Nhờ mọi người giúp đỡ mình giải các bài toán sau
Bài 1: Cho hai véctơ: [tex]\overrightarrow{a}\left(x_a;\,y_a\right),\,\,\overrightarrow{b}\left(x_b;\,y_b\right)[/tex] và [tex]\overrightarrow{a}\times\overrightarrow{b}=x_ay_b-x_by_a.[/tex] Chứng minh rằng: [tex]\left|\overrightarrow{a}\times\overrightarrow{b} \right|=\left|\overrightarrow{a}\right|\left|\overrightarrow{b}\right|\sin\left(\overrightarrow{a};\,\overrightarrow{b}\right)[/tex]
Bài 2: Cho [tex]\Delta ABC[/tex] có trung điểm một cạnh là [tex]M\left(1;\,2\right)[/tex] . Biết hai trung tuyến xuất phát từ hai đỉnh có phương trình lần lượt là: [tex]x+y-3=0[/tex] và [tex]2x-y+4=0.[/tex] Viết phương trình các cạnh của [tex]\Delta ABC[/tex].
Bài 3: Cho [tex]\Delta ABC[/tex] có [tex]C\left(-3;\,1\right)[/tex]. Phân giác [tex]AD[/tex] có phương trình: [tex]x+3y+12=0[/tex], đường cao [tex]AH[/tex] có phương trình: [tex]x+7y+32=0.[/tex] Lập phương trình các cạnh của tam giác.
Bài 4: Cho điểm [tex]A\left(1;\,b\right)\,\,\,\,\,a>0;\,b>0.[/tex] Viết phương trình đường thẳng [tex](

[/tex] đi qua [tex]A[/tex] không đi qua gốc [tex] O[/tex] cắt tia [tex]Ox,\,Oy[/tex] tại [tex]M,\,N[/tex] sao cho [tex]MO + ON[/tex] nhỏ nhất.
Bài 5: Cho hai hình vuông [tex]ABCD[/tex] và [tex]A'B'C'D'[/tex] cùng hướng. Chứng minh rằng các đường thẳng [tex]BB';\,CC'[/tex] và [tex]DD'[/tex] đồng quy.
Bài 6: Cho [tex]A\left(a;\,0\right)[/tex] và [tex]B\left(0;\,b\right)\,\,\,\,\,a,\,b>0;\,M[/tex] di chuyển trên đoạn [tex]OA ,\,N[/tex] di chuyển trên đoạn [tex]OB[/tex] sao cho [tex]AM=ON.[/tex] Chứng minh rằng trung trực [tex]MN[/tex] luôn đi qua điểm cố định và hãy tìm tọa độ điểm đó.
Cảm ơn mọi người rất nhiều.
____________________________________________
@ Trần Anh Tuấn: mình đã bỏ ra hơn 30' ngồi đánh lại
bài của bạn đấy. Từ này bạn mà đăng bài cái kiểu ẩu thả
không gõ Tex đàng hoàng thì đừng hỏi TẠI SAO nhé!