi mãi!!!BKU

mark_bk94
Xem hồ sơ cá nhân Email
« Trả lời #4 vào lúc: 01:52:00 AM Ngày 10 Tháng Sáu, 2012 »

Sai là sai thế lào? Bạn nói mình ko hiểu ý lắm ,chuẩn thế còn thế lào !!! Tuy hơi dài xí


Logged

Seft control-Seft Confident , All Izz Well
gmvd
Thành viên triển vọng
**

Nhận xét: +0/-2
Cảm ơn
-Đã cảm ơn: 91
-Được cảm ơn: 11

Offline Offline

Bài viết: 56


Xem hồ sơ cá nhân Email
« Trả lời #5 vào lúc: 01:38:31 PM Ngày 10 Tháng Sáu, 2012 »

khi ban lấy
[tex]t^{3}-(1+i)t^{2}+4-4i=0[/tex]  chia cho (t-2) đó

ban xem lại thử kết quả đúng không, hình như phép chia này còn phần dư nưa mà. hj



Logged
mark_bk99
Sinh Viên +1
Lão làng
*****

Nhận xét: +22/-4
Cảm ơn
-Đã cảm ơn: 124
-Được cảm ơn: 629

Offline Offline

Giới tính: Nam
Bài viết: 818


Phong độ là nhất thời,đẳng cấp là mãi mãi!!!BKU

mark_bk94
Xem hồ sơ cá nhân Email
« Trả lời #6 vào lúc: 01:52:12 PM Ngày 10 Tháng Sáu, 2012 »

Thì phần dư ở đằng sau đó không thấy hả, ra 1 nghiệm rồi còn 2 nghiệm ở cái pt bậc 2 kia, tính denta theo t ==>z (Nhưng mà như thế thì phải dùng kiến thức nâng cao nghĩa là căn bậc 2 của số phức)
KQ giống nhau hết cả mình check rồi
Ban đầu mình ko nghĩ ra 2i =(1+i)^2 nên biến đổi hơi dài dẫn đến hướng giải khác ,nhưng cuối cùng đáp số vẫn vậy mừ !!!!!!!!! Ko sai đâu


Logged

Seft control-Seft Confident , All Izz Well
Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Xem hồ sơ cá nhân Email
« Trả lời #7 vào lúc: 02:08:30 AM Ngày 11 Tháng Sáu, 2012 »

Câu 1: Cho [tex]x[/tex] là số thực dương và [tex]y[/tex] là số thực tùy ý . Tìm GTLN và GTNN của biểu thức:
[tex]P=\dfrac{xy^{2}}{\left(x^{2}+y^{2}\right)\left(\sqrt{x^{2}+y^{2}}+x\right)}[/tex]
Giải:

Đặt: [tex]x^{2}+y^{2}=t\,(t > 0)[/tex]
 
Từ đây suy ra: [tex]t \ge x > 0[/tex]

Ta có [tex]$P$[/tex] trở thành: [tex]\dfrac{x\left(t-x^2\right)}{t\left(\sqrt{t}+x\right)}=\dfrac{x\left(\sqrt{t}-x\right)}{t}[/tex]

* Do [tex]t \ge x >0[/tex] nên [tex]P \ge 0[/tex]
Dấu "=" xảy ra khi và chỉ khi [tex]\sqrt{t}=x \Leftrightarrow y^2=0 \Leftrightarrow y=0[/tex] và [tex]x>0[/tex] tùy ý.

* Theo AM - GM, ta có: [tex]P=\dfrac{x\left(\sqrt{t}-x\right)}{t}\leq \dfrac{1}{t}\left(\dfrac{x+\sqrt{t}-x}{2}\right)^2=\dfrac{1}{4}[/tex]

Dấu "=" xảy ra khi và chỉ khi: [tex]x=\sqrt{t}-x\Leftrightarrow x=\dfrac{\sqrt{x^2+y^2}}{2} \Leftrightarrow 3x^2=y^2[/tex]

Vậy: [tex]MinP=0[/tex] tại [tex]y=0[/tex] và [tex]x>0[/tex] tùy ý.

và [tex]MaxP=\dfrac{1}{4}[/tex] tại [tex]x=1[/tex] và [tex]y=\sqrt{3}[/tex]


Logged

KK09XI ~ Nothing fails like succcess ~
Tags:
Trang: 1   Lên
  In  
sch

Những bài viết mới nhất
Những bài viết mới nhất
 
Chuyển tới:  


Tắt bộ gõ tiếng Việt [F12] Bỏ dấu tự động [F9] TELEX VNI VIQR VIQR* kiểm tra chính tả Đặt dấu âm cuối
Powered by SMF 1.1.11 | SMF © 2006, Simple Machines LLC © 2006 - 2012 Thư Viện Vật Lý.