Giai Nobel 2012
11:32:34 AM Ngày 07 Tháng Mười Hai, 2019 *

Chào mừng bạn đến với Diễn Đàn Vật Lý.

Bạn có thể đăng nhập hoặc đăng ký.
Hay bạn đã đăng ký nhưng cần gửi lại email kích hoạt tài khoản?
Vui lòng nhập tên Đăng nhập với password, và thời gian tự động thoát





Lưu ý: Đây là diễn đàn của Thư Viện Vật Lý. Tài khoản ở Diễn Đàn Vật Lý khác với tài khoản ở trang chủ Thuvienvatly.com. Nếu chưa có tài khoản ở diễn đàn, bạn vui lòng tạo một tài khoản (chỉ mất khoảng 1 phút!!). Cảm ơn các bạn.
Phòng chát chít
Bạn cần đăng nhập để tham gia thảo luận
Vật lý 360 Độ
Vì sao các bọt khí bám dính bên trong thành ống nghiệm?
07/12/2019
Top 10 thành tựu vật lí nổi bật trong năm 2019
06/12/2019
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 66)
03/12/2019
250 Mốc Son Chói Lọi Trong Lịch Sử Vật Lí (Phần 65)
03/12/2019
Lỗ đen ‘đặc biệt’ cân nặng 70 khối lượng mặt trời
01/12/2019
Tương lai nhân loại - Michio Kaku (Phần 34)
01/12/2019

follow TVVL Twitter Facebook Youtube Scirbd Rss Rss
  Trang chủ Diễn đàn Tìm kiếm Đăng nhập Đăng ký  


Quy định cần thiết


Chào mừng các bạn đến với diễn đàn Thư Viện Vật Lý
☞ THI THỬ THPT QG LẦN 8 MÔN VẬT LÝ 2019 - 21h00 NGÀY 9-6-2019 ☜

Trả lời

Bài tập hàm nhất biến - giải tích trong không gian

Trang: 1   Xuống
  In  
Tác giả Chủ đề: Bài tập hàm nhất biến - giải tích trong không gian  (Đọc 1137 lần)
0 Thành viên và 1 Khách đang xem chủ đề.
khapham
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 1
-Được cảm ơn: 0

Offline Offline

Bài viết: 1


Xem hồ sơ cá nhân Email
« vào lúc: 12:16:14 PM Ngày 21 Tháng Hai, 2013 »

Bài 1: Cho [tex]I(1,\,0,\,3)[/tex] và đương thẳng [tex](:\,\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z-1}{2}[/tex]. Viết phương trình mặt cầu tâm [tex]I[/tex] và cắt [tex]([/tex] tại [tex]A[/tex] và [tex]B[/tex] sao cho [tex]\Delta IAB[/tex] vuông tại [tex]I[/tex].

Bài 2: Cho hàm số [tex]y=\dfrac{mx-1}{x+m}\,\,\,(C_m)[/tex]. Gọi [tex]I[/tex] là giao điểm 2 đường tiệm cận của đồ thị hàm số [tex](C_m)[/tex]. Tiếp tuyến tại điểm bất kì thuộc [tex](C_m)[/tex] cắt hai tiệm cận lần lượt tại [tex]A[/tex] và [tex]B.[/tex] Định [tex]m[/tex] để [tex]S_{\Delta IAB}=12[/tex].

Bài 3: Cho [tex]a,\,b,\,c >0.[/tex] Tìm GTNN của biểu thức:
[tex]P=\dfrac{3(b+c)}{2a}+\dfrac{4a+3c}{3b}+\dfrac{12(b-c)}{2a+3c}[/tex]

Bài 4: Trong không gian [tex]Oxyz[/tex] cho 2 đường thẳng [tex](d_1):\,\dfrac{x+1}{1}=\dfrac{y+2}{2}=\dfrac{z}{1}[/tex] và [tex](d_2):\,\dfrac{x-2}{2}=\dfrac{y-1}{1}=\dfrac{z-1}{1}[/tex] và mặt phẳng [tex](P):\,x+y-2z+5=0.[/tex] Lập phương trình đường thẳng [tex]([/tex] song song với mặt phẳng [tex](P)[/tex] và cắt [tex](d_1)[/tex] và [tex](d_2)[/tex] lần lượt tại [tex]A[/tex] và [tex]B[/tex] sao cho độ dài [tex]AB[/tex] nhỏ nhất.
Thầy mình có cho các bài tập này.
Mình cần cách giải cho bài này, cám ơn các bạn trước!
« Sửa lần cuối: 12:32:51 PM Ngày 21 Tháng Hai, 2013 gửi bởi Alexman113 »

Logged


Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Xem hồ sơ cá nhân Email
« Trả lời #1 vào lúc: 10:34:11 PM Ngày 24 Tháng Hai, 2013 »

Bài 3: Cho [tex]a,\,b,\,c >0.[/tex] Tìm GTNN của biểu thức:
[tex]P=\dfrac{3(b+c)}{2a}+\dfrac{4a+3c}{3b}+\dfrac{12(b-c)}{2a+3c}[/tex]
Giải:

Đặt: [tex]\left\{\begin{array}{l}x=2a\\y=3b\\z=2a+3c\end{array}\right.\Rightarrow \left\{\begin{array}{l}a=\dfrac{x}{2}\\b=\dfrac{y}{3}\\c=\dfrac{z-x}{3}\end{array}\right.[/tex]
Khi đó, ta có:
[tex]P=\dfrac{y+z-x}{x}+\dfrac{2x+z-x}{y}+\dfrac{4(y+x-z)}{z}\\=\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{4x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{4y}{z}\right)-5\\\ge 2\sqrt{\dfrac{y}{x}.\dfrac{x}{y}}+2\sqrt{\dfrac{z}{x}.\dfrac{4x}{z}}+2\sqrt{\dfrac{z}{y}.\dfrac{4y}{z}}-5=5[/tex]
Dấu [tex]"="[/tex] ra khi: [tex]2x=2y=z \Leftrightarrow \dfrac{a}{3}=\dfrac{b}{2}=\dfrac{c}{2}[/tex]


Logged

KK09XI ~ Nothing fails like succcess ~
Tags:
Trang: 1   Lên
  In  
sch

Những bài viết mới nhất
Những bài viết mới nhất
 
Chuyển tới:  


Tắt bộ gõ tiếng Việt [F12] Bỏ dấu tự động [F9] TELEX VNI VIQR VIQR* kiểm tra chính tả Đặt dấu âm cuối
Powered by SMF 1.1.11 | SMF © 2006, Simple Machines LLC © 2006 - 2012 Thư Viện Vật Lý.