Giai Nobel 2012
08:19:15 PM Ngày 03 Tháng Bảy, 2020 *

Chào mừng bạn đến với Diễn Đàn Vật Lý.

Bạn có thể đăng nhập hoặc đăng ký.
Hay bạn đã đăng ký nhưng cần gửi lại email kích hoạt tài khoản?
Vui lòng nhập tên Đăng nhập với password, và thời gian tự động thoát





Lưu ý: Đây là diễn đàn của Thư Viện Vật Lý. Tài khoản ở Diễn Đàn Vật Lý khác với tài khoản ở trang chủ Thuvienvatly.com. Nếu chưa có tài khoản ở diễn đàn, bạn vui lòng tạo một tài khoản (chỉ mất khoảng 1 phút!!). Cảm ơn các bạn.
Phòng chát chít
Bạn cần đăng nhập để tham gia thảo luận
Vật lý 360 Độ
Thời gian có thật sự trôi không?
28/06/2020
Chuyện kể của một hạt muon
19/06/2020
Vì sao lực hấp dẫn khác với những lực còn lại?
17/06/2020
Cấp độ trong vật lí học
13/06/2020
Tương lai của tâm trí - Michio Kaku (Phần cuối)
13/06/2020
Các nghịch lí Zeno
09/06/2020

follow TVVL Twitter Facebook Youtube Scirbd Rss Rss
  Trang chủ Diễn đàn Tìm kiếm Đăng nhập Đăng ký  


Quy định cần thiết


Chào mừng các bạn đến với diễn đàn Thư Viện Vật Lý
☞ THI THỬ THPT QG LẦN 7 MÔN VẬT LÝ 2020 - 21h00 NGÀY 5-7-2020 ☜

Trả lời

Tìm số hạng chứa x trong khai triển nhị thức Niu-tơn.

Trang: 1   Xuống
  In  
Tác giả Chủ đề: Tìm số hạng chứa x trong khai triển nhị thức Niu-tơn.  (Đọc 3793 lần)
0 Thành viên và 1 Khách đang xem chủ đề.
quangtiennq
Thành viên mới
*

Nhận xét: +0/-0
Cảm ơn
-Đã cảm ơn: 7
-Được cảm ơn: 1

Offline Offline

Bài viết: 5


Xem hồ sơ cá nhân Email
« vào lúc: 10:59:43 PM Ngày 09 Tháng Mười, 2012 »

Tìm số hạng chứa [tex]x[/tex] trong khai triển:
[tex]1+2\left(1+x\right)+3\left(1+x\right)^2+...+100\left(1+x\right)^{99}[/tex]
Mọi người giúp em với ạ, em cảm ơn.
« Sửa lần cuối: 07:19:26 PM Ngày 10 Tháng Mười, 2012 gửi bởi Alexman113 »

Logged


Alexman113
Lão làng
*****

Nhận xét: +26/-9
Cảm ơn
-Đã cảm ơn: 229
-Được cảm ơn: 270

Offline Offline

Bài viết: 551


KK09XI


Xem hồ sơ cá nhân Email
« Trả lời #1 vào lúc: 12:07:16 PM Ngày 11 Tháng Mười, 2012 »

Tìm số hạng chứa [tex]x[/tex] trong khai triển:
[tex]1+2\left(1+x\right)+3\left(1+x\right)^2+...+100\left(1+x\right)^{99}[/tex]
Mọi người giúp em với ạ, em cảm ơn.
Giải:
Ta cần tìm hệ số của [tex]x[/tex] trong khai triển đa thức dưới dạng: [tex]a_0+a_1x+a_2x^2+\cdots+a_{99}x^{99}.[/tex]

Mặt khác theo khai triển Niu-tơn thì: [tex]n(1+x)^{n-1}=n.\sum_{k=0}^{n-1}C_n^kx^k=\sum_{k=0}^{n-1}nC_n^kx^k.[/tex]

Như vậy: [tex]a_{1}=2C_{2}^{1}+3C_{3}^{1}+\cdots+100C_{100}^{1}=2^2+3^2+\cdots+100^2=\sum_{i=1}^{100}i^2-1=338349. \blacksquare[/tex]
« Sửa lần cuối: 12:08:51 PM Ngày 11 Tháng Mười, 2012 gửi bởi Alexman113 »

Logged

KK09XI ~ Nothing fails like succcess ~
Tags:
Trang: 1   Lên
  In  
sch

Những bài viết mới nhất
Những bài viết mới nhất
 
Chuyển tới:  


Tắt bộ gõ tiếng Việt [F12] Bỏ dấu tự động [F9] TELEX VNI VIQR VIQR* kiểm tra chính tả Đặt dấu âm cuối
Powered by SMF 1.1.11 | SMF © 2006, Simple Machines LLC © 2006 - 2012 Thư Viện Vật Lý.