Giai Nobel 2012
04:31:15 AM Ngày 14 Tháng Mười Hai, 2019 *

Chào mừng bạn đến với Diễn Đàn Vật Lý.

Bạn có thể đăng nhập hoặc đăng ký.
Hay bạn đã đăng ký nhưng cần gửi lại email kích hoạt tài khoản?
Vui lòng nhập tên Đăng nhập với password, và thời gian tự động thoát





Lưu ý: Đây là diễn đàn của Thư Viện Vật Lý. Tài khoản ở Diễn Đàn Vật Lý khác với tài khoản ở trang chủ Thuvienvatly.com. Nếu chưa có tài khoản ở diễn đàn, bạn vui lòng tạo một tài khoản (chỉ mất khoảng 1 phút!!). Cảm ơn các bạn.
Phòng chát chít
Bạn cần đăng nhập để tham gia thảo luận
Vật lý 360 Độ
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 70)
13/12/2019
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 69)
13/12/2019
[ebook] Vật Lí Lượng Tử Cấp Tốc
13/12/2019
Tìm hiểu nhanh vật lí hạt (Phần 22)
13/12/2019
Tìm hiểu nhanh vật lí hạt (Phần 21)
13/12/2019
‘Hạt X17’ có khả năng mang lực thứ năm của tự nhiên
12/12/2019

follow TVVL Twitter Facebook Youtube Scirbd Rss Rss
  Trang chủ Diễn đàn Tìm kiếm Đăng nhập Đăng ký  


Quy định cần thiết


Chào mừng các bạn đến với diễn đàn Thư Viện Vật Lý
☞ THI THỬ THPT QG LẦN 8 MÔN VẬT LÝ 2019 - 21h00 NGÀY 9-6-2019 ☜

Trả lời

Bài toán về NHIỆT HỌC khó - nhờ giúp đỡ

Trang: 1   Xuống
  In  
Tác giả Chủ đề: Bài toán về NHIỆT HỌC khó - nhờ giúp đỡ  (Đọc 1446 lần)
0 Thành viên và 1 Khách đang xem chủ đề.
nnguyenh
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 0
-Được cảm ơn: 0

Offline Offline

Bài viết: 1


Xem hồ sơ cá nhân Email
« vào lúc: 08:15:41 AM Ngày 18 Tháng Hai, 2014 »

Em có một bài toán khó về nhiệt học, mong thầy/cô và các bạn giúp dùm. Xin cám ơn rất nhiều

Một piston khối lượng M có thể di chuyển mà không có ma sát bên trong một hình trụ thẳng đứng dài, kín ở đáy và mở ở đầu. Xi lanh được làm đầy với một khí lý tưởng. Tại trạng thái cân bằng, piston nằm ở độ cao Lo so với đáy của hình trụ. Áp lực bên ngoài của hình trụ là Po, mặt cắt ngang của xi lanh và piston có tiết diện là S. Tìm chu kỳ dao động của piston nếu nó được di dời từ trạng thái cân bằng và sau đó thả ra. Cho rằng quá trình này là đoạn nhiệt.


Logged


datlove
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 1
-Được cảm ơn: 3

Offline Offline

Bài viết: 7


Xem hồ sơ cá nhân Email
« Trả lời #1 vào lúc: 09:59:58 PM Ngày 25 Tháng Năm, 2014 »

Theo mình bạn có thể tạm giải như thê này, không biết có đúng hay không:
*Tại vtcb của hệ:
[tex]Mg+p_{0}S=p_{1}S[/tex]                    (1)
+Chọn gốc toạ độ O, và chiều (+) trục Ox như hình vẽ:
* Tại vị trí pittong có li độ x:
[tex]Mg+p_{0}S-p_{2}S=Ma[/tex]               (2)
Thay (1) vào ta có:
[tex]S(p_{1}-p_{2})=Mx"[/tex]                 
Do quá trình trên là đoạn nhiệt:
[tex]p_{1}V_{1}^{\gamma }=p_{2}V_{2}^{\gamma } (3)[/tex]        với [tex]\gamma\ = \frac{C_{p}}{C_{v}}[/tex]
[tex]\Leftrightarrow\ p_{1}L_{0}^{\gamma\ }=p_{2}.(L_{0}-x)^{\gamma }[/tex]

[tex]\Leftrightarrow p_{2}=\frac{p_{1}L_{0}^{\gamma\ }}{(L_{0}-x)^{\gamma}}[/tex]

Thay ngược trở lại và kết hợp với (2) ta được:
[tex]Sp_{1}[1-\frac{L_{0}^{\gamma\ }}{(L_{0}-x)^{\gamma}}]= Mx"[/tex]
[tex]\Leftrightarrow (Mg+p_{0}S).L_{0}^{\gamma }.[(1-\frac{x}{L_{0}})^{\gamma }-1]=Mx"[/tex]
Vì [tex]\frac{x}{L_{0}}<<1[/tex]   nên    [tex](1-\frac{x}{L_{0}})^{\gamma}\approx 1-\gamma \frac{x}{L_{0}}[/tex]

[tex]\Rightarrow x"+\frac{(Mg+p_{0}S)L_{0}^{\gamma -1} \gamma }{M}.x=0[/tex]
=> Pittong dđđh với tần số góc [tex]\omega^{2} = \frac{(Mg+p_{0}S)L_{0}^{\gamma -1} \gamma }{M}[/tex]
 Vì vậy chu kì dđ của pittong là [tex]T=\frac{2 \pi }{\omega }[/tex]


* New Bitmap Image (4).bmp (789.43 KB, 640x421 - xem 164 lần.) Xem trước


Logged
Tags:
Trang: 1   Lên
  In  
sch

Những bài viết mới nhất
Những bài viết mới nhất
 
Chuyển tới:  


Tắt bộ gõ tiếng Việt [F12] Bỏ dấu tự động [F9] TELEX VNI VIQR VIQR* kiểm tra chính tả Đặt dấu âm cuối
Powered by SMF 1.1.11 | SMF © 2006, Simple Machines LLC © 2006 - 2012 Thư Viện Vật Lý.